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Technical efficiency in electricity generation - the impact of 

smallness and isolation of island economies* 

 

 

Preetum Domah✻  

Queens’ College, University of Cambridge, UK 

Abstract 

This paper conducts a comparative technical efficiency analysis of electricity generators in 16 

small island economies using panel data, and two methodologies: data envelopment analysis 

(DEA) and stochastic frontier analysis (SFA). The results indicate neither apparent 

differences in the production structure between islands and non-islands electric utilities, nor 

any evidence suggesting that they are less technically efficient. At a theoretical level, our 

results suggest that benchmarking of small islands, using non-island generating utilities as 

comparators, is both feasible and desirable given the lack of historical generation data for 

most small islands. On a more empirical basis, our study bridges an important gap in research 

on the efficiency of small and interconnected electricity systems. 

 

JEL Classification: D20; L25; L94; N70 
 
Keywords: Electricity; SFA; Malmquist DEA; small islands  

1. Introduction 

This paper seeks to study technical efficiency in electricity generation of a sample of small 

island economies. Economies of scale in electricity generation partly explain why small island 

electricity generators have been state-owned and vertically integrated. Recent developments 

in restructuring and privatisation of electric utilities around the world have generated 

considerable interest among many small islands to adopt similar policies. Some have already 

privatised, while others are planning to restructure. However, there are considerable doubts as 

to what path electricity reforms in small islands should take. Both theoretical and empirical 
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analyses are lacking in predicting what type of reform will best suit small and isolated 

systems, and whether there is any way to avoid resource-hungry and costly regulation for 

such systems. 

 

Three major problems plague small islands in their effort to liberalise power markets. First, 

there is the problem of smallness of size. The introduction of wholesale markets is not 

feasible in small countries, where, at best, only a small number of generating companies can 

be supported, leading to an oligopolistic situation. Given the relatively limited scope for 

restructuring of small power systems, the problem hinges on effective regulation of such 

systems. But many small islands have a poor history of accounting and data collection, and it 

is important to investigate how to overcome the lack of electricity generation statistics, say, 

by using data from other islands and non-islands. This promising attempt of analysing how far 

yardstick competition can be introduced, using other electric systems as comparators, 

formally referred to as the system of yardstick regulation (Shleifer, 1995), however, requires 

that a given decision making unit (DMU) be compared with a like DMU. The view we adopt 

in this paper is that perfect likeness, which may never exist, is not a binding constraint, and 

benchmarking will be feasible if differences between electricity generating systems can be 

properly and fully accounted for. 

 

Second, there is the problem of geographical isolation. Most small islands that we know of 

have very little prospects to interconnect with an intercontinental power grid. This problem is 

coupled with low levels of reliability since they cannot import power (Mayer, 2000). There is 

no published record of the impact of interconnection on efficiency. Our present study intends 

to partially bridge this gap in both theoretical and empirical research. 

 

Third, it appears that many small islands are not only common by size but by historical 

development. Many islands have similar colonial histories, similar resource bases (primary 

production), and a heavy dependence on imported energy resources. This could imply that it 

potentially easier to compare islands with other islands for benchmarking purposes. 

 

There have been major efforts, with the help of the World Bank, to restructure the power 

sector of many small islands. Although many have proposed privatisation as the end goal of 

liberalisation, there have been doubts as to whether it is the only available tool for reform. For 

instance, it does not seem that privatised electricity generation in Trinidad and Tobago has 
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yielded better results so far (Domah, 2002). The biggest challenge that small islands have yet 

to face is the introduction of competition in generation. 

 

This paper aims to test the null hypothesis of the existence of identifiable technical 

inefficiency among decision-making units (DMUs) involved in fossil-fired thermal electricity 

generation. This is achieved using an international sample of electricity generating utilities, 

and using two distinct state-of-the-art methodological approaches, viz., data envelopment 

analysis (DEA) and stochastic frontier methodology (SFA). Such an efficiency analysis will 

enable us to infer if small islands are significantly different from non-islands, and whether 

benchmarking is an option that should be explored, given that these islands also suffer from 

diseconomies in electricity sector regulation (as pointed out in Domah, 2002). 

 

After more than two years of actual field work and data collection, the present study is an 

analysis of technical efficiency of a 7-year (1994 to 2000) panel physical data of 16 islands 

and 121 US investor-owned utilities. This paper is divided into 6 sections. Section 2 presents 

a short overview of efficiency analyses of electricity generation. Section 3 briefly sets out the 

two methodologies used in this paper. Section 4 provides a brief description of the type and 

sources of data used. Results are presented and discussed in section 5. Some implications of 

the results for small island economies and some concluding comments are set out in section 6. 

 

2. Brief Review of Empirical Studies 

An increasing number of recent studies on efficiency of electricity generation in developed 

countries are using frontier methods such as DEA and SFA. These have involved the 

estimation of both production and cost functions. The vast majority of these studies are US-

based. Kopp and Smith (1980) estimate stochastic frontier production functions for 43 US 

coal-fired electric power plants. They consider three alternative functional forms; three 

estimation methods; and also divide their data into two capital vintage groups, finding that all 

three factors have an influence upon the measures of mean technical efficiency.  

 

A comprehensive review of literature and past studies of the electricity sector is provided in 

Pollitt (1995), where use is made of four alternative methodologies to assess technical and 

productive efficiencies in an international sample of electric utilities. Pollitt (1996) uses DEA 

to assess the efficiency of nuclear power generators in five countries: the UK, Canada, Japan, 
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South Africa and US. This study was followed by several other studies of international 

comparisons of electric utilities, such as Zhang and Bartels (1998) on New Zealand, Australia 

and Sweden. Although efficiency studies of the generation sector of developed countries 

abound, analyses of smaller systems and of developing countries’ generating systems are 

lacking. 

 

Mayer (2000) uses non-frontier regression analysis to study reliability problems of small 

islands in electricity generation. He concludes that the inability of most Caribbean and Pacific 

islands to tap power from an inter-continental transmission grid has meant that these islands 

have significantly larger capacity margins in order to meet a given reliability criterion. 

 

Frontier applications for developing countries are also very few. Meibodi (1998) employs 

both DEA and SFA to estimate technical efficiency in electricity generation. He uses Iranian 

data combined with data from World Bank. The conclusion reached is that a substantial 

proportion of the variation in efficiency within the electricity industry in developing countries 

is due to a factor related to the size of plant. Most of the highly efficient power plants are 

found to be relatively large. The results also indicate that increasing returns to scale prevail in 

the electricity generation of most developing countries. Whiteman (1995) uses DEA in an 

attempt to benchmark electricity systems of developing countries using the World Bank data 

used by Meibodi (1998), but his study is flawed in two important ways. First it makes use of 

only two inputs (labour and capital). Secondly, it uses four outputs. For a cross-section 

dataset, this meant that the final outcome was a large number of countries lying on the frontier 

(48 out of 85 countries). The present paper is an exercise to bridge this gap in empirical 

research on developing countries. 

 

3. Frontier Production Functions and Efficiency Measurement 

3.1. SFA Specification 

The Stochastic Frontier Methodology (SFA) uses statistical techniques to estimate a 

production function and to estimate efficiency relative to this frontier.  

 

A number of empirical studies have estimated stochastic frontiers and predicted firm-level 

efficiencies using these estimated functions. The predicted firm-level efficiencies are then 
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used in a two-stage regression (usually a Tobit regression) upon firm-specific variables (such 

as ownership characteristics, load factors, age of generating plants, type of fuel used, etc.) in 

an attempt to identify some reasons for the differences in predicted efficiencies between 

DMUs in the industry. The two-stage method has long been recognised as a useful exercise, 

but this procedure may be inconsistent in its assumptions regarding the independence of the 

inefficiency effects in the two estimation stages. The two-stage estimation procedure is 

unlikely to provide estimates that are as efficient as those that could be obtained using a 

single-stage estimation procedure (Coelli, 1996b). 

 

Stochastic frontier models in which the inefficiency effects (ui) are expressed as an explicit 

function of a vector of firm-specific variables and a random error were proposed by 

Kumbhakar, Ghosh and McGukin (1991) and Reifschneider and Stevenson (1991). The 

model presented in equation (1) is a modified Battese and Coelli (1995) model that we use in 

our analyses, which also allows for the use of panel data. The error term consists of the two 

terms (vi) and (ui), whereby the former accounts for the noise in the regression and is assumed 

to be normally distributed. The technical inefficiency term (ui) is usually modelled as a half-

normally distributed term. Equation (1) is a full-translog stochastic function and is self-

explanatory. 

 

ln(Yi) = β0 + β1ln(Li) + β2ln(Ki) + β3ln(Fi) + β4ln(Li)
2 + β5ln(Ki)

2 + β6ln(Fi)
2 + β7ln(Li)ln(Ki) 

+ β8ln(Li)ln(Fi) + β9ln(Ki)ln(Fi) + β10ln(L)(t) + β11ln(K)(t) + β12ln(F)(t) + β13(t) + 
β14(t)

2 + vi – ui, 
i = 1,2,…,N. 

(1) 

where  Yi = electricity generated (in GWh) by the ith plant. 

Li = Labour employed (total number of employees);  

Ki = installed generation capacity (MW); 

Fi = Fuel consumption; 

t = time; 

ln  refers to the natural logarithms; 

βI are unknown parameters to be estimated. 

vi are iid, and N(0,σv
2) random errors, and are assumed to be independently distributed 

of the 
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ui which are non-negative random variables associated with technical inefficiency, 

which are assumed to be independently distributed, such that the distribution of ui is obtained 

by truncation at zero of the normal distribution with mean mi and variance σu
2, where; 

mi = δ0 + δ1GWh-PCi + δ2NCUSi + δ3Ci + δ4Island + δ5Connect    (2) 

where, GWh-PCi = Per Capita Consumption of Electricity; 

NCUSi = Number of Customers Connected (a measure of size); 

Ci = Capacity Factor (a measure of capacity utilisation); 

Island = Dummy (Island=1, other=0); 

Connect = Dummy (Interconnected=1, not interconnected=0); 

δi are unknown (technical inefficiency) parameters to be estimated. 

 

In FRONTIER 4.1 (Coelli, 1996b) parameterisation is used whereby σv
2 and σu

2 are replaced 

with σ2 = σv
2 + σu

2 and γ = σu
2 /(σv

2 + σu
2). The gamma coefficient, therefore, will allow us 

to infer as to what proportion of the total error term is actually accounted for by technical 

inefficiency. 

 

The aim of estimating a stochastic frontier is to calculate the efficiency score of a given DMU 

relative to the frontier and is defined as: 

( )
( )X i0,UiY*

iE

X i,U iY*
iE

Scorei
=

=         (3)  

where Xi represents the set of inputs used, Yi
* is the production of the ith firm, which is equal 

to Yi when the dependent variable is in original units and will be equal to eY
i when the 

dependent variable is in logarithms. The values of Scorei will take the values of between zero 

and one. Scorei is calculated as e(-Ui) (Battese and Coelli, 1988). A given value of Scorei, say 

0.67, implies that the given firm can reduce the use of all inputs equi-proportionately by 33% 

maintaining output at a given level. 

 

3.2. Data Envelopment Analysis (DEA) 

 

Data envelopment analysis (DEA) is a non-parametric linear programming technique for 

measuring technical efficiency of a multiple-input-multiple-output DMU. In what follows, we 

present the methodology as described in Coelli (1996a). 
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The model is usually illustrated as follows. Assume that there is data on K inputs and M 

outputs on each N DMU. For the ith decision making unit (DMU) these are represented by the 

vectors xi and yi, respectively. The K x N input matrix, X, and the M x N output matrix, Y, 

represent the data of all N firms. The purpose of DEA is to construct a non-parametric 

envelopment frontier over the data points such that all the observed points lie on or below the 

production frontier. 

 

The input orientated DEA problem may be specified as: 

0.        λ          

0,X λθ    

0,Yλst   

θmin

x

y

i 

i

θ,λ

≥
≥−
≥+−

•

     (4) 

where θ is a scalar and λ is a N x 1 vector of constants. The value of θ obtained will be the 

efficiency score for the ith DMU. It reflects the amount by which the ith DMU can 

proportionally reduce inputs, without leaving the production possibility space. It will satisfy θ 

≤ 1, with a value of 1 indicating a point on the frontier and hence a technically efficient DMU. 

 

The constant returns to scale (CRS) assumption is only appropriate when all DMUs are 

operating at an optimal scale. However, the use of CRS models when not all DMUs are 

operating at optimal scale will result in measures of TE (technical efficiency) which are 

confounded by scale efficiencies (SE). The use of a variable returns to scale (VRS) 

specification will permit the calculation of TE devoid of these SE effects. The CRS linear 

programming problem can easily be modified to account for VRS by adding the convexity 

constraint 1=′λ1N  (where NI is an N x 1 vector of ones) to equation (4). For a detailed 

exposition see Coelli (1996a). 

 

Environmental Variables 

In electricity generation, load factor, age of plants and fuel type may be construed as 

environmental variables since the managers of the units may not have any influence on these 

factors. Similarly, a generator in an isolated island economy has no choice as to the scale of 

operation than those dictated by the restricted market size. In environmental variables 

efficiency measure the DMU is compared to a constructed frontier along which the values of 
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the environmental variables are equal to those of the units being analysed (Pollitt, 1995). In 

DEAP 2.1 environmental variables enter as either outputs or inputs depending on the 

orientation that is adopted. In an input-orientated DEA, the environmental variables will be 

introduced as ‘outputs’.  

 

3.3. Dynamic DEA and Malmquist Indices of Productivity Change 

Panel data allows total factor productivity change (TFP) indices to be calculated using DEA. 

These indices can be decomposed into two components: the technical efficiency change 

(which occurs when a DMU moves towards a given efficiency frontier) and technical change 

(which occurs due to a DMU moving towards a new technically efficient frontier which has 

shifted from a previously efficient frontier). Since productivity is now being measured across 

a large number of isoquants, each being efficient at some given point in time, the linear 

programs must be adjusted or modified in order to account for time. These DEA-like 

programs allow us to calculate the so-called Malmquist index of productivity change (Coelli, 

1996a). 

 

This idea is clearly exposed in Fare, Grosskopf, Lindgren and Roos (1989) specification of an 

output-based Malmquist productivity change, expressed as a geometric mean of two output-

based Malmquist indices, as given in equation (5). An input-orientated measure of the index 

can be similarly defined as pointed out by Grosskopf (1993), and is based on the same 

principle as the output-orientated formulation. 

 

( ) ( )
( )

( )
( )
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+

++
+

×++=++
   (5) 

 

This equation represents the productivity of the production point (xt+1, yt+1) relative to the 

production point (xt, yt). do represents the distance functions from the frontier. A value greater 

than unity will indicate positive TFP growth from period t to period t+1. The Malmquist 

equation (5) is composed of two productivity indices. One index uses period t technology 

(shown in the superscript of d) and the other uses the t+1 period technology. The subscript in 

m and d indicates that this is an output-based definition of the index.  
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The DEAP 2.1 program computes five measures: technical efficiency change relative to a 

CRS technology (EFFCH), technological change (frontier shifts) abbreviated as TECHCH, 

pure technical efficiency change relative to a VRS technology (PECH), scale efficiency 

change (SECH) and total factor productivity change (TFPCH).  

 

We implement DEA in two ways described in Table 1 below. In Model 1, the DEA scores are 

generated from a 1-output-3-inputs linear program. These scores are then used in a second-

stage (Tobit) regression whereby the regressors are per capita electricity consumption (GWh-

PC), number of customers (NCUS), capacity utilisation factor (C), and two dummy variables 

(ISLAND and CONNECT). In model 2, DEA is implemented using 5 environmental 

variables, which are the variables used in second-stage regression.  

 

Table 1: Inputs and Output (s) in DEA Models 
MODEL 1 MODEL 2 

Inputs Output (s) Inputs Output (s) 
Labour Units Generated (MWh) Labour Units Generated (MWh) 
Installed Capacity (MW)  Installed Capacity Environmental Variables 

Fuel  Fuel GWh-PC 
   NCUS 
   C 
   ISLAND 
   CONNECT 
GWh-PC: Per Capita Consumption of Electricity 
NCUS: Number of Customers Served by Utility 
C: Capacity Factor (capacity utilisation) 

ISLAND: Dummy (Island =1) 
CONNECT: Isolated=0, interconnected=1. 

 

4. Data 

 
Our dataset consists of a sample of 16 small islands’ generators and 121 US investor-owned 

utilities involved in electricity generation. Small islands generators are all monopolies and 

vertically-bundled, except Trinidad and Tobago which divested its generating activity (in 

1994) into a new privately owned company (PowerGen). US utilities involved purely in sale 

for resale (SFR) have been dropped out. Moreover, only steam generation is included in the 

sample to ensure comparability with the islands’ thermal electricity generating data. In fact, 

our efficiency analyses of electricity generation is restricted to fossil-fired thermal generation 

only, so as to ensure, as far as is possible, that the comparisons are being made for similar 

technologies. There may be variations among countries even in the menu of technological 

choices within the category of fossil-fired generation but it is the only sensible thing to do if 
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fuel inputs are to be measured in BTU. It is also assumed that all the US-based utilities are 

interconnected via a transmission grid, over which power can be exchanged. The data covers 

the period 1993-94 through 1999-2000 and was downloaded from FERC1 website. In Table 2, 

we present some descriptive statistics of the two groups of DMUs, islands and non-islands. A 

full list of the DMUs used in our analyses may be obtained from the author. 

 

Table 2: Descriptive Statistics 
 L K F Y NCUS 

Non-Islands      
N = 121      

Minimum 39 26.4 20001.39 1.373 6198 

Maximum 4456 415001.7 825840859 138609 4622570 

Mean 916.29 7402.6 88333200.5 20474.9 680431.4 

Std. Error 85.94 3420.9 11729564.8 2196.26 68608.02 

Std. Deviation 945.31 37629.6 129025212 24158.84 811781.1 

Islands      
N = 16      

Minimum 37 6.6 77797.55 10.16 1496 

Maximum 1408 2275 87217106.5 8958.21 460865 

Mean 354.10 456.3 17606398.9 1627.79 162603.3 

Std. Error 97.67 154.9 6431624.6 605.12 36059.29 

Std. Deviation 390.70 619.8 25726498.5 2420.47 144237.1 

 

5. Results and Analysis 

 

5.1: Preliminary Data Analysis: Partial Productivity Measures 

A brief overview of the 7-year panel indicates that overall labour productivity is much larger 

for non-islands than for islands. This can be indicative of the fact that there is a minimum 

threshold number of labour units required to run a generating utility, beyond which relative 

factor indivisibility of labour becomes less significant. This, therefore, implies that small 

islands may face a significant disadvantage in labour employment due to the overall small 

scale of operations. The trend (and difference) in net units of electricity generated per unit of 

labour in generation is depicted in Figure 1. 

 

Regarding the productivity of capital (installed capacity), the net generation per unit of 

installed capacity (MW) shows that islands fare less well relative to non-islands, but that the 

                                                 
1 The data are downloadable at http://rimsweb2.ferc.fed.us/form1viewer/, and all files are in relational database 
structure. Other data for the US utilities including Hawaii was extracted from UDI (1998). 
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gap between the two groups are not too significant. There is a wider variation in the capital 

productivity for non-islands. These trends are depicted in Figure 2. 

 

Figure 1: Labour Productivity in Generation 
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Figure 2: Generation Capacity Utilisation 
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5.2: Results from Stochastic Frontier Analyses 

In this section SFA results of the translog equation (1) is estimated. The three time (t) 

variables help to test whether there has been Hicks’ neutral technical change (HNTC) over the 

7-year time period. This would allow us to infer as to whether technical progress (if any) has 

favoured the use of any given input as opposed to any other input (For a brief explanation of 

HNTC see Appendix 2). The results are presented in Table 3, which also contains a summary 

of the likelihood tests at the end. 
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Three main results should be of interest here. Firstly, the best functional form for the industry 

is an HNTC translog function. Secondly, we identify significant technical inefficiencies in the 

industry. Almost all deviations from the frontier are explained by differences in technical 

inefficiency rather than noise. Such inefficiencies are explained by system size (NCUS) and 

capacity utilisation (C). Finally, we found that there are no apparent and significant 

differences between the production structure of islands and non-islands. Below we explain 

these results in more detail. 

 

5.3: Choosing a Preferred Functional Model Specification? 

Firstly, we test whether the Hicks’ neutral technical change (HNTC) is valid. This test 

involves imposing the restriction β10=β11=β12=0 on the translog model. The likelihood test 

ratio λ (given at the bottom of Table 3) is 5.45. The critical (5%) chi-square value (χ3
2) is 

equal to 7.81. The null hypothesis of neutral technical change cannot be rejected; hence we 

can conclude that HNTC functional form is a better specification for the SFA. 

 

Table 3: SFA and OLS Regression Results  
 TRANSLOG HNTC (Hicks’ Neutral) Cobb-Douglas OLS 

 Single-
Stage 

2-Stage Single-
Stage 

2-Stage Single-
Stage 

2-Stage  

Intercept (β0) -11.6796 
(1.1440)* 

-7.4146 
(2.2831)* 

-11.155 
(1.0318)* 

-6.7120 
(1.3811)* 

-3.3066 
(0.256)* 

-3.9153 
(0.4892)* 

-13.9683 
(1.9027)* 

β1 
0.9837 

(0.3257)* 
0.4495 

(0.5311) 
1.2062 

(0.2796)* 
0.3786 

(0.3983) 
0.0486 

(0.0271) 
0.1684 

(0.0446)* 
0.9256 

(0.4768) 

β2 
1.4734 

(0.2575)* 
1.5687 

(0.3651)* 
1.4736 

(0.2377)* 
1.9828 

(0.3039)* 
0.6400 

(0.0298 
0.4366 

(0.0472)* 
1.0629 

(0.3517)* 

β3 
0.6443 

(0.1335)* 
0.2529 

(0.2410) 
0.5539 

(0.1129)* 
0.0975 

(0.1777) 
0.4288 

(0.0178)* 
0.5019 

(0.0391)* 
0.9949 

(0.2236)* 

β4 
-0.0315 

(0.0216) 
0.0218 

(0.0369) 
-0.0332 

(0.0189) 
0.0132 

(0.0343) 
  -0.0270 

(0.0315) 

β5 
0.0497 

(0.0210)* 
0.0127 

(0.0184) 
0.0453 

(0.0172)* 
0.0126 

(0.0179) 
  -0.0082 

(0.0182) 

β6 
0.0437 

(0.00713)* 
0.0397 

(0.0103)* 
0.0460 

(0.0067)* 
0.0477 

(0.0099)* 
  0.0247 

(0.0099)* 

β7 
0.1184 

(0.0339)* 
0.0210 

(0.0467) 
0.1283 

(0.0280)* 
0.0360 

(0.0410) 
  0.1423 

(0.04293)* 

β8 
-0.0820 

(0.0275)* 
-0.0339 

(0.0426) 
-0.0939 

(0.0249)* 
-0.0282 

(0.0296) 
  -0.0857 

(0.0382)* 

β9 
-0.1449 

(0.0249)* 
-0.1010 

(0.0312)* 
-0.1440 

(0.0233)* 
-0.1311 

(0.0284)* 
  -0.0885 

(0.0287)* 

β10
 0.0151 

(0.0127) 
-0.0068 

(0.0164) 
    0.0022 

(0.0185) 

β11 
0.0053 

(0.0172) 
0.0237 

(0.0189) 
    0.0189 

(0.0214) 

β12 
-0.0186 

(0.0131) 
-0.0197 

(0.0148) 
    -0.0218 

0.0170 

β13
 0.1540 

(0.1541) 
0.1300 

(0.1737) 
-0.0350 

(0.0469) 
-0.0708 

(0.0596) 
  0.1424 

0.2024 

β14 0.0097 
(0.0055) 

0.0148 
(0.00758)** 

0.0097 
(0.0058) 

0.0144 
(0.0073)** 

  0.0157 
0.0088 

Intercept (δ0) -3.3122 
(0.7666)* 

   -1.1729 
0.6410 

  

δ1
 0.0002 

(0.0003) 
 -0.0004 

(0.0003) 
 -0.0011 

(0.0003)* 
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δ2 
0.0000 

(0.0000)* 
 0.0000 

(0.0000)* 
 0.0000 

(0.0000) 
  

δ3 
-0.3164 

(0.0448)* 
 -0.3356 

(0.0499)* 
 -0.4200 

(0.0253)* 
  

δ4 -8.0639 
(1.6824)* 

 -9.5219 
(-2.3612) 

 -10.798 
(2.2232)* 

  

δ5 -13.9128 
(2.1419)* 

 -15.145 
(-3.7639) 

 -10.867 
(2.0408)* 

  

σ2 9.9854 
(1.539)* 

2.4356 
(0.1377)* 

9.5128 
(2.0566)* 

3.0878 
(0.3245)* 

8.0713 
(1.1163)* 

2.3312 
(0.2361)* 

0.8828 

γ=σU
2/(σV

2+σU
2).  0.9835 

(0.0016)* 
0.7606 

(0.0178)* 
0.9810 

(0.0041)* 
0.8152 

(0.01303)* 
0.9747 

(0.0039)* 
0.7348 

(0.0338)* 
 

µ  -2.722 
(0.3981)* 

 -3.1731 
(1.0047)* 

 -2.6176 
(-0.4914) 

 

LLF -993.75 -1209.43 -996.48 -1213.14 -1060.22 -1242.03 -1293.41 

λ  431.35 5.45 438.79 128 496.56 594 

χ2 Critical Value (5%) 14.0671 7.8147 16.9190 21.0261 28.8693 14.0671 

Decision Accept 
translog 
model with TE 
terms 

Accept HNTC 
against translog 

Reject model in 
favour of 

HNTC with TE 
effects 

Reject model in 
favour of HNTC 

function 

Reject model in 
favour of TE 

effects 

Reject model 
in favour of 

translog 
function 

Likelihood Test Ratio Statistic (λ) = -2(LLF(Ho)-LLF(Ha)) 
Standard Errors in parentheses 
Translog OLS has restrictions such that γ=δ0=δ1=δ2=δ3=δ4=δ5=0; and 
Stochastic Cobb-Douglas, β4=β5=β6=β7=β8=β9=0 
* Significant at 1%, ** Significant at 5% 
 

The second likelihood ratio test that we carry out involves whether a Cobb-Douglas 

production function is preferred over the HNTC specification. This hypothesis involves a test 

of the restrictions that β4=β5=β6=β7=β8=β9=0. The value of the log-likelihood function fell 

substantially from –996 to –1060. This provides a likelihood ratio test statistic of 128, which 

exceeds the χ6
2 critical value of 12.59 by a large amount. Thus we confidently reject the 

Cobb-Douglas form in favour of the translog model. It therefore appears that the extra effort 

involved in estimating and analysing the translog (HNTC) form is warranted in this instance. 

 

5.4: Is there Technical Inefficiency in this Industry? 

The third test that we perform on the SFA results in Table 3 is to test the null hypothesis that 

there is no technical inefficiency in this industry. This is equivalent to imposing the 

restrictions that γ=δ0=δ1=δ2=δ3=δ4=δ5=0. The likelihood ratio statistic is calculated to be 594, 

which is larger than the critical χ7
2 value of 14.07. This allows us to retain a model that 

accounts for technical inefficiency. 

 

From our preferred model (Translog HNTC), we have a gamma-statistic (γ=σU
2/(σV

2+σU
2)) of 

98.1% for the single-stage stochastic model. This suggests two things; the first is that 98% of 

variations in the data between DMUs can be considered as due to inefficiency and the rest 2% 
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is pure ‘noise’. Second, all predicted technical inefficiency is fully accounted for by the TE 

variables (δi) used in the single-stage stochastic regression. This is an important deduction, 

indicating that there are identifiable efficiency differences between DMUs, and this will 

render an exercise into benchmarking very valuable. 

 

From the preferred single-stage HNTC model, we can also conclude that there are two 

significant factors influencing efficiency: NCUS (number of customers) and C (capacity 

utilisation). Although the two dummy variables (Island and Connect) are significant in the 

full-translog functional form, they are not significant in the HNTC specification.  

 

5.5: Summary of Input Elasticities 

SFA allows the calculation of input elasticities and helps make deductions on the production 

function. All elasticity estimates are calculated around the means of the two main groups: 

islands and non-islands2. The output elasticity of capital is equal to 0.067 for islands and 

0.083 for non-islands, and both these values are not statistically significant different between 

themselves and from zero. These elasticity values are not too different from those reported by 

Coelli (1996c). Positive but higher output elasticity with respect to installed capacity was also 

reported by Lovell and Schmidt (1980) and Kopp and Smith (1980). 

 

Labour elasticity has positive signs and are the largest reported elasticity values among the 

inputs. For the sample of islands, this elasticity is equal to 0.3698 and 0.1953 for non-islands. 

This result is very different to elasticity values reported by Lovell and Schmidt (1980), with 

very low labour elasticity. We observe that islands have significantly larger labour elasticity 

of output. This may be due to the relatively large amount of labour employed relative to 

capital (as illustrated in Figure 1 above).  

 

With regards to the elasticity of fuel inputs, we note a significant difference between islands 

and non-islands (–0.112 and  –0.563, respectively). This result is important in explaining that 

fuel input is not a significant binding constraint on production efficiency, compared to more 

important capital and labour inputs, which are actually combined with fuel to produce 

electricity. Ceteris paribus, adding more fuel to a fixed (and/or small) generating capacity, or 

alternatively, on larger generating systems which have much lower margins, does not 

                                                 
2 For a brief explanation of these elasticity concepts, see Appendix 3. 
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necessarily contribute positively to total (net) output. Coelli (1996c) reports fuel elasticity that 

is greater than the other input elasticities, and our present analysis yields significantly 

different results. 

 

Given that our results are unexpectedly different from other studies, we need a word of 

caution in interpreting the elasticity results for policy recommendations. Our elasticity results 

are derived from a translog production function, an over-specification of which (such as with 

interaction terms like cross-products, as in equation 1) can influence the predicted elasticity 

values. For instance, our Cobb-Douglas specification (in column 6 of Table 3) indicates that 

all input elasticities have positive values, with installed capacity and fuel having higher 

elasticities. But all the results do suggest that all the input elasticities have values that are less 

than unity. All the elasticity values have orders of magnitude that are not too different 

between the groups of islands and non-islands or between interconnected and isolated ones 

(not reported for reason of space). This consistency in elasticity magnitudes between the two 

groups of DMUs allows us to infer that production technologies are not too dissimilar 

between islands and non-islands and hence an exercise in benchmarking is valid from the 

perspective of comparing ‘like with like’. 

 

The elasticity of scale (κ) for islands is equal to 0.325, which indicates mildly decreasing 

returns to scale (low fuel elasticity driving these results). Non-islands, which are generally 

much larger than islands’ DMUs, operate at greater decreasing returns to scale with κ=-0.285. 

However, our Cobb-Douglas specification indicates that the elasticity of scale is greater than 

unity (=1.117) indicating mildly increasing returns. With regards to the rate of technical 

progress, the results show that the value was negative for the first 5 periods and became 

positive at 0.38 for the last year. This result is in contrast to the Malmquist DEA results (see 

section 5.7 below), which shows a general progress over the whole time period except in the 

3rd year. This is probably due to the functional form specification of the SFA analysis. 

(Comment 16: p.20 above 7.6: discussion on DRS and IRS not entirely clear). 

 

5.6: DEA and SFA Results on Differences in Efficiency Scores 

Results from DEA are in general agreement with our SFA results. Here we only explain any 

divergence in the two sets of results. Table 4 gives a summary of t-tests conducted on the 

efficiency scores derived from DEA and SFA between interconnected and isolated systems. 

Considering, first, the DEA technical efficiency, there is a difference between CRS TE and 
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VRS TE. It is observed that interconnected systems, generally, do have a much higher 

efficiency than isolated ones. Similar tests were conducted for the two groups, viz., islands 

and non-islands and these results are summarised in rows11 through 16 in Table 5. Non-

islands are able to better choose an optimal scale than islands, and hence have a better scale 

efficiency than the latter. This result agrees with our introduction relating to the lesser scope 

of islands to choose restructuring as a policy option in situations where scale economies are 

significant. 

 

However, it makes more sense to analyse the VRS TE scores in Table 5 (row 15, columns 3 

and 4) indicates islands to have higher TE score (of 0.35) compared to non-islands with an 

efficiency score of 0.23. Efficiency scores generated by SFA indicate no major difference 

from DEA scores. However, considering the other efficiency scores, there is evidence for 

non-islands to perform better than islands (probably because all the latter DMUs are also 

interconnected). This, obviously, does not suggest that interconnection is a necessity, but that 

the necessary adjustments need to be made if interconnected islands are to be compared to 

isolated ones. This should necessarily be cast as an ‘environmental’ variable in analyses of 

island economies benchmarking of electricity generators. 

 

5.7: Malmquist Efficiency Change 

For reasons of space, only the differences in efficiency change between islands and non-

islands are reported. Table 5 reports a set of one-tailed statistical tests on the efficiency 

measures and efficiency change measures of possible differences between islands and non-

islands. Similarly, tests of differences in means and in variances between interconnected and 

isolated systems carried out reveal no differences in results. 

 

Pure efficiency change (PECH), which is the change in VRS TE, differs between islands and 

non-islands in two out of 8 tests. This result is based on a year-to-year change in VRS TE. A 

composite measure of this change (PECHS) is based on a geometric mean of the PECH for 

the 7-year period and indicates that 5 out of 8 tests reveal a statistically significant difference 

between islands and non-islands. Non-islands have experienced an average improvement in 

PECHS of 3.69% while islands show no change in VRS TE over the period. The latter’s 

stagnation is mostly due to interconnected islands’ sluggish performance. We may tentatively 

suggest that after interconnection, the small islands may have lost their drive to achieve 

efficiency improvements as they could easily rely on an alternative power-generating source. 
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Table 4: Summary of Differences in Means of Efficiency Scores4 
  Interconnected Isolated 
CRS TE (DEA) Mean Score .0968 .0182 
 D.f. 125  
 t-statistic 7.8132  
 Significant  At 1%  
VRS TE (DEA) Mean Score .2295 .3585 
 D.f. 125  
 t-statistic -1.0687  
 Significant  No  
SE (DEA) Mean Score .6208 .1895 
 D.f. 22  
 t-statistic -7.8318  
 Significant  At 5%  
SFA scores Mean Score .6533 .41456 
 D.f. 14  
 t-statistic -3.8469  
 Significant  At 5%  
With regards to CRS TE change between the two groups, all tests reveal no difference 

between islands and non-islands. The composite measure EFFCHS also reveals no difference. 

An analysis of the change in scale efficiency shows that there is no difference between islands 

and non-islands. Differential efficiency change between islands and non-islands is not 

explained by scale efficiency change for the two groups. This conclusion is supported by 7 

out of 8 tests carried out. Nevertheless, the composite scale change (SECHS) for islands was 

2.48% per annum and .008% for non-islands. 

 

Technological change (TECHCH) which is represented by frontier shifts, based on a year-to-

year comparison has not favoured islands as opposed to non-islands. However, TECHCHS 

indicates that there is a difference between islands and non-islands. Islands experience a 

change of 5.5% per annum and non-islands’ technological change grew at 3.38% per annum. 

For the whole sample of countries, there was positive technological progress over the whole 

period except in the 3rd year. 

 

The overall measure of technical efficiency change that is reported is total factor productivity 

change (TFPCH). On a year-to-year basis, there does not seem to be any difference between 

islands and non-islands. However, the seven-year average does show that islands experienced 

a growth of 9.8% and it was 6.8% for non-islands. The difference is significant in 7 out 8 tests 

carried out. 

 

Table 5: Summary of Differences of Malmquist Efficiency 
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 Measure Mean 
Score 
Non-

Islands 

Mean 
Scores 

Islands 

Levene 
F 

T-test 
t 

Kruskal-
Wallis 

χ2 

Median 
Scores 

χ2 

Yates' 
Continuity 

χ2 

Jonckheeree 
-Terpstra 

JT 

Mann-
Whitney-
Wilcoxon 

Kolmogorov-
Smirnov 

Z 

1 EFFCH 1.0852 0.8975 0.41 
(.522) 

0.263 
(.793) 

0.754 
(.385) 

0.041 
(.889) 

0.009 
(.925) 

0.868 
(.385) 

-0.868 
(.385) 

1.065 
(.207) 

2 TECHCH 1.2474 1.1550 2.739 
(.098)** 

1.639 
(.102) 

1.508 
(.220) 

1.67 
(.196) 

1.401 
(.236) 

-1.228 
(.220) 

-1.228 
(.220) 

1.713 
(.006)* 

3 PECH 1.1261 0.9753 6.834 
(.009)* 

3.202 
(.001)* 

0.004 
(.949) 

0.628 
(.428) 

0.468 
(.494) 

-0.064 
(.949) 

-0.064 
(.949) 

2.014 
(.001)* 

4 SECH 0.9678 0.9245 0.199 
(.655) 

0.037 
(.813) 

0.546 
(.460) 

0.287 
(.592) 

0.183 
(.669) 

0.739 
(.460) 

-0.739 
(.460) 

1.669 
(.008)* 

5 TFPCH 1.3391 1.0239 1.899 
(.169) 

0.753 
(.452) 

2.638 
(.104) 

4.608 
(.032)* 

4.154 
(.042)* 

-1.1624 
(.104) 

-1.1624 
(.104) 

1.989 
(.001)* 

6 EFFCHS 1.0282 1.0241 0.219 
(.640) 

0.056 
(.955) 

0.095 
(.758) 

0.943 
(.332) 

0.497 
(.481) 

-0.308 
(.758) 

-0.308 
(.758) 

0.827 
(.501) 

7 TECHCHS 1.0270 1.0553 18.66 
(.000)* 

-0.404 
(.692) 

6.851 
(.009)* 

6.592 
(.010)* 

5.297 
(.021)* 

-2.617 
(.009)* 

-2.617 
(.009)* 

1.524 
(.019)* 

8 PECHS 1.0369 0.9991 14.047 
(.000)* 

3.364 
(.001)* 

1.806 
(.179) 

13.191 
(.000)* 

11.329 
(.001)* 

-1.344 
(.179) 

-1.344 
(.179) 

1.816 
(.003)* 

9 SECHS 0.9973 1.0249 0.094 
(.759) 

-1.494 
(.138) 

1.433 
(.231) 

1.16 
(.291) 

0.612 
(.434) 

1.197 
(.231) 

-1.197 
(.231) 

0.724 
(.671) 

10 TFPCHS 1.0562 1.0989 8.925 
(.003)* 

-0.396 
(.697) 

6.641 
(.010)* 

9.993 
(.002)* 

8.382 
(.004)* 

-2.577 
(.010)* 

-2.577 
(.010)* 

0.784 
(.003)* 

11 Translog 0.6919 0.4957 0.773 
(.381) 

3.298 
(.001)* 

10.275 
(.001)* 

7.07 
(.008)* 

5.726 
(.017)* 

-3.205 
(.001)* 

-3.205 
(.001)* 

1.919 
(.001)* 

12 HNTC 0.6533 0.4146 0.183 
(.669) 

4.095 
(.000)* 

13.771 
(.000)* 

10.18 
(.001)* 

8.554 
(.003)* 

-3.711 
(.000)* 

-3.711 
(.000)* 

2.038 
(.000)* 

13 Cobb-
Douglas 

0.7017 0.5348 0.453 
(.502) 

2.993 
(.003)* 

17.276 
(.000)* 

13.857 
(.000)* 

11.984 
(.001)* 

-4.156 
(.000)* 

-4.156 
(.000)* 

2.293 
(.000)* 

14 CRS TE 0.0986 0.0265 2.882 
(.092)** 

2.742 
(.007)* 

22.457 
(.000)* 

13.857 
(.000)* 

11.948 
(.001)* 

-4.739 
(.000)* 

-4.739 
(.000)* 

2.694 
(.000)* 

15 VRS TE 0.2253 0.3496 6.633 
(.011)* 

-1.453 
(.165) 

1.063 
(.303)* 

0.004 
(.951) 

0.042 
(.838) 

1.031 
(.303) 

-1.031 
(.303) 

1.06 
(.211) 

16 SE 0.6208 0.1895 9.526 
(.002)* 

9.24 
(.000)* 

23.216 
(.000)* 

18.098 
(.000)* 

15.91 
(.000)* 

-4.818 
(.000)* 

-4.818 
(.000)* 

2.59 
(.000)* 

These tests were carried out using SPSS 10.0 statistical package. 
EFFECH: Technical efficiency change relative to a CRS technology 
TECHCH: Technological change 
PECG: Pure technical efficiency change relative to a VRS technology 
SECH: Scale efficiency change 
TFPCH: Total factor productivity change 
* Significant at 5%, ** Significant at 10%, prob. values in parentheses. 

 

On the issue of relative isolation of islands, the analysis of efficiency change reveals a few 

interesting points. Interconnected islands (Jersey, Guernsey and Isle of Man) experienced 

technological change of about 7.47% over the seven-year period while isolated islands 

regressed by 2.2%. To some extent this is a coincidence with the period over which 

interconnection happened or when interconnection capacity improved. On the front of TFP 

change, interconnected islands show a 12.6% change while isolated ones show only 8.7%. 

SECH was much higher in interconnected islands (2.76%) than isolated ones (1.4%). And 



 19

finally, PECH regressed by 0.12% for interconnected islands and improved for isolated 

islands (1.4%). 

 

Interconnection caused technological change for small islands but these same islands failed to 

realise pure efficiency gains (reaching the frontier) as fast as isolated islands did. 

Nevertheless, TFP change favoured islands especially those that are interconnected. 

Interconnection improves the chance for better capacity utilisation and allows DMUs to 

choose more optimal generation capacity. 

 

5.8: Tobit Analysis of Efficiency Scores 

Tobit analyses are performed on efficiency scores as a second-stage regression of scores on 

the technical efficiency parameters. It is noted that this second-stage regression does yield 

some differences in the factors that explain efficiency differences between islands and non-

islands. The results are presented in Table 6. The only factor explaining efficiency 

differences, common to all methods, is capacity utilisation (C).  

 

Table 6: Tobit Analysis of Regression Results  
 CRSTE (DEA) VRSTE (DEA) SCALE (DEA) TRANSLOG HNTC 
α0 (intercept) 0.5137  

(.6917) 
.9793 
(.6875) 

1.9851 
(.7009)* 

1.9462 
(.6997)* 

1.7688 
(.6980)* 

α1 (GWh-PC) 0.3279 
(1.4755) 

5.269 
(.5338)* 

-6.1008 
(1.518)* 

-1.532 
(1.4737) 

-1.8647 
(1.4751) 

α2 (NCUS) -0.5578 
(1.244) 

.1306 
(.1184) 

0.8653 
(1.245) 

0.1404 
(1.2437) 

0.9014 
(1.2449) 

α3 (C) 1.4423 
(.4921)* 

-1.322 
(.48615)* 

3.2121 
(.5188)* 

3.3689 
(.5213)* 

3.2625 
(.5187)* 

α4 (island) -0.7432 
(.5979) 

.90266 
(1.524) 

-2.3167 
(.6125)* 

0.0453 
(.5961) 

-0.4148 
(.5966) 

α5 (connect) -0.1328 
(.6408) 

.20745 
(.6409) 

-0.6228 
(.6419) 

1.0663 
(.6439) 

0.7756 
(.6425) 

Sigma 10.084 
(.6145)* 

4.1902 
(.24815)* 

4.1016 
(.2489)* 

6.3828 
(.3856)* 

6.0306 
(.36432)* 

Loglik 242.1879 127.7881 123.0952 185.4437 177.6686 

* Significant at 5% 
 

VRS TE results indicate that average electricity consumption is a significant factor which 

affects scale efficiency in this industry. Considering scale efficiency parameters, islands tend 

to have lower efficiency scores than non-islands, which explain the negative sign of the island 

parameter in the Tobit analysis. This suggests that islands have scale inefficiency relative to 

non-islands. SFA results show that they are mostly influenced by capacity utilisation. The 

most sensible results are derived from the Tobit analysis of HNTC SFA scores, whereby 
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island parameter has the correct negative sign and interconnection dummy has the correct 

positive sign. However, both these parameters are not statistically significant, suggesting that 

in general, there does not tend to be significant differences between islands and non-islands 

and between interconnected islands as opposed to isolated ones. Such results, in fact, suggest 

that the benchmarking of small islands’ generators with non-islands’ generators is 

theoretically feasible and methodologically sound. 

 

5.9: Returns to Scale 

About 90% of non-island DMUs face increasing returns as shown in Table 7. Even 

interconnection does not necessarily overcome islands’ sub-optimal scale of operation. 

 

Table 7: Returns to Scale 
 Likely CRS Likely DRS Likely IRS Total 

Non-Island 3 (2.5)
[8390]

10 (8.3)
[16289]

108 (89.2) 
[5897] 

121 

Island 16 (100) 
[338] 

16 

Total 3 (2.2) 10 (7.2) 124 (90.5) 137 
Non-Interconnected 13 (100) 13

Interconnected 3 (2.4) 10 (8.1) 111 (89.5) 124 
Total 3 (2.2) 10 (7.2) 124 (90.5) 137

Percentage in parentheses3. Average installed capacity in square brackets. 
 

5.10: Correlation of Efficiency Scores 

The final set of results presented here is on the correlation of the efficiency scores between 

the two broad methodologies. Full translog, Hick’s neutral and Cobb-Douglas scores were 

obtained from stochastic estimation, while technical efficiency (TE) and scale efficiency 

scores (SE) were derived from DEA. 

 

Table 8: Correlation Table 
Pearson Correlation TRANSLOG Hicks-Neutral Cobb-Douglas TE (DEA) SE

TRANSLOG 1.000 .987* .950* .396* .464*
Hicks-Neutral .987* 1.000 .913* .438* .509*
Cobb-Douglas .950* .913* 1.000 .383* .515*

TE (DEA) .396* .438* .383* 1.000 .381*
SE .464* .509* .515* .381* 1.000

* Correlation is significant at the 0.01 level (1-tailed). 
 

It is clear from Table 8 that within-methodology scores have much higher regression 

coefficients than between-methodology scores. The correlation coefficients of scores between 

                                                 
3 The values in parentheses are the percentage of number of units in a given category to the sub-total in that 
category. 
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DEA and SFA are about 50% or less. This indicates that the two methodologies may yield 

different results. And a word of caution is important, in comparing efficiency across a sample 

of heterogeneous DMUs.  

 

6. Conclusions  

Before concluding this paper, two points need mentioning: 

1. There is one major problem faced by small and isolated island economies. While 

electric generating utilities in non-islands can relax the constraint of smallness by 

interconnection, isolated islands may not easily achieve this. Jersey, Guernsey and Isle 

of Man, in our sample have successfully interconnected to a mainland grid and import 

a considerable proportion of what they distribute. These 3 interconnected islands have 

a mean technical efficiency (VRS TE) score of 0.395 while isolated islands’ mean 

score is 0.356. The capacity utilisation factor for interconnected islands is 36.5% and 

it is 34.4% for isolated ones. The former islands can also better manage peaking 

demands more effectively and the 2.1% better capacity utilisation has allowed an 

efficiency gain of 3.65%.  

2. The mean efficiency scores for the non-islands are 0.6533 using SFA and 0.2254 

using (VRS) DEA. There are 3 islands whose technical efficiency scores exceed 

0.6533 (mean of non-islands): Grenada, Montserrat and St Lucia. The same 3 

countries are on the frontier using DEA. There are only 7 US DMUs on the DEA 

frontier. 

 

Our analyses of a panel data of 137 utilities over a 7-year period suggest that there are 

identifiable technical inefficiencies in electricity generation. This in turn opens up an 

important avenue for the implementation of incentive regulation. Both DEA and SFA-

generated technical efficiency scores show that capacity utilisation factor is unanimously the 

most important variable that explains efficiency differences between islands and non-islands.  

 

Considering the impact of isolation (versus interconnection), it is found that technical 

efficiency scores tend to be higher with interconnection. Interconnected islands have indicated 

higher technical and scale efficiency. There tends to be a general agreement between the 

various methodologies as to the impact of interconnection on efficiency. This does not imply 

that islands should necessarily have to interconnect, but that in a benchmarking exercise 
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involving both interconnected and isolated islands, this ‘environmental variable’ should 

effectively be accounted for, before a given DMU is subjected to a given regulatory regime. 

 

Dynamic DEA analyses indicate that pure technical efficiency change (technical efficiency 

change using a VRS technology) was significantly lower for islands (negative) and especially 

for the interconnected ones. This indicates that islands found it relatively harder to catch up to 

the efficient frontier. It also indicates that interconnection of a small island generating utility 

to an inter-continental grid may in the long run reduce the incentives on resource use and may 

lead to lower gains technical efficiency. This points to one important caution as to the benefits 

of interconnection: that while interconnection provides benefits in terms of improved 

efficiency they still need to use diligence in the use of their existing assets. Interconnection 

itself is a frontier shift for islands (and isolated systems) but there is no guarantee that they 

will thrive to reach the new frontier at all. 

 

Our final conclusion is that there is ample reason to believe that small islands can be 

effectively compared with non-islands. At this juncture it would be wise to suggest that 

contrary to the theoretical literature in yardstick regulation, which requires that DMUs should 

be benchmarked on a like-to-like basis, our analyses show that this condition may be by-

passed so long as all necessary differences between DMUs are fully accounted for. There is, 

thus, reason to believe that after adjusting for scale, capacity utilisation and interconnection, 

small island electricity generators could effectively be benchmarked against non-island 

electricity generators. These results would legitimise the recent European Union (EU) 

pressures for investments in interconnection capacity. Our analysis can be extended to 

empirically investigate EU’s claim that interconnection will ease the injection of competition 

and improve efficiency of ESIs.  
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APPENDIX 1: Sources of Data on Islands 
Country Source of Data 
Anguilla Carilec 
Antigua Carilec 
Barbados Carilec; BL&P Annual Reports and Accounts 
Belize Carilec 
Bermuda Carilec 
BVI Carilec 
Cayman Carilec 
Dominica Carilec, (DOMLEC) Annual Reports and Accounts 
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Martinique Carilec, Management Reports 
Guadeloupe Carilec, Management Reports 
Grenada Carilec, Management Reports, and (Grenlec) Annual Reports and Accounts 
Jamaica Carilec, Management Reports, (JPSCo) Annual Reports and Accounts and Statistical Review 
Montserrat Carilec, (MONLEC) Annual Reports and Accounts 
St_Lucia Carilec, (Lucelec) Management Reports and Annual Reports 
St_Vincent Carilec 
Trinidad Carilec, Financial Review and (T&TEC) Annual Reports and Accounts 
USVI Carilec 
Reunion EDF-Reunion, Resultats, Bulletin Annuel, Revue des Statistiques 
Jersey Management Reports, (JEC) Annual Reports and Accounts   
Guernsey Billets D'Etats, (GEC) Annual Reports and Accounts 
Mauritius (CEB) Annual Reports and Accounts 
Madagascar Annual Reports   
Gibraltar Personal Communication; Government of Gibraltar: Estimates 
Hawaii FERC, UDI 
Malta (ENEMALTA) Annual Reports and Accounts 
IOM Annual Reports and Accounts 
Cyprus EAC, Annual Reports and Accounts 

 

APPENDIX 2: Hicks’ Neutral Technical Change (HNTC) 
 
The rate of technical change is defined as: 
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For more details on Hick’s neutrality, see for example Chambers (1994). 
 

APPENDIX 3: Input Elasticities 
The estimation of translog production function may entail the use of a large number of inputs 

which can make it difficult to determine the production structure of the industry, and in 

appraising the economic plausibility of results. Estimating some more interpretable statistics, 

such as input elasticities and the rate of technical progress (for panel data) becomes handy. 

The elasticity of scale (κ) can be estimated from the sum of the marginal elasticities of output 

with regard to each input ηi, such that4 

                                                 
4 Based on a production function of the type: 
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κ is not only DMU-specific, but also varies over time unless the production function is 

homogenous of degree one. Equation (1a) follows from the definition of the elasticity of scale 

as a directional elasticity of the production function. We can also calculate the rate of 

technical progress (RTP) using the following formula: 
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Technical progress is neutral if δj = 0, j = 1,…,n, otherwise there is technical bias. 
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