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A FLOW-THROUGH ACOUSTIC WAVEGUIDE FOR 

TWO-PHASE BUBBLY FLOW VOID FRACTION MEASUREMENT 

CHRISTOPHER EDWARD ORMONDE 

ABSTRACT 

In the Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory 

(ORNL), the deposition of a high-energy proton beam into the liquid mercury target 

forms bubbles whose asymmetric collapse cause Cavitation Damage Erosion (CDE) 

to the container walls, thereby reducing its usable lifetime. One proposed solution 

for mitigation of this damage is to inject a population of microbubbles into the 

mercury, yielding a compliant and attenuative medium that will reduce the resulting 

cavitation damage. This potential solution presents the task of creating a diagnostic 

tool to monitor bubble population in the mercury flow in order to correlate void 

fraction and damage. 

Details of an acoustic waveguide for the eventual measurement of two-phase 

mercury-helium flow void fraction are discussed. The assembly’s waveguide is a 

vertically oriented stainless steel cylinder with 5.08cm ID, 1.27cm wall thickness 

and 40cm length. For water experiments, a 2.54cm thick stainless steel plate at the 

bottom supports the fluid, provides an acoustically rigid boundary condition, and is 

the mounting point for a hydrophone.  A port near the bottom is the inlet for the 

fluid of interest. A spillover reservoir welded to the upper portion of the main tube 
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allows for a flow-through design, yielding a pressure release top boundary condition 

for the waveguide. A cover on the reservoir supports an electrodynamic shaker that 

is driven by linear frequency sweeps to excite the tube. The hydrophone captures 

the frequency response of the waveguide. The sound speed of the flowing medium is 

calculated, assuming a linear dependence of axial mode number on modal frequency 

(plane wave). Assuming that the medium has an effective-mixture sound speed, and 

that it contains bubbles which are much smaller than the resonance radii at the 

highest frequency of interest (Wood’s limit), the void fraction of the flow is 

calculated. Results for water and bubbly water of varying void fraction are 

presented, and serve to demonstrate the accuracy and precision of the apparatus. 

[Supported by the ORNL Spallation Neutron Source, which is managed by UT-

Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of 

Energy.] 
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Chapter 1 

1 Introduction and Background 

This thesis details the design, construction, and validation of a flow-through acoustic 

resonator for determining the void fraction of a two-phase flow via sound speed 

measurement. This Section will detail the motivation behind the construction of 

such a device, a discussion of techniques previously employed by others to make 

similar measurements, and a formal posing of the task at hand. 

1.1 Context and Motivation 

This Section will detail the motivation behind the current work, and the context 

which makes it relevant and important. 

1.1.1 SNS Facility Description and Function 

When at full power (order 1MW) and maximum pulse repetition frequency 

(PRF=60Hz), the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory 
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(ORNL) will be the most intense pulsed accelerator-based neutron source in the 

world. Neutrons of different energies can be used in a wide variety of experiments. 

Neutrons are ideal for the investigation of material properties in that they are able 

to penetrate materials very easily, and the manner in which they interact with a 

material yields vast amounts of insight into its properties. Neutron science has been 

at the forefront of materials science for decades, and the SNS puts the United States 

back in the lead for the most cutting-edge neutron science facility, as it will produce 

more neutrons than any other facility in the world. Below in Figure 1.1 is shown the 

Layout of the ORNL SNS facility, and the corresponding National Laboratories which 

collaborate on the specific portions of the facility. 
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Figure 1.1: Layout of the ORNL SNS Complex (neutrons.ornl.gov) 
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The SNS functions as follows: Negatively charged hydrogen ions are produced by an 

ion source. Each ion consists of a proton orbited by two electrons. The ions are 

routed into a 1000-foot linear accelerator that accelerates them to about 90% of the 

speed of light. The ions are passed through a foil, which strips off each ion’s two 

electrons, converting it to a single proton. The protons then enter into an 

accumulator ring, where they are collected into bunches as they circulate and are 

accelerated further very close to the speed of light. The pulsed beam of high-energy 

protons (order 1 GeV) is fired at a stainless steel liquid-mercury-filled target. When 

a very high energy proton collides with a mercury atom, neutrons are ‘knocked off’ 

the atom in a process called spallation. The corresponding pulse of neutrons is 

emitted isotropically, slowed down in a moderator and guided through beam lines 

(a waveguide of sorts) to dedicated experiments positioned at the end of each line.  

The SNS main target has 18 beam lines/instruments emanating from it. A second 

target is slated for construction and will house more beam lines. 

The target, shown below in Figure 1.2, is a stainless steel container filled with 

continuously re-circulating liquid mercury. Because of the enormous amount of 

energy that the short, powerful pulses of the incoming 1-GeV proton beam will 

deposit in the spallation target, it was decided to use a liquid mercury target rather 

than a solid in order to facilitate cooling. A cutaway view of the target vessel is 

shown further below in Figure 1.3, along with a relative length scale. The section 
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under consideration, the closest to the incoming pulsed beam, is approximately two 

feet by four feet in footprint, and six inches thick. 
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Figure 1.2: The SNS Liquid-mercury-filled Stainless Steel Target Chamber (Courtesy B. Riemer, 
ORNL SNS) 
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Figure 1.3: A cutaway view of the SNS mercury target, showing flow path, relative size scale, 
and cooling channels (courtesy B. Riemer, ORNL SNS) 
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Liquid mercury was chosen for the target for several reasons: (1) it is not damaged 

by radiation, as are solids; (2) it has a high atomic number, making it a source of 

numerous neutrons (the average mercury nucleus has 120 neutrons and 80 

protons); and (3), because it is liquid at room temperature, it is better able than a 

solid target to dissipate the large, rapid rise in temperature, it can be flowed for 

cooling purposes, and it can withstand the shock effects arising from the rapid high-

energy pulses. 

1.1.2 Cavitation 

As mentioned before, there are various benefits to using a flowing liquid metal 

target for neutron spallation. However, this also presents a hydrodynamic problem. 

The actual rise in temperature due to energy deposition is only several Kelvin, but 

the time scale of energy deposition results in rapid isochoric heating at a rate of 

approximately 14 x 106 K/s. The pressure due to this beam deposition is estimated 

by  

 40
T

p MPa





   , (1.1) 

where   is the coefficient of volume expansion and   is the isothermal 

compressibility. This creates a transient thermal expansion in the mercury and 

cavities are formed [1]. The large amplitude (~40MPa) and long duration (500µs) of 

the tensile phase of the resultant pressure wave serve to grow vapor nuclei 
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generated by the proton and neutron collisions to macroscopic size (mm order) 

vapor cavities. These bubbles then undergo a violent inertial collapse; this 

mechanism is known as cavitation [2, 3]. The presence of boundaries in the 

neighborhood of the collapsing bubble can significantly alter the collapse dynamics. 

In the free field, the collapse is symmetric and will lead to an acoustic emission and 

possibly a few rebound grow-and-collapse events of decreasing magnitude.  

1.1.3 Target Damage Effect 

The dynamics of the inertial cavitation collapse discussed above change significantly 

in the presence of fluid-fluid or fluid-solid boundaries. If a rigid boundary is present 

(the rigid mercury target vessel walls, for example), the collapse is asymmetric, 

creating a high-speed liquid jet in the direction of the solid boundary [4, 5]. This can 

cause significant damage over time. Shown below in Figure 1.4 is an image of a 

cavitation bubble jetting towards a solid boundary at the instant the liquid jet is 

impinging on the other side of the bubble boundary. 
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Figure 1.4: A bubble implodes near a solid surface. The presence of the solid causes the 
collapse to be asymmetrical, forming a high-speed jet of liquid that impacts the surface. (from 
L. A. Crum, Ph.D., University of Washington, Applied Physics Laboratory). Bubble diameter 
approximately 1mm 
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Multiple-bubble or collective collapse is a phenomenon seen more commonly in real 

applications than single bubble inertial cavitation, including the case of the SNS. 

Bubble cloud collapse occurs collectively; as bubbles further from the boundary 

collapse, they add momentum to the collapsing cloud. Below in Figure 1.5 is a time 

series of high speed photos showing a bubble cloud collapsing on a rigid target due 

to a shock wave produced by an electromagnetic lithotripter. Shock waves were 

continually fired at this target (simulating a kidney stone) at a pulse repetition 

frequency of 2 Hz. In the first and last snapshot it is clear that fragments of the 

simulated kidney stone have fractured off from repeated bubble cloud collapses due 

to the shock waves. 
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Figure 1.5: High-speed camera photo series of bubble cloud collapse mechanism on a rigid 
target due to a single shock wave. Shock waves were fired from an electromagnetic Storz SLX 
lithotripter with the target positioned at the focus. The first frame (top left) was taken 200 
microseconds after the lithotripter was triggered, successive photos were taken every 50 
microseconds following. Left to right, top to bottom indicate increasing time (Courtesy Jon 
Kracht and Robin Cleveland) 
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With regards to the SNS mercury target chamber, cavitation damage erosion is 

particularly disconcerting due to the disastrous effects one can imagine if the 

chamber were to rupture. Much work has been done to simulate the potential for 

cavitation damage in a flowing mercury spallation neutron target [6-10]. The effect 

of cavitation damage erosion of the mercury target chamber at full beam power has 

been estimated to yield an unacceptably short estimated target lifetime of about 30 

hours or two work weeks [11], two orders of magnitude smaller than the 2500 hour 

target lifetime constraint from radiation embrittlement [12]. The chance of failure 

due to cavitation damage erosion within this 2500 hour projected lifetime is 

projected to be greater than 99.9% [13]. Therefore, there is a strong motivation to 

significantly extend the lifetime of the target vessel via cavitation damage 

mitigation. 

1.1.4 Possible Cavitation Mitigation Solution 

One proposed solution for mitigating the cavitation-induced damage to the SNS 

mercury target chamber, which may seem counterintuitive, is to introduce a 

population of small gas bubbles into the mercury flow. When a fluid contains 

bubbles, the compressibility (  term in Equation (1.1)) increases significantly, 

reducing the amplitude of the pressure perturbation associated with the rapid 

absorption of the proton beam. Also, the shock wave launched due to beam energy 

deposition will be heavily attenuated as it propagates from the deposition point 

towards the chamber wall due to the attenuative nature of the bubbly mixture. Both 
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these established phenomena have been investigated thoroughly through numerical 

modeling and mock-up experiments in regards to the SNS mercury target chamber 

conditions specifically [14-23]. These numerical investigations have yielded varying 

results, depending both on bubble radius and void fraction as well as how the 

simulation was carried out and by whom. One result indicates that a void fraction of 

only 10-4 and bubble diameter of 100µm would decrease the beam deposition 

pressure by a factor of two [15]. Another result indicated that small bubbles (100µm 

or less) would provide this same twofold decrease in deposited pressure, but that 

the void fraction required would be on the order of several tenths of a percent[14]. 

Another result indicated that a larger bubble radius (order ~ 1-2mm) would 

provide better cavitation mitigation because the expansion ratio of larger bubbles 

from the thermal shock would be decreased and thus jet damage potential of the 

injected bubbles themselves would decrease [17]. Some more recent numerical 

models have settled on bubble diameters of less than 100µm and void fractions on 

the order of a few tenths of a percent. Such conditions are predicted to decrease the 

peak pressure deposited in the mercury by a factor of as much as 100 and decrease 

the peak pressure seen at the chamber wall by the same amount or more [19]; 

further simulations also indicated that injected gas choice (helium, argon, etc) could 

help to decrease cavitation damage potential [23]. The end result of all these 

simulations has, in general, been that microbubble injection will be effective in 
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mitigating cavitation damage erosion; void fractions expected to be necessary to 

probe will be from 10-6 to 5*10-3. 

As an aside, efforts to create small bubbles in mercury in support of the microbubble 

injection studies using needles and ports are proceeding concurrent with cavitation 

mitigation investigations. Due to the poor wettability of mercury on steel and the 

high surface tension of mercury, creating small bubbles is nontrivial. However, 

studies have estimated that small bubbles (less than 100µm) can be created with a 

narrow needle (inner diameter 100µm, outer diameter 200µm) if the linear flow 

rate of the liquid mercury is sufficiently high (5 m/s); normally the poor wettability 

causes the escaping gas to form back around the outer surface of the needle and 

grow until it is sheared off from the needle by the flow [24]. 

1.1.5 Statement of Posed Problem 

Because of the aforementioned wide range of bubbly flow simulations, effective 

implementation of the microbubble injection approach requires a device/method 

for in situ monitoring of the introduced bubble population both for diagnostic 

purposes as well as to correlate the effect of different bubble populations to levels of 

cavitation damage for optimization purposes. Such a device could be implemented 

in a high-power target test facility, such as the Oak Ridge National Laboratory 

(ORNL) Target Test Facility (TTF), in order to determine the ideal injected 

population. 



16 

 

Since mercury is an opaque, corrosive, and toxic liquid metal, measuring the void 

fraction of a two-phase mercury flow is nontrivial. Certainly a simple optical 

technique will not be feasible. First we take into consideration various techniques 

for void fraction determination used in the past. 

1.2 Previous Bubbly Flow Characterization Techniques 

There are a plethora of previously published techniques for providing diagnostics 

on bubbly flows. Two-phase flow diagnostics are useful for a wide range of 

industrial and laboratory applications, from food processing to medical research, 

from the current interest to ocean science. Measurements of electrical, fluidic, 

irradiation, optical, acoustic, and other properties have all been investigated. This 

Section will graze the surface of some of the methods employed in published works 

in the past and briefly touch on why they are not ideal for the current effort (usually 

the void fraction range in which they are applicable), and culminate with the 

method of choice, which will be expanded upon and explained in detail later in this 

work. 

1.2.1 Electrical methods 

Several electrical methods can be employed to measure the void fraction of a bubbly 

mixture. 

One method involves measuring the electrical impedance of the bubbly fluid via an 

electrode bridge; this impedance has a direct relation to the void fraction of the 
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medium [25]. This method can be employed effectively for high void fractions 

(>1%) and has been used in this regime very effectively [26-28]. However, the 

electrical noise threshold (equating to .3% void fraction) and the error dependence 

on impurities and temperature fluctuations in the liquid make employment of this 

method in our void fraction range of interest not plausible.  

A similar method of measurement uses electrodes to measure the electrical 

capacitance of the two-phase fluid, this method has similar void fraction range 

limitations [29].  

Another method intended for use with cryogenics uses a radio frequency 

electromagnetic method and oscillatory circuit whose resonance frequency depends 

on the void fraction; this method is again applicable for very high (10-100%) void 

fractions [30]. 

1.2.2 Fluidic Methods 

Void fraction has been measured using the ‘side-tube’ method, where a main flow is 

diverted into a smaller side-tube. In this side tube the static pressure head separates 

the phases and a liquid column height, combined with a differential pressure 

measurement, yields the void fraction, assuming that the gravitational pressure loss 

dominates other pressure losses [31, 32]. Experiments showed that these other 

pressure losses were not necessarily negligible; the system became more accurate 

as the side tube diameter was increased due to the decrease in frictional loss, but 
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this also decreases the precision of the column height measurement. Thus again, the 

range of void fractions over which this technique is usable is higher than that of 

current interest. 

Differential pressure measurements were also used as a concurrent measurement 

by Silberman [33] and others. 

1.2.3 Irradiation Methods 

Irradiation methods measuring X-ray absorption [34, 35], γ-ray absorption [36], and 

neutron scattering [35, 37], and relating those measurements to void fraction, have 

been employed in past research. The inherent error due to the random nature of 

radiation is significant and this method is also not effective in our void fraction 

range of interest. 

1.2.4 Optical Methods 

Direct optical methods for sizing bubbles, although tedious, have been used in the 

past. In order to correlate imagery to a volume ratio of gas to liquid, a flow section of 

known area (or volume) in the optical plane is used, with depth along the optical 

axis small enough to permit all bubbles to remain in focus (depth of field >= depth of 

section) and to disallow ‘stacking’ of bubbles along the optical axis. Observed 2-

dimensional bubble areas (or areas converted to volumes) are then used to calculate 

an area fraction (or volume fraction) which is equivalent to the void fraction. When 

void fractions are not so high as to make distinguishing neighboring bubbles 
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difficult, automated image processing techniques can be used with success. This 

technique has been experimentally used by the author, Wilson [38], Ruggles et al 

[39], and Silberman [33] in order to benchmark their acoustical measurements in 

water/air mixtures. However, using this technique in mercury is not possible. 

1.2.5 Acoustic Methods 

Lastly, void fraction measurements can be made using acoustic techniques. One 

characteristic of bubbly flows that is attractive for void fraction measurement is that 

even the addition of a very small void fraction (say, 10-6) of sufficiently small 

bubbles will yield a large change in the acoustic properties of the mixture: which 

properties and how much will depend on the frequency regime of interest and the 

bubble radius, among others. 

One method to exploit this strong dependence on bubble population is to measure 

acoustic phase velocity using an acoustic resonator. In a simple cylindrical 

waveguide (other geometries can also be used) driven below the cutoff frequency 

the resonance modes of the waveguide depend only on the end conditions, the tube 

length, and the sound speed of the enclosed medium. If a waveguide is driven 

acoustically in a broadband fashion, the speed of sound propagation in the medium 

can be easily calculated by fitting the resonance modes to a line. Assuming the 

frequency regime of interest is well below the resonance frequency of the largest 
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bubbles, there is a direct relationship between the sound speed of the mixture and 

the void fraction. Thus, the void fraction can be extracted. 

This method has been used extensively in published research, notably in [33] and 

[39], and is the method of choice for this work. 

1.3 Formal Problem Statement 

In summary, a diagnostic tool for measuring the void fraction of a two phase flow is 

required for the investigation of cavitation damage mitigation by microbubble 

injection in the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source 

(SNS). 

Thus, the goal of this work is as follows: to design, construct, and test a 1-D acoustic 

waveguide that will allow extraction of void fractions from 10-6 to 5*10-3 via 

standing wave resonance sound speed measurement in both water and mercury 

host fluids. In order to support this void fraction range, the waveguide must be 

dimensioned and designed accordingly, since the tube length and diameter will pose 

restrictions on bubble radius and other characteristics. The waveguide must allow 

in situ sampling of two-phase flow, suggesting a flow-through design. The 

waveguide apparatus must also be mercury compatible. 

The rest of this work will discuss bubbly fluid acoustic theory, materials and 

methods, results and discussion, and conclusions and suggestions for future work. 
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Chapter 2 

2 Theory 

This Chapter is devoted to a theoretical description of the acoustics of bubbly fluids 

and waveguides as well as a brief presentation of the history of bubbly fluid 

literature. The combination of these two areas of study provides the theoretical 

basis for the current work. Various assumptions will be applied to the basic 

definition of the speed of sound to provide a model for sound propagation in bubbly 

fluids, which will then be restricted to the low frequency regime in order to further 

simplify the relationship. Waveguide theory including compensation for the 

elasticity of the waveguide walls will be presented. Lastly, these two theoretical 

descriptions will be combined to provide the cumulative theory for the current 

work. 
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2.1 Bubbly Fluid Acoustics 

The acoustics of bubbly fluids has been a field of high interest to scholars, 

researchers, and industry for the past century. Initial investigations came about due 

to mere curiosity of everyday phenomena. In what is usually considered the first 

published research into the physics behind bubbly fluid acoustics, Arnulph Mallock 

wrote in 1910 about the curious feature of a glass of ‘frothy liquid’ to exhibit a dull 

thud when struck; attributing this to the damping effect of the gas bubbles, he went 

on to investigate the velocity of propagation and energy damping in such a fluid 

analytically [40]. In 1917, Lord Rayleigh was motivated by the collapse of steam 

bubbles in a boiling kettle and went on to write about the pressure developed in a 

cavitation bubble [2]. In 1930, A. B. Wood expanded on the work of Mallock and 

used a thermodynamic approach to discuss the acoustic properties of a bubbly 

mixture [41]. In 1933, Minnaert considered the sounds of running water and went 

on to define the concept of bubble resonance frequency. [42]. For the next 75 years 

the field of bubbly fluid acoustics became heavily researched both for scholarly 

interest as well as applications in industry and science. 

2.1.1 Bubbly Fluid Sound Speed Derivation 

This section will use a basis from Wood and Mallock (and Carey [43]) to present a 

brief discussion of sound propagation in bubbly fluids. The basic definition of the 

speed of sound in a compressible fluid medium can be expressed as 
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 2 /c dP d , (2.1) 

where c  is the speed of sound in the medium, P  is the pressure, and   is the 

density of the medium. Since the compressibility of the medium can be expressed as 

the inverse of the density, and the medium of interest could be a uniform mixture of 

various media (in this case the interest is in a bubbly liquid mixture), the speed of 

sound can now be expressed as 

 2 1/ ( )m m m m mc dP d     , (2.2) 

where mc  is the speed of sound in the mixture, m  is the mixture density, and m  is 

the compressibility of the medium (or the effective compressibility of the mixture). 

Since this result implies that a bubbly liquid mixture acts as a spring-mass-damper 

system, we can apply such theory to it. In [42], Minnaert defined the resonance 

frequency of a gas bubble entrained within a liquid, which, slightly modified, can be 

expressed as 

 0
0

0 0

1 3

2

P
f

R



 
 , (2.3) 

where 0f  is the resonance frequency, 0R  is the bubble equilibrium radius,   is the 

polytropic index of the gas1, 0P  is the ambient pressure, and 0  is the density of the 

                                                 
1 The ‘Minnaert’ resonance frequency assumes lossless and adiabatic behavior, and as such the 

polytropic index he published was taken to be the ratio of specific heats of the gas (for example, 1.4 
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liquid. For example, an air bubble of radius 1mm in water has a resonance frequency 

of approximately 3.3 kHz. It should be noted that the Minnaert resonance frequency 

does not account for the surface tension of the bubble, which has the effect of 

increasing the ambient pressure 0P  by the Laplace pressure 02 / R , where   is the 

surface tension specific to interaction between the fluid and gas of interest. In the 

case of water and air, this term is oft ignored unless the Laplace pressure is on the 

order of an atmosphere. Since this occurs for bubbles of about 1 micron radius and 

smaller, which are an order of magnitude smaller than the smallest bubbles 

expected to be made for this work, the surface tension will be neglected; the 

resonance frequency equals the Minnaert frequency. For mercury, the surface 

tension effect may need to be investigated. 

Next we introduce a quantity representing the volume ratio of gas to that of the total 

gas and liquid mixture; this is called the void fraction and is denoted 

 / / ( )g m g g lV V V V V    , (2.4) 

where gV , lV , and mV  are the volumes of the gas, liquid, and total mixture, 

respectively. The effective density and compressibility of a mixture of gas bubbles in 

a liquid can thus be described as follows: 

                                                                                                                                                 
for air), denoted as  . In Equation (2.3) the author has intentionally left the polytropic index 

symbolized as  , since it is dependent on both frequency and bubble size. In the isothermal case 

(low frequency), the polytropic index can often be taken as 1. 
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 (1 )m l g       (2.5) 

 (1 )m l bub       (2.6) 

where l  and 
g  are the respective densities of the liquid and gas, l  is the 

compressibility of the liquid, and bub  is the compressibility due to the bubbles. It is 

important to note that this is not the same as the compressibility of the gas phase, 

owing to the dynamic character of acoustically driven bubble pulsations.  In 

particular, bubbles driven near their resonance frequency will appear more 

compressible due to the large volumetric excursions. Inserting Equations (2.5) and 

(2.6) into Equation (2.2) yields 

 
2

1
[(1 ) ][(1 ) ]l g l bub

mc
           (2.7) 

The compressibility due to the bubbles is a frequency dependent parameter that 

must be derived from a consideration of bubble dynamics. 

2.1.2 Sound Propagation Including Bubble Dynamics 

As mentioned previously, a bubbly mixture can be to an extent modeled as a spring-

mass-damper system. Using this simple harmonic analysis and assuming that 

pressure perturbations are small and of the form 0( ) ( )P t P p t  , we can further 

expand Equation (2.7) to be applicable at all frequencies. Extensive work has been 

published in the literature on how to model propagation through bubbly liquids in 
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various frequency regimes when bubble dynamics are considered. This requires in-

depth derivation of the conservation equations and equations of state as well as 

direct derivation of the bubble dynamics, both nontrivial endeavors. Some examples 

of how the former have been attempted can be seen in Caflisch et al [44] and van 

Wijngaarden [45], examples of the latter in  Prosperetti et al [46] and Keller and 

Miksis [47]. Early works by Foldy [48] and Carstensen and Foldy [49] determined 

the frequency dependence of bubble damping by using a multiple scattering 

approach. Other methods provided similar results. 

In 1989, Commander and Prosperetti [50] compiled these and other predecessors’ 

works to derive a detailed  model for sound propagation in a bubbly liquid that 

included a detailed energy dissipation analysis for an effective medium, resulting in 

a frequency dependent bubble damping term with multiple components. Their 

efforts are often used as the benchmark for studies on bubbly fluid acoustics, and 

will be used here for the discussion of wave propagation with bubble dynamics 

considered. 

For a monodisperse bubbly medium2, the frequency-dependent sound speed is 

given by  

 
2 2 2 2

0

1 1 4

2m l

an

c c jb



  
 

 
, (2.8) 

                                                 
2 The details of this approximation and its application in real situations will be discussed in the next 

section detailing low frequency sound propagation. 
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where a  is the equilibrium bubble radius and n  is the number of bubbles per unit 

volume (these can be related to the void fraction), j is the square root of negative 

one, 0  is the resonance frequency (which is not necessarily the Minnaert 

frequency),   is the frequency of driving, and b  is the bubble damping coefficient. 

The damping coefficient b  is given by 

 
2

2 2

2
Im

2 2

e

l l l

P a
b

a a c

 

  
    , (2.9) 

where the three terms account for the viscous, thermal, and acoustic energy 

dissipation effects, respectively, and   is 

 
1/2 1/2

3

1 3( 1) [( / ) coth( / ) 1]jX j X j X




 

  
, (2.10) 

with the X  term defined as 

 
2

gD
X

a
 , (2.11) 

where gD  is the thermal diffusivity of the gas. eP  is the equilibrium pressure in the 

bubble and is given by 

 
0

2
eP P

a


  . (2.12) 
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In this case, the resonance frequency will include the surface tension term and is 

give by the expression 

 2

0 2

2
Ree

l e

P

a aP






 
   

 
. (2.13) 

Finally, Equation (2.8) can be understood in a perhaps more useful manner if it is 

described in terms of phase speed and attenuation. If the term l

m

c
c

 is broken up 

into its real (phase speed) and imaginary (lossy, i.e. attenuative) components u jv , 

then the phase speed V is given by 

 lc
V

u
 , (2.14) 

and the attenuation coefficient in dB per unit length is expressed as 

 1020(log )
l

vA e
c

   
 

. (2.15) 

Below in Figure 2.1 and Figure 2.2 are shown the phase speed and attenuation plots 

versus frequency for a monodisperse bubbly mixture of water and air with 1mm 

radius bubbles and a void fraction of 1E-3.  
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Figure 2.1: Phase speed versus frequency for a monodisperse bubbly mixture of water and air 
with bubble radius 1mm and void fraction 1E-3 from Equation (2.14) 
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Figure 2.2: Attenuation versus frequency for a monodisperse bubbly mixture of water and air 
with bubble radius of 1mm and void fraction 1E-3 from Equation (2.15) 
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At frequencies well below the resonance frequency, it is clear that the attenuation is 

low and the phase speed is non-dispersive. This flat region is the referred to as the 

Wood limit, after A. B. Wood [41], and can be clearly seen in Equation (2.8) by 

setting   equal to zero, and the resulting mixture sound speed becomes the liquid 

sound speed less a correction factor that is dependent on the void fraction. As the 

resonance frequency is approached, the phase speed begins to drop and the 

attenuation rises abruptly. This is approaching the region of the most dispersion. At 

the resonance frequency the attenuation is a maximum and the phase speed is a 

minimum. Through resonance the phase speed increases sharply in an asymptotic 

manner, such that just above resonance the phase speed is supersonic with respect 

to the pure liquid. The attenuation is reduced with respect to the resonance 

frequency, but is still far higher than throughout the sub-resonance regime. The 

supersonic region continues after resonance as attenuation lessens, and the phase 

speed peaks at some frequency larger than the resonance frequency. Throughout 

these small regions surrounding the resonance frequency, the dominant term is the 

second term of Equation (2.8), since the 2 2

0   denominator term is small and 

either positive or negative and thus the whole term is large. The phase speed now 

begins to fall asymptotically towards the sound speed of the pure liquid after the 

supersonic regime, while attenuation continues to decrease. This is evidenced in 

Equation (2.8) by inserting an   of infinity, and the result is that mc  becomes lc . 
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Figure 2.1 and Figure 2.2 show the general behavior of the phase speed and 

attenuation for a bubbly fluid; the extent and span of the features of these curves 

can vary with bubble radius and void fraction. The effects of changing void fraction 

or bubble radius can be examined by fixing one and varying the other. Below in 

Figure 2.3 and Figure 2.4 are shown the phase speed and attenuation versus 

frequency curves for void fractions of 1E-3, 1E-4, and 1E-5, for air bubbles of radius 

1mm in water. Further below in Figure 2.5 and Figure 2.6 are shown the phase 

speed and attenuation versus frequency curves for 0.1mm, 1mm, and 5mm air 

bubbles in water for a void fraction of 1E-3.  
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Figure 2.3: Phase speed versus frequency for three monodisperse bubbly mixtures of water 
and air with bubble radius 1mm and void fractions of 1E-5 (gray dotted line), 1E-4 (dashed 
line), and 1E-3 (solid line) from Equation (2.14) 
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Figure 2.4:Attenuation versus frequency for three monodisperse bubbly mixtures of water 
and air with bubble radius 1mm and void fractions of 1E-5 (gray dotted line), 1E-4 (dashed 
line), and 1E-3 (solid line) from Equation (2.15) 
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Figure 2.5: Phase speed versus frequency for three monodisperse bubbly mixtures of water 
and air with void fraction 1E-3 and bubble radii of 0.1mm (gray dotted line), 1mm (dashed 
line), and 5mm (solid line) from Equation (2.14) 
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Figure 2.6: Attenuation versus frequency for three monodisperse bubbly mixtures of water 
and air with void fraction 1E-3 and bubble radii of 0.1mm (gray dotted line), 1mm (dashed 
line), and 5mm (solid line) from Equation (2.15) 
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In Figure 2.3 and Figure 2.4, the effect of changing the void fraction is demonstrated. 

It can be seen that for a given bubble radius, in short, everything becomes more 

pronounced as void fraction increases. The Wood limit shortens, as can be seen in 

the phase speed graph, where the frequency at which the flat region begins to curve 

downwards is lower. The Wood limit sound speed is lower as void fraction 

increases, as is expected. The minimum phase speed is lower as void fraction 

increases, and thus the peak attenuation is larger. The maximum phase speed is 

greater, and the width of this supersonic region also increases with void fraction on 

the phase speed plot, while on the attenuation plot the bandwidth of the attenuation 

peak is also larger. All of these effects are clearly indicated in Equation (2.8), where 

the void fraction is a scaling factor on the second term, and as void fraction 

increases the 2 2

0   portion of the denominator can also cause the this term to 

change rapidly. Thus, one can qualitatively view the void fraction as a scaling factor 

of the second term that determines the Q  and bandwidth of the region across which 

resonance effects dominate. Mixtures of all void fractions will asymptote to the 

sound speed of the bubble-free host liquid as the frequency goes to infinity. 

In Figure 2.5 and Figure 2.6, the effect of changing the bubble radius is shown. Again 

the second term of Equation (2.8) and its relation to the first term is what 

determines the shape of the phase speed and attenuation plots. However, in this 

case the bubbles radius is being changed, so there is a decrease in the resonance 

frequency. Furthermore, the entire second term is scaled by bubble radius, and the 
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damping term is dependent on the radius. The resonance frequency shifts the 

resonance region left or right on the frequency axis. As bubble radius increases, the 

region approaching resonance exhibits a sharper attenuation increase and phase 

speed decrease. The minimum phase speed is lower for larger bubbles. Just past 

resonance, the maximum attenuation is smaller and the maximum phase speed is 

larger for larger bubbles. As bubble radius increases, the region following resonance 

exhibits a sharper attenuation decrease, and the supersonic region has an increased 

Q  and decreased bandwidth in both the phase speed and attenuation plots. 

2.1.3 Low Frequency Sound Propagation 

For frequencies well below bubble resonance (refer to the flat regions of no 

dispersion in the phase speed vs. frequency plots in Figure 2.1, Figure 2.3, and 

Figure 2.5), bubbles are able to dissipate heat rapidly to the surrounding fluid and 

thus bubble pulsations are approximately isothermal, as shown by Hsieh and Plesset 

[51]. Therefore the compressibility due to the bubbles, bub , simply becomes the 

isothermal compressibility of the gas, g . Thus, Equation (2.7) becomes 

 
2

1
[(1 ) ][(1 ) ]l g l g

mc
          , (2.16) 

which is a form of Wood’s well-known equation for low frequency sound 

propagation in a bubbly mixture [41]. This can be expanded as 
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
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where mlfc  is the mixture sound speed at low frequencies, lc  is the speed of sound in 

the liquid, and gc  is the isothermal sound speed in the gas. Equation (2.17) is also 

equivalent to the expression  

 
2 2
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1 (1 ) (1 ) l

m l gc c c P

    



 
   . (2.18) 

Notice that this expression is independent of bubble radius; the only restriction is 

that the frequency range of interest is significantly below the bubble resonance 

frequency. Experimental investigations have shown that working at half the 

resonance frequency and below provides excellent results [33]. It is typically stated 

that Equation (2.18) describes low frequency sound propagation in a monodisperse 

bubbly medium. However, true monodispersity is often not present in real 

applications; narrow distributions centered around a mean bubble radius are 

common. The practical restriction of the Wood limit is that the resonance frequency 

of the largest bubbles be greater than the highest frequencies of interest.  Since the 

largest bubbles satisfy this criterion and the resonance frequency increases with 

decreasing bubble radius, then the population as a whole satisfies the low frequency 

criterion. Although measurement of frequency-dependent sound speed and 

attenuation can be extremely difficult for bubble distributions, in the low-frequency 
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Wood limit the phase speed is dependent solely on the void fraction and 

independent of the details of the bubble size distribution. 

If the Wood limit (sufficiently sub-resonance limit) is applied to Equation (2.18), 

assuming the polytropic index can be taken as unity, and assuming that the void 

fraction is very low, such that 1  , 2(1 ) 1  , and 2 0  , one will notice that 

this is identical to the approximation given by Equation (2.8) when the effect of 

bubble dynamics is removed. Equation (2.18) is plotted below in a sound speed 

versus void fraction semi-log plot for water-air and mercury-helium mixtures in 

Figure 2.7. The material values used in all theory calculations are shown in the next 

chapter in Table 3.1. 
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Figure 2.7: Relationship between sound speed and void fraction for air bubbles in water at 
STP (solid line) and helium bubbles in mercury (dashed line) from Equation (2.18) 
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The validity of Wood’s low frequency approximation has been evaluated 

experimentally in the literature, notably by E. Silberman in 1957 [33]. Silberman 

used a standing wave technique in a stainless steel tube driven by a loudspeaker 

and injected bubbles via an array of needles. As the tube was driven, a hydrophone 

was scanned vertically to pinpoint the location of two adjacent pressure nodes; the 

distance between the two nodes gives half the wavelength, from which can be 

calculated the phase speed. Also, the difference in acoustic pressure provided values 

for the attenuation. Acceptable agreement with Wood’s equation was found. Similar 

experiments investigating sound propagation in the Wood limit have been 

published by many, including Ruggles et al. [39], van Wijngaarden [52], and Gibson 

[53]. In what is likely the best published data in this regime, Cheyne, Stebbings, and 

Roy were able to find excellent agreement with theory in making phase speed 

measurements via a fiber optic laser interferometry method [54]. 

2.2 Waveguide Acoustics 

The other portion of theory pertinent to this work is that of waveguide acoustics. 

Using an enclosure to guide the propagation of sound is a fundamentally efficient 

way to reduce losses; furthermore, creating standing wave resonances can help to 

increase signal to noise ratio in experiments. Herein will be discussed general ideal 

waveguide theory, limitations of the assumptions made in idealizing a waveguide 

model, including a plane wave assumption, and how to account for real effects such 
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as the elasticity of wall materials, arbitrary impedance end conditions, and non-

negligible acoustic impedance of the host medium. 

2.2.1 Standing Plane Wave Propagation in a Rigid-wall Tube 

Standing wave modes in several configurations of a rigid tube will be considered 

here. There are benefits to using different tube, driving, boundary, and end 

conditions, depending on the intended application, media, and other factors. The 

theory pertaining to a few common configurations will be presented in this Section.  

This is a well-trodden ground in both the acoustics and electromagnetics literature.  

The discussion below is based on the treatment given in [55]. 

Let us consider the waveguide to be a 1-dimensional region for the propagation of 

plane wave acoustics. In the previous Section we applied various assumptions to our 

model for the propagation of sound in a bubbly fluid; one of these assumptions was 

a low frequency approximation. Because of this, we can also apply that 

approximation to our discussion of waveguides, and in fact even force waveguide 

design to apply only in the low frequency regime. To this end, if we consider 3-

dimensional cylindrical coordinates, the cutoff frequency of a given mode of a tube 

is given by 

 0 ,
2

c mn
mn

c
f

b






  (2.19) 
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where m and n are the axial and radial indices, respectively, b is the radius of the 

waveguide, and mn  is the zero of the first derivative of the Bessel function of the 

first kind ( ( )mJ x ). If we only consider the lowest value of mn  that is non-zero (the 

zero value is for the axisymmetric pure plane wave mode), this yields the frequency 

below which no non-plane wave acoustics can physically exist, 

 11 0 0
11

1.841

2 2

c c c
f

b b



 


  . (2.20) 

Therefore, as long as the frequency of interest is below the cutoff frequency for non-

plane wave modes in the waveguide under consideration, we need only consider the 

linear 1-dimensional plane wave case. 

If one linearizes the continuity equation, momentum equation, and isentropic 

equation of state via the small signal approximation, the three resulting equations 

can be combined to provide the one-dimensional wave equation for acoustic 

pressure in a medium of sound speed c , 

 
2 2

2 2 2

1
0

p p

x c t

 
 

 
. (2.21) 

If instead the pressure is eliminated when combining the constitutive equations, the 

form is the same but p  is replaced with u . For a tube of length l , the solution to 

Equation (2.21) is 
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    ( , ) cos ( ) sin ( ) j tp x t A k l x B k l x e       , (2.22) 

where the parenthetical term represents the spatial dependence and the complex 

exponential represents the harmonic time dependence; k  is the wave number / c . 

The coefficients A  and B  will be dependent on the boundary conditions. Note that 

complex exponentials and trigonometric functions are essentially interchangeable 

in acoustics via Euler’s formula; the choice of which to use is dependent on the 

application. In general, trigonometric functions are more useful for cases of standing 

waves, initial value problems, or interior domains like a cylindrical cavity; complex 

exponentials are more useful for cases of progressive waves, forcing function 

problems, or exterior domains like a radiation problem. The particle velocity is 

related to the pressure by the linearized momentum equation, 
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u p
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 
. (2.23) 

Thus, the particle velocity is given by 
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( , )
p
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
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. (2.24) 

Combining Equation (2.22) and Equation (2.24) yields the particle velocity, 

    
1

( , ) sin ( ) cos ( ) j tu x t A k l x B k l x e
j c




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Further meaningful simplification requires knowledge of boundary conditions. 

Several scenarios will be considered. 

2.2.2 Resonances of a Driven Tube 

A common configuration uses a source at one end of a waveguide to provide the 

driving acoustics. We will assume that these sources provide time-harmonic 

excitation; this is a reasonable assumption for linear acoustics.  The treatment 

presented below derives from Chapter 4 of the textbook by Blackstock [55]. 

Let us first assume that at 0x   we have a vibrating piston (thus it is a pure velocity 

source) which prescribes a particle velocity to the waveguide of the form 

 
0(0, ) j tu t u e  , (2.26) 

where 0u  is some fixed peak value of the particle velocity. Let the other end of the 

waveguide be open to the air, such that the acoustic impedance mismatch between 

the enclosed fluid and the air is very high. Thus the reflection coefficient, 

 
air fluid

air fluid

Z Z
R

Z Z





, (2.27) 

is approximately -1. Thus the pressure must go to zero at the tube end. Applying 

( , ) 0p l t   to Equation (2.22) results in the coefficient A  being zero. Therefore, 

  
1

( , ) cos ( ) j tu x t B k l x e
j c




   (2.28) 
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and we can now apply the prescribed source condition of Equation (2.26) to 

Equation (2.28) and solve for the coefficient B , which is 

 0

cos( )

ju c
B

kl


 . (2.29) 

Finally, the pressure and particle velocity are now described by the following two 

expressions: 
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  (2.31) 

The impedance as a function of position is given by /Z p u , or 

  ( ) tan ( )Z x j c k l x  . (2.32) 

The resonance frequencies of a waveguide occur when the acoustic pressure 

becomes unbounded. Examining Equation (2.30) reveals that the pressure becomes 

unbounded when the denominator, cos( )kl , is zero. Thus the modal frequencies are 

given by odd integer multiples of quarter-wavelengths, 
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   , (2.33) 
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for a tube driven by a vibrating piston at one end and with a pressure release 

condition at the other end. Below in Figure 2.8 is shown an experimental result that 

depicts the modes given by Equation (2.33). The result is from a 69cm-long long 

stainless steel tube with a 2.5cm radius and 2.5cm wall thickness. It was driven by a 

piston source at the bottom and open to the air at the top; the tube was driven with 

Gaussian noise (broadband excitation) and a hydrophone was used to obtain the 

frequency response at points along the tube length in 5cm increments. The waterfall 

plot maps out the acoustic pressure distribution in the tube as a function of both 

frequency and position; the mode shapes of / 4,3 / 4,5 / 4,...    are clearly visible in 

the figure. 
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Figure 2.8: Waterfall plot of frequency responses (response level versus frequency) versus 
position for a stainless steel waveguide of length 69cm, radius 2.5cm, and wall thickness 
2.5cm, filled with degassed water and driven with Gaussian noise. A hydrophone was used to 
take frequency response measurements at positions along the axis of the tube spaced by 5cm 
each. 
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What if the waveguide with one pressure release boundary were to be driven by a 

pure pressure source at the other end? In this case, the source condition at 0x   is 

given by 

 
0(0, ) j tp t Pe  . (2.34) 

Setting Equation (2.22) equal to zero at x l  reveals that 0A . Then, inserting 

Equation (2.34) into Equation (2.22) yields the coefficient, 

 0

sin( )

P
B

kl
 . (2.35) 

Thus, the acoustic pressure and particle velocity are described by the following two 

expressions: 
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In this case, the acoustic pressure becomes unbounded when the denominator, 

sin( ) 0kl  , is zero. This yields modal frequencies that are integer multiples of half-

wavelengths, 

 , 1,2,3...
2

n

nc
f n

l
  , (2.38) 
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for the waveguide driven at one end by a pressure source and with a pressure 

release condition at the other. 

Let us now consider a case where one end of the tube is driven by a pure pressure 

source and the other end of the tube has a rigid end condition. In this case the 

derivative of the pressure goes to zero at the rigid boundary. The derivation is left to 

the reader; the resonances are identical to the case of a waveguide with one velocity 

source and one pressure release boundary; odd integer multiples of quarter-

wavelength modes. 

Lastly, if one end of the waveguide is driven by a velocity source and the other end is 

rigid, the resulting resonances are identical to the case of one pressure source and 

one pressure release boundary, integer multiples of half-wavelength modes. 

2.2.3 Plane Wave Resonance Modes 

The response of a waveguide does not have to be extracted via a forced boundary or 

source. A waveguide can be driven or excited in a broadband fashion in a number of 

ways, and the resonance modes will depend only on the end conditions, not unlike 

the simple model of a string with ends that can be fixed or free. Intuition reveals that 

a waveguide with pressure release conditions at both ends or rigid conditions at 

both ends will resonate at frequencies described by Equation (2.38), and a 

waveguide having one pressure release and one rigid condition at its ends will 

resonate at frequencies described by Equation (2.33). 
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2.2.4 Non-ideal End Conditions 

Not all end conditions are as ideal as that between, say, water and air, which can be 

modeled very well by a pressure release condition. Often realistic constraints will 

prevent the most easily achieved and ideal waveguide arrangements to be 

employed, and the finite acoustic impedance of the terminations may be significant. 

Let us consider an end piece of some material whose acoustic impedance is only 

twice that of the enclosed fluid. In this case the particle velocity and acoustic 

pressure will not be everywhere out of phase as in the case of a rigid end piece, and 

the reflection and transmission coefficients can be complex and frequency 

dependent. Also, the thickness of the end section can be important. In this case the 

tube end is modeled as a three-medium problem. The peak to peak pressure 

between pressure peaks and pressure nodes can be significantly decreased when 

compared to a pure rigid or pressure release boundary. Depending on the 

application, it is often desirable to design the waveguide such that this effect need 

not be accounted for. Furthermore, it is possible to use a known fluid and 

experimental conditions to characterize an end condition. This will be discussed in 

Chapter 3 and detailed in the results in Chapter 4. 

2.2.5 Elastic Waveguide Effect 

The preceding subsections have dealt with plane wave acoustics in a rigid-wall tube. 

It is important to understand what simplifications are being made when assuming 
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that the boundaries of a waveguide are rigid and how they can affect experiments; 

in the case of this work the effect can be quite important indeed.  

It is well known that an ideal rigid-walled waveguide filled with a host fluid has a 

frequency-independent phase velocity of longitudinally propagating plane-wave 

modes that is equal to the intrinsic (i.e. unbounded) sound speed of the host 

fluid[56]. This is approximately the case for, say, a gas contained in a metal pipe; the 

specific acoustic impedance, c , of the wall is essentially infinitely higher than that 

of the host medium. For example, for air in a steel pipe, the impedance of the wall is 

higher than that of the gas by a factor of over 100,000. Thus, a pressure 

perturbation traveling through the gas cylinder creates no wall motion. 

However, in the case of a liquid-filled waveguide, the impedance of the host medium 

can be non-negligible with respect to the wall. For the case of water in a steel pipe, 

the impedances are now mismatched by only a factor of about 32. In this situation, 

the motion of the wall due to a pressure perturbation in the fluid cannot be 

neglected. 

The effect of waveguide elasticity has been of interest to scholars and 

experimentalists alike for over a century, and is well-published in the literature. In 

the same tome in which he considered the propagation of sound in a bubbly fluid, A. 

B. Wood also considered the effect of waveguide elasticity on low-frequency sound 

propagation through thick- and thin-walled waveguides, in what is perhaps the first 
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published investigation of such[41]. A few decades later, Del Grosso [57] derived an 

expression for the frequency-dependent phase speed through an elastic waveguide. 

In 1995, Lafleur and Shields [58] expanded upon Del Grosso’s method, providing 

experimental verification as well as simplifications to the model itself. The analytical 

dispersion relation for axisymmetric wave propagation in an elastic waveguide 

developed by Del Grosso and Lafleur and Shields will be presented here with 

significant brevity, the reader is referred to [58] for more detail. 

The geometry and coordinate system of the waveguide under consideration is 

shown below in Figure 2.9; the inner and outer radii of the tube are b  and d , 

respectively, and the driving angular frequency shall be  . In the case of the 

derivation the waveguide is considered to be of infinite length. 
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Figure 2.9: Coordinate system used to describe waves in a liquid contained in an elastic tube 
of inner radius b and outer radius d. Modes under consideration are θ-independent 
axisymmetric modes (from Lafleur and Shields [58]) 
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As mentioned before, wall motion is non-negligible in an elastic waveguide. The 

particle displacement must thus be calculated in the radial and axial direction for 

both the fluid and the solid; the stress components will also be needed to apply 

boundary conditions. Following Del Grosso’s presentation of the particle 

displacements in the radial and axial directions (in the tangential direction it is zero 

in this case), respectively, in the waveguide wall, we have 

 
1 ( )
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r z r r
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 (2.39) 

where   is a scalar displacement potential and   is a vector displacement 

potential; together these comprise the displacement vector S  . The 

radial and longitudinal stress components are thus 
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 (2.40) 

respectively, where   and   are in this case the Lamé constants, given by  

 2 22
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
, (2.41) 

where w  is the density of the wall, tc  is the shear wave speed in the wall, and   is 

the Poisson’s ratio of the wall material. 
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The applicable boundary conditions across both the interface between the fluid and 

the wall and the interface between the wall and the outside space will be that no 

tangential stress exists, that the particle displacement remains continuous, and that 

the radial stress is equal to the acoustic pressure. These conditions can be expressed 

as 
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 (2.42) 

Next we follow the notation of Lafleur and Shields. Applying these boundary 

conditions results in the expressions for the particle displacement in the fluid in the 

axial and radial direction, respectively, 

 0( )

0 0 0 0( , , ) ( / ) mj q z tL

z m mS r z t j q J rX b e
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and 

 0( )

0 0 1 0( , , ) ( / ) ( / ) mj q z tL

r m mS r z t X b J rX b e
 

  , (2.44) 

and the particle displacement in the waveguide wall in the axial and radial direction, 

respectively, 
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and 

      ( )
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In Equation (2.43) through Equation (2.46), variables are defined as 
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where 1C  is the intrinsic velocity of sound in the liquid, cC  and sC  are the velocities 

of longitudinal (compressional) and transverse (shear) waves in the solid, 0mC  is the 

phase velocity in the waveguide, and nJ  and nY  are the nth order Bessel functions of 

the first and second kind, respectively. The constants A, B, C, D are shown by Del 

Grosso to satisfy 
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where mE  and mQ  are defined 
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where w  and l  are the densities of the tube wall and liquid, respectively. 

In order to solve for the constants A, B, C, and D , their coefficients from the system 

of equations in Equation (2.48) through Equation (2.51) can be arranged in a 4 by 4 

matrix; setting the determinant of this matrix equal to zero produces the constants 

and results in a characteristic dispersion relation between 0mq  and  ,  
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where ( ) ( ) ( ) ( ) ( ).mn m n n mL J d Y b J b Y d       Finding the zeros of Equation (2.53) 

will yield the phase speeds of each mode at a particular frequency. Below in Figure 

2.10 is plotted Lafleur and Shields’ theoretical model along with experimental data 

(circles) for an aluminum waveguide of inner radius 25.4mm and wall thickness 

12.7mm, containing water. Note the flat dispersion-free region in the ET0 mode 

(using the notation in [58]; this is the plane wave mode) at low frequencies. 
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Figure 2.10: Phase velocity versus frequency for an aluminum water-filled waveguide with 
inner and outer radii of 25.4mm and 38.1mm, respectively. The solid circles represent 
measured phase velocity values (from Lafleur and Shields [58]) 
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Note that the elastic waveguide effects will decrease with the addition of bubbles, 

since this increases the acoustic impedance mismatch between the wall and the 

fluid. 

2.3 Combination 

Combining the results of Sections 2.1 and 2.2 provides the theoretical physical 

foundation for this work, and paves the way for an experimental method that allows 

direct in situ measurement of bubbly flow void fraction measurement as long as 

several experimental constraints are met and several assumptions can be safely 

made. 

Section 2.2 indicates that a waveguide device may be easily employed for the 

purpose of standing wave phase speed measurement via resonance frequency 

extraction, and that this phase speed can be related to an intrinsic fluid sound speed 

via an elastic waveguide effect model. Then, Section 2.1 indicates that this intrinsic 

fluid sound speed can be converted to a mixture void fraction via Wood’s 

relationship. 
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Chapter 3 

3 Materials and Methods 

This Chapter will present the progression from the theory of Chapter 2 to an actual 

device and experimental method. The constraints and design considerations 

required for success of the resonator (waveguide), and how they were applied in the 

design stage, will be discussed. The device itself will be presented and all salient 

details provided along with the flow loop design and description of other auxiliary 

equipment. Lastly, the experimental method followed for use of the device will be 

presented in detail. 

3.1 Acoustic Resonator Development 

In order to construct a waveguide that will meet all the necessary design 

performance criteria, several areas of influence must act in concert: the application 

of acoustical theory to a realistic design, the practicality and ease of use of that 
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design, and satisfying the ‘hard’ number constraints put forth in the project 

proposal. This Section will delineate relevant design considerations. 

3.1.1 Basic Proposed Design 

Firstly, we must consider the best material from which to fashion the waveguide. 

The resonator tube will be constructed out of 316 stainless steel, which is 

chemically compatible (resistant to corrosion) with mercury.  The tube will support 

the weight of the reservoir, mercury, transducer, and other elements; stainless steel 

is an ideal choice for constructing a structurally sound setup.  Furthermore, the 

method of using the resonance modes of a cylindrical waveguide to determine the 

sound speed of the fluid mixture is most suitable for a waveguide that appears 

acoustically rigid to the fluid within the tube, as discussed in Section 2.2.  Although 

stainless steel is not perfectly rigid, it has a very large acoustic impedance (roughly 

twice that of mercury). 

In order to measure the in situ void fraction of the two-phase mercury-helium flow 

via the waveguide sound speed extraction technique, reason indicates that the 

design must allow for a fairly significant volume of bubbly mixture to be sampled in 

one measurement. This suggests a flow-through design in order to prevent the 

bubbly flow characteristics from changing. For example, if a fixed mixture sample 

were to be inserted into the resonator, the spatial distribution of bubbles and 

bubble radii could change, and also bubbles could rise out of the mixture. 
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Furthermore, a flow-through design will discourage bubbles from becoming trapped 

anywhere in the system. As such, a flow-through design will be employed. 

To prevent bubble entrapment, the flow-through design should minimize stagnation 

points while retaining the characteristics of an ideal waveguide. To this end, the 

waveguide will use a spill-over design. Allowing the bubbly mixture to spill over the 

top of the waveguide and into a reservoir will provide several benefits for 

experiments. First, it will not allow bubbles to collect in any region at the top of the 

tube, which could modify the acoustic boundary condition. Second, the reservoir can 

allow any large ‘rogue’ bubbles that may have been created or coalesced to rise out 

of the mixture before they are re-circulated. Third, and perhaps most importantly, 

the liquid-air interface at the top of the tube created via a spill-over arrangement 

will provide a nearly ideal and non-dispersive acoustic pressure release boundary 

condition. 

In keeping with the flow-through and spill-over design, a vertical orientation of the 

waveguide will further assist in a well-defined top boundary condition; it will also 

prevent bubble entrapment since buoyancy effects will act parallel to the flow 

direction, discouraging bubbles from exiting the flow. 

In order to excite the fluid column, a transducer of some sort must be used. A typical 

acoustic transducer using a stack of PZT (lead zirconate titanate) disks or a 

piezoelectric element would need to be extremely large and massive in order to 
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work in the low frequency regime pertinent to this work. Instead of a transducer 

that works in this manner, relying on the volume expansion of a piezoelectric 

element due to an applied voltage to generate the long wavelengths required, a 

transducer that drives the fluid mechanically will be more efficient and less 

cumbersome. An electromechanical shaker is the specified driver for this effort. 

Transducers that are inserted in the wall of a waveguide can cause significant 

changes in the response of a tube [38]. Therefore, it is desirable to drive the fluid 

column at one of its ends, or to insert a driving surface into the column through one 

of its ends. In a vertical flow-through spill-over arrangement, this provides two 

sensible options: drive the column from the bottom with a transducer that supports 

the fluid, or insert a driving surface through the top that fills only a portion of the 

tube. The latter is the chosen method in this case. A transducer that provides 

mechanical driving of the column from the bottom at low frequencies, is free to 

move while sealing against leakage, and also can support the weight of the fluid 

would likely be cumbersome and expensive. A shaker can be supported upside-

down above the waveguide; attached to the shaker is a rod, on the end of which is a 

piston/disc, and this is inserted down into the fluid. Previous experiments [59] have 

shown that a piston that is half the radius of the waveguide provides enough driving 

surface area to effectively generate plane waves, but also does not affect the 

standing wave field along the whole waveguide, and allows fluid to easily flow past. 

Also shown was that if the piston is placed a few centimeters from the free surface, 
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it will be able to efficiently couple sound into the fluid and will not be at the null of 

any of the low frequency modes, thus all modes of interest can be resolved. 

In order to record the frequency response of the resonator, a hydrophone is the 

instrument of choice. A hydrophone contains a calibrated piezoelectric element that 

will respond to pressure perturbations by outputting a voltage, which is the 

reciprocal process of how an acoustic transducer of a similar construction functions. 

The hydrophone signal can be converted to the frequency domain easily, and the 

frequency response of the waveguide obtained. 

The location and mounting method of the hydrophone is also important. A true 

plane wave is impossible to generate in reality, due to diffraction, spreading, and 

other factors. The maximum plane wave signal will be present along the axis of the 

waveguide, though, so the hydrophone should be mounted in the center of the tube. 

Since the driver is inserted through the top surface, hydrophone insertion through 

this boundary would prove difficult. The bottom of the tube is the chosen mounting 

location for the hydrophone in this work. An end piece will be attached to the 

bottom of the waveguide to provide an acoustic boundary condition, support the 

enclosed fluid, and provide a mounting point for the hydrophone.  

It is desirable for the unit to be somewhat modular, if possible without decreasing 

the effectiveness. The ability to try different end conditions, sources, and 
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configurations may be useful in testing the performance of the resonator and 

prevent the need for a 2nd generation resonator during the testing stages. 

Lastly, it is desirable for the resonator to be suitable for use with both mercury and 

water. The unit will be designed for ultimate use and effectiveness in mercury; 

however, all initial tests and validations will be performed with water in order to 

evaluate its performance. Water is safe and expected experimental results with 

water are well established. Thus, the resonator will be essentially designed for both 

fluids with minimal changes required to use either effectively. 

3.1.2 Parameter Choices and Justifications 

The void fraction and bubble size distribution needed to most effectively mitigate 

cavitation damage erosion in the mercury target chamber remain unknown. 

However, various numerical modeling, simulations, and analytical and experimental 

work have been performed as described in Section 1.1.4. These published works 

provide a range of parameters that are desirable to probe with the waveguide. 

Based on this range and the resonator research project proposal, besides being 

functional with a pure fluid, the device should be able to probe void fractions from 

10-6 to 5*10-3. The resonator should also allow bubbles up to 500 microns in radius 

[60]. A safety factor in the ability to probe these parameters or modularity in the 

device to accommodate possible further investigations is also desirable. The 

material properties used in subsequent calculations are listed below in Table 3.1. 
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 Water Mercury 

Longitudinal (Compressional) Sound Speed 
(m/s) 

1,497 1,450 

Density  (kg/m3) 997.7 13,546 

 

 Air Helium 

Longitudinal (Compressional) Sound Speed 
(m/s) 

343 927 

Density  (kg/m3) 1.21 0.1786 

Polytropic Index 1.4 1.66 

 

 Stainless Steel 

Density  (kg/m3) 7,990 

Longitudinal (Compressional) Sound Speed (m/s) 5,790 

Transverse (Shear) Sound Speed (m/s) 3,225 

Poisson’s Ratio 0.275 

Table 3.1: Tables of material parameters used for simulations and calculations 
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The wall thickness of the waveguide is an important parameter. The analytical 

models [57, 58] can account for the elastic waveguide effects when post-processing 

data for both preliminary water experiments and mercury experiments. However, 

there are various benefits to biasing the design towards an ideal rigid condition; 

similarly, there are disadvantages to a very thick-walled tube. Using Equation (2.53), 

the phase speed versus frequency for pure water and pure mercury were both 

calculated for a range of wall thicknesses. Pure liquids were used since the addition 

of bubbles will only serve to improve the apparent rigidity of the waveguide, so the 

pure liquid is the worst case scenario.  Below in Figure 3.1 and Figure 3.2 are shown 

the phase speeds for stainless steel wall thicknesses of 6.35mm, 12.7mm, 25.4mm, 

38.1mm, 50.8mm, and 101.6mm for water and helium, respectively. It is clear in the 

figures that as the wall thickness increases, each subsequent increase in phase 

speed towards the intrinsic sound speed is smaller. Since the mass is going up 

exponentially with a linear increase in wall thickness, a compromise between a thick 

wall and a practical resonator weight is needed. Following this rationale, a 12.7mm 

wall thickness is the dimension of choice for the resonator. 
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Figure 3.1: Computed phase speed versus frequency for a water-filled waveguide with wall 
thickness ranging from 6.35mm to 101.6mm. Intrinsic sound speed of the fluid is 1497 m/s. 
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Figure 3.2: Computed phase speed versus frequency for a mercury-filled waveguide with wall 
thickness ranging from 6.35mm to 101.6mm. Intrinsic sound speed of the fluid is 1450 m/s. 
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The end boundary conditions of the resonator can have very prominent effects on 

the tube’s acoustic response, as discussed in Section 2.2. The bottom boundary must 

also support the fluid and provide a secure mounting location for the hydrophone. If 

the bottom end piece provides a rigid boundary, the resonances are described by 

Equation (2.33); if it provides a ‘soft’ boundary, the resonances are described by 

Equation (2.38). For water experiments, using a 25.4 mm (1”) thick stainless steel 

end piece provides a rigid boundary condition. When modeling the 1” plate and tube 

as a three-medium problem, the reflection coefficient can be described by 

 1 3 2 2 3 1 2 2

1 3 2 2 3 1 2 2

(1 / )cos ( / / )sin

(1 / )cos ( / / )sin

Z Z k l j Z Z Z Z k l
R

Z Z k l j Z Z Z Z k l

  


  
, (3.1) 

where 1Z , 2Z , and 3Z  are the acoustic impedances of the fluid enclosed in the tube, 

the termination material, and air, respectively, l is the thickness of the middle 

medium (in this case the steel end piece), and 2k  is the wave number in the 

termination. The reflection coefficient given by this expression for the 1” plate and 

water does not indicate complete rigidity for the frequency range of interest. Shown 

below in Figure 3.3 are plotted the real and imaginary parts of the plane wave 

reflection coefficient versus frequency from 0-6 kHz for a three-medium problem of 

pure water, 1” of stainless steel, and air. The added data points on the x-axis indicate 

the expected locations of quarter-wavelength (indicating pure plane wave rigidity of 

the plate) and half-wavelength (indicating a pressure release characteristic) 
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resonance modes; these modes were calculated using the sound speed in pure water 

and a tube length of 40 cm (see pages 76 through 81 for choice and justification of 

tube length). A reflection coefficient of -1 indicates pressure release, a reflection 

coefficient of zero indicates perfect transmission, and a reflection coefficient of 1 

indicates a rigid condition. 
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Figure 3.3: Real and imaginary parts of the plane wave reflection coefficient versus frequency 
for a three-medium scenario of water, 1" of stainless steel, and air. The data points place on 
the x-axis indicate the resonance modes of a 40 cm tube for both perfectly rigid (asterisks) 
and pure pressure release (crosses) conditions. 
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However, this expression only applies to cases with pure plane waves and a purely 

planar boundary condition. That will not be the case for our physical apparatus, 

since the plate is clamped around the edge. Indeed, water-filled tube acoustic 

behavior observed by previous investigators (Wilson [38], and others) suggest that 

the end condition will appear approximately acoustically rigid despite the results of 

Equation (3.1) due to the inability of the boundary to respond in a planar fashion. In 

the final analysis, the assessment of the bottom boundary condition will be made 

empirically through experiments with pure liquids with known acoustic properties, 

as described in the next Chapter. 

For mercury, due to the increased impedance, it is more sensible to attempt a 

pressure release boundary condition; a 3.175 mm (1/8”) thick stainless steel plate 

provides this boundary condition, can still support the mercury column, and still 

provides a mounting location for the hydrophone. In the future, an arrangement 

using a piston that drives the entire fluid column from the bottom surface may be 

used in an effort to further idealize both end conditions in the tube; this 

arrangement requires potentially costly transducers and non-trivial sealing 

solutions for the driving surface. 

The length and diameter of the tube are two parameters that directly affect the 

usable frequency range of the resonator, based on the modal frequency equations 
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(Equation (2.33) and Equation (2.38), depending on the boundary condition) and 

the cutoff frequency equation (Equation (2.20)), respectively. 

The radii of the BU acoustic resonator tube (denoted as b in Figure 2.9) and that of 

the piston face were chosen to be 25.4 mm and 12.7 mm, respectively. As discussed 

in Section 3.1.1,  Wilson et al. [59] determined a 2:1 ratio of tube and piston 

dimension to be ideal for acoustic resonator experiments performed for 

determining the mixture sound speed.  The tube radius along with the range of void 

fraction-dependent phase speed will determine the cut-off frequency of the 

cylindrical waveguide. The cut-off frequency shown in Equation (2.20) defines a 

limit for the driving frequency below which only the plane wave modes are excited 

in a rigid cylindrical waveguide.  The cut-off frequency further imposes constraints 

on other parameters such as the tube length and range of bubble radius since the 

tube length and bubble population define the operational frequency range. 

The bubbly mixture sound speed, the bubbly mixture phase speed in the waveguide, 

cut-off frequency associated with a 50.8 mm diameter tube, the fundamental modal 

frequency for a cylinder 40 cm in length (note for water ¼ wavelength modes are 

used and for mercury ½ wavelength modes are used), the resonant bubble radius 

associated with this modal frequency (Minnaert’s relation), and maximum 

permissible bubble radius (based on the driving frequency being half or less than 

the resonant frequency of the bubble to operate in the Wood’s limit) are shown in 
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Table 3.2 for water and Table 3.3 for mercury over a range of void fractions. The 

mixture sound speed decreases with an increase in void fraction, as expected. 

Consequently, the cut-off frequency also decreases with increase in void fraction 

since it is dependent on the sound speed. The implications of these parameters on 

other design aspects will be discussed below. 
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Void Fraction 0 1E-6 1E-5 1E-4 1E-3 5E-3 
Mixture Sound Speed (m/s) 1497 1485 1392 934 366 168 
Mixture Phase Speed (m/s) 1454 1443 1357 923 365 168 
Cutoff Frequency (kHz) 16.77 16.65 15.65 10.65 4.21 1.94 
Modal (n=2) Frequency (kHz) 4.49 4.54 4.19 2.85 1.13 0.512 
Resonance Bubble Radius (mm) 0.732 0.738 0.785 1.15 2.92 6.34 
½ Resonance Bubble Radius 
(mm) 

0.366 0.369 0.392 0.577 1.46 3.17 

Table 3.2: Relevant values that determine the dimensions of the cylindrical resonator for 
water 

 

Void Fraction 0 1E-6 1E-5 1E-4 1E-3 
5E-
3 

Mixture Sound Speed (m/s) 1450 1432 858 328 106 48 
Mixture Phase Speed (m/s) 1089 1037 762 323 106 48 
Cutoff Frequency (kHz) 12.56 11.96 8.79 3.73 1.22 0.55 
Modal (n=1) Frequency (Hz) 1344 1280 941 399 131 59 
Resonance Bubble Radius (mm) 0.723 0.759 1.03 2.44 7.42 16.4 
½ Resonance Bubble Radius 
(mm) 

0.361 0.379 0.516 1.22 3.71 8.20 

Table 3.3: Relevant values that determine the dimensions of the cylindrical resonator for 
Mercury 
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Mercury-filled resonator experiments will be performed in a ventilation hood, 

which has a vertical clearance of 122 cm (48”). Therefore the total apparatus height 

cannot exceed 122 cm. A small tube is preferable since a large setup would be heavy 

and unstable. Some acoustic considerations that impose a lower limit for the tube 

length are now discussed. 

The relationship between the modal frequency and sound speed can provide the 

sound speed in the mixture if any one modal frequency is known accurately. 

However, the proposed technique can be made more robust by incorporating 

several modal frequencies in the determination of the mixture sound speed; this 

was expected to be very beneficial for water experiments that would be used to 

validate the performance, accuracy, and precision of the instrument. Thus, we chose 

to utilize the first three modal frequencies for determining the sound speed in water 

validation experiments. Since the modal frequencies depend on the length of the 

tube, the desired number of modes and the plane wave cut-off frequency impose a 

constraint on the length of the cylindrical resonator. The parameters in Table 3.2 

show that the first three modes for a tube 5.08 cm in diameter and 40 cm in length 

are lower than the cut-off frequency of the tube for the range of void fractions of our 

interest (this remains true for mercury as well). This indicates that the resonator 

could be made with a larger inner radius if required. However, this would require a 

larger piston and likely a larger source to generate plane waves; for this reason, the 



81 

 

chosen diameter was not changed. Therefore, the Boston University resonator tube 

is 40 cm in length.  

The relationship between the mixture sound speed and void fraction is independent 

of the bubble size distribution for driving frequencies that satisfy the Wood limit. 

Since void fraction is an unknown parameter, it is desirable for the resonator to 

accept bubble radii at or below the design parameter across the entire range of void 

fractions. For water, it is clear that bubbles of 366-micron radius and under will 

allow measurement of three modal peaks (λ/4, 3λ/4, 5λ/4) across the entire void 

fraction range. For mercury, bubbles of 361-micron radius and below will allow 

measurement of the fundamental modal peak (λ/2) across the entire void fraction 

range. Furthermore, as void fraction increases, the acceptable maximum bubble 

radius increases since modal frequencies decrease with the decrease in sound 

speed, allowing bubbles that resonate at lower frequencies to remain in the Wood 

limit. This added effect may seem inconsequential; however, restricting the bubble 

radius to the maximum acceptable radius for all void fractions is quite a 

conservative constraint. Also, recall that three modal peaks are being used; if only 

the first modal peak were to be used, the allowable bubble radius would increase by 

about a factor of six. For bubbly water validation experiments, only the first modal 

peak ended up being used. Details of this decision will follow in the results Section. 

Therefore, the as-designed acoustic resonator should provide reliable mixture 

sound speed measurements, and consequently void fraction extraction, as long as 
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the bubble radii remain within the expected project values. Furthermore, as void 

fractions increase, the resonator will be able to accept larger and larger ‘rogue’ 

bubbles (in addition to a larger mean bubble radius) without undesired effects, 

which is of tremendous built-in benefit. 

3.2 Acoustic Resonator Description 

The decisions developed in Section 3.1 provide an outline for the basic features of 

the resonator. From this point, the author designed an apparatus to be built, 

attempting to make sensible considerations for handling, ease of use, modularity, 

and other realistic aspects. The details of the resonator system will be presented in 

the sections below. 

3.2.1 Main Resonator Assembly 

A description of the resonator as constructed will be presented in this Section. 

Detailed engineering drawings can be found in APPENDIX A.  

The resonator tube is 5.08 cm (2”) in diameter and 40 cm (15.75”) in length. The 

bottom 7.62 cm (3”) of the tube is a separate section containing a 3/8” Swagelok 

inlet port; the inlet section is flanged on both ends and houses o-ring grooves to 

provide attachment and sealing capability, respectively. The main tube section is 

flanged on its bottom. The wall thickness for the entire tube is 1.27 cm (0.5”) since it 

was shown in the previous sections that a thicker wall did not provide an 

appreciable acoustical benefit to offset the increase in weight and handling 
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difficulty. Choosing the wall thickness of 1.27 cm (0.5”) over 2.54 cm (1”) reduces 

the mass of the tube by 11.3 kg (25 lb). The inside surface of the tube was honed to a 

16 finish (roughness features are no greater than 16 millionths of an inch in depth) 

to reduce surface imperfections in hopes of minimizing the attachment of bubbles to 

the tube wall.  

In mercury, the bottom of the tube is closed using a 0.32 cm (1/8”) thick plate 6.35 

cm (2.5”) in diameter to provide a pressure release condition (in water a 2.54 cm 

(1”) plate is used to provide a rigid boundary condition). The plate has a borehole 

for inserting the hydrophone and a 0.64 cm (0.25”) long cylindrical protrusion 

around the hydrophone casing to ensure a tight seal with the hydrophone’s o-ring. 

The plate is held against the inlet section by compressing it between a flange at the 

inlet section bottom and an end piece. Proper seal is achieved using an o-ring 

between the flange and the plate. The end piece is rigidly mounted onto a base plate 

using 3/8” screws. The bottom face of the end-piece has a partial hollow cylinder 

that is inserted into the hole in a base plate to provide additional stability and 

alignment during assembly and disassembly while providing easy access to the 

hydrophone cable. 

A base plate is necessary since the vertical tube design with the reservoir mounted 

near the top of the tube makes the construction top-heavy, even if the tube is filled 

with mercury. Therefore, a sturdy and stable support system is necessary to prevent 
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the setup from tipping over. To facilitate easy access for the hydrophone cable and 

to allow leveling of the apparatus, the base plate was mounted on three pre-

fabricated adjustable feet (McMaster-Carr 83685T12). Stress distribution in the 

base plate in this configuration was modeled for the case of point-load equivalent to 

the tube/reservoir setup and maximum deflection was estimated to be 0.1 mm.  

Therefore, a base plate thickness of 1.27 cm (0.5”) was deemed sufficient for 

supporting the apparatus. 

To facilitate the spillover fluid flow and re-circulate the fluid back into the tube, a 

stainless steel reservoir is mounted near the top of the tube. The base of the 

cylindrical reservoir is welded 7.30 cm (2.875”) below the top edge of the tube. The 

height of the reservoir was chosen to allow two NorCal weld stub viewports with a 

6.35 cm (2.5”) view-through diameter to be mounted on the reservoir for 

monitoring the mercury level and spillover behavior. The bottom of the reservoir 

contains a 3/8” Swagelok outlet port for the mercury to exit, and an auxiliary NPT 

threaded port intended for the use of a thermocouple to monitor fluid temperature. 

The reservoir is covered with a lid 1.27 cm (0.5”) thick, which also serves as the 

platform for the shaker system. A flange is attached to the top of the reservoir to 

facilitate the use of an o-ring and bolts to obtain a proper seal with the lid. The cover 

also has four NPT threaded auxiliary ports for the attachment of any diagnostics 

(pressure gauges, etc). There is a hole in the center of the lid to allow insertion of 

the piston and movement of the piston shaft. The shaker assembly is mounted onto 
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the reservoir cover with rubber pads between the shaker and cover. This 

attachment is via a circular pinch collar around the main shaker body that is 

supported by four columnar spacers through which the mounting bolts attach to the 

lid.  

Although the lid seals the reservoir along the edge, mercury fumes are free to escape 

from the entryway for the piston shaft. To prevent these fumes from escaping, 

another cylindrical enclosure is mounted over the shaker system. Into the top of this 

cover is welded a hermetically sealed connector allowing electrical through-

connections to provide the driving signal to the shaker. An NPT threaded port also 

on the top of the shaker cover is used to attach a carbon filter for trapping mercury 

fumes. Two handles are welded to the reservoir to facilitate handling the apparatus. 

The shaker of choice for the BU acoustic resonator is a Ling Dynamic Systems (LDS) 

V203 permanent magnet vibrator. The LDS V203 is a small, but relatively powerful 

for its size, electromechanical shaker. The unit is cylindrical with a radius of about 

35mm and is approximately 90 mm tall. The V203 can provide armature 

displacements of +/-5 mm and maximum accelerations of 136 g’s, and weighs about 

3 kilograms. The unit has a usable frequency range from 5-13,000 Hz, and the 

armature resonance frequency is 13,000 Hz.  

The hydrophone chosen for the BU acoustic resonator is a Reson TC4013 miniature 

reference hydrophone. This hydrophone has a usable frequency range from 1 Hz to 
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170 kHz over which its response is virtually flat (within +/- 3 dB). The TC4013 has a 

high receiving sensitivity and is very compact, weighing only 75 grams; the acoustic 

portion of the unit has a length of only 25 mm and a diameter of 9.5 mm. Below the 

acoustic sensing portion of the hydrophone, the body diameter is decreased and 

houses an o-ring; this allows the hydrophone to be pressed into a properly-sized 

hole to provide both mounting and sealing solutions. Lastly, the unit is constructed 

of stainless steel and butyl rubbers, making it both robust and mercury compatible. 

This makes the TC4013 ideal for use in the resonator. 

A diagram of the overall resonator assembly is shown below in Figure 3.4. Note that 

a linear ball bearing alignment assembly for the shaker piston shown in the diagram 

was deemed unnecessary and cumbersome in practice. In Figure 3.5 is shown a 3D 

assembly drawing of the resonator as provided by the machining contractor. In 

Figure 3.6 is shown a photograph of the resonator assembly (sans shaker cover). 
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Figure 3.4: Detailed schematic of the Boston University acoustic resonator assembly 
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Figure 3.5: Three-dimensional CAD model of the resonator assembly 
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Figure 3.6: The acoustic resonator assembly. In this particular photograph the shaker cover is 
not attached, and the reservoir outlet tubing is disconnected. 
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3.2.2 Flow Loop 

Components constituting the fluidics of the BU acoustic resonator system were 

carefully chosen to be compatible with mercury and to provide a modular design for 

added convenience. 

A Cole Parmer 7552-02 peristaltic pump is used to drive the fluid flow loop and is 

controlled by a Cole Parmer 7552-71 controller. Pre-calibrated peristaltic pumps 

offer precise control over flow rates and can run dry without causing damage to the 

pump. Furthermore, they allow the fluid to be handled while the only equipment 

physically in contact with the fluid is the tubing itself; this is beneficial for handling 

bubbly fluids since pump cavitation is not a concern. It is also beneficial for handling 

mercury since it is toxic and corrosive. This particular pump has a stainless steel 

rotor in a polyphenylene sulfide housing and provides a flow rate ranging up to 

2300 ml/min and a discharge pressure of 15 psi (which is twice the hydrostatic 

pressure due to the 40 cm mercury column in the resonator) when used with 

Masterflex L/S 36 Norprene tubing, the tubing of choice. This tubing is also mercury 

compatible. The configuration of the loop for both water and mercury experiments 

is detailed below. 

For water experiments, the pump was placed on a cart next to the table supporting 

the resonator in order to reduce the effect of pump vibrations on measurements. 
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Since water experiments are intended to validate the performance of the device, it is 

desirable to inject known void fractions and not re-circulate the fluid, since small 

bubbles would remain entrained in the flow. A fish tank was filled with clean water 

for the pump to draw from. The outlet tubing of the pump connects to the bubbler, 

which then connects to the resonator inlet. The outlet of the resonator is routed to a 

35 gallon Nalgene bottle on the floor, allowing the spillover reservoir to drain via 

gravity. Thus no fluid re-circulates, and the maximum experiment time is 

determined by the available water volume in the fish tank. 

For mercury experiments the loop is closed and a fixed depth of mercury is 

maintained in the spillover reservoir. The pump and all tubing must be placed in the 

fume hood with the resonator for safety purposes. The pump is placed on foam pads 

in a secondary containment tub and the tubing is run through a trough of sand to 

reduce vibrations. The lid and shaker cover are all installed and o-ring seals 

achieved. A pressure gauge in one of the auxiliary ports serves as a precautionary 

diagnostic since the system is sealed. 

3.2.3 Bubbler and Gas Metering System 

In order to inject gas into the flow, a custom-made sintered porous stainless steel 

sparger unit from the Mott Corporation is used. This bubbler is constructed entirely 

of stainless steel tubing. There are two concentric tubes; the outer is solid and the 

inner has a short porous section. The outer section acts as a ‘jacket’ allowing for 
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pressurization. Fluid flows through the porous section of tubing which is subject to 

pressure from the outside; the fluid flow shears off small bubbles as gas is forced 

through the pores. For bubbly water experiments, a squirt of Rain-X (SOPUS 

Products, Houston TX) was added to discourage bubble coalescence and keep the 

individual bubble radii small. Besides ensuring that the Wood limit is satisfied, 

additional efforts to keep individual bubble radii small also decrease the relative 

rise velocity of the bubbles with respect to the fluid rise velocity; this is an effect 

that must also be accounted for. 

A laboratory air line is stepped down to 15 psig by a stainless steel 500 psi 

regulator. This pressure is then provided to an Omega model FMA-A2402-(**) 

electronic mass flowmeter/controller. This unit allows air flow metering and control 

from 0-50 SCCM with +/- 0.05 SCCM precision and +/- 1% of full scale accuracy. 

Between the flowmeter/controller and the Mott sparger, a small Luer-lock valve can 

either allow air coming from the flowmeter to go to the Mott unit, or vent it to the 

atmosphere.  

For water experiments, directly following the Mott unit and directly preceding the 

resonator inlet was placed a section of square acrylic tubing with inner diameters of 

5.17 mm for optical investigation of bubbly flow. A fiber optic panel light placed 

below the flow cell to provide back lighting. A QImaging Retiga CCD with Navitar 

lens was positioned above the flow cell and focused near the top surface of the 
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inside volume. After a bubbly resonator measurement was taken, the pump was 

shut off, allowing all the bubbles to rise up to the top of the flow cell. An image was 

captured for later processing in order to glean the bubble size distribution of the 

flow. 

A photograph of the bubbler and gas metering system, along with the resonator and 

some flow loop components, is shown below in Figure 3.7. 
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Figure 3.7: Bubbler and gas metering system 
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3.2.4 Auxiliary Equipment 

Auxiliary instruments incorporated into the resonator system for signal processing 

and conditioning are detailed below. 

A Dell Inspiron 9400 laptop with MATLAB performed processing and control for all 

experiments. The laptop is a high-end unit with the processing power of a desktop, 

but its portability aids in conducting experiments in different laboratories 

(including ORNL, ultimately). The BU Physical Acoustics Laboratory (PacLab) has 

extensive experience using MATLAB for signal generation, instrument control, data 

acquisition, numerical modeling, and post-processing, making it the software of 

choice. 

A Data Translation DT9836-06-02-BNC simultaneous USB data acquisition board is 

the electronic core of the resonator system. The DT9836-06-02-BNC has 6 analog 

inputs and 2 analog outputs; it allows simultaneous operation and internal or 

external triggering of analog input and output, digital input and output, and 

counter/timer subsystems. Both analog input and output are 16-bits and 

throughput speeds are 225 kHz and 500 kHz, respectively. The simultaneous 

capability of the board is of tremendous benefit for this work; the DT9836 allows 

determination of the response across a device under test to stimuli at the exact same 

instant. One of the 32-bit internal counter/timers can be used to trigger 
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simultaneous and synchronous input and output. The unit is standalone, with its 

own power supply, a convenient metal enclosure, BNC connections for all inputs and 

outputs, and a USB 2.0 connector for control by the laptop. Lastly, the DT9836 

supports the DAQ adapter for MATLAB, a plug-in for MATLAB’s Instrument Control 

Toolbox allowing direct control of the DT board from MATLAB. 

A Crown CE1000 audio amplifier is used to amplify the waveform being sent to the 

shaker. This is a high quality audio amplifier with a working frequency range of 20-

20,000 Hz. The maximum power output is 1100 Watts.  

A Krohn-Hite Corporation model 3944 4-channel filter/amplifier is used to enhance 

the measured hydrophone signal. This unit offers Butterworth and Bessel filters of 

the high pass, low pass, bandpass, and bandreject varieties; all filters provide a 24 

dB per octave attenuation slope. Each channel can provide gains of 0 dB or 20 dB on 

both the input and the output. 

Threaded into the underside of the bottom of the spillover reservoir is an Omega 

TC-T-NPT-G-72 pipe plug thermocouple probe for monitoring the temperature of 

the fluid. This is useful for water experiments since the variation of sound speed in 

water with temperature is a well-known and published trend that we can account 

for. The thermocouple plugs into an Omega SMCJ-T thermocouple to analog 

converter/connector. This unit converts a thermocouple input signal to a cold 

junction compensated, linear, amplified analog output signal that varies 1mV per 
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degree Celsius; this signal is collected at one of the DT9836 board’s analog input 

terminals during the period of data acquisition for an experiment and the time-

averaged value is used to calculate the intrinsic sound speed of the water at that 

temperature. 

3.3 Overall System 

Thus, the combination of the resonator apparatus, flow loop, bubbler and gas 

metering/injection system, and auxiliary equipment constitutes the entire acoustic 

resonator system; a standalone system for measuring the free gas void fraction of 

bubbly fluid flows. Below in Figure 3.8 is shown a simplified diagram of the entire 

system. 
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Figure 3.8: Diagram of the Boston University acoustic resonator system in its entirety (not to 
scale) 
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3.4 Experimental Method 

This Section will describe the process of setting up various types of experiments, 

driving the resonator, extracting and recording data, and processing data. The 

details of the MATLAB scripts developed to run experiments will also be discussed.  

3.4.1 Experimental Setup - Pure Water 

For pure water experiments, the chief focus is ensuring that the experiment is 

carefully set up and the water and tube are prepared vigilantly. The tube must be 

free of bubbles and the water free of gas. This experiment is essentially making a 

measurement of something for which we already know the answer in order to verify 

that the unit is functioning properly, so setup is critical. 

First, a few liters of clean spring water are put into a large flask and degassed with a 

vacuum pump for approximately 30 minutes. The inner wall of the resonator is 

cleaned and a small inline valve is attached to the inlet port. The clean, degassed 

water is carefully poured into the resonator and the valve is used to let a small 

amount of water flow out; this ensures that the inlet port section is full of clean 

water and contains no gas cavities. Enough water is also poured into the spillover 

reservoir to cover the element tip of the thermocouple for temperature 

measurement. The tube is then allowed to sit for a few hours to ensure that any 
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small cavities which may have formed are taken back into solution by the gas-

starved liquid. 

3.4.2 Experimental Setup – Bubbly Water 

For bubbly water experiments, as discussed in Section 3.2.2, the fluid is not re-

circulated. A 5 gallon jug of spring water is poured into the fish tank, a squirt of 

Rain-X is added, and the tank is stirred with a rod. The fluid is pulled from this tank 

by the pump, pushed through the resonator, spills over into the reservoir, and 

drains out into a holding tank. The valve to the Mott unit is closed and the 

flowmeter/controller is set to the desired air flow rate. The pump is turned on and 

the air valve is opened. It takes several moments for the pores of the Mott unit to be 

cleared of fluid and for the flow to become bubbly. The bubbly fluid is allowed to 

flow for at least twice the time it takes the pump to fill the tube. Experiments can 

now commence as desired. After the desired experiments are complete, the flow is 

stopped and all the bubbles in the flow rise to the top surface of the flow cell, and an 

image is captured. Between individual flowing bubbly mixture experiments, striking 

the tube 15 or so times with a deadblow hammer and using a curved piece of rubber 

sheet on a rod to squeegee the tube walls both remove any bubbles that may have 

attached in the resonator. When the fish tank runs dry, the experiment must be 

reset.  
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3.4.3 MATLAB Code – Initialization and Signal Generation 

The next few Sections discuss the MATLAB script and subscripts that control 

experiments. In all cases, “input” refers to measurements and “output” refers to the 

driving signal.  

First in the main experiment script is the initialization of variables. These are user-

chosen parameters that depend on the type of experiment desired to be run. For 

example, the starting and ending frequency of the driving sweep, the output voltage 

to the shaker, input and output board sampling rates, number of desired averages, 

and the desired time length of each individual driving frequency sweep are all 

parameters that are initialized at this point in the script, among others. 

An auxiliary script is called that creates the waveform that will eventually drive the 

shaker. This waveform is a sweep that is linear in time, which sweeps from a 

starting frequency to an end frequency in a fixed time (all user-defined). The sweep 

is desired to be output multiple times in order to do averaging on the tube’s 

response, so multiple identical sweeps are concatenated together into one large 

waveform3. However, doing this creates a very sharp transition from the highest 

frequency to the lowest frequency at the junction of each individual sweep. This is 

                                                 
3 The author has investigated experimentally the effect of using multiple frequency sweeps. At the 
beginning of all sweeps but the first, the low frequency response can be seen in the form of a 
modulation/envelope of higher frequency ‘ringing’. This ringing is believed to be beneficial for SNR 
as well as to ensure that the entire response is captured. In the first sweep, there is no high frequency 
ringing carried over from the previous sweep, since there is no previous sweep. As such, the first 
sweep is ignored. 
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undesirable because sharp transitions in the signal could cause instruments to 

respond dynamically, providing odd effects or damaging equipment.  Thus, a Tukey 

window with a 0.1 ratio, which is a combination of a square window with a cosine-

squared window applied to 10% of the window width at the beginning and end of 

each sweep, is applied to the waveform. This creates a smooth transition between 

sequential sweeps. The entire waveform and its corresponding time vector are thus 

created as MATLAB variables. Once the waveform has been created, windowed, 

appended to itself as many times as averages desired, it is time to begin the input 

and output preparation process. 

The entire input and output process is synchronous. The DT9836 has an internal 

clock; the output of this clock is connected to the trigger input of the board so that it 

can be used to simultaneously trigger the input and output subsystems. The DT9836 

board is then initialized. The analog input system for incoming hydrophone data is 

configured and its triggering is setup. A second input channel is also set up for the 

thermocouple. The same occurs for the analog output subsystem which will provide 

the driving signal to the Crown amplifier and ultimately the resonator. The 

configuration of both systems consists of specifying the sampling rate, buffer mode 

and size, trigger type and condition, and other parameters. 

 



103 

 

3.4.4 MATLAB Code – Data Output and Acquisition 

Next, the actual input and output of data are performed. The output waveform data 

is queued into the output buffer, and the output and input are started or ‘armed’. 

Upon receipt of a trigger command, the first signal from the internal clock causes the 

long waveform to be output while simultaneously data is acquired using the 

‘getdata’ function. ‘Getdata’ is a blocking function, so no further commands are 

entered until it has completed its acquisition. The data is brought in as a raw vector 

of voltages with length dependent on sampling rate, number of averages, and sweep 

time. The thermocouple voltage is also being simultaneously recorded. The input 

and output are then stopped. At the end of the synchronous input/output time 

window, the measured signals are brought from the board’s input buffer to the 

computer for handling in MATLAB.  

3.4.5 MATLAB Code – Post-processing and modeling 

With the raw data imported into MATLAB, it can now be processed and manipulated 

to provide meaningful results. The temperature voltage data is converted to a 

temperature value by time-averaging the voltage and using the calibration curve 

provided with the unit. This temperature value is used to calculate the intrinsic 

sound speed of the fluid at that temperature; this intrinsic sound speed value is then 

used in the Lafleur and Shields model later. The long vector of hydrophone data is 

segmented into an array with each column corresponding to the individual output 
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sweeps. Each of these can be considered a frequency response of the resonator. A 

20,000 point FFT with 2.5 Hz resolution is performed on each response and 

converted to a dB scale referenced to the driving waveform output voltage of the 

board; these FFT are then averaged. 

An automated process picks out the modal frequency peaks based on a set of 

criteria. First, a smoothing algorithm eliminates small perturbations in the 

frequency response. Then, all possible combinations of three peaks are picked out 

and put into a vector. Combinations that yield a non-physical sound speed 

(supersonic) or have any peaks with widths below a threshold (outliers/noise) are 

removed. Lastly, since the three modes must represent the λ/4, 3 λ/4, and 5 λ/4 

modes, as implied by Equation (2.33), this constraint is applied to each set of three 

peaks and a total error is calculated. The set of three peaks with the minimum error 

is chosen as the true modal peaks. A linear fit is performed on the three modal 

peaks, and the slope of the line is equated to the slope in Equation (2.33). The 

effective sound speed of the bubbly mixture enclosed in the resonator is thus 

extracted. 

Since the phase speed is the parameter measured by the resonator, obtaining a 

sound speed using the Lafleur and Shields dispersion relation (Equation (2.53)) is 

an inverse problem, and an optimization routine must be utilized. A MATLAB 

function performs a single-variable bounded nonlinear function minimization to 
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extract the sound speed and then uses the low-frequency propagation expression 

(Equation (2.18)) to calculate the void fraction. The produced result is the void 

fraction correlating to a mixture with the phase speed measured in the resonator; a 

chosen tolerance determines how precisely the optimization routine matches the 

sound speed before outputting a final value for the void fraction.  

3.4.6 Image Processing – Bubbly Water 

After all bubbly measurements for a given airflow rate (i.e. void fraction) have been 

made, the flow is stopped, all bubbles rise in the flow cell, and an image is captured. 

This image is then used to extract the bubble size distribution of the flow by 

identifying all of the bubble radii in the frame. 

First, the image is binarized and thresholded to separate the background from the 

bubble boundaries. A MATLAB function is then used to ‘fill the holes’ in the image, 

leaving a binary image with black background and many white circles 

corresponding to the bubbles. Since bubbles can exist very close to one another, 

especially at higher void fractions, simply calculating the area of each white entity 

would provide a large error. Instead, a circular mask is created, starting with a 

radius larger than any of the bubbles, and it is scanned over the image. If it crosses a 

place where the space beneath it is entirely white, that is chosen to be a bubble; that 

space is colored in black and the bubble radius is stored in a vector. The mask is 

then redefined with a one pixel smaller radius and the process is repeated. After the 



106 

 

process is complete, a vector of bubble radii (in pixels) remains; this vector is then 

converted to radii via a calibration based on the width of the acrylic flow cell 

chamber. 
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Chapter 4 

4 Results and Discussion 

This Section will present and discuss experimental results and conclusions that can 

be drawn from them when making comparisons to the theory. Experiments with 

clean bubble-free water for initial instrument validation will be described. 

Experiments with bubbly water of varying void fraction will also be detailed. 

Preliminary mercury tests at Boston University and a description of planned future 

tests at Oak Ridge National Laboratory are presented. 

4.1 Pure Water Results 

In scientific experiments, it is always desirable to make a measurement of 

something for which we already know the answer, especially in the early stages of a 

new experiment or device. Since the sound speed of water for a given temperature 

is well known, and the elastic waveguide effects can be accounted for via a model, 
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initial resonator validation measurements were attempted with pure, degassed 

water (void fraction of 0).  

The tube was filled with clean, degassed water as discussed in Section 3.4.1 and 

driven with six 200ms linear frequency sweeps from 0-5 kHz; the source level 

output from the board was 1 Volt, which is then sent to the Crown amp. The voltage 

given to the shaker was roughly 12V peak. Below in Figure 4.1 is shown the 

measured hydrophone signal, after two 60 Hz high pass filters and a 20 dB 

amplification, versus time. Due to the synchronous driving and measured signals 

(both sampled at 100 kHz), this plot thus represents the real-time response of the 

resonator to such a sweep. Based purely on qualitative observation, one can see that 

the envelope of the hydrophone signal traces out three clear maxima. If ‘ringing’ is 

neglected and the tube is assumed to respond virtually instantaneously, this 

envelope should roughly trace out the shape of the frequency response spectrum.  
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Figure 4.1: Measured hydrophone signal post-amplification and filtering versus time for the 
resonator filled with pure, degassed water and driven by a 200ms linear sweep from 0-5 kHz 
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The time signal shown in Figure 4.1 was then processed as discussed in Section 3.4. 

The frequency response spectrum is shown below in Figure 4.2. The circles on the 

three large peaks denote the modal resonances chosen by the peak-choosing 

algorithm. The vertical line at 900 Hz was placed manually at this first peak, the 

other two vertical lines are multiples of the first frequency based on the odd-integer 

quarter wavelength modes expected to be present in the tube. Thus, the fact that the 

second and third lines correspond with the measured peaks indicates that the 

expected linearity of plane wave modes is present.  
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Figure 4.2: Average frequency response level versus frequency for the resonator filled with 
pure, degassed water and driven by six 200ms linear sweeps from 0-5 kHz 
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A linear fit was performed on the three modal frequencies extracted from the 

frequency response spectrum in Figure 4.2 and is shown in Figure 4.3. The 

correlation coefficient is approximately unity, indicating a linear relationship. The 

slope is then used with Equation (2.33) to calculate the measured mixture sound 

speed. This mixture sound speed is then used to plot what the expected modes 

would be if, assuming the liquid air interface provides a perfect pressure release 

condition, the bottom plate were to provide a perfect pressure release condition 

(λ/2, λ, and 3 λ/2 modes) or a perfect pressure doubling condition (λ/4, 3 λ/4, and 5 

λ/4 modes). This provides an estimate of how ideally the boundary condition is 

acting; the excellent correlation with the λ/4, 3 λ/4, and 5 λ/4 modes indicates the 

boundary is acting rigidly, despite Equation (3.1), which indicates a dispersive 

boundary condition over this frequency range. We attribute this to the fact that the 

plate is clamped along its edge and thus constrained in motion. A more detailed 

treatment of this complex problem would require extensive FEM (Finite Element 

Model) work and is beyond the scope of this thesis. Since pure water is the ‘worst 

case scenario’ in terms of the impedance mismatch between the fluid and the 

termination material, characterizing the boundary condition in this manner for pure 

water indicates that for all bubbly water mixtures, the end condition will be rigid as 

well (although the modal frequencies will be decreased and wavelengths will be 

longer, the impedance of the mixture drops more significantly (see Figure 2.7), 

maintaining the rigid characteristic of the termination). The Lafleur and Shields 
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model script is updated with the temperature garnered from the thermocouple data 

and the intrinsic sound speed of the water is modified accordingly. Lastly, the 

optimization routine described in Section 3.4.5 is used to calculate the void fraction. 

The extremely small resulting void fraction of 5.55E-18 can be considered to be 

zero.  
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Figure 4.3: Plot of mode number versus frequency for the modal peaks extracted from the 
spectrum in Figure 4.2 
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The phase speed predicted by the model for a void fraction of zero differs from the 

value of 1449.9 m/s measured in this case by 4.4 m/s; this error is made 

insignificant by the resolution uncertainty in the FFT (+/- 2.5 Hz) and the 

uncertainty in the fluid column height (+/- 0.5 mm, this uncertainty in the column 

height exists due to the fluid meniscus at the top of the tube during experiments that 

serves to lengthen the tube by 5 mm with this uncertainty) and their resulting effect 

on the uncertainty in the phase speed, which is also 4.4 m/s. The propagated 

uncertainty in a dependent variable due to the uncertainty in an independent 

variable can be expressed as  
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df x
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where ( )f xu  and xu  are the uncertainties in the dependent and independent 

variables, respectively. If the dependent variable is a function of multiple variables, 

the uncertainty is expressed as 
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Therefore, since the sound speed is dependent on the tube length and frequency as 

0 4c lf , the propagated uncertainty in the phase speed given by the fundamental 

resonance peak can be expressed as 

    
0

2 2
4 4c f lu lu fu  , (4.3) 
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where fu  and lu  are the uncertainties in the frequency and the length, respectively. 

In this case, the length is 0.405 m and the frequency is 900 Hz. 

Furthermore, using the slope of the linear fit and Equation (2.33) yields that the 

expected first mode should be 895 Hz; the 5 Hz difference is encompassed by the 

resolution of the FFT, indicating that not only is the linearity of the modes upheld, 

but also that the boundary is acting rigidly to the enclosed fluid. Combining these 

two observations proves that the resonator is truly measuring the standing plane 

wave quarter wavelength modes as predicted by the theory outlined in Chapter 2. 

The trial discussed above clearly demonstrates the accuracy of the instrument. 

Additionally, further investigations were performed to ensure the precision of the 

instrument and explore the sensitivity to parameter and experimental changes as 

well as the effect of some non-idealities of the resonator assembly. These will not be 

discussed in thorough detail, but one prominent result will be presented. 

An experiment was performed using clean, degassed water that would validate the 

precision of the resonator. In order to do this, the water was flowed in a closed loop 

to ensure no evaporation would affect the column length. A measurement akin to 

the one discussed directly above was taken every 10 minutes until 100 

measurements had been taken. The histogram of sound speeds is shown below in 

Figure 4.4. The time variance of these sound speeds showed no trend. The 

distribution of sound speeds is over four times smaller than the 4.4 m/s uncertainty 
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in the phase speed due to the uncertainty in the fluid column length and FFT at the 

frequency of the first modal peak. This phase speed uncertainty will decrease with 

decreasing frequency, since the uncertainty in the phase speed due to the column 

height uncertainty is frequency dependent. Thus, the precision of the instrument is 

limited by the two aforementioned uncertainties even though performance has 

indicated the precision is smaller. 
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Figure 4.4: Sound speed distribution for a 100-measurement precision investigation over 16 
hours 

  



119 

 

 

4.2 Bubbly Water Results 

This Section will discuss results obtained from resonator experiments performed 

with bubbly water of varying void fractions. These experiments were intended to, 

and ultimately did, provide results that would validate the instrument and its ability 

to measure the void fraction of bubbly fluid flows. The inherent difficulty in doing 

this is that the resonator was designed to truly be the “gold standard” in measuring 

bubbly fluid void fraction, so validating its performance is nontrivial and 

intrinsically problematic. However, after devising a method for doing this, validation 

of the instrument was satisfactorily achieved. It is the opinion of the author that the 

resonator itself still does provide a measurement with unmatched accuracy and 

precision as long as the constraints delineated in the theory remain true. 

4.2.1 Wall Attachment Phenomenon 

When running initial bubbly water experiments with the setup and method 

described in Chapter 3, the author discovered an interesting phenomenon. As air 

was introduced to the fluid and flow continued, bubbles would become attached to 

the waveguide wall, primarily in the upper third of the resonator tube. A non-linear 

spacing of modal frequency peaks appeared in the response spectra as the bubbles 

became attached.  
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In order to investigate this phenomenon, tests were performed that would monitor 

the response of the waveguide before, during, and after the introduction of air via 

the bubbler. Resonator measurements were taken approximately every four 

seconds; these were ‘standard’ measurements consisting of five 200 ms sweeps 

from 0-5 kHz. Since both clean and bubbly water would be investigated, the 

frequency range needed to be large enough to accept the first three modal peaks of 

pure water, thus the 5 kHz upper bound. Tests began flowing clean bubble-free 

water; the flowmeter/controller was set to the desired air flow rate with the flow 

diverted to the atmosphere. During this time, spectra were identical to the results 

discussed in Section 4.1. 

After about one minute, the air valve is directed to the Mott bubbler unit. The 

spectra do not immediately change since the air must force fluid out of the pores in 

the sparger. Then, as bubbly fluid begins to fill the tube, the modal peaks begin to 

shift to lower frequency as expected. Shown below in Figure 4.5 is the resonator 

frequency response at the approximate time the tube is completely filled with the 

bubbly mixture (the time for a fluid particle to travel through the entire tube is 

about 20 seconds). The dotted lines again indicate the expected second and third 

modal peaks based on the fundamental resonance mode. In this case the linearity is 

as expected. 
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Figure 4.5: Frequency response level vs. frequency for the resonator flowing newly-
introduced bubbly water at the approximate moment it has completely filled the tube, driven 
by 200 ms linear sweeps from 0-5 kHz 
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As bubbly fluid continued to flow, peak shifts continued to occur. However, the first 

modal peak remained at exactly the same modal frequency; the higher-order modes 

continued to shift to the left. This non-linear peak spacing is believed to be caused  

by a dispersive wall boundary condition due to the presence of bubbles, leading to a 

complex higher-order effect. Furthermore, since the dynamic effect of realistically 

sized bubbles is more likely to affect higher frequencies, this lends credence to the 

observed robustness of the first modal peak. Below in Figure 4.6 is shown the 

frequency response of the resonator after flowing bubbly mixture for about 20 

seconds (not including the time taken to initially fill the tube with bubbly mixture, 

i.e. this response is 20 seconds after Figure 4.5). The dotted lines based on linear 

extrapolation of the first peak have begun to stray from the measurement. Further 

below in Figure 4.7 is shown the frequency response of the resonator after flowing 

bubbly mixture for about 5 minutes. The dotted lines based on linear extrapolation 

of the first peak are further uncorrelated to the measured peaks. 
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Figure 4.6: Frequency response level versus frequency for the resonator 20 seconds after the 
approximate moment the tube is first filled with bubbly fluid, driven by five 200 ms linear 
sweeps from 0-5 kHz 



124 

 

 

 

 

Figure 4.7: Frequency response level versus frequency for the resonator after five minutes of 
flowing bubbly water, driven by five 200 ms linear sweeps from 0-5 kHz 
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Next, the air was turned off, and the modal peaks began to spread to higher 

frequencies, as expected. However, the initial pure water result does not 

immediately return. The bubbles on the wall still remain and continue to affect the 

spectrum even though the flow is now bubble-free. Shown below in Figure 4.8 is the 

frequency response of the resonator after two minutes of flowing clean water with 

bubbles still attached to the tube walls. Notice that now the frequency regime 

affected by the bubbles on the wall encompasses the first modal peak for pure 

water. Next, the tube was struck with a deadblow hammer numerous times and the 

walls were squeegeed with a piece of curved rubber sheet on a rod. Then, the 

spectrum is again identical to Figure 4.2. 
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Figure 4.8: Frequency response level versus frequency for the resonator after flowing non-
bubbly water for two minutes following a bubby mixture experiment (bubbles remain on the 
tube wall), driven by five 200 ms linear frequency sweeps from 0-5 kHz 
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The test described above was performed for three significantly different air input 

flow rates (i.e. void fractions) that span the capable range of the 

flowmeter/controller to ensure that the first modal peak always remained robust 

during the collection of bubbles on the wall. The ‘low’ void fraction (air input rate 

1.0 SCCM) was the experiment shown in the above figures. The same phenomena 

were observed for the higher void fractions as well. The low void fraction 

experiment was chosen for display since the frequency peak shifts are more easily 

seen in spectra when the x-axis range is kept constant; at higher void fractions, 

peaks shift to the left further and more rapidly upon the introduction of air. 

The robustness of the first modal peak for bubbly measurements of all void fractions 

suggests the solution of using only this fundamental modal peak for phase speed 

measurement. After these tests, only the first modal peak was used for all bubbly 

mixture experiments. 

4.2.2 Bubbly Water Benchmark Experiment 

With the information gleaned from the experiments in Section 4.1, the experiments 

intended to validate the bubbly mixture performance of the instrument were set up 

and conducted via the arrangement and method described in Chapter 3. Some 

details will be reiterated for the sake of clarity.  

Bubbly water experiments for a range of 26 void fractions were performed. Void 

fraction variation was achieved by changing the setting on the flowmeter/controller 
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from between 0.6 and 50 SCCM in varying increments. No fluid was re-circulated to 

avoid re-circulation of bubbles that would prevent the injected void fraction from 

being a “known” value. For each measurement, the flowmeter/controller was set to 

the desired value while the air was diverted to the atmosphere. The flow was turned 

on and the valve switched to allow air to be forced into the Mott sparger. The system 

was allowed to flow for two minutes, which is enough time for the tube to be filled 

six times, in order to allow the bubbling flow to hopefully reach a steady state. Then, 

a standard resonator measurement (five 200 ms linear frequency sweeps from 0-5 

kHz whose response spectra are then averaged) was recorded every 30 seconds for 

120 seconds. These five measurements were averaged into a final spectrum after an 

inspection to ensure the data did not exhibit gross spectral changes over the two 

minute time period. 

In Figure 4.9 below is shown the theoretical sound speed versus void fraction curve, 

along with the data extracted from the resonator. The resonator measured sound 

speed is plotted versus the injected void fraction given by the flowmeter/controller 

and liquid flow rate, that is: 

 gas
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where 
gasV  is the reading on the flowmeter in SCCM, and 

liquidV  is the liquid flow rate, 

which for the Cole Parmer peristaltic pump at full power is 2300 mL/min; this was 

the pump and power level used for all experiments. 
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Figure 4.9: Sound speed versus injected void fraction for bubbly water resonator 
measurements of 26 different air flow rates. The independent variable is derived from 
measured liquid and gas flow rates via Equation (4.4) 
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Equation (4.3) is used to calculate the propagated frequency-dependent uncertainty 

in the phase speed based on the first modal peak due to the uncertainty in the FFT 

and the column length. Combining Equation (4.2) and Equation (4.4) yields the 

propagated uncertainty in the injected void fraction, u , due to the uncertainty in 

the volumetric air flow rate and fluid flow rate as follows: 
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where 
gasV

u   and 
liquidV

u   are the uncertainties in the gas and fluid flow rates, 

respectively. Applying both phase speed and void fraction uncertainties to the data 

and magnifying the region of interest results in Figure 4.10 below. One can see that 

in general, the data provides an overestimate of the void fraction. The deviation of 

80 percent of the data from the theoretical curve cannot be accounted for via the 

uncertainty analysis discussed above. Therefore, considerations into possible causes 

for this deviation needed examination. 
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Figure 4.10: Sound speed versus injected void fraction for bubbly water resonator 
measurements of 26 different air flow rates. The independent variable is based upon liquid 
and gas flow rates via Equation (4.4) 
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4.2.3 Bubble Rise Velocity Correction and Results 

Equation (4.4) assumes that the gas and liquid travel as one. This is true as the 

bubbly liquid leaves the Mott unit, heading towards the resonator. However, as the 

bubbly fluid enters the resonator, all gas bubbles will be subject to the effects of 

buoyancy. Bubbles will have a rise velocity relative to the fluid that can be 

significant depending on fluid flow velocity and bubble radius; this effect can be 

accounted for with knowledge of bubble radius. The rise velocity of a bubble, bubblev , 

can be described by a simple Stokes’ model that balances the buoyancy force and 

drag force acting on the bubble as it rises through the fluid, described by 
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where the dynamic viscosity   is taken to be 1E-3 Pa*s. This model assumes a no-

slip boundary condition applicable to rigid spheres.  Since bubbles can experience 

internal re-circulation flows, the actual drag could be reduced and the predicted rise 

velocity slightly greater than that given by Equation (4.6). 

The bubble rise time through the resonator tube is given by 
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where it is assumed that the bubble radius is constant, that is, bubble dissolution 

and changes in hydrostatic pressure are ignored.  Using the method described by 

Nicholas et al [61], the void fraction is given by 

 
2

9

2 ( )
resonator

tube tube water air

tv l v

V V gR




 
 



 
, (4.8) 

where v  is the injected air flow rate and tubeV  is the resonator tube volume. The 

value of R used in practice in this case is the root mean square radius gathered from 

the bubble image processing algorithm described in Section 3.4.6. Since the void 

fraction is dependent on the square of the radius, it is sensible to weight the 

averaging of imaged bubble radii accordingly. Below in Figure 4.11 and Figure 4.12 

are shown the bubbly image with circles denoting the bubbles chosen by the 

algorithm and the histogram of bubble radii, respectively, for a low void fraction 

(injected air flow rate of 0.6 SCCM, or rise-time-corrected VF = 1.92E-4). The same 

are shown in Figure 4.13 and Figure 4.14 for a medium void fraction (injected air 

flow rate of 5 SCCM, or rise-time-corrected VF = 1.37E-3), and in Figure 4.15 and 

Figure 4.16 for a high void fraction (injected air flow rate of 50 SCCM, or rise-time-

corrected VF = 1.40E-2). Not only are these three void fractions approximately an 

order of magnitude apart each, they also span the entire usable range of the 

flowmeter/controller. For all images the scale is in pixels, and the calibration 

applied sets one pixel equal to 14.4 µm. This calibration was calculated by 

measuring the inner diameter of the flow cell with calipers, then dividing that 
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dimension by the number of pixels across the flow cell as seen in the captured 

images. 



136 

 

 

 

 

Figure 4.11: Bubbly image captured for an air flow rate of 0.6 SCCM; this corresponds to a 
corrected injected void fraction of 1.92E-4. Blue circles indicate bubbles chosen via the image 
processing algorithm. 
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Figure 4.12: Histogram of bubble diameters corresponding to Figure 4.11. Diameters were 
calculated using a calibration of 14.4 microns per pixel. 
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Figure 4.13:Bubbly image captured for an air flow rate of 5.0 SCCM; this corresponds to a 
corrected injected void fraction of 1.37E-3. Blue circles indicate bubbles chosen via the image 
processing algorithm. 
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Figure 4.14: Histogram of bubble diameters corresponding to Figure 4.13. Diameters were 
calculated using a calibration of 14.4 microns per pixel. 
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Figure 4.15: Bubbly image captured for an air flow rate of 50 SCCM; this corresponds to a 
corrected injected void fraction of 1.40E-2. Blue circles indicate bubbles chosen via the image 
processing algorithm. 
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Figure 4.16: Histogram of bubble diameters corresponding to Figure 4.15. Diameters were 
calculated using a calibration of 14.4 microns per pixel. 
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Using the root mean square bubble radius from the images allowed calculation of a 

rise-velocity-corrected void fraction via Equation (4.8). Shown below in Figure 4.17 

is the resonator measured phase speed versus the rise-velocity-corrected void 

fraction. One can qualitatively see that unlike Figure 4.10, the measurements are 

now an underestimate of the void fraction with respect to the theoretical curve. In 

order to determine if this is of concern, the uncertainties in measured quantities 

must be considered. 
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Figure 4.17:Sound speed versus injected void fraction for bubbly water resonator 
measurements of 26 different air flow rates. The independent variable is based upon a rise 
velocity and tube volume. 
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The uncertainty in the phase speed remains identical to the values shown in the 

previous Section. In order to calculate the uncertainty in the void fraction, 

associated uncertainties must be propagated through Equation (4.8). These 

uncertainties are in the tube length, the volumetric air flow rate, and the mean 

squared bubble radius measured via the imaging system. However, examining 

Equation (4.8) indicates that the length of the column actually cancels out since it is 

part of the tube volume in the denominator. The tube diameter was provided with a 

high enough precision by the machinist for its uncertainty to be negligible. Thus, 

applying Equation (4.2) to Equation (4.8) yields the expression for the uncertainty 

in the void fraction, 
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where 
gasV

u   and Ru  are the uncertainties in the air flow rate and imaged bubble 

radius, respectively, and rmsR  is the root mean square bubble radius chosen by the 

bubbly image processing algorithm. Applying both phase speed and void fraction 

uncertainties to the data and magnifying the region of interest results in Figure 4.18 

below. 
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Figure 4.18: Sound speed versus injected void fraction for bubbly water resonator 
measurements of 26 different air flow rates. The independent variable is based upon a rise 
velocity and tube volume. 
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As mentioned before, the data is now, on average, an underestimate compared to 

the theoretical curve. The propagated uncertainties in the measurements allow 80% 

of the data bounds to encompass the theory. Although the uncertainties in this data 

are larger than the data described in Section 4.2.2, this data includes a correction for 

an effect that certainly occurs and must be considered. Since most of the data 

coincides with the theory when the bounds of uncertainty are taken into account, 

agreement can be considered very good.  

One cause for underestimate of the mean value of the range from the theory is 

believed to be a bias in the image processing technique. The image processing 

requires a thresholding to be performed at one stage, which inherently causes error. 

Additionally, when there are caustics in the bubbly image, these can cause the 

boundaries of some bubbles to be incomplete circles; in order to correct for this, a 

dilation followed by an erosion is necessary. This can cause some bubbles to join 

with others, which results in a larger bubble mask to fit into the inner region of a 

group of bubbles, biasing the result towards a larger bubble radius. Also, 

imperfections in the acrylic flow cell material forced thresholding to not include 

some smaller bubbles, again biasing the distribution towards larger radii. 

Additionally, low resolution caused some small bubbles to be missed. Thus, there is 

an inherent bias in the image processing to yield a larger root mean square radius 

than is truly present in the resonator, which could lower the rise-velocity-corrected 

value of the injected ‘known’ void fraction significantly, since it is dependent on the 
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square of the RMS radius value. This effect could explain the average underestimate 

of the data. 

Other considerations mentioned previously could also play a role, albeit more 

minor, which will be briefly presented here. The change in hydrostatic pressure 

over the height of the tube would serve to increase the size of the bubble as it rose, 

contributing again to account for the discrepancy from theory. This change is simply 

given by gh , which gives a total pressure change of about 4% from the bottom of 

the tube to the top (where the pressure is ambient, 1 atmosphere). This would yield 

an average change to the void fraction of about 2%, which is not significant 

compared to the error bars in Figure 4.18 which can be as great as 25%.  

The applicability of Equation (4.6) is dependent on the Reynolds number of the flow 

and the bubble radius. Depending on bubble size and flow velocity, there is a 

tangential component of the velocity near the gas-liquid interface which causes an 

increase in the gas bubble rise velocity that can be very significant. This can increase 

velocities on the order of 50% for some bubbles and flows [62]. For the Reynolds 

numbers present in the current work (<10) and the bubble size distributions 

present, the total correction to be made to the void fraction due to the bubbles not 

rising as rigid spheres is predicted by [62] to be roughly 10% at most, which is of a 

larger but similar order to the hydrostatic pressure correction. Again, this effect 

would tend to decrease the discrepancy from theory. 
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Another consideration is the dissolution of gas into the fluid over the time scale of 

an experiment. Since bubbles were not re-circulated, their lifetime is essentially the 

time of travel through the tube. This time would be 20 second or less, depending on 

the bubble size. It has been shown thoroughly in the literature that the dissolution 

rate can be highly dependent on the surrounding fluid velocity [62, 63], which in 

this case is equal to the bubble rise velocity. Also, the concentration of gas in the 

liquid is an important parameter. Spring water from a five gallon jug was used that 

had been open to air for two hours before experiments were begun; a conservative 

estimate of 2/3 saturation was used in calculations. Based on a model developed in 

[63], bubbles on the order of 10 micron radius would dissolve completely in the 

tube rise time, whereas bubbles with 100 micron radii would take hundreds of 

seconds to dissolve; over the time frame of rising through the tube they would 

simply be decreased in size by about 5% during the tube rise time. Since all 

distributions in this effort were found to be weighted towards smaller bubbles, 

many of which would disappear via dissolution, the overall result of this effect is 

again a shift in the correction term in the direction of accounting for the discrepancy 

from theory. Furthermore, the fluid flow velocity with respect to the bubble (in this 

case due to the bubble rising) encourages this effect. The smaller bubbles would 

dissolve more quickly, whereas the increased dissolution rate of the larger bubbles 

is offset by their far decreased rise time through the tube. Detailed knowledge of 

actual gas concentrations, bubbles sizes, and distributions would be required for 
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accurate estimate of the effect of dissolution phenomena; further experiments 

would be necessary. 

Regardless of all corrections significant or insignificant, both the uncorrected data 

and corrected data provide void fraction measurements with high enough accuracy 

and precision to determine a narrow void fraction range ideal for mitigation of 

cavitation damage in the SNS mercury target. This will be achieved via the testing of 

various targets under different bubbly flow conditions and investigating the damage 

results to find the optimal microbubble injection parameters. The discrepancies in 

results from theory during validation are truly believed to be experimental 

variations that surfaced in light of the resonator being a precise and accurate “gold 

standard” for measuring void fraction of bubbly mixtures. 
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Chapter 5 

5 Conclusion and Path Forward 

This Section will recapitulate the findings of the work discussed in this publication, 

as well as discuss the future experiments to be conducted and possible 

modifications to improve performance. 

The Boston University acoustic resonator, as designed and constructed, is a both 

accurate and precise instrument that can measure the void fraction of two-phase 

flows using the standing wave sound speed measurement technique. The device 

meets or exceeds all of the design constraints set forth in the proposal document, as 

well as provides additional features for performance enhancement, ease of use, and 

modularity. 

In order to perform extensive tests with mercury, the resonator has been sent to the 

ORNL SNS facility; SNS has the capability to easily handle toxic mercury without 
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restriction. This will prove extremely useful when the device must be disassembled 

or modified. 

The device can be arranged or modified for various experimental configurations. 

Since mercury has an acoustic impedance that is over an order of magnitude larger 

than that of water, the non-ideality of boundary conditions can become more 

prominent. Initial tests with pure mercury and the 1” thick plate indicate that the 

method of experiments will be successful, and further stressed the importance of 

the boundary condition. Acoustic standing waves were certainly present, but the 

frequency of the modal peaks did not match the quarter-wavelength or half-

wavelength theory; the boundary condition acts dispersively since the impedance 

mismatch is not extremely large. Because of this, it is anticipated that the thin plate, 

will be a better option for the bottom boundary condition in order to provide an 

acoustic pressure release, as mentioned previously. However, other modifications 

may provide better performance. The use of a rigid stainless steel piston mounted to 

a baffle on the bottom of the tube that can be driven mechanically from below can 

provide very close to a true velocity source. A rigid piston that fills the entire tube 

diameter and physically drives the fluid column is a very efficient way of creating 

pressure perturbations to propagate plane wave acoustics and set up standing 

waves; this has been observed experimentally by many, including Wilson [38]. This 

arrangement may be an excellent choice for mercury experiments. Furthermore, 

this end condition will result in odd-integer multiples of quarter-wavelength modes, 
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as did this rigid plate in water; an added benefit of this is that these modes reduce 

the fundamental modal frequency by a factor of two when compared to half-

wavelength modes, which increases the acceptable bubble radius and void fraction. 

The dimensions of the resonator could also be scaled or changed depending on 

experimental demands. A longer or shorter tube could change the frequency range 

of interest or acceptable bubble radius. Different driving or end conditions could 

optimize for various types of fluids or driving requirements. Additional 

instrumentation could be added to the assembly to probe other desired parameters; 

one possibility is a passive hydrophone near the bubbler unit to listen to acoustic 

noise emission for purposes of determining the upper and lower bounds of the 

bubble size distribution. 

In conclusion, the resonator is a precise and accurate device for two-phase flow 

diagnostics. Not only does it succeed in meeting its design requirements, but it can 

be modified easily to accommodate other experiments. The unit or one like it could 

also be of interest for various other applications, such as oceanic acoustic research, 

diagnostics in the food and beverage field, or industrial flow diagnostic applications. 
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Appendix A 

A Engineering Drawings 

This Section contains engineering drawings of the individual resonator components 

as machined by L&M Machine of Everett, MA. Note that the thin plate for use with 

mercury is shown, not the thick plate used with water. 
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Figure A.1: Engineering drawing of the main resonator tube 
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Figure A.2:  Engineering drawing of the base support plate 
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Figure A.3: Engineering drawing of the inlet section 
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Figure A.4: Engineering drawing of the intermediate support plate 
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Figure A.5:  Engineering drawing of the spillover reservoir 
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Figure A.6: Engineering drawing of the reservoir lid 
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Figure A.7: Engineering drawing of the shaker cover 
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Figure A.8: Engineering drawing of the piston driver 
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Figure A.9: Engineering drawing of the thin end plate 
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Research Fellow       Spring 2007 – Present 
 Designed, constructed, and tested a flow-through acoustic resonator for determining the void fraction of two-phase 

mercury-helium flow 
 This work is supported by the DOE (Department of Energy) for study into the mitigation of cavitation damage to the 

ORNL (Oak Ridge National Laboratory) SNS (Spallation Neutron Source) mercury target chamber. 
 The device will ultimately be taken to the SNS for implementation in their TTF (Target Test Facility) 

  
Boston University, Boston, MA 
Teaching Fellow       Fall 2006 
 For an undergraduate thermodynamics course: Taught discussion and review sections, and led lab sessions. Provided 

one-on-one help to students for homework, labs, and exam-preparation. Graded homework, tests, and labs 
 For an undergraduate compressible aerodynamics course: Developed a new lab for the course in MATLAB, creating a GUI 

(Graphic User Interface) allowing the students to remotely run a CFD (Computational Fluid Dynamics) simulation for 
flow around various airfoils and view the effects of changing parameters. The code used PuTTY to send information to an 
off-site supercomputer to run the CFD code and return the completed simulation for analysis 
 

US Army Natick Soldier Center, Natick, MA                                                 
Mechanical Engineer       Summer 2005 – Winter 2006 (Part Time) 
 Engineering summer/part-time hire on the Joint Precision AirDrop System (JPADS) team. The JPADS team develops 

autonomously guided precision cargo airdrop systems ranging from 500 to 60,000 pounds capable of just-in-time 
resupply for our forces. Systems are in use by our soldiers in the Middle East; millions of pounds of ammo and supplies 
have been dropped into the area of threat to date 

 Performed modeling analysis of airdrop sequences using the NASA-developed Decelerator System Simulation Application 
(DSSA) software. Using collected data, airdrop behavior for system modifications can be predicted 

 Took part in two operational test weeks at the US Army Yuma Proving Ground (YPG), Yuma, Arizona,  providing 
instrumentation installation and analysis, system recovery, cargo system rigging, mission and aircraft loadings  
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