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ABSTRACT

This dissertation is devoted to two eigenvalue counting problems: Determining

the asymptotic behavior of large eigenvalues of self-adjoint extensions of partial dif-

ferential operators, and computing the number of negative eigenvalues for bounded

from below operators with compact resolvents.

In the first part of this thesis we derive a Weyl-type asymptotic formula and a

bound for the eigenvalue counting function for the Krein–von Neumann extension of

differential operators on open bounded subsets of Rn.

In the second part of this thesis we obtain a formula relating the Maslov index,

a topological invariant counting the signed number of conjugate points of paths of

Lagrangian planes in H1/2(∂Ω) × H−1/2(∂Ω), and the Morse index, the number of

negative eigenvalues, for the second order differential operators with domains of def-

inition contained in H1(Ω) for open bounded subsets Ω ⊂ Rn.

v



Chapter 1

Introduction

This dissertation is devoted to two eigenvalue counting problems: Determining the

asymptotic behavior of large eigenvalues of self-adjoint extensions of partial differen-

tial operators, and computing the number of negative eigenvalues for operators with

compact resolvents bounded from below.

The first part of this thesis concerns Weyl-type asymptotic formulas and global

estimates for eigenvalue counting functions. More precisely, we derive a Weyl-type

asymptotic formula and a uniform bound for the eigenvalue counting function for

the Krein–von Neumann extension of higher-order elliptic differential operators on

arbitrary open bounded sets in Rn. It is worth noting that the Krein–von Neumann

extension is the smallest non-negative self-adjoint extension (in the sense of forms) of

a positive symmetric operator.

The main contribution of our work in this direction can be succinctly summarized

as follows: Given an arbitrary open bounded set Ω ⊂ Rn, we consider the Krein–von

Neumann, AK,Ω,2m(a, b, q), and Friedrichs, AF,Ω,2m(a, b, q), realizations of the differ-

ential expression

τ2m(a, b, q) :=

( n∑
j,k=1

(−i∂j − bj(x))aj,k(x)(−i∂k − bk(x)) + q(x)

)m
, m ∈ N, x ∈ Rn,
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where the coefficients (a− In), b, q are sufficiently smooth with compact support con-

taining Ω. Denoting the number of positive eigenvalues of AK,Ω,2m(a, b, q) not exceed-

ing λ by N(λ;AK,Ω,2m(a, b, q)), we derived in [8], [74], the following global bounds

N(λ;AK,Ω,2m(a, b, q)) ≤ Cvn(2π)−n
(

1 +
2m

2m+ n

)n/(2m)

λn/(2m), λ > 0,

N(λ;AF,Ω,2m(a, b, q)) ≤ Cvn(2π)−n
(

1 +
2m

n

)n/(2m)

λn/(2m), λ > 0,

where C = C(a, b, q,Ω) > 0 (with C(In, 0, 0,Ω) = |Ω|, the volume of Ω). Moreover,

we obtain the Weyl-type asymptotic formula,

N(λ;AK,Ω,2m(a, b, q)) =
λ→∞

vn
(2π)n

(∫
Ω

dnx (det a(x))−1/2

)
λn/(2m) + o

(
λn/(2m)

)
.

The second part of this dissertation addresses the evaluation of the Morse index via

the Maslov index. Motivated by applications in stability theory for traveling waves

and other patterns of multi-dimensional nonlinear partial differential equations, in

[98], [115], [116] we obtained relations between the Morse index, the counting of the

number of unstable eigenvalues, and the Maslov index, an invariant from symplectic

geometry. This was achieved by counting the signed number of conjugate points for

families of elliptic self-adjoint operators on Lipschitz domains obtained by lineariza-

tion of the PDE about a particular pattern of interest.

The Maslov index (cf., e.g., [5], [6], [83], [105], [124], [142], [143], [153], [155], [164])

has been proven to be instrumental in counting eigenvalues of differential operators

[50], [51], [52], [91], [92], [97], [98], [115], [116], [117]. Various classical results from

the spectral theory of ordinary and partial differential operators can be placed in the

framework of abstract theorems relating the eigenvalue counting function and the

Maslov index. Among such results are: the Sturm oscillation theorem for ordinary

2



differential operators, Arnold’s generalization of Sturm-type theorems for systems

of ordinary differential equations [6], Courant’s nodal domain theorem, the Morse

index formula derived by Smale [155], Friedlander’s index formula for Dirichlet and

Neumann Schrödinger operators on bounded domains [69], etc.

In this dissertation we obtain (cf. [98], [115], [116]) relations between the Morse

index of self-adjoint differential operators whose domains are contained in H1(Ω) and

the Maslov index of paths of Lagrangian planes in H1/2(∂Ω) × H−1/2(∂Ω) defined

by means of Dirichlet and Neumann traces of the weak solutions of the respective

eigenvalue problems. In addition, we show that the spectral flow of a one-parameter

family of such operators is equal to the Maslov index of a certain path of Lagrangian

planes.

We will now describe our main results relating the Maslov and Morse indices in

more detail. Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain, m ∈ N, and let the

functions

A : t 7→ At ∈ Cm×m, B : t 7→ Bt ∈ Cm, q : t 7→ qt ∈ R, t ∈ [α, β], (1.1)

satisfy the following assumptions:

A ∈ C([α, β], L∞(Ω,Cm×m)), At is a self-adjoint matrix for all t ∈ [α, β], (1.2)

B ∈ C([α, β], L∞(Ω,Cm)), q ∈ C([α, β], L∞(Ω,R)). (1.3)

Let us consider the family {Lt}βt=α of formally self-adjoint differential expressions,

Lt := −divAt∇+Bt∇−∇ ·Bt + qt, t ∈ [α, β]. (1.4)

The associated family of symmetric operators acting in L2(Ω) is given by

Ltu := Ltu, u ∈ dom(Lt) := C∞0 (Ω), t ∈ [α, β]. (1.5)
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Each operator Lt is closable in L2(Ω), its closure is denoted by Ltmin, t ∈ [α, β].

First, we establish a natural one-to-one correspondence between the self-adjoint

extensions of Ltmin and the Lagrangian planes in H1/2(∂Ω) × H−1/2(∂Ω). The La-

grangian plane GDt associated to a self-adjoint extension LtDt of Ltmin with the domain

Dt ⊂ H1(Ω) is given by the formula

GDt = trLt(Dt)
H1/2(∂Ω)×H−1/2(∂Ω)

, t ∈ [α, β], (1.6)

where trLt is a trace map defined below in (3.18) by means of the differential expression

Lt from (1.4). For example, the plane corresponding to the Dirichlet Laplacian is given

by {0} ×H−1/2(∂Ω), to the Neumann Laplacian is given by H1/2(∂Ω)× {0}, and to

the Robin Laplacian is given by

{(f,−Θf) : f ∈ H1/2(∂Ω)},Θ ∈ B∞
(
H1/2(∂Ω), H−1/2(∂Ω)

)
.

Second, we define the set of traces of the weak solutions of the corresponding

homogeneous PDE with no boundary conditions by the formula

Kλ,t := trLt
(
{u ∈ H1(Ω) : Ltu− λu = 0}

)
. (1.7)

We show that this plane is Lagrangian, and recast the eigenvalue problem

Ltu− λu = 0, u ∈ Dt, (1.8)

in terms of the intersection of the Lagrangian planes Kλ,t and GDt . Namely, we prove

that

dim ker(LDt − λ) = dim
(
Kλ,t ∩ GDt

)
, λ ∈ R, t ∈ [α, β]. (1.9)

Formula (1.9) provides a link between the eigenvalues of LtDt and the conjugate points

of the paths formed by the Lagrangian planes Kλ,t,Gt in H1/2(∂Ω)×H−1/2(∂Ω). With
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this at hand we show the principal result of our work, cf. Theorem 3.18,

Mor(LαDα)−Mor(LβDβ) = Mas
(
(K0,t,GDt)|t∈[α,β]

)
, (1.10)

where the Morse index Mor(LDα) is defined as the number of negative eigenvalues of

the operator LDα , and Mas
(
(K0,t,GDt)|t∈[α,β]

)
denotes the Maslov index of the paths

{Kt}βt=α, {GDt}
β
t=α defined in Section 2.1.

The left-hand side of (1.10) can be viewed as the spectral flow through zero of

the eigenvalues of the operator family {LDt}
β
t=α. A slight generalization of (1.10)

recovers the above mentioned relations between the Maslov index and the spectral

flow obtained in [29], [36] (in case of second order operators), and between the Maslov

index and the Morse index obtained in [50, 51, 57, 97, 98, 116].

In addition, we establish a connection of the Lagrangian description of the self-

adjoint extensions of symmetric operators as in [3, 29], and the theory of abstract

boundary triples as in [30, 31, 82, 108]. In this abstract setting, we show that the

resolvent convergence of the self-adjoint extensions of a given symmetric operator is

equivalent to convergence of the corresponding Lagrangian planes, cf. Theorem 3.35.

In the more concrete setting of PDE traces, we deduce the resolvent convergence of

perturbed Robin Laplacians from convergence of the associated Lagrangian planes

using a new for this topic tool provided by the Krein-type resolvent formula, cf.

Proposition 3.10. Furthermore, we obtain formulas relating the Morse and Maslov

indices in abstract settings, assuming the existence of a family of perturbations and

a family of boundary triples. We demonstrate how to apply these formulas for the

matrix one- and multidimensional Schrödinger operators.
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Chapter 2

A Bound for the Eigenvalue
Counting Function For Krein–von
Neumann and Friedrichs
Extensions

2.1 Introduction

We briefly recall some background material: Suppose S is a densely defined, symmet-

ric, closed operator with nonzero deficiency indices in a separable complex Hilbert

space H that satisfies

S ≥ εIH for some ε > 0. (2.1)

Then, according to M. Krein’s celebrated 1947 paper [112], among all nonnegative

self-adjoint extensions of S, there exist two distinguished ones, SF , the Friedrichs

extension of S, and SK , the Krein–von Neumann extension of S, which are, respec-

tively, the largest and smallest such extension (in the sense of quadratic forms). In

particular, a nonnegative self-adjoint operator S̃ in H is a self-adjoint extension of S

if and only if S̃ satisfies

SK ≤ S̃ ≤ SF (2.2)

(again, in the sense of quadratic forms).
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An abstract version of [86, Proposition 1], presented in [10], describing the fol-

lowing intimate connection between the nonzero eigenvalues of SK , and a suitable

abstract buckling problem, can be summarized as follows:

There exists 0 6= vλ ∈ dom(SK) satisfying SKvλ = λvλ, λ 6= 0, (2.3)

if and only if

there exists a 0 6= uλ ∈ dom(S∗S) such that S∗Suλ = λSuλ, (2.4)

and the solutions vλ of (2.3) are in one-to-one correspondence with the solutions uλ

of (2.4) given by the pair of formulas

uλ = (SF )−1SKvλ, vλ = λ−1Suλ. (2.5)

As briefly recalled in Section 2.2, (2.4) represents an abstract buckling problem. The

latter has been the key in all attempts to date in proving Weyl-type asymptotics for

eigenvalues of SK when S represents an elliptic partial differential operator in L2(Ω).

In fact, it is convenient to go one step further and replace the abstract buckling

eigenvalue problem (2.4) by the variational formulation,

there exists uλ ∈ dom(S)\{0} such that

a(w, uλ) = λ b(w, uλ) for all w ∈ dom(S),

(2.6)

where the symmetric forms a and b in H are defined by

a(f, g) := (Sf, Sg)H, f, g ∈ dom(a) := dom(S), (2.7)

b(f, g) := (f, Sg)H, f, g ∈ dom(b) := dom(S). (2.8)

In our present context, the role of the symmetric operator S will be played by the

closed, strictly positive operator in L2(Ω),

AΩ,2m(a, b, q)f = τ2m(a, b, q)f, f ∈ dom(AΩ,2m(a, b, q)) := W 2m,2
0 (Ω), (2.9)

7



where the differential expression τ2m(a, b, q) is of the type,

τ2m(a, b, q) :=

( n∑
j,k=1

(−i∂j − bj)aj,k(−i∂k − bk) + q

)m
, m ∈ N, (2.10)

under the assumption that ∅ 6= Ω ⊂ Rn is open and bounded and under suffi-

cient smoothness hypotheses on the coefficients a, b, q (cf. Hypothesis 2.11 (i)). The

Krein–von Neumann and Friedrichs extensions of AΩ,2m will then be denoted by

AK,Ω,2m(a, b, q) and AF,Ω,2m(a, b, q), respectively.

Since AK,Ω,2m(a, b, q) has purely discrete spectrum in (0,∞) bounded away from

zero by ε > 0, let {λK,Ω,j}j∈N ⊂ (0,∞) be the strictly positive eigenvalues of

AK,Ω,2m(a, b, q) enumerated in nondecreasing order, counting multiplicity, and let

N(λ;AK,Ω,2m(a, b, q)) := #{j ∈ N | 0 < λK,Ω,j < λ}, λ > 0, (2.11)

be the eigenvalue distribution function for AK,Ω,2m(a, b, q) (which takes into account

only strictly positive eigenvalues of AK,Ω,2m(a, b, q)); N( · ;AK,Ω,2m(a, b, q)) is the prin-

cipal object of this note. Similarly, N(λ;AF,Ω,2m(a, b, q)), λ > 0, denotes the eigen-

value counting function for AF,Ω,2m(a, b, q).

For convenience of the reader, we recall the basic abstract facts on the Friedrichs

extension, SF and the Krein–von Neumann extension SK of a strictly positive, closed,

symmetric operator S in a complex, separable Hilbert space H and describe the

intimate link between the Krein–von Neumann extension and the underlying ab-

stract buckling problem in Section 2.2. Section 2.3 focuses on basic domain and

spectral properties of the operators, Ã2m(a, b, q), AΩ,2m(a, b, q), AK,Ω,2m(a, b, q), and

AF,Ω,2m(a, b, q), m ∈ N, and their associated quadratic forms, on open, bounded sub-

sets Ω ⊂ Rn (without imposing any constraints on ∂Ω). In our principal Section 2.4
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we derive the bounds

N(λ;AK,Ω,2m(a, b, q)) ≤ vn
(2π)n

(
1 +

2m

2m+ n

)n/(2m)

sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω) λ
n/(2m),

λ > 0, (2.12)

and

N(λ;AF,Ω,2m(a, b, q)) ≤ vn
(2π)n

(
1 +

2m

n

)n/(2m)

sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω) λ
n/(2m),

λ > 0, (2.13)

where vn := πn/2/Γ((n + 2)/2) denotes the (Euclidean) volume of the unit ball in

Rn (Γ(·) being the Gamma function), and φ( · , · ) represent the suitably normalized

generalized eigenfunctions of Ã2(a, b, q) satisfying

Ã2(a, b, q)φ( · , ξ) = |ξ|2φ( · , ξ), ξ ∈ Rn, (2.14)

in the distributional sense (cf. Hypothesis 2.19). In particular, whenever the property

sup
(x,ξ)∈Ω×Rn

|φ(x, ξ)| <∞ (2.15)

has been established, then

sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω) ≤ |Ω| sup
(x,ξ)∈Ω×Rn

(
|φ(x, ξ)|2

)
, (2.16)

explicitly exhibits the volume dependence on Ω of the right-hand sides of (2.12) and

(2.13), respectively (see also Section 2.5).

Our method of employing the eigenfunction transform (i.e., the distorted Fourier

transform) associated with the variable coefficient operator Ã2m(a, b, q) (replacing the

standard Fourier transform in connection with the constant coefficient case in [74])

to derive the results (2.12) and (2.13) appears to be new under any assumptions on
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∂Ω. A comparison of (2.12), (2.13) with the existing literature on eigenvalue counting

function bounds will be provided in Remark 2.24.

We remark that the power law behavior λn/(2m) coincides with the one in the

known Weyl asymptotic behavior. This in itself is perhaps not surprising as it is a

priori known that

N(λ;AK,Ω,2m(a, b, q)) ≤ N(λ;AF,Ω,2m(a, b, q)), λ > 0, (2.17)

and N(λ;AF,Ω,2m(a, b, q)) is known to have the power law behavior λn/(2m) (cf. [114]

in the case a = In, b = q = 0, extending the corresponding result in [119] in the

case m = 1). We emphasize that (2.17) is not in conflict with variational eigenvalue

estimates since N(λ;AK,Ω,2m(a, b, q)) only counts the strictly positive eigenvalues of

AK,Ω,2m(a, b, q) less than λ > 0 and hence avoids taking into account the (generally,

infinite-dimensional) null space of AK,Ω,2m(a, b, q). Rather than relying on estimates

for N( · ;AF,Ω,2m(a, b, q)) (cf., e.g., [18]–[24], [72], [73], [89], [90], [114], [119], [120],

[128], [132], [146], [147], [149], [151], [168], typically for a = In, b = 0), we will use the

one-to-one correspondence of nonzero eigenvalues of AK,Ω,2m(a, b, q) with the eigen-

values of its underlying buckling problem (cf. (2.3)–(2.5)) and estimate the eigenvalue

counting function for the latter. Section 2.5 illustrates the purely absolutely contin-

uous spectrum and eigenfunction assumption we impose on Ã2m(a, b, q) in L2(Rn).

Finally, Appendix A derives a crucial minimization result needed in the derivation

of the bound (2.12), it also compares (2.12) with the abstract bound (2.17), given

(2.13), and points out that the bound (2.12) is always superior to the abstract one

guaranteed by combining (2.13) and (2.17).

In the special case a = In, b = q = 0, the bound (2.12) was derived in [74], while

10



the bound (2.13) is due to [114] in this case.

Since Weyl asymptotic for N( · ;AF,Ω,2m(a, b, q)) is not considered in this thesis

(with exception of Remark 2.25), we just refer to the monographs [118] and [152], and

to [129], [130], but note that very detailed bibliographies on this subject appeared in

[9] and [11]. At any rate, the best known result on Weyl asymptotics with remainder

estimate for N( · ;AK,Ω,2m(In, 0, q)) to date for bounded Lipschitz domains appears

to be [15] (the case of quasi-convex domains having been discussed earlier in [9]). In

contrast to Weyl asymptotics with remainder estimates, the estimates (2.12), (2.13)

assume no regularity of ∂Ω at all.

We conclude this introduction by summarizing the notation used in this chapter.

Throughout this chapter, the symbol H is reserved to denote a separable complex

Hilbert space with ( · , · )H the scalar product in H (linear in the second argument),

and IH the identity operator in H. Next, let T be a linear operator mapping (a

subspace of) a Banach space into another, with dom(T ) and ran(T ) denoting the

domain and range of T . The closure of a closable operator S is denoted by S. The

kernel (null space) of T is denoted by ker(T ). The spectrum, point spectrum (i.e.,

the set of eigenvalues), discrete spectrum, essential spectrum, and resolvent set of

a closed linear operator in H will be denoted by σ(·), σp(·), σd(·), σess(·), and ρ(·),

respectively. The symbol s-lim abbreviates the limit in the strong (i.e., pointwise)

operator topology (we also use this symbol to describe strong limits in H).

The Banach spaces of bounded and compact linear operators on H are denoted by

B(H) and B∞(H), respectively. Similarly, the Schatten–von Neumann (trace) ideals

will subsequently be denoted by Bp(H), p ∈ (0,∞). In addition, U1uU2 denotes the
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direct sum of the subspaces U1 and U2 of a Banach space X . Moreover, X1 ↪→ X2

denotes the continuous embedding of the Banach space X1 into the Banach space X2.

The symbol L2(Ω), with Ω ⊆ Rn open, n ∈ N, is a shorthand for L2(Ω, dnx), when-

ever the n-dimensional Lebesgue measure dnx is understood. For brevity, the identity

operator in L2(Ω) will typically be denoted by IΩ. The symbol D(Ω) is reserved for

the set of test functions C∞0 (Ω) on Ω, equipped with the standard inductive limit

topology, and D′(Ω) represents its dual space, the set of distributions in Ω. The dis-

tributional pairing, compatible with the L2-scalar product, ( · , · )L2(Ω), is abbreviated

by D′(Ω)〈 · , · 〉D(Ω). The (Euclidean) volume of Ω is denoted by |Ω|.

The cardinality of a set M is abbreviated by #M .

For each multi-index α = (α1, ..., αn) ∈ Nn
0 (abbreviating N0 := N∪{0}) we denote

by |α| := α1 + · · · + αn the length of α. In addition, we use the standard notations

∂j = (∂/∂xj), 1 ≤ j ≤ n, ∂α = ∂α1
x1
· · · ∂αnxn , ∇ = (∂x1 , . . . , ∂xn), and ∆ =

∑n
j=1 ∂

2
j .

2.2 Basic Facts on the Krein–von Neumann ex-

tension and the Associated Abstract Buckling

Problem

In this preparatory section we recall the basic facts on the Krein–von Neumann ex-

tension of a strictly positive operator S in a complex, separable Hilbert space H and

its associated abstract buckling problem as discussed in [9, 10]. For an extensive

survey of this circle of ideas and an exhaustive list of references as well as pertinent

historical comments we refer to [11].

To set the stage throughout this section, we denote by S a linear, densely defined,

symmetric (i.e., S ⊆ S∗), and closed operator in H. We recall that S is called

12



nonnegative provided (f, Sf)H ≥ 0 for all f ∈ dom(S). The operator S is called

strictly positive, if for some ε > 0 one has (f, Sf)H ≥ ε‖f‖2
H for all f ∈ dom(S); one

then writes S ≥ εIH. Next, we recall that two nonnegative, self-adjoint operators

A,B in H satisfy A ≤ B (in the sense of forms) if

dom
(
B1/2

)
⊂ dom

(
A1/2

)
(2.18)

and

(
A1/2f, A1/2f

)
H ≤

(
B1/2f,B1/2f

)
H, f ∈ dom

(
B1/2

)
. (2.19)

We also recall ([66, Section I.6], [103, Theorem VI.2.21]) that for A and B both

self-adjoint and nonnegative in H one has

0 ≤ A ≤ B if and only if (B + aIH)−1 ≤ (A+ aIH)−1 for all a > 0. (2.20)

Moreover, we note the useful fact that ker(A) = ker(A1/2).

The following is a fundamental result in M. Krein’s celebrated 1947 paper [112]

(cf. also Theorems 2 and 5–7 in the English summary on page 492):

Theorem 2.1. Assume that S is a densely defined, closed, nonnegative operator in H.

Then, among all nonnegative self-adjoint extensions of S, there exist two distinguished

ones, SK and SF , which are, respectively, the smallest and largest such extension (in

the sense of (2.18)–(2.19)). Furthermore, a nonnegative self-adjoint operator S̃ in H

is a self-adjoint extension of S if and only if S̃ satisfies

SK ≤ S̃ ≤ SF . (2.21)

In particular, the fact that (2.21) holds for all nonnegative self-adjoint extensions S̃

of S determines SK and SF uniquely. In addition, if S ≥ εIH for some ε > 0, one
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has SF ≥ εIH, and

dom(SF ) = dom(S)u (SF )−1 ker(S∗), (2.22)

dom(SK) = dom(S)u ker(S∗), (2.23)

dom(S∗) = dom(S)u (SF )−1 ker(S∗)u ker(S∗)

= dom(SF )u ker(S∗), (2.24)

and

ker(SK) = ker
(
(SK)1/2

)
= ker(S∗) = ran(S)⊥. (2.25)

One calls SK the Krein–von Neumann extension of S and SF the Friedrichs ex-

tension of S. We also recall that

SF = S∗|dom(S∗)∩dom((SF )1/2). (2.26)

Furthermore, if S ≥ εIH for some ε > 0, then (2.23) implies

ker(SK) = ker
(
(SK)1/2

)
= ker(S∗) = ran(S)⊥. (2.27)

For abstract results regarding the parametrization of all nonnegative self-adjoint

extensions of a given strictly positive, densely defined, symmetric operator we refer the

reader to Krein [112], Vǐsik [165], Birman [17], Grubb [84, 85], subsequent expositions

due to Alonso and Simon [3], Faris [66, Sect. 15], and [87, Sect. 13.2], [88], [154,

Ch. 13], and Derkach and Malamud [58], Malamud [122], see also [77, Theorem 9.2].

Let us collect a basic assumption which will be imposed in the rest of this section.

Hypothesis 2.2. Suppose S is a densely defined, symmetric, closed operator with

nonzero deficiency indices in H that satisfies S ≥ εIH for some ε > 0.
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For subsequent purposes we note that under Hypothesis 2.2, one has

dim
(

ker(S∗ − zIH)
)

= dim
(

ker(S∗)
)
, z ∈ C\[ε,∞). (2.28)

We recall that two self-adjoint extensions S1 and S2 of S are called relatively prime

(or disjoint) if dom(S1) ∩ dom(S2) = dom(S). The following result will play a role

later on (cf., e.g., [9, Lemma 2.8] for an elementary proof):

Lemma 2.3. Assume Hypothesis 2.2. Then the Friedrichs extension SF and the

Krein–von Neumann extension SK of S are relatively prime, that is,

dom(SF ) ∩ dom(SK) = dom(S). (2.29)

Next, we consider a self-adjoint operator T in H which is bounded from below,

that is, T ≥ αIH for some α ∈ R. We denote by {ET (λ)}λ∈R the family of strongly

right-continuous spectral projections of T , and introduce for −∞ ≤ a < b, as usual,

ET
(
(a, b)

)
= ET (b−)− ET (a) and ET (b−) = s-lim

ε↓0
ET (b− ε). (2.30)

In addition, we set

µT,j := inf
{
λ ∈ R

∣∣ dim(ran(ET ((−∞, λ)))) ≥ j
}
, j ∈ N. (2.31)

Then, for fixed k ∈ N, either:

(i) µT,k is the kth eigenvalue of T counting multiplicity below the bottom of the

essential spectrum, σess(T ), of T ,

or,

(ii) µT,k is the bottom of the essential spectrum of T ,

µT,k = inf
{
λ ∈ R

∣∣λ ∈ σess(T )
}
, (2.32)
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and in that case µT,k+` = µT,k, ` ∈ N, and there are at most k−1 eigenvalues (counting

multiplicity) of T below µT,k.

We now record a basic result of M. Krein [112] with an extension due to Alonso

and Simon [3] and some additional results recently derived in [10]. For this purpose

we introduce the reduced Krein–von Neumann operator ŜK in the Hilbert space

Ĥ :=
(

ker(S∗)
)⊥

=
(

ker(SK)
)⊥

(2.33)

by

ŜK := P(ker(SK))⊥SK |(ker(SK))⊥ , dom(ŜK) = domSK ∩ Ĥ, (2.34)

where P(ker(SK))⊥ denotes the orthogonal projection onto (ker(SK))⊥. One then ob-

tains (
ŜK
)−1

= P(ker(SK))⊥(SF )−1|(ker(SK))⊥ , (2.35)

a relation due to Krein [112, Theorem 26] (see also [122, Corollary 5]).

Theorem 2.4. Assume Hypothesis 2.2. Then

ε ≤ µSF ,j ≤ µŜK ,j, j ∈ N. (2.36)

In particular, if the Friedrichs extension SF of S has purely discrete spectrum, then,

except possibly for λ = 0, the Krein–von Neumann extension SK of S also has purely

discrete spectrum in (0,∞), that is,

σess(SF ) = ∅ implies σess(SK) ⊆ {0}. (2.37)

In addition, if p ∈ (0,∞], then (SF−z0IH)−1 ∈ Bp(H) for some z0 ∈ C\[ε,∞) implies

(SK − zIH)−1
∣∣
(ker(SK))⊥

∈ Bp
(
Ĥ
)

for all z ∈ C\[ε,∞). (2.38)
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In fact, the `p(N)-based trace ideal Bp(H)
(
resp., Bp

(
Ĥ
))

of B(H)
(
resp., B

(
Ĥ
))

can

be replaced by any two-sided symmetrically normed ideal of B(H)
(
resp., B

(
Ĥ
))

.

We note that (2.37) is a classical result of Krein [112]. Apparently, (2.36) in the

context of infinite deficiency indices was first proven by Alonso and Simon [3] by a

somewhat different method. The implication (2.38) was proved in [10].

Assuming that SF has purely discrete spectrum, let {λK,j}j∈N ⊂ (0,∞) be the

strictly positive eigenvalues of SK enumerated in nondecreasing order, counting mul-

tiplicity, and let

N(λ;SK) := #{j ∈ N | 0 < λK,j < λ}, λ > 0, (2.39)

be the eigenvalue distribution function for SK . Similarly, let {λF,j}j∈N ⊂ (0,∞)

denote the eigenvalues of SF , again enumerated in nondecreasing order, counting

multiplicity, and by

N(λ;SF ) := #{j ∈ N |λF,j < λ}, λ > 0, (2.40)

the corresponding eigenvalue counting function for SF . Then inequality (2.36) implies

N(λ;SK) ≤ N(λ;SF ), λ > 0. (2.41)

In particular, any upper estimate for the eigenvalue counting function for the Friedrichs

extension SF , in turn, yields one for the Krein–von Neumann extension SK (focusing

on strictly positive eigenvalues of SK according to (2.39)). While this is a viable

approach to estimate the eigenvalue counting function (2.39) for SK , we will proceed

along a different route in Section 2.3 and directly exploit the one-to-one corrspon-

dence between strictly positive eigenvalues of SK and the eigenvalues of its underlying

abstract buckling problem to be described next.
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To discuss the abstract buckling problem naturally associated with the Krein–von

Neumann extension as treated in [10], we start by introducing an abstract version of

[86, Proposition 1] (see [10] for a proof):

Lemma 2.5. Assume Hypothesis 2.2 and let λ ∈ C\{0}. Then there exists some

f ∈ dom(SK)\{0} with

SKf = λf, (2.42)

if and only if there exists w ∈ dom(S∗S)\{0} such that

S∗Sw = λSw. (2.43)

In fact, the solutions f of (2.42) are in one-to-one correspondence with the solutions

w of (2.43) in the precise sense that

w = (SF )−1SKf, (2.44)

f = λ−1Sw. (2.45)

Of course, since SK ≥ 0 is self-adjoint, any λ ∈ C\{0} in (2.42) and (2.43) neces-

sarily satisfies λ ∈ (0,∞).

It is the linear pencil eigenvalue problem S∗Sw = λSw in (2.43) that we call the

abstract buckling problem associated with the Krein–von Neumann extension SK of

S.

Next, we turn to a variational formulation of the correspondence between the in-

verse of the reduced Krein–von Neumann extension ŜK and the abstract buckling

problem in terms of appropriate sesquilinear forms by following [109]–[111] in the

elliptic PDE context. This will then lead to an even stronger connection between the
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Krein–von Neumann extension SK of S and the associated abstract buckling eigen-

value problem (2.43), culminating in the unitary equivalence result in Theorem 2.6

below.

Given the operator S, we introduce the following symmetric forms in H,

a(f, g) := (Sf, Sg)H, f, g ∈ dom(a) := dom(S), (2.46)

b(f, g) := (f, Sg)H, f, g ∈ dom(b) := dom(S). (2.47)

Then S being densely defined and closed implies that the sesquilinear form a shares

these properties, while S ≥ εIH from Hypothesis 2.2 implies that a is bounded from

below, specifically,

a(f, f) ≥ ε2‖f‖2
H, f ∈ dom(S). (2.48)

(Inequality (2.48) follows from the assumption S ≥ εIH by estimating (Sf, Sf)H =(
[(S − εIH) + εIH]f, [(S − εIH) + εIH]f

)
H from below.)

Thus, one can introduce the Hilbert space

W :=
(

dom(S), ( · , · )W
)
, (2.49)

with associated scalar product

(f, g)W := a(f, g) = (Sf, Sg)H, f, g ∈ dom(S). (2.50)

In addition, we note that ιW : W ↪→ H, the embedding operator of W into H, is

continuous due to S ≥ εIH. Hence, a more precise notation would be writing

(w1, w2)W = a(ιWw1, ιWw2) = (SιWw1, SιWw2)H, w1, w2 ∈ W , (2.51)

but in the interest of simplicity of notation we will omit the embedding operator ιW

in the following.
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With the sesquilinear forms a and b and the Hilbert space W as above, given

w2 ∈ W , the map W 3 w1 7→ (w1, Sw2)H ∈ C is continuous. This allows us to define

the operator Tw2 as the unique element in W with the property that

(w1, Tw2)W = (w1, Sw2)H for all w1 ∈ W . (2.52)

This implies

a(w1, Tw2) = (w1, Tw2)W = (w1, Sw2)H = b(w1, w2) (2.53)

for all w1, w2 ∈ W . In addition, the operator T satisfies

0 ≤ T = T ∗ ∈ B(W) and ‖T‖B(W) ≤ ε−1. (2.54)

We will call T the abstract buckling problem operator associated with the Krein–von

Neumann extension SK of S.

Next, recalling the notation Ĥ =
(

ker(S∗)
)⊥

(cf. (2.33)), we introduce the operator

Ŝ :W → Ĥ, w 7→ Sw. (2.55)

Clearly, ran
(
Ŝ
)

= ran(S) and since S ≥ εIH for some ε > 0 and S is closed in H,

ran(S) is also closed, and hence coincides with
(

ker(S∗)
)⊥

. This yields

ran
(
Ŝ
)

= ran(S) = Ĥ. (2.56)

In fact, it follows that Ŝ ∈ B(W , Ĥ) maps W unitarily onto Ĥ (cf. [10]).

Continuing, we briefly recall the polar decomposition of S,

S = US|S|, (2.57)

where, with ε > 0 as in Hypothesis 2.2,

|S| = (S∗S)1/2 ≥ εIH and US ∈ B
(
H, Ĥ

)
unitary. (2.58)

20



Then the principal unitary equivalence result proved in [10] reads as follows:

Theorem 2.6. Assume Hypothesis 2.2. Then the inverse of the reduced Krein–von

Neumann extension ŜK in Ĥ and the abstract buckling problem operator T in W are

unitarily equivalent. Specifically,

(
ŜK
)−1

= ŜT
(
Ŝ
)−1

. (2.59)

In particular, the nonzero eigenvalues of SK are reciprocals of the eigenvalues of T .

Moreover, one has (
ŜK
)−1

= US
[
|S|−1S|S|−1

]
(US)−1, (2.60)

where US ∈ B
(
H, Ĥ

)
is the unitary operator in the polar decomposition (2.57) of S

and the operator |S|−1S|S|−1 ∈ B(H) is self-adjoint and strictly positive in H.

We emphasize that the unitary equivalence in (2.59) is independent of any spectral

assumptions on SK (such as the spectrum of SK consists of eigenvalues only) and

applies to the restrictions of SK to its pure point, absolutely continuous, and singularly

continuous spectral subspaces, respectively.

Equation (2.60) is motivated by rewriting the abstract linear pencil buckling eigen-

value problem (2.43), S∗Sw = λSw, λ ∈ C\{0}, in the form

|S|−1Sw = (S∗S)−1/2Sw = λ−1(S∗S)1/2w = λ−1|S|w (2.61)

and hence in the form of a standard eigenvalue problem

|S|−1S|S|−1v = λ−1v, λ ∈ C\{0}, v := |S|w. (2.62)

Again, self-adjointness and strict positivity of |S|−1S|S|−1 imply λ ∈ (0,∞).

We continue this section with an elementary result (recently noted in [74]) that

relates the nonzero eigenvalues of SK directly with the sesquilinear forms a and b:
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Lemma 2.7. Assume Hypothesis 2.2 and introduce

σp(a, b) :=
{
λ ∈ C

∣∣ there exists gλ ∈ dom(S)\{0}

such that a(f, gλ) = λ b(f, gλ), f ∈ dom(S)
}
. (2.63)

Then

σp(a, b) = σp(SK)\{0} (2.64)

(counting multiplicity ), in particular, σp(a, b) ⊂ (0,∞), and gλ ∈ dom(S)\{0} in

(2.63) actually satisfies

gλ ∈ dom(S∗S), S∗Sgλ = λSgλ. (2.65)

In addition,

λ ∈ σp(a, b) if and only if λ−1 ∈ σp(T ) (2.66)

(counting multiplicity ). Finally,

T ∈ B∞(W) ⇐⇒
(
ŜK
)−1 ∈ B∞

(
Ĥ
)
⇐⇒ σess(SK) ⊆ {0}, (2.67)

and hence,

σp(a, b) = σ(SK)\{0} = σd(SK)\{0} (2.68)

if (2.67) holds. In particular, if one of SF or |S| has purely discrete spectrum (i.e.,

σess(SF ) = ∅ or σess(|S|) = ∅), then (2.67) and (2.68) hold.

One notices that f ∈ dom(S) in the definition (2.63) of σp(a, b) can be replaced

by f ∈ C(S) for any (operator) core C(S) for S (equivalently, by any form core for

the form a).

We conclude this section with three auxiliary facts to be used in the proof of

Theorem 2.21 and start by recalling an elementary result noted in [74]:
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Lemma 2.8. Suppose that S is a densely defined, symmetric, closed operator in H.

Then |S| and hence S is infinitesimally bounded with respect to S∗S, more precisely,

one has

for all ε > 0, ‖Sf‖B(H) = ‖|S|f‖B(H) ≤ ε‖S∗Sf‖2
H + (4ε)−1‖f‖2

H,

f ∈ dom(S∗S).

(2.69)

In addition, S is relatively compact with respect to S∗S if |S|, or equivalently, S∗S,

has compact resolvent. In particular,

σess(S
∗S − λS) = σess(S

∗S), λ ∈ R. (2.70)

Given a lower-semibounded, self-adjoint operator T ≥ cT IH in H, we denote by

qT its uniquely associated form, that is,

qT (f, g) =
(
|T |1/2f, sgn(T )|T |1/2g

)
H, f, g ∈ dom(q) = dom

(
|T |1/2

)
, (2.71)

and by {ET (λ)}λ∈R the family of spectral projections of T . We recall the following

well-known variational characterization of dimensions of spectral projections ET ([cT , µ)),

µ > cT .

Lemma 2.9. Assume that cT IH ≤ T is self-adjoint in H and µ > cT . Suppose that

F ⊂ dom
(
|T |1/2

)
is a linear subspace such that

qT (f, f) < µ‖f‖2
H, f ∈ F\{0}. (2.72)

Then,

dim
(

ran(ET ([cT , µ)))
)

= sup
F⊂dom(|T |1/2)

(dim (F)). (2.73)

We add the following elementary observation: Let c ∈ R and B ≥ cIH be a self-

adjoint operator in H, and introduce the sesquilinear form b in H associated with B
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via

b(u, v) =
(
(B − cIH)1/2u, (B − cIH)1/2v

)
H + c(u, v)H,

u, v ∈ dom(b) = dom
(
|B|1/2

)
.

(2.74)

Given B and b, one introduces the Hilbert space Hb ⊆ H by

Hb =
(

dom
(
|B|1/2

)
, ( · , · )Hb

)
,

(u, v)Hb = b(u, v) + (1− c)(u, v)H (2.75)

=
(
(B − cIH)1/2u, (B − cIH)1/2v

)
H + (u, v)H

=
(
(B + (1− c)IH)1/2u, (B + (1− c)IH)1/2v

)
H.

One observes that

(B + (1− c)IH)1/2 : Hb → H is unitary. (2.76)

Finally, we recall the following fact (cf., e.g., [76]).

Lemma 2.10. Let H, B, b, and Hb be as in (2.74)–(2.76). Then B has purely discrete

spectrum, that is, σess(B) = ∅, if and only if Hb embeds compactly into H.

2.3 Preliminaries on a Class of Partial Differential

Operators

In this section we set the stage for our principal results in Section 2.4 and intro-

duce the class of even-order partial differential operators Ã2m(a, b, q) in L2(Rn) as

well as AΩ,2m(a, b, q) in L2(Ω) (see (2.82) for the underlying differential expressions),

with ∅ 6= Ω ⊂ Rn open and bounded (but otherwise arbitrary). In particular, we

provide a detailed study of their domains and quadratic form domains, including

spectral properties such as strict boundedness from below for the Friedrichs exten-

sion AF,Ω,2m(a, b, q) of AΩ,2m(a, b, q) in L2(Ω), employing a diamagnetic inequality.
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Hypothesis 2.11. (i) Let m ∈ N. Assume that

b = (b1, b2, . . . , bn) ∈
[
W (2m−1),∞(Rn)

]n
, bj real-valued, 1 ≤ j ≤ n, (2.77)

0 ≤ q ∈ W (2m−2),∞(Rn). (2.78)

Suppose a := {aj,k}1≤j,k≤n is a real symmetric matrix satisfying

aj,k ∈ C(2m−1)
(
Rn
)
∩ L∞(Rn), 1 ≤ j, k ≤ n, (2.79)

and with the property that there exists εa > 0 such that

n∑
j,k=1

aj,k(x)yjyk ≥ εa|y|2 for all x ∈ Rn, y = (y1, . . . , yn) ∈ Rn. (2.80)

(ii) Let ∅ 6= Ω ⊂ Rn be open and bounded. In addition, assume that the n×n matrix-

valued function a equals the identity In outside a ball Bn(0;R0) containing Ω, that is,

there exists R0 > 0 such that

a(x) = In whenever |x| ≥ R0, and Ω ⊂ Bn(0;R0). (2.81)

For simplicity we introduced the ballBn(0;R0) containing Ω in Hypothesis 2.11 (ii),

but for any fixed ε > 0, one can of course replace Bn(0;R0) by an open ε-neighborhood

Ωε of Ω.

We will consider various closed (and self-adjoint) L2-realizations of the differential

expression

τ2m(a, b, q) :=

( n∑
j,k=1

(−i∂j − bj(x))aj,k(x)(−i∂k − bk(x)) + q(x)

)m
,

m ∈ N, x ∈ Rn.

(2.82)

We note that Hypothesis 2.11 (i) was of course chosen with τ2m(a, b, q) in mind.

In some instances we only consider the special case m = 1, that is, τ2(a, b, q), and
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then choosing the most general case m = 1 in Hypothesis 2.11 (i) will of course be

sufficient. We will tacitly assume such a relaxation of hypotheses on the coefficients

a, b, q without necessarily dwelling on this explicitly in every such instance.

In the following we find it convenient using auxiliary operators corresponding to

the leading and the lower-order terms of the differential expression (2.82). To this

end we first introduce the differential expression τ2m(a) = τ2m(a, 0, 0),

τ2m(a) :=

(
−

n∑
j,k=1

∂jaj,k(x)∂k

)m
, m ∈ N, x ∈ Rn, (2.83)

and the associated linear operator T̃2m(a) in L2(Rn) given by

T̃2m(a)u := τ2m(a)u, u ∈ dom
(
T̃2m(a)

)
:= W 2m,2(Rn). (2.84)

Second, we observe that due to boundedness of the coefficients a, b, q (cf. (2.77)) and

sufficiently many of their derivatives, one has

τ2m(a, b, q)u = τ2m(a)u+
∑

0≤|α|≤2m−1

gα(a, b, q, x)∂αu,

τ2m(a, b, q)u ∈ L2(Rn), u ∈ W 2m,2(Rn),

(2.85)

for some gα(a, b, q, · ) ∈ L∞(Rn), 0 ≤ |α| ≤ 2m−1. The sum of the lower-order terms

in (2.85) gives rise to a linear operator S̃2m−1(a, b, q) in L2(Rn),

S̃2m−1(a, b, q)u :=
∑

0≤|α|≤2m−1

gα(a, b, q, x)∂αu,

u ∈ dom
(
S̃2m−1(a, b, q)

)
:= W 2m,2(Rn).

(2.86)

Next, we introduce the operator Ã2m(a, b, q) in L2(Rn) by

Ã2m(a, b, q)u := τ2m(a, b, q)u, u ∈ dom
(
Ã2m(a, b, q)

)
:= W 2m,2(Rn), (2.87)

and its restriction Ã0,2m(a, b, q) to C∞0 (Rn) in L2(Rn) via

Ã0,2m(a, b, q)u := τ2m(a, b, q)u, u ∈ dom
(
Ã0,2m(a, b, q)

)
:= C∞0 (Rn). (2.88)
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Making use of standard perturbation results, it is convenient to view the oper-

ator Ã2m(a, b, q) as perturbation of T̃2m(a) by S̃2m−1(a, b, q) and state the following

auxiliary fact.

Theorem 2.12. Assume Hypothesis 2.11 (i). Then Ã0,2m(a, b, q) is essentially self-

adjoint in L2(Rn), its closure equals Ã2m(a, b, q), and hence,

Ã2m(a, b, q) ≥ 0. (2.89)

In addition, the graph norm of Ã2m(a, b, q) is equivalent to the norm of the Sobolev

space W 2m,2(Rn), that is, there exist finite constants 0 < c < C, depending only on

a, b, q,m, n, such that

c‖u‖2
W 2m,2(Rn) ≤

∥∥Ã2m(a, b, q)u
∥∥2

L2(Rn)
+ ‖u‖2

L2(Rn) ≤ C‖u‖2
W 2m,2(Rn),

u ∈ W 2m,2(Rn).

(2.90)

Proof. We introduce the minimal operator T̃0,2m(a) in L2(Rn) by

T̃0,2m(a)u := τ2m(a)u, u ∈ dom(T̃0,2m(a)) := C∞0 (Rn), (2.91)

and will show that it is essentially self-adjoint and that T̃2m(a) =
(
T̃0,2m(a)

)∗
; the op-

erator Ã2m(a, b, q) will then be considered as an infinitesimally bounded perturbation

of T̃2m(a).

Let u ∈ L2(Rn) ∩ W 2m,2
loc (Rn) and τ2m(a)u ∈ L2(Rn), then for arbitrary v ∈

dom
(
T̃0,2m(a)

)
= C∞0 (Rn) one has(

u, T̃0,2m(a)v
)
L2(Rn)

= (u, τ2m(a)v)L2(Rn)

= D′(Rn)〈τ2m(a)u, v〉D(Rn) = (τ2m(a)u, v)L2(Rn),

(2.92)

hence u ∈ dom
((
T̃0,2m(a)

)∗)
and

(
T̃0,2m(a)

)∗
u = τ2m(a)u, implying

{
u ∈ L2(Rn)

∣∣u ∈ W 2m,2
loc (Rn), τ2m(a)u ∈ L2(Rn)

}
⊆ dom

((
T̃0,2m(a)

)∗)
. (2.93)
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Using the interior regularity for elliptic differential operators, one obtains the con-

verse inclusion: Indeed, if u ∈ dom
((
T̃0,2m(a)

)∗)
, then u ∈ L2(Rn) ⊂ D′(Rn) and

for some v ∈ L2(Rn) one has τ2m(a)u = v, implying u ∈ W 2m,2
loc (Rn) (see, e.g., [137,

Theorem 1.3], see also [162]).

Our next objective is to show that dom
((
T̃0,2m(a)

)∗)
= W 2m,2(Rn). Let ϕR0 ∈

C∞0 (Rn) and ϕR0(x) = 1, x ∈ Bn(0;R0), cf. (2.81). Since uϕR0 ∈ W 2m,2(Rn) for

any u ∈ dom
((
T̃0,2m(a)

)∗)
, in order to prove that dom

((
T̃0,2m(a)

)∗) ⊆ W 2m,2(Rn)

it suffices to obtain the inclusion u(1 − ϕR0) ∈ W 2m,2(Rn). This, in turn, will be

guaranteed once we prove the following fact,

dom
((
T̃0,2m(a)

)∗
(1− ϕR0)

)
= dom

(
Hm

0 (1− ϕR0)
)
. (2.94)

Here the self-adjoint operator H0 in L2(Rn) is defined by

H0u = (−∆)u, u ∈ dom(H0) = W 2,2(Rn), (2.95)

and hence

Hα
0 u = (−∆)αu, u ∈ dom

(
Hα

0

)
= W 2α,2(Rn), α ∈ (0,∞). (2.96)

For u ∈ dom(Hm
0 (1−ϕR0)), the expression

(
T̃0,2m(a)

)∗
(1−ϕR0)u−Hm

0 (1−ϕR0)u

does not contain derivatives of u of order higher than 2m−1, therefore, for any ε > 0

there exists some finite k(ε) > 0 such that∥∥(T̃0,2m(a)
)∗

(1− ϕR0)u−Hm
0 (1− ϕR0)u

∥∥2

L2(Rn)

≤ ε
∥∥Hm

0 (1− ϕR0)u
∥∥2

L2(Rn)
+ k(ε)‖u‖2

L2(Rn), u ∈ dom
(
Hm

0 (1− ϕR0)
)
.

(2.97)

Combining (2.97) and [103, Theorem IV 1.1] one obtains equality of the domains in

(2.94), and hence also dom((T̃0,2m(a))∗) ⊆ W 2m,2(Rn). The opposite inclusion is clear

from (2.93).

28



Next we will show that

(T̃0,2m(a))∗u = τ2m(a)u, u ∈ dom
(
(T̃0,2m(a))∗

)
= W 2m,2(Rn). (2.98)

To this end, fix v ∈ dom
(
T̃0,2m(a)

)
= C∞0 (Rn) and an arbitrary u ∈ W 2m,2(Rn).

Then using the membership τ2m(a)u ∈ L2(Rn), one obtains(
u, T̃0,2m(a)v

)
L2(Rn)

= (u, τ2m(a)v)L2(Rn)

= D′(Rn)〈τ2m(a)u, v〉D(Rn) = (τ2m(a)u, v)L2(Rn),

(2.99)

and hence
(
T̃0,2m(a)

)∗
u = τ2m(a)u. The arbitrariness of u implies that (T̃0,2m(a))∗ is

symmetric. Therefore T̃0,2m(a) is essentially self-adjoint and thus T̃2m(a) =
(
T̃0,2m(a)

)∗
is self-adjoint.

The proof thus far showed an important fact: The graph norms of the operators

T̃2m(a) and Hm
0 , both defined on W 2m,2(Rn), are equivalent, that is, there exist finite

constants 0 < c1 < C1, depending only on the coefficients a, b, q,m, n, such that

c1

[∥∥Hm
0 u
∥∥2

L2(Rn)
+ ‖u‖2

L2(Rn)

]
≤
∥∥T̃2m(a)u

∥∥2

L2(Rn)
+ ‖u‖2

L2(Rn)

≤ C1

[∥∥Hm
0 u
∥∥2

L2(Rn)
+ ‖u‖2

L2(Rn)

]
, u ∈ W 2m,2(Rn).

(2.100)

In particular, the graph norm of T̃2m(a) is equivalent to the norm of W 2m,2(Rn).

Finally we show that
(
Ã0,m(a, b, q)

)∗
is symmetric, actually, self-adjoint, prov-

ing that Ã0,m(a, b, q) is essentially self-adjoint. To this end, we recall the operator

S̃2m−1(a, b, q) in (2.86), corresponding to lower-order terms in the differential expres-

sion τ2m(a, b, q). Since S̃2m−1(a, b, q) has bounded coefficients and its order is at most

2m− 1, it is infinitesimally bounded with respect to the polyharmonic operator Hm
0 .

Thus, for any ε > 0 there exists some finite k(ε) > 0 such that

∥∥S̃2m−1(a, b, q)u
∥∥2

L2(Rn)
≤ ε‖Hm

0 u‖2
L2(Rn) + k(ε)‖u‖2

L2(Rn), u ∈ W 2m,2(Rn). (2.101)
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Combining this inequality with the equivalence of the graph norms of T̃2m(a) and

Hm
0 , one concludes that S̃2m−1(a, b, q) is infinitesimally bounded with respect to

T̃2m(a). Hence, Ã0,2m(a, b, q) = T̃0,2m(a) + S̃2m−1(a, b, q) is essentially self-adjoint,

and dom((A0,m(a, b, q))∗) = dom
(
T̃2m(a)

)
= W 2m,2(Rn). The fact (2.90) follows from

[61, Proposition 7.2] and the fact that Ã2m(a, b, q) and Hm
0 have the common domain

W 2m,2(Rn) and both are closed (in fact, self-adjoint).

Lemma 2.13. Assume Hypothesis 2.11 (i). Then for all α ∈ (0, 1],

dom
((
Ã2m(a, b, q))α

)
= W 2mα,2(Rn), (2.102)

and there exist finite constants 0 < c < C depending only on a, b, q,m, n, such that

c‖u‖2
Wm,2(Rn) ≤

∥∥Ã2m(a, b, q)1/2u
∥∥2

L2(Rn)
+ ‖u‖2

L2(Rn) ≤ C‖u‖2
Wm,2(Rn),

u ∈ Wm,2(Rn),

(2.103)

and hence,

c‖u‖2
Wm,2(Rn) ≤

(
u, Ã2m(a, b, q)u

)
L2(Rn)

+ ‖u‖2
L2(Rn) ≤ C‖u‖2

Wm,2(Rn),

u ∈ W 2m,2(Rn).

(2.104)

Proof. We start with a well-known interpolation argument: Let S and T be closed

operators in H satisfying dom(S) ⊇ dom(T ). Then S is relatively bounded with

respect to T (cf., e.g., [61, Proposition III.7.2], [103, Remark IV.1.5]) and hence there

exist finite constants a > 0 and b > 0 such that

‖|S|f‖2
H = ‖Sf‖2

H ≤ a2‖Tf‖2
H + b2‖f‖2

H = a2‖|T |f‖2
H + b2‖f‖2

H

=
∥∥[a2|T |2 + b2IH

]1/2
f
∥∥2

H, f ∈ dom(T ) = dom(|T |). (2.105)

Thus, applying the Loewner–Heinz inequality (cf., e.g., [100], [113, Theorem IV.1.11]),

one infers that (see also [75])

dom
(
|S|α

)
⊇ dom

((
a2|T |2 + b2IH

)α/2)
= dom

(
|T |α

)
, α ∈ (0, 1]. (2.106)
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In particular, if dom(S) = dom(T ) one concludes that

dom
(
|S|α

)
= dom

(
|T |α

)
, α ∈ (0, 1]. (2.107)

Identifying S with Ã2m(a, b, q) and T with Hm
0 , (2.96) and (2.107) prove (2.102).

Employing (2.102) with α = 1/2 one infers that∥∥Ã2m(a, b, q)1/2u
∥∥2

L2(Rn)
+ ‖u‖2

L2(Rn) ≈
∥∥Hm/2

0 u
∥∥2

L2(Rn)
+ ‖u‖2

L2(Rn),

u ∈ Wm,2(Rn).

(2.108)

Assuming, in addition, that u ∈ W 2m,2(Rn), the equivalence in (2.108) may be rewrit-

ten as

(
u, Ã2m(a, b, q)u

)
L2(Rn)

+ ‖u‖2
L2(Rn) ≈

(
u,Hm

0 u
)
L2(Rn)

+ ‖u‖2
L2(Rn), (2.109)

and together with the fact that the right-hand side of (2.109) is equivalent to the

norm ‖ · ‖2
Wm,2(Rn), one arrives at (2.104).

Given Lemma 2.13, the sequilinear form QÃ2m(a,b,q) in L2(Rn) associated with

Ã2m(a, b, q) is given by

QÃ2m(a,b,q)(u, v) :=
(
Ã2m(a, b, q)1/2u, Ã2m(a, b, q)1/2v

)
L2(Rn)

,

u, v ∈ dom(QÃ2m(a,b,q)) = dom
(
Ã2m(a, b, q)1/2

)
= Wm,2(Rn),

(2.110)

and we also introduce

QHm
0

(u, v) :=
(
H
m/2
0 u,H

m/2
0 v

)
L2(Rn)

, u, v ∈ dom(QHm
0

) = Wm,2(Rn). (2.111)

In addition, we will employ the explicit representation of the form QÃ2m(a,b,q) in

terms of Ã2m(a, b, q),

QÃ2m(a,b,q)(u, v) =


(τ2`u, τ2`v)L2(Rn), m = 2`, ` ∈ N,∑n

j,k=1((−i∂j − bj)τ2`u, aj,k(−i∂k − bk)τ2`v)L2(Rn)

+(τ2`u, q τ2`v)L2(Rn), m = 2`+ 1, ` ∈ N ∪ {0},
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u, v ∈ Wm,2(Rn). (2.112)

Here, in obvious notation, τ0 = 1.

Assuming Hypothesis 2.11 (i), we introduce one of the main objects of our study,

the symmetric operator AΩ,2m(a, b, q) in L2(Ω) by

AΩ,2m(a, b, q)f = τ2m(a, b, q)f, f ∈ dom(AΩ,2m(a, b, q)) = W 2m,2
0 (Ω), (2.113)

and note that Ã2m(a, b, q) formally represents its extended version in L2(Rn). In

addition, we introduce the associated minimal operator Amin,Ω,2m(a, b, q) in L2(Ω) by

Amin,Ω,2m(a, b, q)f := τ2m(a, b, q)f,

f ∈ dom(Amin,Ω,2m(a, b, q)) := C∞0 (Ω).

(2.114)

Clearly, Amin,Ω,2m(a, b, q) is symmetric (hence, closable) in L2(Ω) (upon elementary

integration by parts) and nonnegative,

Amin,Ω,2m(a, b, q) ≥ 0. (2.115)

Theorem 2.14. Assume Hypothesis 2.11 (i). Then the closure of Amin,Ω,2m(a, b, q)

in L2(Ω) is given by AΩ,2m(a, b, q),

Amin,Ω,2m(a, b, q) = AΩ,2m(a, b, q). (2.116)

In particular, AΩ,2m(a, b, q) is symmetric and nonnegative in L2(Ω),

AΩ,2m(a, b, q) ≥ 0. (2.117)

In addition, there exist finite constants 0 < c < C, depending only on a, b, q,m, n,

such that

c‖f‖2
W 2m,2

0 (Ω)
≤ ‖AΩ,2m(a, b, q)f‖2

L2(Ω) + ‖f‖2
L2(Ω) ≤ C‖f‖2

W 2m,2
0 (Ω)

,

f ∈ W 2m,2
0 (Ω).

(2.118)
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Proof. Using (2.90) with v ∈ C∞0 (Rn), supp(v) ⊂ Ω one concludes that the graph

norm of AΩ,2m(a, b, q) is equivalent to the norm of W̊ 2m,2(Ω) on C∞0 (Ω). Therefore,

dom
(
Amin,Ω,2m(a, b, q)

)
= W̊ 2m,2(Ω). In order to prove that Amin,Ω,2m(a, b, q)f =

τ2m(a, b, q)f , we consider {fj}j∈N ⊂ C∞0 (Ω), f, g ∈ L2(Ω), such that

lim
j→∞
‖fj − f‖L2(Ω) = 0 and lim

j→∞

∥∥Amin,Ω,2m(a, b, q)fj − g
∥∥
L2(Ω)

= 0. (2.119)

Since Amin,Ω,2m(a, b, q) is symmetric and hence closable in L2(Ω), one infers that

f ∈ dom
(
Amin,Ω,2m(a, b, q)

)
= W 2m,2

0 (Ω) and Amin,Ω,2m(a, b, q)f = g. (2.120)

Taking arbitrary ψ ∈ C∞0 (Ω), and recalling our notation for the distributional pairing

D′(Ω)〈 · , · 〉D(Ω) (compatible with the scalar product ( · , · )L2(Ω)), one concludes that

(g, ψ)L2(Ω) = D′(Ω)〈g, ψ〉D(Ω) = lim
j→∞D

′(Ω)〈τ2m(a, b, q)fj, ψ〉D(Ω)

= lim
j→∞

∫
Ω

fj(x)
(
τ2m(a, b, q)ψ

)
(x) dnx =

∫
Ω

f(x)
(
τ2m(a, b, q)ψ

)
(x) dnx

= D′(Ω)〈τ2m(a, b, q)f, ψ〉D(Ω), (2.121)

implying g = τ2m(a, b, q)f and hence, Amin,Ω,2m(a, b, q)f = AΩ,2m(a, b, q)f implying

(2.116). This also completes the proof of (2.118). Finally, being the closure of the

symmetric operator Amin,Ω,2m(a, b, q), also AΩ,2m(a, b, q) is symmetric in L2(Ω) (cf.,

e.g., [169, Theorem 5.4 (b)]).

Next, still assuming Hypothesis 2.11 (i), we introduce the form QAΩ,2m(a,b,q) in

L2(Ω) generated by AΩ,2m(a, b, q), via

QAΩ,2m(a,b,q)(f, g) := (f, AΩ,2m(a, b, q)g)L2(Rn),

f, g ∈ dom(QAΩ,2m(a,b,q)) := W 2m,2
0 (Ω).

(2.122)
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Lemma 2.15. Assume Hypothesis 2.11 (i). Then the form QAΩ,2m(a,b,q) is closable

and its closure in L2(Ω), denoted by QAF,Ω,2m(a,b,q), is the form uniquely associated to

the Friedrichs extension AF,Ω,2m(a, b, q) of AΩ,2m(a, b, q), that is,

QAF,Ω,2m(a,b,q)(f, g) =
(
AF,Ω,2m(a, b, q)1/2f, AF,Ω,2m(a, b, q)1/2g

)
L2(Ω)

,

f, g ∈ dom
(
QAF,Ω,2m(a,b,q)) = dom

(
AF,Ω,2m(a, b, q)1/2

)
= Wm,2

0 (Ω).

(2.123)

Proof. That QAΩ,2m(a,b,q) is closable follows from abstract results relating sectorial

(in particular, non-negative, symmetric) operators and their forms (cf., e.g., [61,

Theorem IV.2.3], [103, Theorem VI.1.27], [139, Theorem X.23]). In order to prove

(2.123), we fix f ∈ W 2m,2
0 (Ω) and denote its extension by zero outside of Ω by f̃ .

Then f̃ ∈ W 2m,2(Rn) and employing (2.104) with u replaced by f̃ , and using the fact

that supp(ũ) ⊆ Ω, one obtains

c‖f‖2
Wm,2

0 (Ω)
≤ (f, AΩ,2m(a, b, q)f)L2(Ω) + ‖f‖2

L2(Ω) ≤ C‖f‖2
Wm,2

0 (Ω)
, (2.124)

that is,

c‖f‖2
Wm,2

0 (Ω)
≤ QAΩ,2m(a,b,q)(f, f) + ‖f‖2

L2(Ω) ≤ C‖f‖2
Wm,2

0 (Ω)
, (2.125)

for some finite constants 0 < c < C, independent of f , proving that the domain of

the closure of the form QAΩ,2m(a,b,q) equals Wm,2
0 (Ω). Together with [103, Sect. VI.2.3]

or [139, Theorem X.23], and the second representation theorem for forms (see, e.g.,

[61, Theorem IV.2.6, Theorem IV.2.8], [103, Theorem VI.2.23]), this proves (2.123).

In Section 2.4 we will also use the following explicit representation of the form

QAF,Ω,2m(a,b,q),

QAF,Ω,2m(a,b,q)(f, g) =


(τ2`f, τ2`g)L2(Ω), m = 2`, ` ∈ N,∑n

j,k=1((−i∂j − bj)τ2`f, aj,k(−i∂k − bk)τ2`g)L2(Ω)

+(τ2`f, q τ2`g)L2(Ω), m = 2`+ 1, k ∈ N ∪ {0},
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f, g ∈ Wm,2
0 (Ω). (2.126)

(Again, we use the convention τ0 = 1.)

Finally, we introduce the following symmetric form in L2(Ω),

aΩ,4m,a,b,q(f, g) := (AΩ,2m(a, b, q)f, AΩ,2m(a, b, q)g)L2(Ω),

f, g ∈ dom(aΩ,4m,a,b,q) := dom(AΩ,2m(a, b, q)),

(2.127)

and the Hilbert space

HAΩ,2m(a,b,q) :=(dom(AΩ,2m(a, b, q)), aΩ,4m,a,b,q( · , · ))

=
(
W 2m,2

0 (Ω), aΩ,4m,a,b,q( · , · )
)
,

(2.128)

equipped with the scalar product aΩ,4m,a,b,q( · , · ).

Lemma 2.16. Assume Hypothesis 2.11 (i). Then the Hilbert space HAΩ,2m(a,b,q) em-

beds compactly into L2(Ω).

Proof. This is a consequence of the compact embedding of W̊ 2m,2(Ω) into L2(Ω) (see,

e.g., [61, Theorem V.4.18]) and the inequalities (2.118).

At this point we strengthen the lower bounds (2.115), (2.117):

Theorem 2.17. Assume Hypothesis 2.11 (i) with m = 1. Then there exists ε > 0,

depending only on a and Ω, such that Amin,Ω,2(a, b, q) defined as in (2.114) with m = 1

satisfies

Amin,Ω,2(a, b, q) ≥ εIΩ, (2.129)

and hence,

AΩ,2(a, b, q) ≥ εIΩ and AF,Ω,2(a, b, q) ≥ εIΩ. (2.130)

Proof. It suffices to prove that there exists ε > 0 such that AF,Ω,2(a, b, q) ≥ εIΩ. Since

dom
(
AF,Ω,2(a, b, q)1/2

)
= W 1,2

0 (Ω) according to (2.123), one recalls that

f ∈ W 1,2
0 (Ω) implies |f | ∈ W 1,2

0 (Ω) (2.131)

35



(cf., e.g., [61, Corollary VI.2.4]), and that by [134, Proposition 4.4],

∂j|f | = Re
(

sgn
(
f
)
(∂jf)

)
a.e., f ∈ W 1,2

0 (Ω), 1 ≤ j ≤ n, (2.132)

with

sgn(g(x)) =

{
g(x)/|g(x)|, if g(x) 6= 0,

0, if g(x) = 0.
(2.133)

Thus, ∇|f | = Re
(

sgn
(
f
)
(∇f)

)
, f ∈ W 1,2

0 (Ω), and hence one obtains the diamagnetic

inequality on Ω,

|∇|f || ≤
∣∣Re
(

sgn
(
f
)
(∇f)

)∣∣ =
∣∣Re
(

sgn
(
f
)
((∇− ib)f)

)∣∣ ≤ |(−i∇− b)f | a.e.,

f ∈ W 1,2
0 (Ω), (2.134)

since bj, 1 ≤ j ≤ n, are real-valued, according to a device of Kato [102] and Simon

[158] (see also [14, Theorem 4.5.1], [121, Theorem 7.21]). Hence, employing the min-

max principle for the infimum of the spectrum of self-adjoint operators bounded from

below one estimates,

inf(σ(AF,Ω,2(a, b, q))) = inf
f∈W 1,2

0 (Ω), ‖f‖L2(Ω)=1
QAF,Ω,2(a,b,q)(f, f)

= inf
f∈W 1,2

0 (Ω), ‖f‖L2(Ω)=1

(
AF,Ω,2(a, b, q)1/2f, AF,Ω,2(a, b, q)1/2f

)
L2(Ω)

= inf
f∈W 1,2

0 (Ω), ‖f‖L2(Ω)=1

( n∑
j,k=1

((−i∂j − bj)f, aj,k(−i∂k − bk)f)L2(Ω)

+ (f, q f)L2(Ω)

)
≥ εa inf

f∈W 1,2
0 (Ω), ‖f‖L2(Ω)=1

((−i∇− b)f, (−i∇− b)f)L2(Ω)n

≥ εa inf
f∈W 1,2

0 (Ω), ‖f‖L2(Ω)=1
(|∇|f ||, |∇|f ||)L2(Ω)

= εa inf
f∈W 1,2

0 (Ω), ‖f‖L2(Ω)=1
(∇|f |,∇|f |)L2(Ω)n

≥ εa inf
ϕ∈W 1,2

0 (Ω), ‖ϕ‖L2(Ω)=1

(
(∇ϕ,∇ϕ)L2(Ω)n

)
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≥ εa inf
(
σ
(
−∆D

Ω

))
= εaεΩ =: ε, (2.135)

using the fact that −∆D
Ω ≥ εΩIΩ for some εΩ > 0, since Ω is bounded (see, for

instance, [56, p. 31], or use domain monotonicity, [141, p. 270] together with the

well-known strictly positive lower bounds for a ball or cube that encloses Ω).

The result (2.130) holds under more general assumptions on the coeffcients a, b, q

and also for certain boundary conditions other than Dirichlet, but the current setup

suffices for our discussion in Section 2.4 (we intend to revisit this issue elsewhere).

Next, we note that as a consequence of Hypothesis 2.11 (i), also all higher-order

powers AΩ,2m(a, b, q) = AΩ,2(a, b, q)m, m ∈ N, m ≥ 2, of AΩ,2(a, b, q) are strictly

positive.

Lemma 2.18. Assume Hypothesis 2.11 (i). Then there exists εm > 0 such that

AΩ,2m(a, b, q) ≥ εmIΩ, m ∈ N. (2.136)

Proof. We employ induction with respect to m ∈ N. The case m = 1 holds by

Hypothesis 2.11 (i). Assume that the statement holds for all k < m and fix any

0 6= f ∈ dom(AΩ,2m(a, b, q)). We consider two cases:

(i) m = 2`, ` ∈ N. Then due to symmetry of AΩ,2(a, b, q)` one obtains

(f, AΩ,2m(a, b, q)f)L2(Ω) =
(
f, AΩ,2(a, b, q)2`f

)
L2(Ω)

=
∥∥AΩ,2(a, b, q)`f

∥∥2

L2(Ω)
. (2.137)

By the induction hypothesis, there exists ε` > 0 such that, AΩ,2`(a, b, q) ≥ ε`, and

hence

ε`‖f‖2
L2(Ω) ≤ (f, AΩ,2`(a, b, q)f)L2(Ω) ≤ ‖f‖L2(Ω)‖AΩ,2`(a, b, q)f‖L2(Ω), (2.138)
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implying

(f, AΩ,2m(a, b, q)f)L2(Ω) =
∥∥AΩ,2(a, b, q)`f

∥∥2

L2(Ω)
≥ ε2

`‖f‖2
L2(Ω) = εm‖f‖2

L2(Ω), (2.139)

with εm = ε2
` .

(ii) m = 2`+ 1, ` ∈ N. Then by (2.129)

(f, AΩ,2m(a, b, q)f)L2(Ω) =
(
f, AΩ,2(a, b, q)2`+1f

)
L2(Ω)

=
(
AΩ,2(a, b, q)`f, AΩ,2(a, b, q)AΩ,2(a, b, q)`f

)
L2(Ω)

≥ ε
∥∥AΩ,2(a, b, q)`f

∥∥2

L2(Ω)
≥ εε2

`‖f‖2
L2(Ω) = εm‖f‖2

L2(Ω), (2.140)

with εm = εε2
` .

2.4 An Upper Bound for the Eigenvalue Count-

ing Function for the Krein–von Neumann and

Friedrichs Extensions of Higher-Order Opera-

tors

In this section we derive an upper bound for the eigenvalue counting function for

Krein–von Neumann extensions of higher-order differential operators on open, bounded,

nonempty domains Ω ⊂ Rn. In particular, no assumptions on the boundary of Ω will

be made.

In the following we denote by AK,Ω,2m(a, b, q) and AF,Ω,2m(a, b, q) the Krein–von

Neumann and Friedrichs extensions of AΩ,2m(a, b, q) in L2(Ω). Since by Lemma 2.16,

HAΩ,2m(a,b,q) embeds compactly into L2(Ω), AΩ,2m(a, b, q)∗AΩ,2m(a, b, q) has purely dis-

crete spectrum by Lemma 2.10. Equivalently, AΩ,2m(a, b, q)∗AΩ,2m(a, b, q) has a com-

pact resolvent, in particular,

[AΩ,2m(a, b, q)∗AΩ,2m(a, b, q)]−1 ∈ B∞
(
L2(Ω)

)
. (2.141)
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Consequenty, also

|AΩ,2m(a, b, q)|−1 = [AΩ,2m(a, b, q)∗AΩ,2m(a, b, q)]−1/2 ∈ B∞
(
L2(Ω)

)
, (2.142)

implying (
ÂK,Ω,2m(a, b, q)

)−1 ∈ B∞
(
L2(Ω)

)
(2.143)

by (2.60). Thus,

σess(AK,Ω,2m(a, b, q)) ⊆ {0}. (2.144)

We recall that the form aΩ,4m,a,b,q( · , · ) in L2(Ω) associated with the operator

AΩ,2m(a, b, q)∗AΩ,2m(a, b, q) has been introduced in (2.127).

Let {λK,Ω,j}j∈N ⊂ (0,∞) be the strictly positive eigenvalues of AK,Ω,2m(a, b, q)

enumerated in nondecreasing order, counting multiplicity, and let

N(λ;AK,Ω,2m(a, b, q)) := #{j ∈ N | 0 < λK,Ω,j < λ}, λ > 0, (2.145)

be the eigenvalue distribution function for AK,Ω,2m(a, b, q).

To derive an effective estimate for N(λ;AK,Ω,2m(a, b, q)) we need to introduce one

more spectral hypothesis imposed on Ã2m(a, b, q):

Hypothesis 2.19. Assume Hypothesis 2.11.

(i) Suppose there exists φ : Rn × Rn → C such that the operator

(Ff)(ξ) := (2π)−n/2
∫
Rn
f(x)φ(x, ξ) dnx, ξ ∈ Rn, (2.146)

originally defined on functions f ∈ L2(Rn) with compact support, can be extended to

a unitary operator in L2(Rn), such that

f ∈ W 2,2(Rn; dnx) if and only if |ξ|2(Ff)(ξ) ∈ L2(Rn; dnξ), (2.147)
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and

Ã2(a, b, q) = F−1M|ξ|2F, (2.148)

where M|ξ|2 represents the maximally defined operator of multiplication by |ξ|2 in

L2(Rn; dnξ).

(ii) In addition, suppose that

sup
ξ∈Rn
‖φ( · , ξ)‖L2(Ω) <∞. (2.149)

Remark 2.20. (i) As becomes clear from Theorems 2.21 and 2.22 below, our pri-

mary concerns are the operators AK,Ω,2m(a, b, q) and AF,Ω,2m(a, b, q) in L2(Ω), and

hence we are primarily interested in the coefficients a, b, q on the open, bounded, but

otherwise arbitrary, set Ω. However, since the existence of an eigenfunction expan-

sion of a self-adjoint “continuation” of this pair of operators to all of Rn, denoted

by Ã2m(a, b, q), is a crucial tool in our derivation of the bound on the corresponding

eigenvalue counting functions of AK,Ω,2m(a, b, q) and AF,Ω,2m(a, b, q), the continuation

of the coefficients a, b, q through a possibly highly nontrivial boundary ∂Ω of Ω be-

comes a nontrivial issue. To avoid intricate technicalities, we chose to simply assume

a sufficiently smooth behavior of a, b, q throughout Rn in Hypothesis 2.11 (i).

(ii) Hypothesis 2.19 (i) implies that Ã2(a, b, q) (and hence any of its powers) is spec-

trally purely absolutely continuous (i.e., its point and singular continuous spectra are

empty), while Hypothesis 2.19 (ii) requires a uniform L2(Ω)-bound on φ( · , ξ), ξ ∈ Rn.

In particular, φ( · , · ) represent the suitably normalized generalized eigenfunctions of

Ã2(a, b, q) satisfying

Ã2(a, b, q)φ( · , ξ) = |ξ|2φ( · , ξ), ξ ∈ Rn, (2.150)
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in the distributional sense. In the special Laplacian case a = In, b = q = 0, one

obtains

φ(x, ξ) = eiξ·x, ‖φ( · , ξ)‖2
L2(Ω) = |Ω|, (x, ξ) ∈ R2n. (2.151)

(iii) In the case a = In, and with the exception of a possible zero-energy resonance

and/or eigenvalue of Ã2(In, b, q) in L2(Rn), we expect Hypothesis 2.19 to hold for

Ã2(In, b, q) under the regularity assumptions made on b, q in Hypothesis 2.11 (i) as-

suming in addition that b and q have sufficiently fast decay as |x| → ∞ (e.g., if b, q

have compact support). While we have not found the corresponding statement in

the literature, and an attempt to prove it in full generality would be an indepen-

dent project, we will illustrate in our final Section 2.5 explicit situations in which

Hypothesis 2.19 holds for a = In. The case a 6= In, on the other hand, is much more

involved due trapping/non-trapping issues which affect the existence of bounds of the

type (2.217); we refer, for instance, to [40], [41], [55], [166], [167], and the literature

therein.

(iv) We note from the outset, that a zero-energy resonance and/or eigenvalue of Ã2m

cannot be excluded even in the special case a = In, b = 0, and q ∈ C∞0 (Rn). However,

the existence of such zero-energy resonances or eigenvalues is highly unstable with

respect to small variations of a, b, q and hence their absence holds generically. In

particular, by slightly varying R0 > 0 in Hypothesis 2.11 (ii), or the ε-neighborhood

Ωε of Ω mentioned after (2.81), or by slightly perturbing the coefficients a, b, or q

outside Bn(0;R0), or outside Ωε, one can guarantee the absence of such zero-energy

resonances and/or eigenvalues. Since we are primarily interested in the operators

AK,Ω,2m(a, b, q) and AF,Ω,2m(a, b, q) in L2(Ω), we can indeed freely choose the form of
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a, b, q in an ε-neighborhood outside of Ω, especially, in a neighborhood of infinity. �

With the standard notation

x+ := max (0, x), x ∈ R, (2.152)

we have the following estimate for N( · ;AK,Ω,2m(a, b, q)) (extending the results in [114]

where the special case a = In, b = q = 0 has been considered):

Theorem 2.21. Assume Hypothesis 2.19. Then the following estimate holds:

N(λ;AK,Ω,2m(a, b, q)) ≤ vn
(2π)n

(
1 +

2m

2m+ n

)n/(2m)

sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω) λ
n/(2m),

for all λ > 0, (2.153)

where vn := πn/2/Γ((n + 2)/2) denotes the (Euclidean) volume of the unit ball in

Rn (Γ(·) being the Gamma function), and φ( · , · ) represents the suitably normalized

generalized eigenfunctions of Ã2(a, b, q) satisfying Ã2(a, b, q)φ( · , ξ) = |ξ|2φ( · , ξ) in

the distributional sense (cf. Hypothesis 2.19).

Proof. Following our abstract Section 2.2, we introduce in addition to the symmetric

form aΩ,4m,a,b,q in L2(Ω) (cf. (2.127)), the form

bΩ,2m,a,b,q(f, g) := (f, AΩ,2m(a, b, q)g)L2(Ω),

f, g ∈ dom(bΩ,2m,a,b,q) := dom(AΩ,2m(a, b, q)).

(2.154)

By Lemma 2.7, particularly, by (2.66), one concludes that

N(λ;AK,Ω,2m(a, b, q)) ≤ max
(

dim
{
f ∈ dom(AΩ,2m(a, b, q))

∣∣
aΩ,4m,a,b,q(f, f)− λ bΩ,2m,a,b,q(f, f) < 0

})
.

(2.155)

Here we also employed (2.68) and the fact that

aΩ,4m,a,b,q(fK,Ω,j, fK,Ω,j))− λ bΩ,2m,a,b,q(fK,Ω,j, fK,Ω,j)

= (λK,Ω,j − λ)‖fK,Ω,j‖2
L2(Ω) < 0,

(2.156)
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where fK,Ω,j ∈ dom(AΩ,2m(a, b, q))\{0} additionally satisfies

fK,Ω,j ∈ dom(AΩ,2m(a, b, q)∗AΩ,2m(a, b, q)) and

AΩ,2m(a, b, q)∗AΩ,2m(a, b, q)fK,Ω,j = λK,Ω,j AΩ,2m(a, b, q)fK,Ω,j.

(2.157)

To further analyze (2.155) we now fix λ ∈ (0,∞) and introduce the auxiliary operator

LΩ,4m,λ(a, b, q) := AΩ,2m(a, b, q)∗AΩ,2m(a, b, q)− λAΩ,2m(a, b, q),

dom(LΩ,4m,λ(a, b, q)) := dom(AΩ,2m(a, b, q)∗AΩ,2m(a, b, q)).

(2.158)

By Lemma 2.8, LΩ,4m,λ(a, b, q) is self-adjoint, bounded from below, with purely dis-

crete spectrum as its form domain satisfies (cf. (2.128))

dom
(
|LΩ,4m,λ(a, b, q)|1/2

)
= HAΩ,2m(a,b,q), (2.159)

and the latter embeds compactly into L2(Ω) by Lemma 2.16 (cf. Lemma 2.10). We

will study the auxiliary eigenvalue problem,

LΩ,4m,λ(a, b, q)ϕj = µjϕj, ϕj ∈ dom(LΩ,4m,λ(a, b, q)), (2.160)

where {ϕj}j∈N represents an orthonormal basis of eigenfunctions in L2(Ω) and for

simplicity of notation we repeat the eigenvalues µj of LΩ,4m,λ(a, b, q) according to

their multiplicity. Since ϕj ∈ W 2m,2
0 (Ω), the zero-extension of ϕj to all of Rn,

ϕ̃j(x) :=

{
ϕj(x), x ∈ Ω,

0, x ∈ Rn\Ω,
(2.161)

satisfies

ϕ̃j ∈ W 2m,2(Rn), ∂αϕ̃j = ∂̃αϕj, 0 ≤ |α| ≤ 2m. (2.162)

Next, given µ > 0, one estimates

µ−1
∑
j∈N
µj<µ

(µ− µj) ≥ µ−1
∑
j∈N,

µj<0, µj<µ

(µ− µj) ≥ µ−1
∑
j∈N,

µj<0, µj<µ

µ

= n−(LΩ,4m,λ(a, b, q)),

(2.163)
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where n−(LΩ,4m,λ(a, b, q)) denotes the number of strictly negative eigenvalues of

LΩ,4m,λ(a, b, q). Combining, Lemma 2.9 and (2.155) one concludes that

N(λ;AK,Ω,2m(a, b, q)) ≤ max
(

dim
{
f ∈ dom(Amin,Ω,2m)

∣∣
aΩ,4m,a,b,q(f, f)− λ bΩ,2m,a,b,q(f, f) < 0

})
(2.164)

= n−(LΩ,4m,λ(a, b, q)) ≤ µ−1
∑
j∈N
µj<µ

(µ− µj) = µ−1
∑
j∈N

[µ− µj]+, µ > 0.

Next, we focus on estimating the right-hand side of (2.164).

N(λ;AK,Ω,2m(a, b, q)) ≤ µ−1
∑
j∈N

(µ− µj)+ = µ−1
∑
j∈N

[
(ϕj, (µ− µj)ϕj)L2(Ω)

]
+

= µ−1
∑
j∈N

[
µ‖ϕj‖2

L2(Ω) − ‖AΩ,2m(a, b, q)ϕj‖2
L2(Ω)

+ λ(ϕj, AΩ,2m(a, b, q)ϕj)L2(Ω)

]
+

= µ−1
∑
j∈N

[
µ‖ϕ̃j‖2

L2(Rn) −
∥∥Ã2m(a, b, q)ϕ̃j

∥∥2

L2(Rn)

+ λ
(
ϕ̃j, Ã2m(a, b, q)ϕ̃j

)
L2(Rn)

]
+

= µ−1
∑
j∈N

[ ∫
Rn

[
µ− |ξ|4m + λ|ξ|2m

]
|(Fϕ̃j)(ξ)|2 dnξ

]
+

≤ µ−1
∑
j∈N

∫
Rn

[
µ− |ξ|4m + λ|ξ|2m

]
+
|(Fϕ̃j)(ξ)|2 dnξ

≤ µ−1

∫
Rn

[
µ− |ξ|4m + λ|ξ|2m

]
+

∑
j∈N

|(Fϕ̃j)(ξ)|2 dnξ. (2.165)

Since Ω is bounded, ϕ̃j has compact support and hence

(Fϕ̃j)(ξ) = (2π)−n/2
∫
Rn
ϕ̃j(x)φ(x, ξ) dnx, (2.166)

and ∑
j∈N

|(Fϕ̃j)(ξ)|2 = (2π)−n
∑
j∈N

∣∣∣∣ ∫
Rn
ϕ̃j(x)φ(x, ξ) dnx

∣∣∣∣2
= (2π)−n

∑
j∈N

∣∣ ∫
Ω

ϕj(x)φ(x, ξ) dnx
∣∣2 = (2π)−n‖φ( · , ξ)‖2

L2(Ω,dnx),

(2.167)
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are well-defined. Combining (2.165) and (2.167) one arrives at

N(λ;AK,Ω,2m(a, b, q)) ≤ µ−1

∫
Rn

[
µ− |ξ|4m + λ|ξ|2m

]
+

∑
j∈N

|(Fϕ̃j)(ξ)|2 dnξ

= (2π)−nµ−1

∫
Rn

[
µ− |ξ|4m + λ|ξ|2m

]
+
‖φ( · , ξ)‖2

L2(Ω) d
nξ

≤ (2π)−n sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω)µ
−1

∫
Rn

[
µ− |ξ|4m + λ|ξ|2m

]
+
dnξ. (2.168)

Introducing α = λ−2µ, changing variables, ξ = λ1/(2m)η, and taking the minimum

with respect to α > 0, proves the bound

N(λ;AK,Ω,2m(a, b, q)) ≤ (2π)−n sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω)

×min
α>0

(
α−1

∫
Rn

[
α− |η|4m + |η|2m

]
+
dnη

)
λn/(2m), λ > 0.

(2.169)

Explicitly computing the minimum over α > 0 in (2.169) yields the result (2.153).

This minimization step is carried out in detail in Appendix A.

Next, we also derive an upper bound for the eigenvalue counting function of the

Friedrichs extension AF,Ω,2m(a, b, q) of AΩ,2m(a, b, q).

Theorem 2.22. Assume Hypothesis 2.19. Then the following estimate holds:

N(λ;AF,Ω,2m(a, b, q)) ≤ vn
(2π)n

(
1 +

2m

n

)n/(2m)

sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω) λ
n/(2m),

for all λ > 0, (2.170)

with vn := πn/2/Γ((n+ 2)/2) and φ( · , · ) given as in Theorem 2.21.

Proof. First, one notices that

N(λ;AF,Ω,2m(a, b, q)) ≤ max
(

dim
{
f ∈ dom(AF,Ω,2m(a, b, q))

∣∣
(f, AF,Ω,2m(a, b, q)f)L2(Ω) − λ‖f‖2

L2(Ω) < 0
})
,

(2.171)
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To further analyze the right–hand side of (2.171) fix λ ∈ (0,∞) and introduce the

auxiliary operator

KΩ,2m,λ(a, b, q) := AF,Ω,2m(a, b, q)− λIΩ,

dom(KΩ,2m,λ(a, b, q)) := dom(AF,Ω,2m(a, b, q)).

(2.172)

We will study the eigenvalue problem,

KΩ,2m,λ(a, b, q)ϕj = µjϕj, ϕj ∈ dom(KΩ,m,λ(a, b, q)), (2.173)

where {ϕj}j∈N represents an orthonormal basis of eigenfunctions in L2(Ω) and for

simplicity of notation we repeat the eigenvalues µj of KΩ,2m,λ(a, b, q) according to

their multiplicity. Since ϕj ∈ Wm
0 (Ω), their zero-extension to all of Rn,

ϕ̃j(x) :=

{
ϕj(x), x ∈ Ω,

0, x ∈ Rn\Ω,
(2.174)

satisfies

ϕ̃j ∈ Wm(Rn), ∂αϕ̃j = ∂̃αϕj, 0 ≤ |α| ≤ m. (2.175)

Next, given µ > 0, one estimates

µ−1
∑
j∈N
µj<µ

(µ− µj) ≥ µ−1
∑
j∈N,

µj<0, µj<µ

(µ− µj) ≥ µ−1
∑
j∈N,

µj<0, µj<µ

µ

= n−(KΩ,2m,λ(a, b, q)),

(2.176)

where n−(KΩ,2m,λ(a, b, q)) denotes the number of strictly negative eigenvalues of

KΩ,2m,λ(a, b, q). Then one has

N(λ;AF,Ω,2m(a, b, q))

≤ max
(

dim
{
f ∈ dom(AF,Ω,2m(a, b, q))

∣∣
(f, AF,Ω,2m(a, b, q)f)L2(Ω) − λ‖f‖2

L2(Ω) < 0
})

(2.177)

= n−(KΩ,2m,λ(a, b, q)) ≤ µ−1
∑
j∈N
µj<µ

(µ− µj) = µ−1
∑
j∈N

[µ− µj]+, µ > 0.
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To estimate the right-hand side of (2.177) we rewrite (ψ1, AF,Ω,2m(a, b, q)ψ2)L2(Ω) for

ψ1, ψ2 ∈ dom(AF,Ω,2m(a, b, q)), as follows

(ψ1, AF,Ω,2m(a, b, q)ψ2)L2(Ω) = QAF,Ω,2m(a,b,q)(ψ1, ψ2) = QÃ2m(a,b,q)

(
ψ̃1, ψ̃2

)
=
((
Ã2m(a, b, q)

)1/2
ψ̃1,
(
Ã2m(a, b, q)

)1/2
ψ̃2

)
L2(Rn)

, (2.178)

the second equality in (2.178) following from representations (2.112), (2.126). Next,

we focus on estimating the right-hand side of (2.177).

N(λ;AF,Ω,2m(a, b, q)) ≤ µ−1
∑
j∈N

(µ− µj)+ = µ−1
∑
j∈N

[
(ϕj, (µ− µj)ϕj)L2(Ω)

]
+

= µ−1
∑
j∈N

[
µ‖ϕj‖2

L2(Ω) + λ‖ϕj‖2
L2(Ω) − (ϕj, AF,Ω,2m(a, b, q)ϕj)L2(Ω)

]
+

= µ−1
∑
j∈N

[
µ‖Fϕ̃j‖2

L2(Rn) + λ‖Fϕ̃j‖2
L2(Rn) − ‖|ξ|mFϕ̃j‖2

L2(Rn)

]
+

= µ−1
∑
j∈N

[ ∫
Rn

[
µ+ λ− |ξ|2m

]
|(Fϕ̃j)(ξ)|2 dnξ

]
+

≤ µ−1
∑
j∈N

∫
Rn

[
µ+ λ− |ξ|2m

]
+
|(Fϕ̃j)(ξ)|2 dnξ

≤ µ−1

∫
Rn

[
µ+ λ− |ξ|2m

]
+

∑
j∈N

|(Fϕ̃j)(ξ)|2 dnξ. (2.179)

Combining (2.167) and (2.179) one arrives at

N(λ;AF,Ω,2m(a, b, q)) ≤ µ−1

∫
Rn

[
µ+ λ− |ξ|2m

]
+

∑
j∈N

|(Fϕ̃j)(ξ)|2 dnξ

= (2π)−nµ−1

∫
Rn

[
µ+ λ− |ξ|2m

]
+
‖φ( · , ξ)‖2

L2(Ω) d
nξ

≤ (2π)−n sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω)µ
−1

∫
Rn

[
µ+ λ− |ξ|2m

]
+
dnξ. (2.180)

Introducing α = λ−1µ, changing variables, ξ = λ1/(2m)η, and taking the minimum

with respect to α > 0, proves the bound,

N(λ;AF,Ω,2m(a, b, q)) ≤ (2π)−n sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω)

×min
α>0

(
α−1

∫
Rn

[
α + 1− |η|2m

]
+
dnη

)
λn/(2m), λ > 0.

(2.181)
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Denoting

IF (α) := α−1

∫
Rn

[
α + 1− |η|2m

]
+
dnη, (2.182)

one explicitly computes IF (α) and obtains

IF (α) =
2mvn

2m+ n
α−1(α + 1)(2m+n)/(2m), (2.183)

I ′F (α) =
nvn

2m+ n
(α + 1)n/(2m)α−2

(
α− 2m

n

)
, (2.184)

min
α>0

(
IF (α)

)
= IF (2m/n) = vn

(
1 +

2m

n

)n/(2m)

. (2.185)

Equation (2.185) together with (2.181) yields (2.170).

Remark 2.23. (i) One notes that whenever the property

sup
(x,ξ)∈Ω×Rn

(|φ(x, ξ)|) <∞ (2.186)

has been established, then

sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω) ≤ |Ω| sup
(x,ξ)∈Ω×Rn

(
|φ(x, ξ)|2

)
, (2.187)

explicitly exhibits the volume dependence on Ω of the right-hand sides of (2.153) and

(2.170), respectively. We will briefly revisit this in Section 2.5.

(ii) Given two self-adjoint operators A, B in H bounded from below with purely

discrete spectra such that A ≤ B in the sense of quadratic forms, then clearly

N(λ;B) ≤ N(λ;A), λ ∈ R; in addition, N(λ;αA) = N(λ/α;A), α > 0, λ ∈ R. Thus,

since a is real symmetric, the uniform ellipticity condition (2.80) implies a ≥ εaIn, and

hence AF,Ω,2(a, b, q) ≥ εaAF,Ω,2(In, b, q) assuming εa ∈ (0, 1] without loss of generality.

Combining this with (2.41) then yields

N(λ;AK,Ω,2(a, b, q)) ≤ N(λ;AF,Ω,2(a, b, q)) ≤ N(λ; εaAF,Ω,2(In, b, q))

= N(λ/εa;AF,Ω,2(In, b, q)), λ ∈ R.
(2.188)
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Finally, we note that estimates of the type N(λ;A) ≤ cAλ
γ for A ≥ 0 yield lower

bounds for the jth eigenvalue λj(A) of the form λj(A) ≥ dAj
1/γ, clearly applicable in

the context of (2.153) and (2.170). �

Remark 2.24. As far as we know, employing the technique of the eigenfunction

transform (i.e., the distorted Fourier transform) associated with the variable coeffi-

cient operator Ã2m(a, b, q) (replacing the standard Fourier transform in connection

with the constant coefficient case in [74]) to derive the results (2.12) and (2.13) is

new.

On the other hand, the literature on eigenvalue counting function bounds in con-

nection with arbitrary bounded open sets Ω ⊂ Rn (or even open sets Ω ⊂ Rn of

finite Euclidean volume) is fairly extensive, originating with the seminal work by

Birman–Solomyak, Rozenblum, and others. More specifically, starting around 1970,

in this context of rough sets Ω, Birman and Solomyak pioneered the leading-order

Weyl asymptotics and eigenvalue counting function estimates for generalized (linear

pencil) eigenvalue problems of the form Af = λBf for elliptic partial differential op-

erators A of order nA and lower-order differential operators B of order nB < nA and

obtained great generality of the coeffcients in A and B by systematically employing

a variational formulation of this generalized eigenvalue problem. The boundary con-

ditions employed are frequently of Dirichlet type, but Neumann and Robin boundary

conditions are studied as well. In particular (focusing on the Dirichlet case only), the

variational form of the problem associated with

∑
|α|=|β|=m

Dα
(
aα,β(x)Dβu

)
(x) = λ p(x)u(x), u ∈ Wm,2

0 (Ω), (2.189)

with special emphasis on the polyharmonic case, (−∆)mu = λ p u, and extensions to
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the situation∑
|α|=|β|=m

Dα
(
aα,β(x)Dβu

)
(x) = λ

∑
0≤|γ|,|δ|≤m

Dγ
(
bγ,δ(x)Dδu

)
(x),

|γ|+ |δ| = 2`, 0 ≤ ` < m, u ∈ Wm,2
0 (Ω),

(2.190)

including the scenario where a, b are block matrices, or b is an appropriate (matrix-

valued) measure, were studied in [18]–[24], [146]–[149], [150, Ch. 5]. In particular,

the hypotheses on aα,β are very general (a ∈ L1
loc(Ω)m×m, a positive definite a.e.,

a−1 ∈ Lα(Ω)m×m for appropriate α ≥ 1) permitting a certain weak degeneracy of

the ellipticity of the left-hand side in (2.189), (2.190). The case of the Friedrichs

extension for m = 1 corresponding to τ2(a, b, q) was treated in [127].

Thus, in the case m = 1, p(·) = 1, and in some particular higher-order cases, where

m > 1, in the context of AF,Ω,2m(a, 0, 0) (i.e., b = q = 0), there is clearly some overlap

of our result (2.170) with the above results concerning (2.189). The same applies to

the magnetic field results in [127] in connection with τ2(a, b, q). Similarly, considering

the perturbed buckling problem in the form

(−∆)2mu = λ (−∆)mu, u ∈ W 2m,2
0 (Ω), (2.191)

there is of course some overlap between our result (2.153) (actually, the result in

[74]) and the results concerning (2.190) with m ∈ N, a = In, b = q = 0, but since

lower-order terms are not explicitly included on the left-hand side of (2.190), a direct

comparison is difficult. According to G. Rozenblum (private communication), the

left-hand sides in (2.189), (2.190) can be extended to include also lower-order terms

under appropriate hypotheses on the coefficients, but this seems not to have appeared

explicitly in print.

Since we focused on the case of nonconstant coefficients throughout, we did not

enter the vast literature on eigenvalue counting function estimates in connection with

50



the Laplacian and its (fractional) powers. In this context we refer, for instance, to

[68], [90], and the extensive literature cited therein. �

Although Weyl asymptotics itself is not the main objective of this thesis, we con-

clude this section with the following observation.

Remark 2.25. The Weyl asymptotics of N( · ;AK,Ω,2(a, b, q)) in [9, Sect. 8] in the

case of quasi-convex domains and in [15] in the case of bounded Lipschitz domains

derived an error bound of the form O
(
λ(n−(1/2))/2

)
as λ → ∞. If one is only in-

terested in the leading-order asymptotics results, combining the spectral equivalence

of nonzero eigenvalues of AK,Ω,2m(a, b, q)) to the (generalized) buckling problem (cf.

Lemma 2.5), with results by Kozlov [109]–[111], and taking into account that lower-

order differential operator perturbations do not influence the leading-order asymp-

totics of N( · ;AK,Ω,2m(a, b, q)) (cf. [21, Lemmas 1.3, 1.4]) imply

N(λ;AK,Ω,2m(a, b, q))

=
λ→∞

1

n(2π)n

(∫
Ω

dnx

∫
|ξ|=1

dωn−1(ξ)(ξ, a(x) ξ)
−n

2
Rn

)
λn/(2m) + o

(
λn/(2m)

)
=

λ→∞

vn
(2π)n

(∫
Ω

dnx (det a(x))−1/2

)
λn/(2m) + o

(
λn/(2m)

)
, (2.192)

for any bounded open set Ω ⊂ Rn. Here dωn−1 denotes the surface measure on the

unit sphere Sn−1 = {ξ ∈ Rn | |ξ| = 1} in Rn. Of course, the same leading-order

asymptotics applies to N( · ;AF,Ω,2m(a, b, q)).

Since N(λ;A) =
λ→∞

c(A)λα is equivalent to λj(A) =
j→∞

(j/c(A))1/α, relation (2.192)

yields the corresponding result for the eigenvalues ofAK,Ω,2m(a, b, q) andAF,Ω,2m(a, b, q).

�
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2.5 Illustrations

To demonstrate why we expect Hypothesis 2.19 to hold under Hypothesis 2.11 alone in

the case a = In (with the obvious exception of zero-energy resonances and eigenvalues,

which generically will be absent), we discuss three exceedingly complex scenarios in

this section.

We start with the most elementary case which nevertheless served as the guiding

motivation for this chapter:

Example 2.26. Let a := In, n ∈ N, b = q = 0, then the operator F from Theorem

2.19 is the standard Fourier transform in L2(Rn), and φ(ξ, x) = eiξ·x, (ξ, x) ∈ R2n.

Thus, Hypothesis 2.19 obviously holds for Ã2(In, 0, 0) = H0, and

sup
ξ∈Rn
‖φ( · , ξ)‖2

L2(Ω) = |Ω|. (2.193)

In this rather special case the estimate for the eigenvalue counting function

N(λ;−∆K,Ω) was previously obtained in [74], while that of N(λ;−∆D,Ω) was derived

in [114].

Next, we turn to Schrödinger operators in L2(Rn).

Example 2.27. Assume that a = In, b = 0, and 0 ≤ q ∈ L∞(Rn), supp(q) compact.

In addition, suppose that zero is neither an eigenvalue nor a resonance of Ã2(In, b, q)

(cf. [63]). Then Hypothesis 2.19 holds.

In addition, in the special case n = 3, there exists C(q) ∈ (0,∞) such that

sup
(x,ξ)∈R6

|φ(x, ξ)| ≤ C(q). (2.194)

Indeed, the absence of strictly positive eigenvalues of Ã2(In, 0, q) was established

by Kato [101] (see also [156]), and the existence of the distorted Fourier transform F
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and hence an eigenfunction transform was established by Ikebe [94, Theorem 5] for

n = 3 and Thoe [163, Sect. 4] for n ≥ 4, and Alsholm and Schmidt [4] for n ≥ 3

(see also [140, Theorem XI.41], [141, Theorems XIII.33 and XIII.58], [144], [157,

Sect. V.4]), implying, in particular, that

σ
(
Ã2(In, 0, q)

)
= σac

(
Ã2(In, 0, q)

)
= [0,∞),

σsc
(
Ã2(In, 0, q)

)
= σp

(
Ã2(In, 0, q)

)
∩ (0,∞) = ∅.

(2.195)

Moreover, it is shown in [94] and [163] that for all R > 0,

sup
ξ∈Bn(0;R), x∈Rn

|φ(x, ξ)| =: c(q, R) <∞. (2.196)

Thus we will focus on proving that

sup
ξ∈Rn
‖φ( · , ξ)‖L2(Ω) <∞, (2.197)

and in the special case n = 3 that for sufficiently large R > 0,

sup
ξ∈R3\B3(0;R), x∈R3

|φ(x, ξ)| =: C(q, R) <∞. (2.198)

Clearly, estimates (2.196) and (2.198) imply (2.194).

The distorted plane waves φ( · , · ) can be chosen as one of φ+( · , · ) or φ−( · , · ),

which are defined as solutions of the following Lippmann–Schwinger integral equation,

φ±(x, ξ) = eiξ·x −
∫
Rn
Gn

(
|ξ|2 ± i0;x, y

)
q(y)φ±(y, ξ) dny, (x, ξ) ∈ R2n, (2.199)

where

Gn(z;x, y) =


i
4

(
2π|x−y|
z1/2

)(2−n)/2

H
(1)
(n−2)/2

(
z1/2|x− y|

)
, n > 2, z ∈ C\{0},

−1
2π

ln(|x− y|), n = 2, z = 0,
1

(n−2)ωn−1
|x− y|2−n, n > 3, z = 0,

Im
(
z1/2

)
≥ 0, x, y ∈ Rn, x 6= y, (2.200)
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represents the fundamental solution of the Helmholtz equation (−∆− z)ψ(z; · ) = 0

in Rn, that is, the Green’s function of the n-dimensional Laplacian, n ∈ N, n > 2.

Here H
(1)
ν ( · ) denotes the Hankel function of the first kind with index ν ≥ 0 (cf. [2,

Sect. 9.1]) and ωn−1 = 2πn/2/Γ(n/2) (Γ( · ) the Gamma function, cf. [2, Sect. 6.1])

represents the volume of the unit sphere Sn−1 in Rn. For simplicity we focus on n ≥ 3

for the rest of this example, but note that the cases n = 1, 2 can be treated exactly

along the same lines (see, e.g., the results in [25]–[47]).

Multiplying both sides of this equation by the weight w > 0 satisfying

w ∈ C∞(Rn), 0 < w ≤ 1, w(x) :=

{
1, 0 ≤ |x| ≤ R,

exp(−|x|2), |x| ≥ 2R,

Ω ⊂ Bn(0;R),

(2.201)

for some R > 0, (2.199) can be written as follows

Φ±(x, ξ) = Φ0(x, ξ)−
∫
Rn
w(x)Gn

(
|ξ|2 ± i0;x, y

)
w(y)

q(y)

w2(y)
Φ±(y, ξ) d3y,

(x, ξ) ∈ R2n,

(2.202)

where

Φ±(x, ξ) := w(x)φ±(x, ξ), Φ0(x, ξ) := w(x)eiξ·x, (x, ξ) ∈ R2n. (2.203)

In this form (2.202) becomes an integral equation in L2(Rn) since Φ0( · , ξ) ∈ L2(Rn).

In fact, (2.202) will be viewed in L2(Rn) as

Φ±( · , ξ) = Φ0( · , ξ) +K±(ξ)Mq/w2Φ±( · , ξ), ξ ∈ Rn, (2.204)

or equivalently, as

[IL2(Rn,dnx) −K±(ξ)Mq/w2 ]Φ±( · , ξ) = Φ0( · , ξ), ξ ∈ Rn, (2.205)

where we introduced the Birman–Schwinger-type operator K±(ξ), ξ ∈ Rn, in L2(Rn),

K±(ξ) ∈ B
(
L2(Rn)

)
,
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(K±(ξ)f)(x) := −
∫
Rn
w(x)Gn

(
|ξ|2 ± i0;x, y

)
w(y)f(y, ξ) dny, (2.206)

f ∈ L2(Rn), (x, ξ) ∈ R2n,

and the operator of multiplication by the function q/w2, Mq/w2 in L2(Rn),

Mq/w2 ∈ B
(
L2(Rn)

)
, (Mq/w2f)(x) := q(x)w(x)−2f(x), f ∈ L2(Rn), x ∈ Rn.

(2.207)

One recalls from [157, Sect. V.4] for n = 3 and [65] for n ≥ 3 (the case n = 2 being

analogous) that

‖K±(ξ)‖B(L2(Rn)) −→
|ξ|→∞

0, (2.208)

and hence,

‖Φ±( · , ξ)− Φ0( · , ξ)‖L2(Rn)

=
∥∥ (IL2(Rn) − (IL2(Rn) −K±(ξ)Mq/w2))−1

)
Φ0( · , ξ)

∥∥
L2(Rn)

≤ ‖w(·)‖L2(Rn)

∥∥IL2(Rn) − (IL2(Rn) −K±(ξ)Mq/w2))−1
∥∥
B(L2(Rn))

=
|ξ|→∞

o(1), (2.209)

implying,

‖Φ±( · , ξ)‖L2(Rn) =
|ξ|→∞

O(1), (2.210)

and hence (2.197).

In the special case n = 3, where

G3(z;x, y) = (4π|x− y|)−1eiz
1/2|x−y|, Im

(
z1/2

)
≥ 0, x, y ∈ R3, x 6= y, (2.211)

one can easily go one step further: Using the Cauchy–Schwarz inequality, (2.210),

and the fact that q has compact support, one estimates the second term in (2.202) as

55



follows,∣∣∣∣ ∫
R3

w(x)e±i|ξ||x−y|w(y)

4π|x− y|
q(y)

w2(y)
Φ±(y, ξ) d3y

∣∣∣∣
≤ (4π)−1w(x)

∫
supp(q)

w(y)

|x− y|
q(y)

w2(y)
|Φ±(y, ξ)| d3y

≤ (4π)−1w(x)‖qw−2‖L∞(R3)

(∫
supp(q)

w2(y)

|x− y|2
dny

)1/2

‖Φ±( · , ξ)‖L2(R3)

=
|ξ|→∞

w(x)O(1), x ∈ R3, (2.212)

with the O(1)-term bounded uniformly in (x, ξ) ∈ R6. Combining (2.203), (2.204),

and (2.212) one obtains

sup
x∈R3

|φ±(x, ξ)| =
|ξ|→∞

O(1), (2.213)

proving (2.196) since φ± is continuous on R6 (see, e.g., [94, Sect. 4], [163, Sect. 3]).

�

Example 2.28. Assume that n ∈ N, a = In, b ∈
[
W 1,∞(Rn)

]n
, supp(b) compact,

0 ≤ q ∈ L∞(Rn), supp(q) compact. In addition, suppose that zero is neither an

eigenvalue nor a resonance of Ã2(In, b, q) (cf. [63]). Then Hypothesis 2.19 holds.

We start verifying this claim by noting that under these assumptions on a, b, q,

Ã2(In, b, q) has empty singular continuous spectrum and no strictly positive eigenval-

ues, see, for instance, Erdogan, Goldberg, and Schlag [62], [63], Ikebe and Saitō [95],

(see also, [7], [16], [64], [71], [107], [159]); in particular, the analog of (2.195) holds

for Ã2(In, b, q).

Next, we recall the unperturbed operator H0 := −∆, dom(H0) = W 2,2(Rn), and

introduce the first-order perturbation term,

L1f = 2i
n∑
k=1

bk∂kf + (i div(b) + |b|2 + q)f, f ∈ dom(L1) = W 1,2(Rn). (2.214)
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We denote the distorted plane waves associated with Ã2(In, b, q) by φ( · , · ), and

abbreviate

φ0(x, ξ) := eiξ·x, (x, ξ) ∈ R2n. (2.215)

In the following we will show that

sup
ξ∈Rn
‖φ( · , ξ)‖L2(Ω) <∞. (2.216)

To this end, we employ [63, Theorem 1.2] (see also [62, Theorem 2]) with α = 0,

σ = 1 and infer

K := sup
|ξ|≥0

(
〈|ξ|〉

∥∥〈 · 〉−2
(
Ã2(In, b, q)− (|ξ|2 ± i0)

)−1〈 · 〉−2
∥∥
B(L2(Rn))

)
<∞, (2.217)

abbreviating 〈 · 〉 :=
[
1 + ( · )2

]1/2
.

The distorted plane wave φ( · , · ) can again be chosen as one of φ+( · , · ) or φ−( · , · )

and be decomposed in the form

φ±(x, ξ) = φ0(x, ξ) + ψ±(x, ξ), (x, ξ) ∈ R2n, (2.218)

where

ψ±(x, ξ) := −
((
Ã2(In, b, q)− (|ξ|2 ± i0)

)−1
(L1φ0)

)
(x, ξ), (x, ξ) ∈ R2n. (2.219)

(In this context we recall that

|ξ|2φ±(x, ξ) =
(
Ã2(In, b, q)φ±

)
(x, ξ)

= |ξ|2φ0(x, ξ) + (L1φ0)(x, ξ) +
(
Ã2(In, b, q)ψ±

)
(x, ξ),

(2.220)

or equivalently,

−(L1φ0)(x, ξ) =
((
Ã2(In, b, q))− |ξ|2

)
ψ±
)
(x, ξ), (2.221)

in the sense of distributions, illustrating (2.219).)
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One then infers

‖ψ±( · , ξ)‖L2(Ω)

=
∥∥χΩ〈 · 〉2〈 · 〉−2

(
Ã2(In, b, q)− (|ξ|2 ± i0)

)−1〈 · 〉−2〈 · 〉2(L1φ0)
∥∥
L2(Rn)

≤
∥∥χΩ〈 · 〉2

∥∥
L∞(Rn)

∥∥〈 · 〉−2
(
Ã2(In, b, q)− (|ξ|2 ± i0)

)−1〈 · 〉−2
∥∥
B(L2(Rn))

×
∥∥〈 · 〉2(L1φ0)

∥∥
L2(Rn)

. (2.222)

Employing (2.217), the fact that Ω is bounded, and that the coefficients of L1 have

compact support (cf. (2.214)), one concludes

∥∥〈 · 〉−2
(
Ã2(In, b, q)− (|ξ|2 ± i0)

)−1〈 · 〉−2
∥∥
B(L2(Rn))

∥∥〈 · 〉2(L1φ0)
∥∥
L2(Rn)

≤ K〈 |ξ| 〉−1
∥∥〈 · 〉2φ0( · , ξ)

(
− 2b · ξ + i div(b) + |b|2 + q

)∥∥
L2(Rn)

≤ 2K|ξ|〈 |ξ| 〉−1
∥∥〈 · 〉2b∥∥

[L2(Rn)]n
+K〈 |ξ| 〉−1

∥∥〈 · 〉2 (i div(b) + |b|2 + q
) ∥∥

L2(Rn)

=
|ξ|→∞

O(1). (2.223)

Combining (2.222) and (2.223) one obtains the required estimate (2.216). �
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Chapter 3

The Maslov index and the spectra
of second order elliptic operators

3.1 Introduction

This chapter intertwines three major themes: (1) Relations between the spectral

flow for a family of linear elliptic differential operators and the Maslov index of a

path of Lagrangian planes formed by the abstract traces of solutions of respective

homogeneous partial differential equations; (2) Relations between the Morse index

and the Maslov index in the context of Lagrangian planes given by standard PDE

traces of weak solutions of the homogeneous equations; (3) Relations between the

self-adjoint extensions of abstract symmetric operators and the Lagrangian planes

defined by means of boundary triples.

The first topic is motivated by the celebrated Atiyah–Patodi–Singer index theorem

[12, 13], and goes back to the classical works [42, 133, 143]. In particular, great

progress has been recently made in calculations of the spectral flow via the Maslov

index, [29, 34, 35, 36, 106, 70, 153]. Here, the spectral flow is the net count of the

eigenvalues of a family of self-adjoint differential operators that move through a given

value of the spectral parameter, and the Maslov index is a topological invariant that
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counts the signed number of intersections of paths in the space of Lagrangian planes

[5, 6, 83, 126]. The second topic has its roots in the classical Morse–Smale-type

theorems, see [1, 28, 53, 48, 59, 131]. It is of great interest in stability theory for

multidimensional patterns for reaction-diffusion equations, see [104, 57]. In recent

years the relation between the Morse index (the number of unstable eigenvalues) and

the Maslov index has attracted much attention, see [50, 51, 52, 57, 91, 92, 93, 97, 98,

116, 136]. These results can be viewed as a far reaching generalization of the classical

Sturm Theorems for ODE’s and systems of ODE’s, cf. [28, 5, 6], Courant’s nodal

domain theorem [49], and more recent results in [69]. The third topic is originated

in the Birman–Krein–Vishik theory of self-adjoint extensions of symmetric operators,

see a modern exposition in [3, 86], and also in the theory of the abstract boundary

triples, see [82, 108]. A critical series of results in this direction is that the self-adjoint

extensions of a symmetric operator can be parametrized by Lagrangian planes in some

abstract boundary spaces. We note that although the Lagrangian language is not used

in [30, 38, 31, 82] one can easily see an equivalent Lagrangian reformulation of the

results contained therein [135]. Summarizing, one can say that the connection between

self-adjoint extensions and Lagrangian planes resulted in various formulas relating the

spectral flow and the Maslov index of paths of Lagrangian planes formed by strong

traces of solutions to elliptic PDE’s, see [34, 35, 36]. In contrast, the Lagrangian

planes considered in [57, 50, 51, 52] are formed by the weak traces of weak solutions

to second order elliptic PDE’s. Our main contribution is in tying together all three

topics discussed above.

Our work is motivated by that of J. Deng and C. K. R. T. Jones [57] who proposed
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to compute the Morse index of the Schrödinger operator L = −∆+V on a star-shaped

domain Ω by scaling it, and counting negative eigenvalues of L via the conjugate points

defined by intersections of certain paths of Lagrangian planes in the PDE boundary

space H1/2(∂Ω) × H−1/2(∂Ω). The paths are formed by the boundary data of the

weak solutions to the equation Lu−λu = 0, λ ∈ R, u ∈ H1(Ω), and by the subspaces

of H1/2(∂Ω)×H−1/2(∂Ω) corresponding to the boundary conditions. This approach

leads to a natural generalization of the Smale Theorem for Schrödinger operators with

Robin-type boundary conditions, cf. [50]. Further advances of this idea appeared

in subsequent works: Significantly more general domain variations are considered

in [51, 52], the Schrödinger operators with non-separated boundary conditions are

considered in [97, 98, 116, 91], the one dimensional Schrödinger operators defined on

R are considered in [92, 93].

While all these papers deal with specific boundary value problems, most of them

may be viewed through the prism of abstract theory of self-adjoint extensions of

symmetric operators. In a different context, the work in the latter direction was

initiated in the foundational paper [29], where the following setup was used: Let

S ⊂ S∗ be a symmetric operator acting in a Hilbert space H, and {Vt}βt=α be a

continuous family of bounded self-adjoint operators acting in H. Let us suppose that

SD , dom(SD) = D , is a self-adjoint extension of S having compact resolvent. Then

Υt := ker(S∗ + Vt)/ dom(S), t ∈ [α, β], and D/ dom(S) are Lagrangian planes in the

quotient space HS := dom(S∗)/ dom(S) with respect to the natural symplectic form

ω([x], [y]) = 〈S∗x, y〉H − 〈x, S∗y〉H, [x], [y] ∈ dom(S∗)/ dom(S). (3.1)

It is shown in [29] that the spectral flow of {SD +Vt}βt=α is equal to the Maslov index
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of the path Υt, t ∈ [α, β], with respect to the reference plane D/ dom(S). We notice

that the operator S gives rise not only to the one-parameter family {SD +Vt}βt=α but

also to the symplectic Hilbert space HS itself. Therefore, the scheme is not suited for

a parameter dependent family {St}βt=α in place of a single operator S. However, the

subsequent manuscripts [34], [35], [36] suggest an elegant way out of this issue. Let

us consider a family {St}βt=α of symmetric operators with a fixed domain, and fix an

intermediate space DM ⊂ H such that

dom(St) ≡ dom(Sα) ⊂ DM ⊂ dom(S∗t ) ⊂ H, t ∈ [α, β]. (3.2)

We will now consider only those self-adjoint extensions of St whose domains are

subsets of the fixed subspace DM . Under these assumptions [36] proves the equality

of the spectral flow for the family of self-adjoint extensions of St, and the Maslov

index defined by means of the quotient space DM/ dom(Sα).

The techniques developed in [36] cover elliptic operators of order d ∈ N with DM

being equal to the Sobolev space of degree d. In particular, letting d = 2 we consider

now a family {St}βt=α of second order uniformly elliptic operators on a smooth domain

Ω ⊂ Rn. Then [36] yields the equality between the spectral flow of the self-adjoint

extensions of St with domains containing in DM = H2(Ω) and the Maslov index of

the corresponding paths of Lagrangian planes.

The purpose of our work in this chapter is threefold. First, we will reduce the

regularity assumption and consider the self-adjoint extensions of second order elliptic

operators St with domains containing in H1(Ω). To illuminate the importance of

this improvement we recall that many differential operators of interest in mathemat-

ical physics, spectral geometry, and partial differential equations are defined via first
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order sesquilinear forms with the help of Lax–Milgram Theorem. This procedure a

priori leads to self-adjoint operators with domains contained in H1(Ω). The higher

H2(Ω)−regularity is a subtle issue and depends not only on coefficients of the dif-

ferential operators but also on geometric characteristics of ∂Ω. Thus the assumption

that the domains of self-adjoint extensions of St belongs to H1(Ω) is quite natural.

The main technical obstacle preventing from passing from H2− to H1− regularity is

that the natural candidate for DM from (3.2) is given by the subspace

{u ∈ H1(Ω) : Stu ∈ L2(Ω)}, (3.3)

and thus varies together with parameter t (if H1(Ω) here is replaced by H2(Ω) then

Stu ∈ L2(Ω) holds automatically). To overcome this difficulty we map the family of

subspaces (3.3) into a fixed Hilbert space H1/2(∂Ω)×H−1/2(∂Ω) using the usual PDE

trace map consisting of the Dirichlet and Neumann trace operators.

This brings us to the second goal of this chapter. We will replace the quotient

space H1(Ω)/H2
0 (Ω) used in [34, 35, 36] by the more conventional PDE boundary

space H1/2(∂Ω) × H−1/2(∂Ω) of distributions on the boundary. We stress that the

two-component trace map consisting of the Dirichlet and Neumann trace operators

is not onto when considered as a map from H1(Ω) into H1/2(∂Ω) × H−1/2(∂Ω), cf.

Proposition 3.11. Moreover, the quotient space H1(Ω)/H2
0 (Ω) is not symplectomor-

phic to the boundary space H1/2(∂Ω) ×H−1/2(∂Ω). Nevertheless, we show how one

can bypass the quotient spaces and instead work directly in H1/2(∂Ω)×H−1/2(∂Ω).

And, finally, our third goal is to analyze the variation of spectra of differential oper-

ators with respect to geometric deformations of the domain Ω.

Employing the approach outlined above we derive the spectral count formulas in a
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very general setting. In particular, it at once covers the following known cases: The

Schrödinger operators with non-local Robin-type boundary conditions on star-shaped

domains Ω ⊂ Rn, n ≥ 2, as in [50], the Schrödinger operators with ~θ−periodic bound-

ary conditions on the unit cell Q, as in [116], the second order elliptic operators with

Dirichlet and Neumann boundary conditions defined by means of a one-parameter

family of diffeomorophic domains {Ωt}βt=α, as in [51, 52].

The chapter is organized as follows. Section 3.2 provides the one-to-one corre-

spondence between the self-adjoint extensions of Lmin, with the domains contained

in H1(Ω), and Lagrangian planes in H1/2(∂Ω)×H−1/2(∂Ω). In Section 3.3 we derive

a general formula relating the Maslov and Morse indices for the second order elliptic

operators subject to self-adjoint boundary conditions on smooth domains. The appli-

cations of the general result are illustrated for three topics: the spectral flow formula,

the spectral count in the context of geometric deformations, and the Smale-type the-

orem for Robin boundary conditions. In Section 3.4 we deal with the Maslov–Morse

type formulas for the Schrödinger operators with matrix-valued potentials subject

to self-adjoint boundary conditions on Lipschitz domains. In particular, we consider

~θ−periodic and non-local Robin-type boundary conditions. Finally, in Section 3.5 we

discuss the abstract boundary triples [30, 31, 38, 82] in the context of the quotient

spaces introduced in [29].

To conclude, we summarize the notation used in this chapter. The scalar product in

a complex Hilbert spaceH is denoted by 〈·, ·〉H. Spec(S), Specess(S), Specd(S) denote

the spectrum, the essential spectrum, the discrete spectrum of a closed operator S

correspondingly. The number of negative eigenvalues of S is denoted by Mor(S). If
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G ⊂ H then GH denotes the closure of G with respect to the norm of H. The range

of an operator S acting from a Banach space X into a Banach space Y is denoted

by ran(S) ⊂ Y , the kernel of S is denoted by ker(S) ⊂ X . The space of bounded

operators acting from X to Y is denoted by B(X ,Y), the space of compact operators

is denoted by B∞(X ,Y). If Ω ⊂ Rn, then D(Ω) denotes the space of test functions

C∞0 (Ω) equipped with the standard inductive limit topology, D′(Ω) denotes the dual

space, the paring between D(Ω) and D′(Ω) is denoted by D(Ω)〈·, ·〉D′(Ω). Duality

pairing between H1/2(∂Ω) and H−1/2(∂Ω) is denoted by 〈·, ·〉−1/2.

3.2 Self-adjoint extensions and Lagrangian planes

In this section we focus on the one-to-one correspondence between self-adjoint exten-

sions of second order elliptic operators on bounded domains in Rn and Lagrangian

subspaces in H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm).

3.2.1 Assumptions

In this subsection we state our main assumptions and recall some known facts re-

garding partial differential operators on Lipschitz domains.

Hypothesis 3.1. Let n ∈ N, n ≥ 2 and assume that Ω ⊂ Rn is a bounded Lipschitz

domain.

To set the stage, we introduce a formally self-adjoint differential expression

L := −
n∑

j,k=1

∂jAjk∂k +
n∑
j=1

Aj∂j − ∂jAj
>

+ A, (3.4)

where bar means complex conjugation, > means matrix transposition, and the coef-

ficients satisfy the following standard assumptions, see, e.g., [125, Chapter 4].
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Hypothesis 3.2. Let Ω ⊂ Rn be a bounded open set, and assume that

Ajk =
{
ajkpq
}m
p,q=1

∈ L∞(Ω,Cm×m), Ajk = Ajk
>
, 1 ≤ j, k ≤ n,

Aj =
{
ajpq
}m
p,q=1

∈ L∞(Ω,Cm×m), 1 ≤ j ≤ n,

Ajk, Aj are Lipschitz functions on Ω, 1 ≤ j, k ≤ n,

A =
{
apq
}m
p,q=1

∈ L∞(Ω,Cm×m), A = A
>
.

The differential expression L acts on a vector-valued function u ∈ C∞(Ω,Cm) as

follows

(
(Lu)(x)

)
p

= −
n∑

j,k=1

m∑
q=1

∂j{ajkpq(x)∂kuq(x)}+
n∑
j=1

m∑
q=1

ajpq(x)∂juq(x) (3.5)

−
m∑
q=1

∂j{ajqp(x)uq(x)}+
m∑
q=1

apq(x)uq(x), a.e. x ∈ Ω, 1 ≤ p ≤ m, (3.6)

where (v)p denotes the p−th coordinate of a vector v ∈ Cm. The sesquilinear form

associated with L is given by

l[u, v] =
n∑

j,k=1

〈Ajk∂ku, ∂jv〉L2(Ω,Cm) +
n∑
j=1

〈Aj∂ju, v〉L2(Ω,Cm)

+
n∑
j=1

〈u,Aj∂jv〉L2(Ω,Cm) + 〈Au, v〉L2(Ω,Cm), u, v ∈ H1(Ω,Cm).

(3.7)

We seek to establish a one-to-one correspondence between self-adjoint extensions of

L : C∞0 (Ω,Cm) ⊂ L2(Ω,Cm)→ L2(Ω,Cm) and Lagrangian planes in H1/2(∂Ω,Cm)×

H−1/2(∂Ω,Cm) employing the second Green identity. To this end, we recall that by

the standard trace theorem (cf., e.g., [125, Theorem 3.38]) the linear mapping

γ0
D : C(Ω,Cm)→ C(∂Ω,Cm), γ0

Du = u|∂Ω
, (3.8)

can be extended by continuity and considered as a linear bounded operator,

γ
D
∈ B(Hs(Ω,Cm), H(s− 1

2
)(∂Ω,Cm)), 1/2 < s < 3/2; (3.9)
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in addition (cf. [78, Lemma A.4]),

γ
D
∈ B(H(3/2)+ε(Ω,Cm), H1(∂Ω,Cm)), ε > 0. (3.10)

The conormal derivative corresponding to the differential expression L is given by

γL,2
N
u :=

n∑
j,k=1

AjkνjγD(∂ku) +
n∑
j=1

Aj
>
νjγDu, u ∈ H2(Ω,Cm), (3.11)

with ν = (ν1, · · · , νn) denoting the outward unit normal on ∂Ω. Setting ε = 1/2 in

(3.10) and using (3.11), we introduce the trace map

trL,2 :

{
H2(Ω,Cm)→ H1(∂Ω,Cm)× L2(∂Ω,Cm),

u 7→ (γ
D
u, γL,2

N
).

(3.12)

Also, we introduce the function space

Ds
L(Ω) := {u ∈ Hs(Ω,Cm) : Lu ∈ L2(Ω,Cm)}, s ≥ 0, (3.13)

equipped with the graph norm of L,

‖u‖L,s :=
(
‖u‖2

Hs(Ω,Cm) + ‖Lu‖2
L2(Ω,Cm)

)1/2

, (3.14)

where Lu should be understood in the sense of distributions. Next, we recall the

extension of trL,2 defined on D1
L(Ω) and the first and second Green identities.

Proposition 3.3. [125, Lemma 4.3] Assume Hypothesis 3.1. Then the operator

γL,2
N

: H2(Ω,Cm)→ L2(∂Ω,Cm), u ∈ H2(Ω,Cm), (3.15)

can be extended to a bounded, linear operator γLN ∈ B
(
D1
L(Ω), H−1/2(∂Ω,Cm)

)
. More-

over, the first Green identity holds, that is,

l[u, v] = 〈Lu, v〉L2(Ω,Cm) + 〈γL
N
u, γ

D
v〉−1/2, (3.16)

for all u ∈ D1
L(Ω), v ∈ H1(Ω,Cm).
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Proposition 3.4. [125, Theorem 4.4 (iii)] Assume Hypothesis 3.1. Then the second

Green identity holds, that is,

〈Lu, v〉L2(Ω,Cm) − 〈u,Lv〉L2(Ω,Cm) = 〈γL
N
v, γ

D
u〉−1/2

− 〈γL
N
u, γ

D
v〉−1/2, (3.17)

for all u, v ∈ D1
L(Ω).

The trace operator

trL ∈ B
(
D1
L(Ω), H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)

)
, trL : u 7→ (γ

D
u, γL

N
u), (3.18)

is compatible with (3.12). We will frequently use the fact that

ker{trL} ∩ {u ∈ H1(Ω) : Lu = 0 in (H1
0 (Ω))∗} = {0}, (3.19)

which follows from the unique continuation principle, [96, Theorem 3.2.2]. Next we

turn to the symmetric operator acting in L2(Ω,Cm) and associated with differential

expression (3.4).

Proposition 3.5. Assume Hypotheses 3.1 and 3.2. Then the linear operator defined

by

Lf := Lf, f ∈ dom(L) := C∞0 (Ω), (3.20)

and considered in L2(Ω,Cm) is closable. Its closure Lmin is densely defined symmetric

operator in L2(Ω,Cm). Moreover, the linear operator acting in L2(Ω,Cm) and given

by

Lmaxu := Lu, u ∈ dom(Lmax) := {u ∈ L2(Ω,Cm) : Lu ∈ L2(Ω,Cm)}, (3.21)

(where Lu is defined is the sense of distributions) is adjoint to Lmin, i.e.,

(Lmin)∗ = Lmax. (3.22)
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Proof. Using the second Green identity (3.17) with arbitrary u, v ∈ C∞0 (Ω) and notic-

ing that trL u = trL v = 0 we arrive at

〈Lu, v〉L2(Ω,Cm) = 〈u,Lv〉L2(Ω,Cm), for all u, v ∈ dom(L). (3.23)

Hence, L ⊂ L∗ that is L is symmetric in L2(Ω,Cm), consequently it is closable.

Next, we turn to (3.22). Let us show (Lmin)∗ ⊂ Lmax. Pick any f ∈ dom ((Lmin)∗),

then g = (Lmin)∗f ∈ L2(Ω,Cm), and for arbitrary ψ ∈ C∞0 (Ω) ⊂ dom (Lmin) one has

D(Ω)〈ψ,Lf〉D′(Ω) = 〈Lψ, f〉L2(Ω,Cm) = 〈ψ, g〉L2(Ω,Cm). (3.24)

Therefore, g = Lf in distributional sense and Lf ∈ L2(Ω,Cm) as required. In order

to show the opposite inclusion we notice that

〈Lϕ, g〉L2(Ω,Cm) = 〈ϕ,Lg〉L2(Ω,Cm), for all ϕ ∈ C∞0 (Ω), g ∈ dom(Lmax). (3.25)

Whenever f ∈ dom(Lmin), there exists a sequence {ϕ`, ` ≥ 1} ⊂ C∞0 (Ω) = dom(L),

such that

lim
`→∞

ϕ` = f and lim
`→∞
Lϕ` = Lf (in L2(Ω,Cm)). (3.26)

Plugging ϕ` in (3.25) and passing to limit as `→∞, one obtains

〈Lf, g〉L2(Ω,Cm) = 〈f,Lg〉L2(Ω,Cm), for all f ∈ dom(Lmin), g ∈ dom(Lmax). (3.27)

Thus, Lmax ⊂ (Lmin)∗, and the proof is completed.

Hypothesis 3.6. Assume Hypotheses 3.1 and 3.2. Suppose that the deficiency indices

of Lmin are equal, that is,

dim ker(Lmax − i) = dim ker(Lmax + i),

where both indices could be infinite. In addition:
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(i) assume that ran(trL) is dense in H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm),

(ii) assume that D1
L(Ω) is dense in D0

L(Ω).

Remark 3.7. In the sequel we consider two special cases, see Section 3.3 and 3.4

respectively. In the first case, the coefficients Ajk, Aj, A of the uniformly elliptic op-

erator L from (3.4) are scalar-valued and defined on domains with smooth boundary,

cf. Hypothesis 3.16 below. In this scenario both parts of Hypothesis 3.6 are satisfied.

Indeed, by [84, Proposition 2.1], [31, Section 4.3], one has

ran(trL,2) = H3/2(∂Ω)×H1/2(∂Ω),

and the right-hand side is dense in H1/2(∂Ω) × H−1/2(∂Ω). Furthermore, by [84,

Theorem 3.2], H2(Ω) is dense in DsL(Ω), s < 2, hence D1
L(Ω) is dense in D0

L(Ω). In

the second case, the coefficients are given by Ajk = δjkIm, where δjk denotes the

Kronecker delta, Aj = 0n, 1 ≤ j, k ≤ n, and A = V , that is, we deal with the

Schrödinger operator L = −∆ + V with a matrix potential, cf. Section 3.4. The

domain Ω in this case is assumed to be Lipschitz. Then, using auxiliary spaces of

distributions on ∂Ω, cf. [78], we show in Proposition 3.23 that both (i) and (ii) from

the Hypothesis 3.6 are verified. While a detailed analysis of Hypothesis 3.6 is of

independent interest (cf., e.g., [39], [60], [80], [77], [78]) and barely touched upon in

the present work, we stress that in all our applications the assumptions of Hypothesis

3.6 are satisfied.
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3.2.2 The Lagrangian planes and the self-adjoint extensions
of differential operators

Let us introduce the following complex symplectic bilinear form

ω : H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)→ C× C,

ω((f1, g1), (f2, g2)) = 〈g2, f1〉−1/2 − 〈g1, f2〉−1/2,

(f1, g1), (f2, g2) ∈ H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm).

(3.28)

Then the second Green identity (3.17) reads as follows

〈Lu, v〉L2(Ω,Cm) − 〈u,Lv〉L2(Ω,Cm) = ω
(
(γ

D
u, γL

N
u), (γ

D
v, γL

N
v)
)
, (3.29)

for all u, v ∈ D1
L(Ω). We recall that the annihilator of

F ⊂ H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)

is defined by

F◦ := {(f, g) ∈ H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)|

ω((f, g), (φ, ψ)) = 0, for all (φ, ψ) ∈ F}.

The subspace F is said to be isotropic if F ⊂ F◦, co-isotropic if F◦ ⊂ F , F is

called Lagrangian if it is simultaneously isotropic and co-isotropic. Furthermore, F

is Lagrangian if and only if it is maximally isotropic, cf., e.g., [70].

The principal goal of this section is to identify self-adjoint extensions of Lmin,

whose domains are subsets of H1(Ω,Cm), with the Lagrangian subspaces in

H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm) as described in the next theorem. We recall notation

(3.18).
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Theorem 3.8. Assume Hypothesis 3.6. Then the self-adjoint extensions of Lmin

whose domains are contained in H1(Ω) are in one-to-one correspondence with La-

grangian planes in H1/2(∂Ω,Cm) ×H−1/2(∂Ω,Cm), that is, the following two asser-

tions hold.

1. Let D ⊂ D1
L(Ω), and let LD be the linear operator acting in L2(Ω,Cm) and

given by the formula

LDf := Lmaxf, f ∈ dom(LD) := D . (3.30)

If LD is self-adjoint then the set

GD := trL(D)
H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)

(3.31)

is a Lagrangian plane in H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm) with respect to the symplectic

form ω defined in (3.28).

2. A Lagrangian plane G ⊂ H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm) defines a self-adjoint

extension of Lmin. Namely, the linear operator Ltr−1
L (G) acting in L2(Ω) and given by

the formula

Ltr−1
L (G)f := Lmaxf, f ∈ dom

(
Ltr−1

L (G)

)
:= tr−1

L (G), (3.32)

is essentially self-adjoint; here tr−1
L (G) denotes the preimage of G, that is,

tr−1
L (G) := {u ∈ DL(Ω) : trL u ∈ G}.

Proof. Part 1. In order to show that GD is isotropic we employ the second Green

identity (3.17): For arbitrary pairs (γ
D
u, γL

N
u) ∈ GD , (γ

D
v, γL

N
v) ∈ GD one has

ω
(
(γ

D
u, γL

N
u), (γ

D
v, γL

N
v)
)

= 〈γL
N
v, γ

D
u〉−1/2

− 〈γL
N
u, γ

D
v〉−1/2

= 〈Lu, v〉L2(Ω) − 〈u,Lv〉L2(Ω) = 0,

(3.33)
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where the latter equality follows since LD is symmetric. Next, we show maximality

of the isotropic subspace GD , that is, that

G◦D ⊂ GD . (3.34)

To this end, we shall establish an intermediate inclusion

G◦D ∩ trL(D1
L(Ω)) ⊂ GD . (3.35)

Indeed, if (f, g) ∈ G◦D ∩ trL (D1
L(Ω)) then

(f, g) =
(
γ
D
u0, γ

L
N
u0

)
, for some u0 ∈ D1

L(Ω), (3.36)

and

ω
(
(γ

D
u0, γ

L
N
u0), (γ

D
v, γL

N
v)
)

= 0, for all v ∈ D . (3.37)

On the other hand, using the second Green identity (3.17) with u = u0 and v ∈ D ,

one has

〈Lu0, v〉L2(Ω,Cm) − 〈u0,Lv〉L2(Ω,Cm) = ω
(
(γ

D
u0, γ

L
N
u0), (γ

D
v, γL

N
v)
)
. (3.38)

Hence,

〈Lu0, v〉L2(Ω) = 〈u0,Lv〉L2(Ω), for all v ∈ D , (3.39)

and therefore,

u0 ∈ dom ((LD)∗) = dom(LD), (3.40)

since LD is self-adjoint by the assumption. Finally, using (3.36) and inclusion (3.40),

one infers (f, g) ∈ GD and completes the proof of assertion (2.138). Next we prove

inclusion (3.34). Employing (2.138) and the standard properties of annihilator, we

obtain

G◦D ⊂ GD + {trL(D1
L(Ω))}◦

H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)
. (3.41)
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But {
trL(D1

L(Ω))
}◦

= {(0, 0)}, (3.42)

since by the assumption (i) in Hypothesis 3.6 the set trL(D1
L(Ω))) is dense in

H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm). Hence, the proof of part 1 is completed.

Part 2. Following [29, Section 3.1] we introduce the space of abstract boundary

values HL := dom(Lmax)/ dom(Lmin) equipped with the norm

‖[x]‖HL := inf{‖x+ f‖L,0 : f ∈ dom(Lmin)}, (3.43)

where [x] is the equivalence class of x ∈ dom(Lmax) and ‖ · ‖L,0 is the graph norm

from (3.14). We define the symplectic form on HL by the formula

ω̃([x], [y]) := 〈Lmaxx, y〉L2(Ω,Cm) − 〈x,Lmaxy〉L2(Ω,Cm),

for all [x], [y] ∈ dom(Lmax)/ dom(Lmin).

(3.44)

Now we are ready to proceed with the proof of Part 2. Let DG := tr−1(G). By [29,

Lemma 3.3 (b)], it suffices to show that the closure of the subspace

[DG] := {[x] : x ∈ DG}, (3.45)

is Lagrangian in HL with respect to ω̃. Denoting the annihilator of [DG] by [DG]◦, we

notice that

[DG] ⊂ [DG]◦, (3.46)

hence, the subspace is isotropic. In order to show the maximality of the closure of

[DG], we will show that [DG]◦ ⊂ [DG]. First, we will obtain an auxiliary inclusion

[DG]◦ ∩ [D1
L(Ω)] ⊂ [DG]. (3.47)

Starting the proof of (3.47) we notice that, if [u0] ∈ [DG]◦ ∩ [D1
L(Ω)] then

ω̃ ([u0], [v]) = 0, for all [v] ∈ [DG], (3.48)
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that is,

〈Lmaxu0, v〉L2(Ω,Cm) − 〈u0,Lmaxv〉L2(Ω,Cm) = 0, for all [v] ∈ [DG]. (3.49)

Since [u0] ∈ [D1
L(Ω)], the trace map trL is well defined on u0 and (γ

D
u0, γ

L
N
u0) ∈

H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm). Hence, by the second Green identity, one has

〈Lmaxu0, v〉L2(Ω) − 〈u0,Lmaxv〉L2(Ω,Cm)

= 〈γL
N
v, γ

D
u0〉−1/2

− 〈γL
N
u0, γDv〉−1/2 = 0,

(3.50)

for all [v] ∈ [DG]. Therefore

(
γ
D
u0, γ

L
N
u0

)
∈
(
G ∩ trL(D1

L(Ω))
)◦
. (3.51)

We claim that
(
G ∩ trL(D1

L(Ω))
)◦

= G. Indeed,

(
G ∩ trL(D1

L(Ω))
)◦

= G +
(

trL(D1
L(Ω))

)◦
= G + (0, 0) = G, (3.52)

where we used (3.42). Inclusion (3.51) together with (3.52) yield (γ
D
u0, γ

L
N
u0) ∈ G,

which in turn implies tr−1
L (u0) ∈ DG. Consequently (3.47) holds. Next, applying the

annihilator operator ◦ to (3.47), one obtains

[DG]◦ ⊂ [DG] + [D1
L(Ω)]

◦
. (3.53)

Since D1
L(Ω) is dense in D0

L(Ω) by Hypothesis 3.6 (ii), one has

[
D1
L(Ω)

]◦
= {[0]}. (3.54)

Combining (3.54) and (3.53) one obtains [DG]◦ ⊂ [DG] and thus the subspace [DG] is

Lagrangian as required.

We illustrate Theorem 3.8 by describing the Lagrangian planes associated with

the self-adjoint extensions of Lmin obtained by two standard PDE constructions.
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First, we consider the setup from [67, Chapter 7], cf. also [51]. Let X be a closed

subspace in H1(Ω,Cm) and assume that H1
0 (Ω,Cm) ⊂ X ⊂ H1(Ω,Cm). In addition,

suppose that the form

l : L2(Ω,Cm)× L2(Ω,Cm)→ C, dom(l) := X , (3.55)

is closed and bounded from below in L2(Ω,Cm). Then, by [61, Theorem 2.8], there

exists a unique self-adjoint operator LX acting in L2(Ω,Cm) such that

l[u, v] = 〈LXu, v〉L2(Ω,Cm) for all u ∈ dom(LX ), v ∈ X . (3.56)

The domain of LX is given by the formula

dom(LX ) := {u ∈ X :∃w ∈ L2(Ω) such that

〈w, v〉L2(Ω) = l[w, v] for all v ∈ X}.
(3.57)

This construction of the self-adjoint operator LX based on a choice of the subspace

X is quite standard [67, Chapter 7]. Theorem 3.8 offers an alternative construction

based on a choice of the Lagrangian subspace G. The two constructions are closely

related due to the following fact.

Proposition 3.9. Let

GX := {(f, g) ∈ H1/2(∂Ω)×H−1/2(∂Ω) :

f ∈ γ
D

(X ), 〈g, γ
D
w〉−1/2 = 0 for all w ∈ X}.

(3.58)

Then GX is a Lagrangian plane. Moreover, tr−1
L (GX ) is a core of LX .

Proof. The plane GX is Lagrangian by [51, Lemma 3.6]. It remains to show that

trL(dom(LX )) ⊂ GX . By the first Green identity (3.16), for each u ∈ D1
L(Ω), v ∈ X

we have

l[u, v] = 〈Lu, v〉L2(Ω,Cm) + 〈γL
N
u, γ

D
v〉−1/2. (3.59)
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Combining (3.56) and (3.59) we obtain

〈γL
N
u, γ

D
v〉−1/2 = 0 for all u ∈ dom(LX ), v ∈ H1(Ω,Cm). (3.60)

Using dom(LX ) ⊂ X and (3.60) we conclude that (γ
D
u, γL

N
u) ∈ GX if u ∈ dom(LX ),

as required.

Proposition 3.9 shows that the operator LX , defined in (3.57), (3.56), is associated

with the Lagrangian plane GX as indicated in Theorem 3.8. In particular, if X :=

H1
0 (Ω,Cm) then GX = {0} × H−1/2(∂Ω,Cm) and LX is equipped with the Dirichlet

boundary conditions. If X := H1(Ω,Cm) then GX = H1/2(∂Ω,Cm) × {0} and LX

corresponds to the Neumann boundary conditions.

Second, we consider the Schrödinger operator with Robin-type boundary condi-

tions in the context of Theorem 3.8. We will describe the Lagrangian plane corre-

sponding to the Robin Laplacian perturbed by a bounded potential. Then using the

Krein-type formula from [79] we will deduce the uniform resolvent convergence of

Schrödinger operators with Robin-type boundary conditions from the convergence of

the corresponding Lagrangian planes.

Let us recall from [79] the definition of the Robin Laplacian. Assume Hypothesis

3.1 and let aΘ be a closed sesquilinear form in the Hilbert space L2(∂Ω) with domain

H1/2(∂Ω)×H−1/2(∂Ω), bounded from below by cΘ. Let Θ ∈ B(H1/2(∂Ω), H−1/2(∂Ω))

be a unique bounded, self-adjoint (with respect to duality paring between H1/2(∂Ω)

and H−1/2(∂Ω), cf. [78, (B5)-(B9)]) operator associated with the form aΘ by means

of the Lax–Milgram Theorem as discussed in [78, 79]. Then the operator

−∆Θ = −∆; dom(−∆Θ) = {u ∈ H1(Ω)|∆u ∈ L2(Ω);

γ
N
u+ Θγ

D
u = 0 in H−1/2(Ω)},

(3.61)
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is self-adjoint in L2(Ω). Clearly, the Lagrangian space GΘ associated with the operator

−∆Θ by Theorem 3.8 is given by

GΘ = graph(−Θ) = {(f,−Θf)|f ∈ H1/2(∂Ω)}. (3.62)

Proposition 3.10. Assume Hypothesis 3.1. Let

Θn ∈ B(H1/2(∂Ω), H−1/2(∂Ω)), n ≥ 0,

be a sequence of bounded, self-adjoint operators (corresponding to closed, bounded

from below sesquilinear forms aΘn with domain H1/2(∂Ω)×H−1/2(∂Ω)), and denote

by −∆Θn , n ≥ 0, the corresponding sequence of self-adjoint Robin Laplacians defined

as in (3.61). Assume that V ∈ L∞(Ω) is a real-valued potential and let us denote

LΘn := −∆Θn + V , n ≥ 0. If

Θn → Θ0 as n→∞ in B(H1/2(∂Ω), H−1/2(∂Ω)), (3.63)

then (
LΘn − iIL2(Ω)

)−1 →
(
LΘ0 − iIL2(Ω)

)−1
, n→∞, (3.64)

in B(L2(Ω)).

Proof. First, we recall from [79, Theorem 4.4] that the resolvents
(
LΘn − iIL2(Ω)

)−1
,

n ≥ 0 originally considered in B(L2(Ω)) can be extended to operators in

B((H1(Ω))∗, (H1(Ω)). We denote the extensions by

R̃(i, LΘn) :=
(
L̃Θn − iĨL2(Ω)

)−1

∈ B((H1(Ω))∗, H1(Ω)), n ≥ 0, (3.65)

where ĨL2(Ω) denotes the continuous inclusion map of H1(Ω) into (H1(Ω))∗. Due to

the following chain of continuous embeddings,

H1(Ω) ↪→ L2(Ω) ↪→ (H1(Ω))∗, (3.66)
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one has, ∥∥∥(LΘn − iIL2(Ω)

)−1 −
(
LΘ0 − iIL2(Ω)

)−1
∥∥∥
B(L2(Ω))

≤
∥∥∥R̃(i, LΘn)− R̃(i, LΘ0)

∥∥∥
B((H1(Ω))∗,H1(Ω))

.
(3.67)

Hence, it suffices to show that the right-hand side of inequality (3.67) tends to 0

as n → ∞. The proof of this statement relies on the Krein-type formula valid on

(H1(Ω))∗, cf. [78, Lemma 5.2],

R̃(i, LΘn) = R̃(i, LΘ0) + R̃(i, LΘn)γ∗
D

(Θn −Θ0)γ
D
R̃(i, LΘ0), n ≥ 1. (3.68)

We will use (3.68) twice: first to obtain the uniform in n boundedness of R̃(i, LΘn),

that is,

sup
n≥1

∥∥∥R̃(i, LΘn)
∥∥∥
B((H1(Ω))∗,H1(Ω))

<∞, (3.69)

and, second, to prove the asserted convergence of the extended resolvents. The Krein-

type formula (3.68) yields

‖R̃(i, LΘn)‖B((H1(Ω))∗,H1(Ω)) − ‖R̃(i, LΘ0)‖B((H1(Ω))∗,H1(Ω))

≤ ‖R̃(i, LΘn)‖B((H1(Ω))∗,H1(Ω)) × ‖R̃(i, LΘ0)‖B((H1(Ω))∗,H1(Ω))

× ‖γ
D
‖2
B(H1(Ω),H1/2(∂Ω))‖Θn −Θ0‖B(H1/2(∂Ω),H−1/2(∂Ω)).

Therefore, for n large enough, one has

‖R̃(i, LΘn)‖B((H1(Ω))∗,H1(Ω)) ≤ ‖R̃(i, LΘ0)‖B((H1(Ω))∗,H1(Ω))

×
(

1− ‖γ
D
‖2
B(H1(Ω),H1/2(∂Ω))‖Θn −Θ0‖B(H1/2(∂Ω),H−1/2(∂Ω))

× ‖R̃(i, LΘ0)‖B((H1(Ω))∗,H1(Ω))

)−1

,

(3.70)

since ‖Θn−Θ0‖B(H1/2(∂Ω),H−1/2(∂Ω)) → 0 as n→∞. The expression in the right-hand
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side of (3.70) is well defined and bounded, hence, (3.69) holds. Formula (3.68) implies

‖R̃(i, LΘn)− R̃(i, LΘ0)‖B((H1(Ω))∗,H1(Ω))

≤ ‖R̃(i, LΘn)‖B((H1(Ω))∗,H1(Ω)) × ‖R̃(i, LΘ0)‖B((H1(Ω))∗,H1(Ω))

× ‖γ
D
‖2
B(H1(Ω),H1/2(∂Ω))‖Θn −Θ0‖B(H1/2(∂Ω),H−1/2(∂Ω)).

(3.71)

Finally, combining (3.63), (3.69), and (3.71), we obtain

∥∥∥R̃(i, LΘn)− R̃(i, LΘ0)
∥∥∥
B((H1(Ω))∗,H1(Ω))

→ 0, as n→∞, (3.72)

and thereby complete the proof.

We remark next that taking the closure in (3.31) is essential due to the next

proposition showing that trL is not onto in general. This amounts to the fact

that trL does not map domains of self-adjoint extensions into Lagrangian planes in

H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm), but only into their dense subsets.

Proposition 3.11. Let Ω ⊂ Rn, n ≥ 2 be an open, bounded domain with smooth

boundary. Then the map tr∆ corresponding to the Laplacian,

tr∆ := (γ
D
, γ

N
) : D1

∆(Ω)→ H1/2(∂Ω)×H−1/2(∂Ω), (3.73)

is not surjective.

Proof. We prove the assertion by contradiction. Suppose that tr∆ is surjective. Under

this assumption one can show that F := tr∆(H2(Ω) ∩H1
0 (Ω)) is a Lagrangian plane

in H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm). Indeed, F ⊂ F◦ since

ω(tr∆ u, tr∆ v) = 〈γ
N
v, γ

D
u〉−1/2 − 〈γNu, γDv〉−1/2 = 0,

for all u, v ∈ H2(Ω) ∩H1
0 (Ω).

(3.74)
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In order to prove F◦ ⊂ F , let us fix an arbitrary (f, g) ∈ F◦. Since tr∆ is assumed

to be surjective, there exists v0 ∈ D1
∆(Ω) such that tr∆(v0) = (f, g). Furthermore,

ω(tr∆ u, (f, g)) = ω (tr∆ u, tr∆ v0) = 0, for all u ∈ H2(Ω) ∩H1
0 (Ω). (3.75)

In addition, the second Green identity yields

〈−∆u, v0〉L2(Ω) − 〈u,−∆v0〉L2(Ω) = 〈γ
N
v0, γDu〉−1/2 − 〈γNu, γDv0〉−1/2. (3.76)

Combining (3.75) and (3.76), one obtains

〈−∆u, v0〉L2(Ω) − 〈u,−∆v0〉L2(Ω) = 0, for all u ∈ H2(Ω) ∩H1
0 (Ω). (3.77)

Let us recall that H2(Ω)∩H1
0 (Ω) is the domain of the Dirichlet Laplacian −∆D, which

is a self-adjoint operator in L2(Ω). Therefore, (3.77) leads to v0 ∈ H2(Ω) ∩ H1
0 (Ω),

which in turn implies tr∆ v0 = (f, g) ∈ F and F◦ ⊂ F . Finally, we arrive at F = F◦.

On the other hand,

F = tr∆

(
H2(Ω) ∩H1

0 (Ω)
)

= {0} ×H1/2(∂Ω). (3.78)

The set {0} × H1/2(∂Ω) is not closed in H1/2(∂Ω) × H−1/2(∂Ω), thus it is not La-

grangian. This contradiction completes the proof.

3.2.3 The Maslov index

We will now recall from [34], [35], [36], [37] a definition of the Maslov index of a path

of Lagrangian planes in a complex Hilbert space X relative to a reference plane. This

will require some preliminaries. Let ω be a symplectic form on X , i.e., we assume

that ω : X × X → C is a sesquilinear, bounded, skew-symmetric, non-degenerate

form. Then there exists a bounded operator J : X → X , such that

ω(u, v) = 〈Ju, v〉X , u, v ∈ X , (3.79)
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and

J2 = −IX , J∗ = −J. (3.80)

Moreover, X admits an orthogonal decomposition into direct sum of the eigenspaces

of the operator J , that is,

X = ker(J − iI)⊕ ker(J + iI). (3.81)

Therefore, the form −iω is positive definite on ker(J − iI), the form −iω is negative

definite on ker(J + iI), and ω(u, v) = 0 whenever u ∈ ker(J − iI), v ∈ ker(J + iI).

We denote the annihilator of a subset F ⊂ X by

F◦ := {u ∈ X : ω(u, v) = 0 for all v ∈ F}. (3.82)

The subspace F is called Lagrangian if F = F◦. The set of Lagrangian subspaces of

X is denoted by

Λ(X ) := {F ⊂ X : F is Lagrangian in X}. (3.83)

Following [36, Lemma 3], we notice that every Lagrangian plane F can be uniquely

represented as a graph of a bounded operator U ∈ B(ker(J + iIX ), ker(J − iIX )), i.e.,

one has

F = graph(U) := {y + Uy : y ∈ ker(J + iIX )}. (3.84)

That is, Uy ∈ ker(J − iIX ) is the unique vector satisfying y + Uy ∈ F for y ∈

ker(J + iIX ). Moreover,

ω(x, y) = −ω(Ux, Uy), x, y ∈ ker(J + iIX ). (3.85)
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The operator U is a unitary map acting between the Hilbert spaces ker(J + iIX ) and

ker(J − iIX ). Indeed, for arbitrary x, y ∈ ker(J + iIX ) one has

〈x, y〉X = i〈Jx, y〉X = iω(x, y)

= −iω(Ux, Uy) = −i〈JUx, Uy〉X = 〈Ux, Uy〉X .
(3.86)

A pair of Lagrangian planes F ,Z is called Fredholm pair if

dim(F ∩ Z) <∞, F + Z is closed in X , and codim(F + Z) <∞. (3.87)

Let F = graph(U) and Z = graph(V ) be Lagrangian planes in X , then by [36,

Lemma 2], the pair (F ,Z) is Fredholm if and only if UV −1−IX is Fredholm operator

in ker(J − iIX ). Furthermore,

dim(F ∩ Z) = dim ker(UV −1 − IX ). (3.88)

Let us fix a Lagrangian plane

Z ⊂ X ,Z = graph(V ), (3.89)

where V ∈ B(ker(J + iIX ), ker(J − iIX )) is a unitary operator. The Fredholm-

Lagrangian-Grassmannian is the space

FΛ(Z) := {F ⊂ X : F is Lagrangian, and the pair (F ,Z) is Fredholm}, (3.90)

equipped with metric

d(F1,F2) := ‖PF1 − PF2‖B(H), F1,F2 ∈ FΛ(Z), (3.91)

where PF denotes the orthogonal projection onto F . Let I = [a, b] ⊂ R be a set of

parameters. Let us fix a continuous path in FΛ(Z)

Υ : I → FΛ(Z), Υ(s) = Fs, Υ ∈ C(I, FΛ(Z)), (3.92)
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and introduce the corresponding family of unitary operators Us such that

Fs = graph(Us), s ∈ I,

υ : I → B(ker(J + iIX ), ker(J − iIX )), υ(s) = Us.

The following is proved in [35]:

υ ∈ C(I,B(ker(J + iIX ), ker(J − iIX ))), (3.93)

UsV
−1 is unitary in ker(J − iIX ), s ∈ I, (3.94)

UsV
−1 − IX is Fredholm in ker(J − iIX ), s ∈ I, (3.95)

dim(Fs ∩ Z) = dim ker(UsV
−1 − IX ), s ∈ I. (3.96)

Utilizing (3.93)-(3.96) we will now define the Maslov index as the spectral flow through

the point 1 ∈ C of the family υ(s), s ∈ I. An illuminating discussion of the notion of

the spectral flow of a family of closed operators through an admissible curve ` ⊂ C can

be found in [36, Appendix]. To proceed with the definition, note that due to (3.95)

there exists a partition a = s0 < s1 < · · · < sN = b of [a, b] and positive numbers

εj ∈ (0, π) such that ε±iεj 6∈ Spec(UsV
−1) if s ∈ [sj−1, sj], for each 1 ≤ j ≤ N , see

[70, Lemma 3.1]. For any ε > 0 and s ∈ [a, b] we let

k(s, ε) :=
∑

0≤κ≤ε
dim ker(UsV

−1 − εiκ), (3.97)

and define the Maslov index

Mas(Υ,Z) :=
N∑
j=1

(k(sj, εj)− k(sj−1, εj)) . (3.98)

The number Mas(Υ,X ) is well defined, i.e., it is independent on the choice of the

partition sj and εj (cf., [70, Proposition 3.3]).
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Next we turn to the computation of the Maslov index via the crossing forms.

Assume that Υ ∈ C1(I, FΛ(X )) and let s∗ ∈ I. There exists a neighbourhood I0 of

s∗ and a family Rs ∈ C1(I0,B(Υ(s∗),Υ(s∗)
⊥)), such that Υ(s) = {u+Rsu

∣∣u ∈ Υ(s∗)},

for s ∈ I0 see, e.g., [70] or [50, Lemma 3.8]. We will use the following terminology

from [70, Definition 3.20].

Definition 3.12. Let Z be a Lagrangian subspace and Υ ∈ C1(I, FΛ(Z)).

(i) We call s∗ ∈ I a conjugate point or crossing if Υ(s∗) ∩ Z 6= {0}.

(ii) The finite dimentional form

Qs∗,Z(u, v) :=
d

ds
ω(u,Rsv)

∣∣
s=s∗

= ω(u, Ṙs=s∗v), for u, v ∈ Υ(s∗) ∩ Z,

is called the crossing form at the crossing s∗.

(iii) The crossing s∗ is called regular if the form Qs∗,Z is non-degenerate, positive

if Qs∗,Z is positive definite, and negative if Qs∗,Z is negative definite.

The following result (cf., [35, Proposition 3.2.7] and Remark 3.14) provides an

efficient tool for computing the Malsov index at regular crossings. We denote by n+

and n− the number of positive and negative squares of a form, the signature is defined

by the formula sign = n+ − n−.

Theorem 3.13. Let Υ ∈ C1(I, FΛ(Z)), and assume that all crossings are regular.

Then the crossings are isolated, and one has

Mas(Υ,Z) = −n−(Qa,Z) +
∑
a<s<b

sign(Qs,Z) + n+(Qb,Z). (3.99)

We will now review the definition of the Maslov index for two paths with val-

ues in Lagrangian–Grassmannian Λ(X ), see [70, Section 3.5]. Let us fix Υ1,Υ2 ∈
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C(I,Λ(X )) and assume that (Υ1(s),Υ2(s)) is a Fredholm pair for all s ∈ I. Let

diag := {(p, p) : p ∈ X} denote the diagonal plane in X ⊕ X . On X ⊕ X we de-

fine the symplectic form ω̂ := ω ⊕ (−ω) with the complex structure J̃ := J ⊕ (−J),

denoting the resulting space of Lagrangian planes by Λω̂(X ⊕ X ). We consider the

path Υ̃ := Υ1 ⊕ Υ2 ∈ C(I,Λω̂(X ⊕ X )) and define the Maslov index of the two

paths Υ1,Υ2 as Mas(Υ1,Υ2) := Mas(Υ̃, diag). If Υ2(s) = Z for all s ∈ I, then

Mas(Υ1 ⊕Υ2, diag) = Mas(Υ1,Z).

Remark 3.14. We adopted definition (3.98) of the Maslov index as the spectral flow

of UsV
−1 through the point 1. Since κ in (3.97) is allowed to be equal to zero, the

Maslov index defined in (3.98) counts the number of the eigenvalues of UsV
−1 that

leave the closed segment {eiκ : κ ∈ [0, ε]} through 1 as parameter s varies from a

to b. In comparison, the Maslov index defined in [35, Definition 2.1.1] counts the

number of eigenvalues that leave the open segment {eiκ : κ ∈ (0, ε)}. This difference

in definitions is reflected in the formula relating the Maslov index and the signature

of the crossing form. In our case, the Maslov index at the left (respectively, right)

regular endpoint crossing is equal to minus(respectively, plus) the number of negative

(respectively, positive) directions of the crossing form. The Maslov index from [35,

Proposition 3.2.7] is equal to the number of positive(respectively, minus the number of

negative) directions. We find definition (3.98) more convenient as it permits to obtain

a relation between the Maslov index of a certain path, and the Morse index of a family

of self-adjoint operators without adding the dimension of subspace corresponding to

the zero eigenvalue into the Morse index.

Remark 3.15. The starting point for the definition of the Maslov index given in
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[29], [70] is a real Hilbert space HR equipped with a symplectic form. The Maslov

index in [29], [70] is defined as the spectral flow (through −1) of a family of uni-

tary operators (acting in an auxiliary complex space HC) obtained via the Souriau

map. While the assumption that HR is a real Hilbert space is not restrictive in many

applications (cf., e.g., [50], [51], [52], [97], [98], [116]), it does prevent one from consid-

ering complex-valued boundary conditions (such as θ−periodic, see below) without

reduction to equivalent real-valued boundary conditions. Given the abstract nature

of the eigenvalue problem for self-adjoint extensions of L (as in (3.4)), a reduction to

the real Hilbert spaces (i.e., to the real boundary conditions) cannot be carried out

explicitly. Instead, we choose to adopt the definition of the Maslov index in complex

symplectic Hilbert spaces. As it was pointed out in [36, Corollary 2], there is a natural

identification between the Maslov index in the real Hilbert space HR and the Maslov

index in the complex Hilbert space HR ⊗ C (the complexification of HR) defined as

in (3.98).

3.3 The Maslov index for second order elliptic op-

erators on smooth domains

The main result of this section concerns with an index formula for second order elliptic

operators with scalar coefficients defined on a smooth domain Ω ⊂ Rn, see Theorem

3.18.

3.3.1 Weak solutions and their traces

In this subsection we reformulate the eigenvalue problems for elliptic operators in

terms of Lagrangian subspaces formed by the traces of weak solutions of corresponding
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equations.

Hypothesis 3.16. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with smooth boundary.

Let I := [α, β], −∞ < α < β < +∞, be the interval of parameters. Assume that

at, atj, a
t
jk are contained in C∞(Ω) for all t ∈ I. Suppose that

ajk : t 7→ atjk, ajk ∈ C1(I, L∞(Ω)), atjk(x) = atkj(x), 1 ≤ j ≤ n, x ∈ Ω, (3.100)

atjk(x)ξkξj ≥ c
n∑
j=1

|ξj|2 for all x ∈ Ω, ξ = (ξj)
n
j=1 ∈ Cn, t ∈ I; for some c > 0,

(3.101)

aj : t 7→ atj, aj ∈ C1(I, L∞(Ω)), 1 ≤ j ≤ n, (3.102)

a : t 7→ at, a ∈ C1(I, L∞(Ω)), at(x) ∈ R, x ∈ Ω, t ∈ I. (3.103)

Given the families of the functions {at}βt=α, {atj}
β
t=α, {atjk}

β
t=α we now consider the

family {Lt}βt=α of the differential expressions

Lt := −
n∑

j,k=1

∂ja
t
jk∂k +

n∑
j=1

atj∂j − ∂jatj + at, t ∈ I, (3.104)

which are formally self-adjoint. For t ∈ I the minimal operator corresponding to the

differential expression Lt in L2(Ω) is defined by the formula

Ltminf = Ltf, f ∈ dom(Ltmin) := H2
0 (Ω). (3.105)

The operator Ltmin is a densely defined, bounded from bellow, symmetric operator.

Its adjoint Ltmax := (Ltmin)∗ is acting in L2(Ω) and given by the formula

Ltmaxu := Ltu, u ∈ dom(Ltmax) := {u ∈ L2(Ω,Cm) : Ltu ∈ L2(Ω,Cm)}. (3.106)

Given a family of self-adjoint extensions {LtDt}
β
t=α of Ltmin with dom(LtDt) = Dt, one

has the chain of extensions

Ltmin ⊂ LtDt ⊂ L
t
max. (3.107)
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Figure 3.1:

As discussed in Remark 3.7, all assumptions of Hypothesis 3.6 are satisfied with

L in (3.4) replaced by Lt from (3.104). Hence Ltmin fits the framework of Theorem

3.8 and its self-adjoint extensions are uniquely associated with Lagrangian planes in

H1/2(∂Ω)×H−1/2(∂Ω) via Theorem 3.8.

Our objective is to relate the Morse indices of the operators LβDβ and LαDα to

the Maslov index of a certain path of Lagrangian planes in H1/2(∂Ω) × H−1/2(∂Ω)

defined by the given one parameter family of self-adjoint operators {LtDt}
β
t=α. This

will be achieved by utilizing homotopy invariance of the Maslov index. To this end

we introduce a parametrization of the square loop in Figure 1,

Σ := ∪4
j=1Σj → Γ = ∪4

j=1Γj, s 7→ (λ(s), t(s)), (3.108)

where Γj, j = 1, · · · , 4 are the positively oriented sides of the boundary of the square

[λ∞, 0]× [α, β], the parameter set Σ = ∪4
j=1Σj and λ(·), t(·) are defied as follows:

λ(s) = s, t(s) = α, s ∈ Σ1 := [λ∞, 0], (3.109)

λ(s) = 0, t(s) = s+ α, s ∈ Σ2 := [0, β − α], (3.110)

λ(s) = −s+ β − α, t(s) = β, s ∈ Σ3 := [β − α, β − α− λ∞], (3.111)
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λ(s) = λ∞, t(s) = −s+ 2β − α− λ∞, (3.112)

s ∈ Σ4 := [β − α− λ∞, 2(β − α)− λ∞].

We now turn to the eigenvalue problem

Lt(s)Dt(s)
u = λ(s)u, u 6= 0, s ∈ Σ. (3.113)

Recalling notation (3.18), for the family {Lt(s)Dt
}s∈Σ of the self-adjoint operators from

(3.104)–(3.107) and the parametrization t(·), λ(·) from (3.108)–(3.112) we now define

the following subspaces:

Gt(s) := trLt(s)(Dt(s)), Kλ(s),t(s) := trLt(s)(Kλ(s),t(s)), (3.114)

Kλ(s),t(s) :=
{
u ∈ H1(Ω) :

n∑
j,k=1

〈at(s)jk ∂ku, ∂jϕ〉L2(Ω) +
n∑
j=1

〈at(s)j ∂ju, ϕ〉L2(Ω)

+
n∑
j=1

〈u, at(s)j ∂jϕ〉L2(Ω) + 〈at(s)u− λ(s)u, ϕ〉L2(Ω) = 0, ϕ ∈ H1
0 (Ω)

}
, s ∈ Σ.

The subspace Kλ(s),t(s) is the set of weak solutions to the equation Lt(s)u = λ(s)u, the

subspace Kλ(s),t(s) is the set of their traces, and Gt(s) is the subspace in H1/2(∂Ω) ×

H−1/2(∂Ω) that corresponds to Dt(s) as indicated in Theorem 3.8.

Our next Theorem 3.17 shows, in particular, that the existence of nontrivial solu-

tions to (3.113) is equivalent to

Gt(s) ∩ Kλ(s),t(s) 6= {0}, s ∈ Σ. (3.115)

Theorem 3.17 is an improvement of [51, Proposition 3.5], see also [50, Propositoin

4.10]. Proposition 3.5 in [29] provides an elegant proof of a related assertion in the

context of strong solutions and abstract boundary traces. This result cannot be

directly applied in the setting of the weak traces and weak solutions, however, we
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adopted the proof of [29, Proposition 3.5] in order to show part ii) in the following

theorem. The novel part ii) of this theorem states that just the Fredholm property of

the operator Lt(s)λ(s)− λ(s)IL2(Ω) alone implies that the pair of subspaces Kλ(s),t(s) (weak

traces of weak solutions) and Gt(s) is Fredholm. We note that assertion iii) in the next

theorem was proved in [51, Proposition 3.5] (see also [50, Proposition 4.10]).

Theorem 3.17. Assume Hypothesis 3.16. Let Dt ⊂ D1
Lt(Ω), t ∈ I := [α, β], and

assume that the linear operator LtDt acting in L2(Ω) and given by

LtDtu := Ltu, u ∈ dom(LtDt) := Dt, (3.116)

is self-adjoint for each t ∈ I.

Then the following assertions hold:

i) if s ∈ Σ, then Kλ(s),t(s) and Gt(s) are Lagrangian planes with respect to the

symplectic form (3.28),

ii) if Specess

(
Lt(s)Dt(s)

)
∩ (−∞, 0] = ∅ then

(
Kλ(s),t(s),Gt(s)

)
is a Fredholm pair of

Lagrangian planes in H1/2(∂Ω)×H−1/2(∂Ω), moreover,

dim
(
Kλ(s),t(s) ∩ Gt(s)

)
= dim ker

(
Lt(s)Dt(s)

− λ(s)
)
, s ∈ Σ, (3.117)

iii) the path s 7→ Kλ(s),t(s) on Σ = ∪4
j=1Σj is continuous and is contained in the

space

C1
(
Σk,Λ(H1/2(∂Ω)×H−1/2(∂Ω))

)
, 1 ≤ k ≤ 4.

Proof. If s ∈ Σ then by Theorem 3.8 the subset Gt(s) ⊂ H1/2(∂Ω) × H−1/2(∂Ω) is

Lagrangian. The fact that Kλ(s),t(s), s ∈ Σ, is Lagrangian and part iii) were proved

in [51, Proposition 3.5].
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It remains to prove part ii). Let s ∈ Σ be fixed. In order to prove (3.117), we will

firstly show an auxiliary result: The map

trLt(s) : ker
(
Lt(s)Dt(s)

− λ(s)
)
→ Kλ(s),t(s) ∩ Gt(s), (3.118)

is one-to-one and onto. Indeed, it is injective since

If trLt(s) u = 0 and u ∈ ker
(
Lt(s)Dt(s)

− λ(s)
)

then u = 0,

due to the unique continuation principle (cf. [96, Theorem 3.2.2]). Next, we prove

that (3.118) is surjective. To this end, let us fix an arbitrary (φ, ψ) ∈ Kλ(s),t(s) ∩Gt(s).

Since (φ, ψ) ∈ Kλ(s),t(s) there exists u ∈ D1
Lt(s)(Ω) such that trLt(s) u = (φ, ψ). It

suffices to show that u ∈ Dt(s). Recall that

trLt(s) u ∈ Gt(s) = trLt(s)
(
Dt(s)

)
,

thus, there exists a sequence un ∈ Dt(s), n ≥ 1, such that

trLt(s) un =
(
γ
D
un, γ

Lt(s)
N

un

)
→ trLt(s) u, n→∞,

in H1/2(∂Ω)×H−1/2(∂Ω). For arbitrary v ∈ Dt(s) and all n ≥ 1, one has

ω
(

(γ
D
un, γ

Lt(s)
N

un), (γ
D
v, γL

t(s)

N
v)
)

= 〈γLt(s)
N

v, γ
D
un〉−1/2

− 〈γLt(s)
N

un, γDv〉−1/2

= 〈Lt(s)un, v〉L2(Ω) − 〈un,Lt(s)v〉L2(Ω) = 0,

(3.119)

since Lt(s)Dt(s)
is self-adjoint. Passing to the limit in (3.119), one obtains

ω
(

(γ
D
u, γL

t(s)

N
u), (γ

D
v, γL

t(s)

N
v)
)

= 0, for all v ∈ Dt(s). (3.120)

By the second Green identity (3.17)

ω
(

(γ
D
u, γL

t(s)

N
u), (γ

D
v, γL

t(s)

N
v)
)

= 〈Lt(s)u, v〉L2(Ω) − 〈u,Lt(s)v〉L2(Ω). (3.121)
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From (3.120) and (3.121) one infers

〈Lt(s)u, v〉L2(Ω) − 〈u,Lt(s)v〉L2(Ω) = 0, (3.122)

for all v ∈ Dt(s). Combining (3.122) and the fact that Lt(s)Dt(s)
is self-adjoint we conclude

that u ∈ Dt(s) and thus that map (3.118) is onto.

In order to show that the pair
(
Kλ(s),t(s),Gt(s)

)
is Fredholm we need to check the

following assertions,

dim
(
Kλ(s),t(s) ∩ Gt(s)

)
<∞ and codim

(
Kλ(s),t(s) + Gt(s)

)
<∞, (3.123)

Kλ(s),t(s) + Gt(s) is closed in H1/2(∂Ω)×H−1/2(∂Ω). (3.124)

The first inequality in (3.123) follows from the fact that Lt(s)Dt(s)
− λ(s) is a Fredholm

operator and that map (3.118) is bijective. To show the second one, we observe that

codim
(
Kλ(s),t(s) + Gt(s)

)
= dim

(
Kλ(s),t(s) + Gt(s)

)◦
= dim

(
(Kλ(s),t(s))

◦ ∩ (Gt(s))◦
)

= dim
(
Kλ(s),t(s) ∩ Gt(s)

)
<∞,

(3.125)

because both Kλ(s),t(s) and Gt(s) are Lagrangian subspaces. Next we show (3.124). Let

us notice that

Kλ(s),t(s) + Dt(s) =
{
u ∈ D1

Lt(s)(Ω) : Lt(s)u− λ(s)x = Lt(s)v − λ(s)v,

in (H1
0 (Ω))∗for some v ∈ Dt(s)

} (3.126)

(a similar equality first appeared in [29, Proposition 3.5] in the context of strong

kernel of Lt(s)− λ(s)). Utilizing (3.126) and the fact that the operator Lt(s)− λ(s) is

Fredholm we will show that Kλ(s),t(s) + Dt(s) is closed in D1
Lt(s)(Ω). Indeed, if

un ∈
(
Kλ(s),t(s) + Dt(s)

)
, n ≥ 1, and un → u in D1

Lt(s)(Ω),

then

Lt(s)un − λ(s)un = Lt(s)vn − λ(s)vn, for some vn ∈ Dt(s), n ≥ 1. (3.127)
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Since Lt(s) ∈ B
(
D1
Lt(s)(Ω), L2(Ω)

)
then

Lt(s)un − λ(s)un → Lt(s)u− λ(s)u, n→∞, in L2(Ω), (3.128)

moreover, since the operator Lt(s)Dt(s)
− λ(s) is Fredholm, one has

Lt(s)vn − λ(s)vn → Lt(s)v − λ(s)v, n→∞, in L2(Ω), (3.129)

for some v ∈ Dt(s). Combining (3.127), (3.128), (3.129), one obtains

Lt(s)u− λ(s)u = Lt(s)v − λ(s)v,

hence, u ∈
(
Kλ(s),t(s) + Dt(s)

)
. Next, the linear operator

trLt(s) :
(
Kλ(s),t(s) + Dt(s)

)
→ H1/2(∂Ω)×H−1/2(∂Ω),

acting from the Banach space
(
Kλ(s),t(s) + Dt(s)

)
equipped with D1

Lt(s)(Ω)−norm to

the Hilbert space H1/2(∂Ω)×H−1/2(∂Ω), is bounded. Furthermore, its range

trLt(s)
(
Kλ(s),t(s) + Dt(s)

)
=
(
Kλ(s),t(s) + trLt(s)(DLt(s))

)
has finite codimension. Therefore, by [81, Corollary 2.3], the subset

Kλ(s),t(s) + trLt(s)(DLt(s)) ⊂ H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)

is closed. Hence,
(
Kλ(s),t(s) + Gt(s)

)
is also closed.

3.3.2 The Maslov and Morse indices

We are ready to state the principal result of this section. In the following theorem

we consider a one-parameter family of self-adjoint extensions of uniformly elliptic

operators. One of our main assumptions is that each operator from this family is

94



semibounded from below. This assumption is satisfied for all standard self-adjoint

extensions such as the Dirichlet, Neumann, Robin, and periodic Laplace operators.

However, it is not evident that all self-adjoint extensions of an elliptic operator are

necessarily semibounded from below (cf. (3.130)). Next, we notice that the relations

between the Maslov and Morse indices have been extensively studied by many authors

cf., e.g., [29, Theorem 5.1], [57, Theorem 2.4, Theorem 2.5], [34, Theorem 1.5], [35,

Theorem 4.5.4], [50, Theorem 1.3, Theorem 1.4], [51, Theorem 1], [91, Theorem 1.5].

The work in this direction was originated in [29], where the authors considered the

Lagrangian planes formed by the abstract traces of strong solutions (i.e., by the

abstract traces of the kernels of adjoint operators) assuming that the domain of the

adjoint operator is fixed. Later this assumption was relaxed in a series of works

[34, 35, 36, 37] by considering only those extensions whose domains are contained in

a fixed subspace. We, on the other hand, consider the Lagrangian planes formed by

the weak traces of weak solutions which allows us to reduce regularity assumptions

for the domains of self-adjoint extensions.

Theorem 3.18. Assume Hypothesis 3.16 and recall the differential expressions (3.104).

Let Dt ⊂ D1
Lt(Ω), t ∈ I, and assume that the linear operator LtDt acting in L2(Ω) and

given by

LtDtu := Ltu, u ∈ dom
(
LtDt
)

:= Dt,

is self-adjoint with the property

Specess
(
LtDt
)
∩ (−∞, 0] = ∅, for all t ∈ I.

Assume further that there exists λ∞ < 0, such that

ker
(
LtDt − λ

)
= {0}, for all λ ≤ λ∞, t ∈ I. (3.130)
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Suppose, finally, that the path

t 7→ Gt := trLt
(
Dt

)
, t ∈ I,

is contained in C
(
I,Λ

(
H1/2(∂Ω)×H−1/2(∂Ω)

))
.

Then

Mor
(
LαDα

)
−Mor

(
LβDβ

)
= Mas ((K0,t,Gt)|t∈I) , (3.131)

where the Lagrangian plane K0,t is defined by (3.114).

Proof. We will compute the Maslov index of the path s 7→ (Kλ(s),t(s),Gt(s)) on each

interval Σ1,Σ2,Σ3,Σ4 parameterizing the respective sides of the boundary of the

square [λ∞, 0]× [α, β], see Figure 1, and use a catenation argument to determine the

Maslov index on Σ. To this end we split the proof into four parts.

Step 1. In this step we show that

Mas
(
Kα,λ(s)|s∈Σ1 ,Gα

)
= −Mor (Lα) . (3.132)

The proof goes along the lines of the argument in [29], where a variant of (3.132) is

established in the context of strong kernels, abstract trace maps, and fixed domains

of the maximal operators. In order to obtain (3.132) in our setting, we intend to

prove that each crossing on Σ1 is negative (hence, non-degenerate), and use (3.99) to

verify that geometric multiplicities of negative eigenvalues of LαDα add up to minus

the Maslov index. Let s∗ ∈ (λ∞, 0) be a conjugate point, i.e. Kλ(s∗),α ∩Gα 6= {0}. By

Theorem 3.17 part (iii) the map s 7→ Kλ(s),α is contained in C1
(
(λ∞, 0),Λ(H1/2(∂Ω)×

H−1/2(∂Ω))
)
. Then there exists a small neighbourhood Σs∗ ⊂ (λ∞, 0) of s∗ and a

family of operators Rs+s∗ so that

(s+ s∗) 7→ R(s+s∗) in C1
(
Σs∗ ,B(Kλ(s∗),α, (Kλ(s∗),α)⊥)

)
, Rs∗ = 0, (3.133)
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and

Kλ(s),α = {(φ, ψ) +Rs+s∗(φ, ψ)
∣∣(φ, ψ) ∈ Kλ(s∗),α} for all (s+ s∗) ∈ Σs∗ , (3.134)

see [50, Lemma 3.8]. Let us fix (φ0, ψ0) ∈ Kλ(s∗),α and consider the family

(φs, ψs) := (φ0, ψ0) +R(s+s∗)(φ0, ψ0) with small |s|.

Since (φs, ψs) ∈ Kλ(s),α, by the unique continuation principle (cf. (3.19)), there exists

a unique us ∈ Kλ(s+s∗),α ⊂ D1
Lα(Ω) such that

trLα us = (φs, ψs) for small |s|.

Next, using the second Green identity (3.17) and (3.28), we calculate:

ω
(
(φ0, ψ0), R(s+s∗)(φ0, ψ0)

)
= 〈ψs, φ0〉−1/2 − 〈ψ0, φs〉−1/2

= 〈Lαu0, us − u0〉L2(Ω) − 〈u0,Lα(us − u0)〉L2(Ω)

= 〈(Lα − λ(s∗))u0, us − u0〉L2(Ω) − 〈u0, (Lα − λ(s∗))(us − u0)〉L2(Ω)

= −〈u0, (Lα − λ(s∗))us〉L2(Ω)

= −〈u0, (Lα − λ(s+ s∗))us〉L2(Ω) + 〈u0, (λ(s∗)− λ(s+ s∗))us〉L2(Ω)

= −〈u0, sus〉L2(Ω).

The mapping s 7→ us ∈ H1(Ω) is continuous at 0, since, using the standard elliptic

estimate in Lemma 3.19 given below,

‖us − u0‖H1(Ω) ≤ C
∥∥ trLα(us − u0)

∥∥
H1/2(∂Ω)×H−1/2(∂Ω)

= C‖(φs − φ0, ψs − ψ0)‖H1/2(∂Ω)×H−1/2(∂Ω),

(3.135)

where C > 0 does not depend on s. We proceed by evaluating the crossing form from

Definition 3.12 (ii),

Qs∗,Gα ((φ0, ψ0), (φ0, ψ0)) :=
d

ds
ω
(
(φ0, ψ0), R(s+s∗)(φ0, ψ0)

) ∣∣
s=0
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= lim
s→0

ω
(
(φ0, ψ0), R(s+s∗)(φ0, ψ0)

)
s

= lim
s→0

−〈u0, sus〉L2(Ω)

s
= −‖u0‖2

L2(Ω).

Therefore, the crossing form is negative definite at all conjugate points on [λ∞, 0] and,

using (3.99), one obtains

Mas
(
Kλ(s),α|s∈Σ1 ,Gα

)
= −n− (Qλ∞,Gα) +

∑
λ∞<s<0:

Kλ(s),α∩Gα 6={0}

sign Qs,Gα

+ n+(Q0,Gα) = −
∑

λ∞≤s<0

dim ker
(
LαDα − λ(s)

)
= −Mor

(
LαDα

)
, (3.136)

where we employed n+ (Q0,Gα) = 0, and the fact that there are no crossings to the

left of λ∞.

Step 2. A similar computation can be carried out in case s ∈ Σ3, leading to the

analog of (3.132),

Mas
(
Kα,λ(s)|s∈Σ3 ,Gα

)
= Mor (Lα) . (3.137)

Step 3. Since, by assumptions, ker(LtDt − λ) = {0} for all λ ≤ λ∞, t ∈ I, there

are no crossings on Σ4, therefore, the Maslov index vanishes on this interval

Mas
(
(Kt(s),λ∞ ,Gt(s))|s∈Σ4

)
= 0. (3.138)

Step 4. In this step we will combine (3.132), (3.137), (3.138), and the homotopy

invariance of the Maslov index to obtain (3.131). Since the curve Γ, cf., (3.108), can

be continuously contracted to a point, one has

Mas
(
(Kt(s),λ(s),Gt(s))|s∈Σ

)
= 0. (3.139)

On the other hand, due to the catenation property of the Maslov index,

Mas
(
(Kt(s),λ(s),Gt(s))|s∈Σ

)
= Mas

(
(Kt(s),λ(s),Gt(s))|s∈Σ1

)
+ Mas

(
(Kt(s),λ(s),Gt(s))|s∈Σ2

)
+ Mas

(
(Kt(s),λ(s),Gt(s))|s∈Σ3

)
+ Mas

(
(Kt(s),λ(s),Gt(s))|s∈Σ4

)
.

(3.140)
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Combining (3.132), (3.137), (3.138), (3.139), (3.140), one obtains (3.131).

Lemma 3.19. Assume Hypothesis 3.16. Then there exists a positive constant C > 0

independent of t such that if u ∈ H1(Ω) is a weak solutions to Ltu = 0, t ∈ I then

‖u‖H1(Ω) ≤ C
∥∥ trLt u

∥∥
H1/2(∂Ω)×H−1/2(∂Ω)

, for all t ∈ I. (3.141)

Proof. Recall the function space (3.13). For arbitrary u ∈ D1
Ls(Ω), s ∈ I, one has

ls[u, u] = 〈Lsu, u〉L2(Ω) + 〈γLs,1
N

u, γ
D
u〉H−1/2(∂Ω), (3.142)

where

ls[u, v] =
n∑

j,k=1

〈asjk∂ku, ∂jv〉L2(Ω) +
n∑
j=1

〈asj∂ju, v〉L2(Ω)

+
n∑
j=1

〈u, asj∂jv〉L2(Ω) + 〈asu, v〉L2(Ω), u, v ∈ H1(Ω), s ∈ I.
(3.143)

Our immediate objective is to show that the inequality

‖u‖2
H1(Ω) ≤ C

(
‖u‖2

L2(Ω) + ‖Lsu‖2
L2(Ω) + ‖ trLs u‖2

H1/2(∂Ω)×H−1/2(∂Ω)

)
(3.144)

holds for some C > 0 independent of s, and all s ∈ I. To this end, we first notice

that by the elliptic property (3.101), one has

n∑
j,k=1

〈asjk∂ku, ∂ju〉L2(Ω) ≥ c‖∇u‖2
L2(Ω). (3.145)

Second, using (3.142) and (3.143) we obtain∣∣∣∣∣
n∑

j,k=1

〈asjk∂ku, ∂ju〉L2(Ω)

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
j=1

〈asj∂ju, u〉L2(Ω)

∣∣∣∣∣+

∣∣∣∣∣
n∑
j=1

〈u, asj∂ju〉L2(Ω)

∣∣∣∣∣ (3.146)

+
∣∣〈asu, u〉L2(Ω)

∣∣+
∣∣〈Lsu, u〉L2(Ω)

∣∣+
∣∣〈γLs,1

N
u, γ

D
u〉H−1/2(∂Ω)

∣∣ . (3.147)

Next, the Cauchy–Schwarz inequality together with (3.146), (3.147) yield∣∣∣∣∣
n∑

j,k=1

〈asjk∂ku, ∂ju〉L2(Ω)

∣∣∣∣∣ ≤ 2 sup
s∈[α,β],x∈Ω,

1≤j≤n

‖asj(x)‖Cm‖∇u‖L2(Ω)‖u‖L2(Ω) (3.148)
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+ sup
s∈[α,β],x∈Ω

‖as(x)‖Cm×m‖u‖2
L2(Ω) + ‖Lsu‖L2(Ω)‖u‖L2(Ω) (3.149)

+ ‖γLs,1
N

u‖H−1/2(∂Ω)‖γDu‖H1/2(∂Ω). (3.150)

Finally, the inequalities

‖∇u‖L2(Ω)‖u‖L2(Ω) ≤
‖u‖2

L2(Ω)

2ε2
+
ε2‖∇u‖2

L2(Ω)

2
, with ε > 0 small enough,

‖Lsu‖L2(Ω)‖u‖L2(Ω) ≤
1

2

(
‖u‖2

L2(Ω) + ‖Lsu‖2
L2(Ω)

)
,

‖γLs,1
N

u‖H−1/2(∂Ω)‖γDu‖H1/2(∂Ω) ≤
1

2

(
‖γLs,1

N
u‖2

H−1/2(∂Ω) + ‖γ
D
u‖2

H1/2(∂Ω)

)
,

together with (3.148)-(3.150) imply∣∣∣∣∣
n∑

j,k=1

〈asjk∂ku, ∂ju〉L2(Ω)

∣∣∣∣∣ ≤ C1

(
‖u‖2

L2(Ω) + ‖Lsu‖2
L2(Ω)

+ ‖γLs
N
u‖2

H−1/2(∂Ω) + ‖γ
D
u‖2

H1/2(∂Ω)

)
+
c

2
‖∇u‖2

L2(Ω), s ∈ I,
(3.151)

where 0 < C1 = C1(a, aj, n,Ω), and c > 0 is from (3.101). Combining (3.145) and

(3.151), one infers (3.144).

We intend to derive from (3.144) yet a stronger inequality,

‖u‖2
H1(Ω) ≤ C

(
‖Lsu‖2

L2(Ω) + ‖ trLs u‖2
H1/2(∂Ω)×H−1/2(∂Ω)

)
, s ∈ I, (3.152)

which trivially implies (3.141). We prove (3.152) by contradiction: Assume that there

exist

sn ∈ Σ, un ∈ D1
Lsn (Ω), n ≥ 1,

such that

‖un‖2
H1(Ω) > n

(
‖Lsnun‖2

L2(Ω) + ‖ trLsn un‖2
H1/2(∂Ω)×H−1/2(∂Ω)

)
, n ≥ 1. (3.153)

Without loss of generality we may assume that

sn → s0, n→∞, and that ‖un‖L2(Ω) = 1, n ≥ 1.
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It follows from (3.144) and (3.153) that the sequence {un : n ≥ 1} is bounded in

H1(Ω), and therefore that

‖Lsnun‖L2(Ω) → 0 and ‖ trLsn un‖H1/2(∂Ω)×H−1/2(∂Ω) → 0, as n→∞. (3.154)

Passing to a subsequence if necessary, we have the weak convergence

un ⇀ u0, as n→∞ in H1(Ω). (3.155)

Since H1(Ω) is compactly embedded into L2(Ω), we conclude that un → u0, n→∞

in L2(Ω). We claim that

u0 ∈ D1
Ls0 (Ω), Ls0u0 = 0, (3.156)

trLs0 u0 = 0. (3.157)

Granted (3.156),(3.157), we notice that the unique continuation principle yields u0 =

0, which in turn, contradicts the fact that ‖u0‖L2(Ω) = 1, and finishes the proof of

(3.152).

It remains to prove the claim. First, we prove (3.156). For arbitrary ϕ ∈ C∞0 (Ω)

the second Green identity (3.17) yields

〈un,Lsnϕ〉L2(Ω) = 〈Lsnun, ϕ〉L2(Ω), n ≥ 1. (3.158)

On the other hand, since γ
D
ϕ = 0, γL

sn

N
ϕ = 0, the first Green identity (3.16) yields

〈Lsnun, ϕ〉L2(Ω) = lsn [un, ϕ], n ≥ 1. (3.159)

Furthermore, using the first limit in (3.154) and (3.155) we obtain

lsn [un, ϕ]→ ls0 [u0, ϕ] and 〈Lsnun, ϕ〉L2(Ω) → 0, as n→∞. (3.160)
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Combining (3.159) and (3.160) we obtain

0 = ls0 [u0, ϕ], for arbitrary ϕ ∈ C∞0 (Ω), (3.161)

moreover, by the first Green identity

ls0 [u0, ϕ] = 〈u0,Ls0ϕ〉L2(Ω) for arbitrary ϕ ∈ C∞0 (Ω).

Hence, (3.156) holds.

It remains to check (3.157). First, the equality γ
D
u0 = 0 holds since, by using the

second limit in (3.154),

γ
D
un ⇀ γ

D
u0 and γ

D
un → 0, as n→∞ in H1/2(∂Ω).

Next, by the first Green identity

lsn [un, f ] = 〈Lsnun, f〉L2(Ω) + 〈γLsn
N

un, γDf〉H−1/2(∂Ω), n ≥ 1, (3.162)

for arbitrary f ∈ H1(Ω). The left hand-side of (3.162) tends to ls0 [u0, f ] (due to the

weak convergence of un), whereas by (3.154), the right hand-side converges to 0, as

n→ 0, implying

ls0 [u0, f ] = 0, for all f ∈ H1(Ω). (3.163)

The first Green identity and (3.156) yield

0 = ls0 [u0, f ] = 〈γLs0
N
u0, γDf〉H−1/2(∂Ω), for all f ∈ H1(Ω). (3.164)

Finally, since γ
D

: H1(Ω)→ H1/2(∂Ω) is onto, (3.164) implies γL
s0

N
u0 = 0 as required.

In the remaining part of this section we illustrate several applications of the general

formula (3.131), that is, we indicate how several known and some unknown results

can be derived from this formula.
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3.3.3 The spectral flow and the Maslov index

Assume hypotheses of Theorem 3.18. Then the spectral flow through λ = 0 of the

one-parameter operator family
{
LtDt
}β
t=α

is defined as follows: There exists a partition

α = t0 < t1 < · · · < tN = β, and N intervals [a`, b`], a` < 0 < b`, 1 ≤ ` ≤ N, such

that

a`, b` 6∈ Spec
(
LtDt
)
, for all t ∈ [t`−1, t`], 1 ≤ ` ≤ N. (3.165)

The spectral flow through λ = 0 is defined by the formula

SpFlow
(
{LtDt}

β
t=α

)
:=

N∑
`=1

∑
a`≤λ<0

(
dim ker

(
Lt`−1

Dt`−1
− λ
)
− dim ker

(
Lt`Dt` − λ

))
.

(3.166)

It can be shown that SpFlow
({
LtDt
}b
t=a

)
does not depend on the choice of partition of

the interval [α, β] (cf., [35, Appendix]). In fact, since {LtDt}
b
t=a is uniformly bounded

from below (with lower bound λ∞), we can assume that [λ∞, 0] ⊂ (a`, b`), 1 ≤ ` ≤ N .

In this case (3.166) reads

SpFlow
({
LtDt
}β
t=α

)
=

N∑
`=1

(
Mor(Lt`−1

Dt`−1
)−Mor(Lt`Dt` )

)
. (3.167)

Combining (3.131) and (3.167), one obtains

SpFlow
({
LtDt
}β
t=α

)
= Mas ((K0,t,Gt)|t∈I) . (3.168)

By rescaling, a similar formula holds for the spectral flow through any point λ0 ∈ R

with K0,t replaced by Kλ0,t. Of course, relations between the spectral flow and the

Maslov index of this type have been obtained in many important papers, cf., e.g.,

[34], [35], [36], [37] [42], [70], [106], [133], [142], [143], [153]. We stress, however, that

in our case Dt ⊂ H1(Ω), t ∈ [α, β], and that we use the “usual” PDE trace operators

as oppose to the abstract traces acting into the quotient spaces.
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3.3.4 Spectra of elliptic operators on deformed domains and
the Maslov index

In this subsection we revisit the main result, Theorem 1, from [51], and place it in

the general framework of Theorem 3.18. Given a second order elliptic operator L

on Ω and a one-parameter family of diffeomorphisms [51, Theorem 1] expresses the

difference of Morse indices of L and its pullback in terms of the Maslov index.

Following [51], let Ω0 ⊂ Rn be a bounded open set with smooth boundary, let

ϕt : Rn → Rn, t ∈ [0, 1], be a one-parameter family of diffeomorphisms such that the

mapping t 7→ ϕt is contained in C1([0, 1], L∞(Ω0,Rn)), and ϕ0 = IdΩ0 . Let us denote

Ωt := {ϕt(x) : x ∈ Ω0}, Ω := ∪0≤t≤1Ωt.

Suppose that the coefficients of the second order differential operator satisfy

A := {ajk}1≤j,k≤n ∈ C∞(Ω,Cn×n),A = A>, (3.169)

ajk(x)ξkξj ≥ c
n∑
j=1

|ξj|2, for all ξ = (ξj)
n
j=1 ∈ Cn, x ∈ Ω, and some c > 0, (3.170)

bj ∈ C∞(Ω), 1 ≤ j ≤ n,B := (b1, · · · , bn)>, (3.171)

q ∈ C∞(Ω), q(x) ∈ R, x ∈ Ω, (3.172)

and fix a subspace X0 such that

H1
0 (Ω0) ⊂ X0 ⊂ H1(Ω0), X0 is a closed subset of H1(Ω0). (3.173)

Using (3.169)-(3.172) we construct a family {LtX0
} of operators in L2(Ω0) as follows.

Let us define the one-parameter family of sesquilinear forms on H1(Ωt),

lt[u, v] : = 〈A∇u,∇v〉L2(Ωt) + 〈B∇u, v〉L2(Ωt)

+ 〈u,B∇v〉L2(Ωt) + 〈qu, v〉L2(Ωt), u, v ∈ H1(Ωt), t ∈ [0, 1].

(3.174)
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Changing variables in the right hand-side of (3.174), we arrive at

l̃t[ũ, ṽ] : = 〈At∇ũ,∇ṽ〉L2(Ω0) + 〈Bt∇ũ, ṽ〉L2(Ω0)

+ 〈ũ, Bt∇ṽ〉L2(Ω0) + 〈qtũ, ṽ〉L2(Ω0), ũ, ṽ ∈ H1(Ω0), t ∈ [0, 1],

(3.175)

where the functions on Ω0 satisfy

At := det(Dϕt)(Dϕ
>
t )−1[A ◦ ϕt](Dϕt)−1, Bt := det(Dϕt)(Dϕ

>
t )−1[B ◦ ϕt],

qt := det(Dϕt)q ◦ ϕt, ũ := u ◦ ϕt, ṽ := v ◦ ϕt, t ∈ [0, 1].

If t ∈ [0, 1] then the form

l̃t : L2(Ω0)× L2(Ω0)→ C, dom(̃l) := X0, (3.176)

is closed and bounded from below. Hence, by [61, Theorem 2.8] there exists a unique

self-adjoint operator LtX0
acting in L2(Ω0), such that

l̃t[u, v] = 〈LtX0
u, v〉L2(Ω0) for all u ∈ dom(LtX0

), v ∈ X0. (3.177)

Moreover, by [51, Lemma 4.1 and Proposition C.1 ] there exist positive constants

C1, C2 such that

l̃t[f, f ] ≥ C1‖f‖2
H1(Ω0) − C2‖f‖2

L2(Ω0). (3.178)

Since the form domain of l̃t is compactly embedded into L2(Ω0), the spectrum of LtX0

is purely discrete. Since l̃t, t ∈ [0, 1], is uniformly bounded from below in L2(Ω0) there

exists λ∞ such that

ker
(
LtX0
− λ
)

= {0} for all λ ≤ λ∞, t ∈ [0, 1]. (3.179)

We notice that LtX0
is a self-adjoint extension of Ltmin given by the closure of

Ltu := −divAt∇u+Bt∇u−∇ ·Btu+ qtu, dom(Lt) := C∞0 (Ω0). (3.180)
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Proposition 3.20. Let LtX0
, t ∈ [0, 1] be the one-parameter family of self-adjoint

operators defined by (3.177). Then

trLt
(
dom(LtX0

)
)

= {(f, g) ∈ H1/2(∂Ω)×H−1/2(∂Ω) :

f ∈ γ
D

(X0), 〈g, γ
D
u〉−1/2 = 0 for all u ∈ X0}, t ∈ [0, 1]

(3.181)

where the bar in the left-hand side denotes closure in H1/2(∂Ω)×H−1/2(∂Ω). Hence,

the right-hand side of (3.181) is a Lagrangian plane.

Proof. Let us fix t ∈ [0, 1]. The right-hand side of (3.181) is isotropic. By Theorem

3.8, trLt(dom(LtX0
)) is Lagrangian, hence, it suffices to show that trLt(dom(LtX0

)) is

contained in the right-hand side of (3.181). The first Green identity yields

l̃t[u, v] = 〈Ltu, v〉L2(Ω) + 〈γLt
N
u, γ

D
v〉−1/2, u ∈ D1

Lt(Ω), v ∈ H1(Ω). (3.182)

On the other hand,

l̃t[u, v] = 〈Ltu, v〉L2(Ω0), for all u ∈ dom(LtX0
), v ∈ X0. (3.183)

Since dom(LtX0
) ⊂ D1

Lt(Ω) and X0 ⊂ H1(Ω0), one has

〈γLt
N
u, γ

D
v〉−1/2 = 0, for all u ∈ dom(LtX0

), v ∈ X0, (3.184)

thus (γ
D
u, γL

t

N
u) is contained in the right-hand side of (3.181) whenever u ∈ dom(LtX0

).

The form l̃1 and the subspace X0 can be pulled back to Ω1 (via ϕ : Ω0 → Ω1),

giving rise to a self-adjoint operator L1
X1

acting in L2(Ω1) and defined by

l1[u, v] = 〈L1
X1
u, v〉L2(Ω1), u ∈ dom(L1

X1
), v ∈ X1, (3.185)
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where X1 := {u ◦ ϕ−1
1 : u ∈ X0}. Employing min-max type argument one can show

that

Mor(L1
X1

) = Mor(L1
X0

). (3.186)

Finally, let us introduce the path of Lagrangian planes in H1/2(∂Ω0) ×H−1/2(∂Ω0),

corresponding to the weak solutions by setting

K0,t := trLt{u ∈ H1(Ω0) : l̃t[u, ψ] = 0, for all ψ ∈ H1
0 (Ω0)}, t ∈ [0, 1], (3.187)

and the constant (cf., Proposition 3.20) path of Lagrangian planes corresponding to

the boundary conditions

Gt := trLt(dom(LtX0
)), t ∈ [0, 1]. (3.188)

Then employing Theorem 3.18, we arrive at the formula originally derived in [51,

Theorem 1],

Mor(L0
X0

)−Mor(L1
X0

) = Mas
(
(K0,t,Gt)|t∈[0,1]

)
, (3.189)

and, using (3.186), at the formula

Mor(L0
X0

)−Mor(L1
X1

) = Mas
(
(K0,t,Gt)|t∈[0,1]

)
. (3.190)

3.3.5 Spectra of elliptic operators with Robin boundary con-
ditions and the Maslov index

We will now derive the Smale-type formula (3.194) for second order differential op-

erators subject to Robin boundary conditions, cf. [155, 164], and also [50, 51, 136].

Assume that Ω ⊂ Rn, n ≥ 2, is a bounded open set with smooth boundary. Let us fix

coefficients A, B, q as in (3.169), (3.170), (3.171), (3.172), and define the differential

expression

L := −divA∇+B∇−∇ ·B + q. (3.191)
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If Θ ∈ R is given then the linear operator LΘ acting in L2(Ω) and defined by

LΘu := −div(A∇u) +B∇u−∇ · (Bu) + qu, u ∈ dom(LΘ), (3.192)

dom(LΘ) := {u ∈ H1(Ω) : Lu ∈ L2(Ω), γL
N
u+ Θγ

D
u = 0}, (3.193)

is self-adjoint, moreover, its essential spectrum is empty, cf. [145, Proposition 2.3].

Proposition 3.21. If Θ1 < Θ2, then for the operator LΘ from (3.192) one has

Mor(LΘ1)−Mor(LΘ2) =
∑

Θ1≤s≤Θ2

dim ker(Ls). (3.194)

Proof. We will use (3.131) and show that all crossing corresponding to the variation

of parameter s ∈ [Θ1,Θ2] are sign-definite. Theorem 3.18 yields

Mor(LΘ1)−Mor(LΘ2) = Mas
(
(K,Gs)|s∈[Θ1,Θ2]

)
, (3.195)

where

K = trL{u ∈ H1(Ω) : 〈A∇u,∇ψ〉L2(Ω) + 〈B∇u, ψ〉L2(Ω) (3.196)

+ 〈u,B∇ψ〉L2(Ω) + 〈qu, ψ〉L2(Ω) = 0, for all ψ ∈ H1
0 (Ω)}, (3.197)

Gs := {(f,−sf) : f ∈ H1/2(∂Ω)} ⊂ H1/2(∂Ω)×H−1/2(∂Ω), s ∈ [Θ1,Θ2] (3.198)

(we notice that K does not depend on parameter s). Clearly Gs is Lagrangian for

each s ∈ R, moreover, the path

[Θ1,Θ2] 3 s 7→ Gs ∈ H1/2(∂Ω)×H−1/2(∂Ω), (3.199)

is continuously differentiable. Let s∗ ∈ [Θ1,Θ2] be a crossing. Then, by [50, Lemma

3.8], there exists a neighbourhood Σ∗ ⊂ [Θ1,Θ2] containing s∗ and a mapping

s 7→ Rs in C1
(
Σ∗,B(Gθ∗ ,G⊥θ∗)

)
, (3.200)
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such that

Gs = {(f, g) +Rs(f, g) : (f, g) ∈ Gθ∗} , s ∈ Σ∗. (3.201)

Next, pick any (fs∗ , gs∗) ∈ Gs∗ ∩ K. Then gs∗ = −s∗fs∗ , fs∗ ∈ H1/2(∂Ω), and there

exists u∗ ∈ ker(Ls∗) such that

trL u∗ = (fs∗ , gs∗). (3.202)

Moreover, there is a family {fs}s∈Σ∗ ⊂ H1/2(∂Ω) such that, in view of (3.198), (3.201)

(fs∗ , gs∗) +Rs(fs∗ , gs∗) = (fs,−sfs), s ∈ Σ∗, (3.203)

where the mapping s 7→ fs is contained in C1(Σ∗, H
1/2(∂Ω)). The derivative of fs

with respect to s evaluated at s∗ is denoted by f ′s∗ . We proceed by evaluating the

Maslov crossing form at trL u∗ = (fs∗ , gs∗)

Qs∗,K (trL u∗, trL u∗) = ω

(
(fs∗ , gs∗),

d

ds
Rs(fs∗ , gs∗)

)
|s=s∗

= ω
(
(fs∗ ,−s∗fs∗), (f ′s∗ ,−(fs∗ + s∗f

′
s∗))
)

= −〈fs∗ + s∗f ′s∗ , fs∗〉L2(∂Ω)
− 〈−s∗fs∗ , f ′s∗〉L2(∂Ω) = −‖fs∗‖2

L2(∂Ω).

Finally, we arrive at

Qs∗,K(trL u∗, trL u∗) = −‖γ
D
u∗‖2

L2(∂Ω) < 0. (3.204)

Therefore, a calculation similar to (3.136) shows that

Mas
(
(K,Gs)|s∈[Θ1,Θ2]

)
= −Mas

(
(Gs,K)|s∈[Θ1,Θ2]

)
=

∑
Θ1≤s≤Θ2

dim (K ∩ Gs) =
∑

Θ1≤s≤Θ2

dim ker (Ls) ,

as asserted.
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3.4 The Maslov index for the Schrödinger opera-

tors on Lipschitz domains

In this section we establish relations between the Maslov and Morse indices, and,

consequently, relations between the Maslov index and the spectral flow for Schrödinger

operators with matrix valued potentials on Lipschitz domains. The general result

will be applied to two specific types of boundary conditions: First, to the ~θ−periodic

conditions on a cell Ω ⊂ Rn, and second to the Robin-type boundary conditions on

star-shaped domains. Hypothesis 3.1 is imposed throughout this section.

3.4.1 A general result for the Schrödinger operators

First, we verify Hypothesis 3.6 in the present settings, that is, for the Schrödinger

operator L = −∆ + V with a bounded m × m matrix valued potential. Assuming

Hypothesis 3.1 and denoting the outward pointing normal unit vector to ∂Ω by ~ν =

(ν1, · · · , νn), we recall from [77] two boundary spaces:

N1/2(∂Ω,Cm) := {g ∈ L2(∂Ω,Cm) | gνj ∈ H1/2(∂Ω,Cm), 1 ≤ j ≤ n}, (3.205)

equipped with the natural norm

‖g‖N1/2(∂Ω,Cm) :=
n∑
j=1

‖gνj‖H1/2(∂Ω,Cm), (3.206)

and

N3/2(∂Ω) := {g ∈ H1(∂Ω) | ∇tang ∈ (H1/2(∂Ω))n}, (3.207)

equipped with the natural norm

‖g‖N3/2(∂Ω) := ‖g‖L2(∂Ω) + ‖∇tang‖H1/2(∂Ω)n . (3.208)
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Here, the tangential gradient operator ∇tan : H1(∂Ω) 7→ L2(∂Ω)n is defined as

f 7→

(
n∑
k=1

νk
∂f

∂τk,l

)n

l=1

,

and ∂
∂τk,l

is the tangential derivative, which is a bounded operator between Hs(∂Ω)

and Hs−1(∂Ω), 0 ≤ s ≤ 1, that extends the operator

∂

∂τk,l
: ψ 7→ νk(∂lψ)

∣∣
∂Ω
− νl(∂kψ)

∣∣
∂Ω
,

originally defined for C1 function ψ in a neighbourhood of ∂Ω.

Lemma 3.22 ([77], Lemma 6.3). Assume Hypothesis 3.1. Then the Neumann trace

operator γ
N
u = ν · ∇u|∂Ω, u ∈ H2(Ω), considered in the context

γ
N

: H2(Ω) ∩H1
0 (Ω)→ N1/2(∂Ω), (3.209)

is well-defined, bounded, onto, and with a bounded right-inverse. In addition, the null

space of γ
N

in (3.209) is precisely H2
0 (Ω), the closure of C∞0 (Ω) in H2(Ω).

We will now show that both density assumptions in Hypothesis 3.6 are satisfied

for the Schrödinger operators on Lipschitz domains. Since V is bounded it suffices to

verify the assumptions for the Laplace operator. Let the function space

Ds∆(Ω) := {u ∈ Hs(Ω,Cm) : ∆u ∈ L2(Ω,Cm)}, s ≥ 0, (3.210)

be equipped with the natural norm

‖u‖∆,s :=
(
‖u‖2

Hs(Ω,Cm) + ‖∆u‖2
L2(Ω,Cm)

)1/2

, s ≥ 0. (3.211)

Let us denote

tr∆ := (γ
D
u, γ

N
u) , tr∆ ∈ B

(
D1

∆(Ω), H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)
)
. (3.212)
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Proposition 3.23. Assume Hypothesis 3.1. Then

i) ran(tr∆,1) is dense in H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm), (3.213)

ii) D1
∆(Ω) is dense in D0

∆(Ω). (3.214)

Proof. First we prove part i). It suffices to show that

({
(γ

D
u, γ

N
u) : u ∈ D1

∆(Ω)
})◦

= {(0, 0)}, (3.215)

where the left-hand side denotes the annihilator with respect to the sympletic form

(3.28). Pick an arbitrary

(ϕ, ψ) ∈
({

(γ
D
u, γ

N
u) : u ∈ D1

∆(Ω)
})◦

, (3.216)

then

〈ψ, γ
D
f〉−1/2 − 〈γNf, ϕ〉−1/2 = 0, for all f ∈ D1

∆(Ω). (3.217)

By Lemma 3.22, for arbitrary g ∈ N1/2(∂Ω,Cm) there exists Fg ∈ H2(Ω,Cm) such

that

γ
D
Fg = 0, γ

N
Fg = g. (3.218)

Using equation (3.217) with f = Fg, one obtains

〈g, ϕ〉−1/2 = 0, for all g ∈ N1/2(∂Ω,Cm). (3.219)

In addition, by [77, Corollary 6.12], we have

N1/2(∂Ω,Cm) ↪→ L2(∂Ω,Cm) ↪→ H−1/2(∂Ω,Cm), (3.220)

where both inclusions are dense and continuous. Therefore, (3.219) can be extended

by continuity to H−1/2(∂Ω,Cm), and one has

〈g, ϕ〉−1/2 = 0, for all g ∈ H−1/2(∂Ω,Cm), (3.221)
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hence, ϕ = 0. Combining (3.217) and (3.221), one obtains

〈ψ, γ
D
f〉−1/2 = 0, for all f ∈ D1

∆(Ω). (3.222)

Recall from [77, Lemma 2.3] that γ
D

considered in the context

γ
D

: D3/2
∆ (Ω)→ H1(∂Ω,Cm), (3.223)

is compatible with (3.9), bounded, has bounded right-right inverse (hence, onto).

Then, for arbitrary h ∈ H1(∂Ω,Cm) there exits Gh ∈ D3/2
∆ (Ω) ⊂ D1

∆(Ω), such that

γ
D
Gh = h. Let us set f = Gh in (3.222) and obtain

〈ψ, h〉−1/2 = 0, for all h ∈ H1(∂Ω,Cm). (3.224)

Since the inclusion

H1(∂Ω,Cm) ↪→ H1/2(∂Ω,Cm) (3.225)

is dense, (3.224) yields ψ = 0. Thus, (ϕ, ψ) = (0, 0) and consequently part i) holds.

The second assertion follows from the fact that

C∞(Ω) ↪→ D0
∆(Ω), (3.226)

densely, cf. [31].

Next, we turn to a Lagrangian formulation of eigenvalue problems for self-adjoint

extensions of −∆min,

−∆minu := −∆u, u ∈ dom(−∆min) := H2
0 (Ω). (3.227)

Recall, that (−∆min)∗ = −∆max, where

−∆maxu := −∆u, u ∈ dom(−∆max) := D1
∆(Ω). (3.228)

The self-adjoint extension of −∆min with domain D ⊂ D1
∆(Ω) is denoted by −∆D .
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Hypothesis 3.24. Let Ω ⊂ Rn, n ≥ 2 be open, bounded, Lipschitz domain and

assume that the mapping

I 3 t 7→ Vt ∈ L∞(Ω,Cm×m), Vt = Vt
>
, t ∈ I,

is contained in C1(I, L∞(Ω,Cm×m)), I := [α, β].

Moreover, let us assume that f is a given function such that

f : I → R, f ∈ C1(I), f(t) > 0, ∂tf(t) 6= 0, t ∈ I. (3.229)

Let us denote by Kλ,t,f the trace of the set of weak solutions to the eigenvalue

problem −∆u+ V u = λu, that is,

Kλ,t,f := tr∆

{
u ∈ D1

∆(Ω) : f(t)〈∇u,∇ϕ〉L2(Ω,Cm) + 〈Vtu, ϕ〉L2(Ω,Cm)

= λ〈u, ϕ〉L2(Ω,Cm), for all ϕ ∈ H1
0 (Ω,Cm)

}
, λ ∈ R, t ∈ I,

(3.230)

where ∇u := [∇u1, · · · ,∇um]> ∈ Cm×n,

〈∇u,∇v〉L2(Ω,Cm) :=
m∑
i=1

〈∇ui,∇vi〉[L2(Ω,C)]n ,

for given u = (ui)
m
i=1, v = (vi)

m
i=1 ∈ H1(Ω,Cm).

Theorem 3.25. Assume Hypotheses 3.1 and 3.24. Let Dt ⊂ D1
∆(Ω), t ∈ I, and

assume that the linear operator LtDt = −f(t)∆Dt + Vt acting in L2(Ω,Cm) and given

by

LtDtu := −f(t)∆u+ Vtu, u ∈ dom(LtDt) := Dt, (3.231)

is self-adjoint with Specess
(
LtDt
)
∩ (−∞, 0] = ∅, t ∈ I. Assume that there exists

λ∞ < 0, such that

ker(LtDt − λ) = {0} for all λ ≤ λ∞, t ∈ I.
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Suppose that the path

t 7→ Gt := tr∆,1(Dt) ∈ H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm), (3.232)

is contained in C1
(
I,Λ

(
H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)

))
.

Then one has

Mor
(
LαDα

)
−Mor

(
LβDα

)
= Mas ((K0,t,f ,Gt)|t∈I) . (3.233)

The proof of Theorem 3.25 is similar to that of Theorem 3.18, and is omitted. We

complete this section by illustrating applications of (3.233). We note that the Maslov

index of the path
(
(K0,t,f ,Gt)|t∈I

)
is equal to the spectral flow of {LtDt}

β
t=α, that is,

the following formula holds:

SpFlow
(
{LtDt}

β
t=α

)
= Mas

(
(K0,t,f ,Gt)|t∈I

)
. (3.234)

3.4.2 Spectra of ~θ−periodic Schrödinger operators and the
Maslov index

In this subsection we derive a relation between the Maslov and Morse indices for

multidimensional ~θ−periodic Schrödinger operators as an application of (3.233).

Firstly, we define the self-adjoint extension of −∆min corresponding to the ~θ-

periodic boundary conditions

u(x+ aj) = ε2πiθju(x),
∂u

∂~ν
(x+ aj) = ε2πiθj

∂u

∂~ν
(x), x ∈ ∂Q0

j ,

where {a1, . . . an} ⊂ Rn are linearly independent vectors, ~θ := (θ1, . . . , θn) ∈ [0, 1)n,

and ∂Q0
j are the faces of the unit cell Q

Q := {t1a1 + · · ·+ tnan| 0 ≤ tj ≤ 1, j ∈ {1, . . . , n}},
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so that ∂Q = ∪1
`=0 ∪nj=1 ∂Q

`
j defined by

∂Q`
j := {t1a1 + · · ·+ tnan ∈ Q

∣∣ tj = `}, j ∈ {1, . . . , n}, ` ∈ {0, 1}.

The n-tuple {a1, . . . an} ⊂ Rn is uniquely associated with an n × n matrix A by the

condition Aaj = 2πej, where {ej}1≤j≤n is the standard basis in Cn. For the matrix

A just defined and k ∈ Zn we denote

ζk(x) := |Q|−1εiA
>(~θ−k)·x, x ∈ Q. (3.235)

Recalling that ∂Q = ∪1
`=0 ∪nj=1 ∂Q

`
j, we define the Dirichlet trace operators corre-

sponding to each face of Q as follows,

γD,∂Q`j : H2(Q,Cm)→ L2(∂Q`
j,Cm),

γD,∂Q`j(u) := (γDu)|∂Q`j , 1 ≤ j ≤ n, ` ∈ {0, 1}.

It follows that γD,∂Q`j ∈ B
(
H2(Q,Cm), L2(∂Q`

j;Cm)
)

for 1 ≤ j ≤ n and ` ∈ {0, 1}.

The Neumann trace is given by

γN,∂Q`j : H2(Q,Cm)→ L2(∂Q`
j;Cm),

γN,∂Q`j(u) :=
(
γD(∇u)−→ν

)∣∣
∂Q`j

, 1 ≤ j ≤ n, ` ∈ {0, 1},

where ~ν is the outward pointing normal unit vector to ∂Q. The inclusion

γN,∂Q`j ∈ B
(
H2(Q,Cm), L2

(
∂Q`

j;Cm×n)) ,
holds for all 1 ≤ j ≤ n, ` ∈ {0, 1}. For each u ∈ H2(Ω;R2m) we denote

u`j := γD,∂Q`j(u), ∂νu
`
j := γN,∂Q`j(u), 1 ≤ j ≤ n, ` ∈ {0, 1}. (3.236)

Let us also introduce the weighted translation operators

Mj ∈ B
(
L2(∂Q0

j ;Cm), L2(∂Q1
j ;Cm)

)
,

(Mju)(x) = ε2πiθju(x− aj) for a.a. x ∈ ∂Q1
j , 1 ≤ j ≤ n.

(3.237)
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Proposition 3.26. Recall notation (3.236), (3.237). Then the linear operator

−∆~θ : dom(−∆~θ) ⊂ L2(Q,Cm)→ L2(Q,Cm), (3.238)

dom(−∆~θ) :=
{
u ∈ H2(Q,Cm) : u1

j = Mju
0
j , ∂νu

1
j = −Mj∂νu

0
j , 1 ≤ j ≤ n

}
, (3.239)

−∆~θu := −∆u, u ∈ dom(−∆~θ) (3.240)

is self-adjoint, moreover

−∆min ⊂ −∆~θ ⊂ −∆max.

In addition, −∆~θ has compact resolvent, in particular, it has purely discrete spectrum.

Finally, Spec(−∆~θ) =
{
‖A>(~θ − k)‖2

Rn
}
k∈Zn.

Proof. Recall (3.235). Then the sequence of functions

φk,l(x) := (0, · · · , ζk(x)︸ ︷︷ ︸
l−th position

, · · · , 0)>, k ∈ Zn, 1 ≤ l ≤ m, (3.241)

form an orthonormal basis in L2(Q,Cm). In addition, φk,l ∈ dom(−∆~θ), since by

A>(~θ−k)·aj = (~θ−k)·Aaj = 2π(~θ−k)·ej = 2π(θj−kj), k ∈ Zn, 1 ≤ j ≤ n, (3.242)

one has

|Q|−1εiA
>(~θ−k)·(x+aj) = ε2πiθj |Q|−1εiA

>(~θ−k)·x,

ν · ∇
(
|Q|−1εiA

>(~θ−k)·(x+aj)
)

= ε2πiθjν · ∇
(
|Q|−1εiA

>(~θ−k)·x
)
,

(3.243)

that is

(φk,l)
1
j = Mj(φk,l)

0
j and ∂ν(φk,l)

1
j = Mj∂ν(φk,l)

0
j , 1 ≤ j ≤ n.

Furthermore,

−∆φk,l = ‖A>(~θ − k)‖2
Rnφk,l, k ∈ Zn, 1 ≤ l ≤ m. (3.244)

From these facts we infer (cf., [116] for details) that

span{φk,l : k ∈ Zn, 1 ≤ l ≤ m}, (3.245)
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is a core of the operator −∆~θ. Hence, −∆~θ is self-adjoint with domain (3.239), it has

compact resolvent due to the fact that

‖A>(~θ − k)‖2
Rn →∞, as ‖k‖Cn →∞, (3.246)

cf. [116, Lemma 3.2].

Let tQ := {tx, x ∈ Q}, t ∈ (0, 1], and define

−∆t
~θ

: dom(−∆~θ) ⊂ L2(tQ,Cm)→ L2(tQ,Cm),

dom(−∆~θ) : =
{
u ∈ H2(tQ,Cm) : u1

j = Mt
ju

0
j , ∂νu

1
j = −Mt

j∂νu
0
j , 1 ≤ j ≤ n

}
,

−∆t
~θ
u : = −∆u, u ∈ dom(−∆t

~θ
),

where Mt
j is the weighted translation operator acting from L2(∂(tQ)0

j ;Cm) to

L2(∂(tQ)1
j ;Cm), by formula (3.237) with aj replaced by taj. Assume that

V ∈ L∞(Q,Cm×m), and denote

Kλ,t := tr∆

{
u ∈ D1

∆(Q) :

∫
Q

t−2〈∇u(x),∇ϕ(x)〉Cm×n

+ 〈V (tx)u(x), ϕ(x)〉Cm − λ〈u, ϕ〉Cmdnx = 0,

for all ϕ ∈ H1
0 (Q,Cm)

}
, λ ∈ R, t ∈ R,

G~θ := tr∆

{
dom(−∆~θ)

}H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)
,

(3.247)

where tr∆ u := (γ
D
u, γ∆

N
u), cf. (3.11), (3.12).

Theorem 3.27. If V ∈ L∞(Q,Cm×m) then for any τ ∈ (0, 1], ~θ ∈ [0, 1)n, one has

Mor
(
−∆τ

~θ
+ V |τQ

)
−Mor

(
−∆~θ + V

)
= Mas

(
(K0,t,G~θ)|t∈[τ,1]

)
, (3.248)

where Kλ,t and G~θ are defined in (3.247).

If ~θ 6= 0, then

Mor
(
−∆~θ + V

)
= −Mas

(
(K0,t,G~θ)|t∈[τ0,1]

)
, (3.249)
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for small enough τ0 > 0.

If V is continuous at 0 and V (0) is invertible, then

Mor(V (0))−Mor (−∆~0 + V ) = Mas
(
(K0,t,G~0)|t∈[τ0,1]

)
. (3.250)

for small enough τ0 > 0.

Proof. Introducing the one-parameter family of self-adjoint operators acting in

L2(Q,Cm) by the formula

Lt := −t−2∆~θ + V (t·), dom(Lt) := dom(−∆~θ), t ∈ (0, 1], (3.251)

and using Theorem 3.25, we arrive at the relation

Mor(Lτ )−Mor(L1) = Mas
(
(K0,t,G~θ)|t∈[τ,1]

)
. (3.252)

Notice that L1 = −∆~θ + V , and that

u ∈ ker(Lτ ) if and only if u(·/τ) ∈ ker(−∆τ
~θ

+ V |τQ). (3.253)

Then

Mor(Lτ ) = Mor(−∆τ
~θ

+ V |τQ). (3.254)

Combining (3.252) and (3.254), we infer (3.248). By [116, Lemma 3.10, Proposition

3.13], we infer

Mor(−∆τ
~θ

+ V |τQ) = 0,whenever τ is small enough, (3.255)

Mor(−∆τ
~0

+ V |τQ) = Mor(V (0)), whenever τ is small enough. (3.256)

Equations (3.248), (3.255), (3.256) imply (3.249), (3.250).
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3.4.3 Spectra of Schrödinger operators on star-shaped do-
mains

We now show how to use Theorem 3.25 to recover (under fewer hypotheses) the

relations between the Morse and Maslov indices obtained in [50] and [57]. To set the

stage we impose the following hypothesis.

Hypothesis 3.28. Let Ω ⊂ Rn, n ≥ 2, be non-empty, open, bounded, star-shaped,

Lipschitz domain. Let G ⊂ H1/2(∂Ω,Cm) × H−1/2(∂Ω,Cm) be a Lagrangian plane

with respect to symplectic form (3.28). Assume that V ∈ L∞(Ω,Cm), m ∈ N.

Without loss of generality we assume that Ω is centered at the origin. Let τ > 0,

t ∈ [τ, 1) and denote

Ωt := {x ∈ Ω : x = t′y, for t′ ∈ [0, t), y ∈ ∂Ω}. (3.257)

The Dirichlet and Neumann trace operators considered in Ωt are denoted by

γD,t ∈ B(H1(Ωt), H
1/2(∂Ωt)), γN,t ∈ B(D1

∆(Ωt), H
−1/2(∂Ωt)),

tr∆,t := (γD,t, γN,t) : D1
∆(Ωt)→ H1/2(∂Ωt)×H−1/2(∂Ωt), t ∈ [τ, 1).

The minimal and maximal Laplacians on Ωt are denoted by ∆min,t and ∆max,t. Fol-

lowing [50, Section 4.1] we introduce the scaling operators,

Ut : L2(Ωt)→ L2(Ω), (Utw)(x) := tn/2w(tx), x ∈ Ω,

U∂
t : L2(∂Ωt)→ L2(∂Ω), (U∂

t h)(y) := t(n−1)/2h(ty), y ∈ ∂Ω,

U∂
1/t : L2(∂Ω)→ L2(∂Ωt), (U∂

1/tf)(z) := t−(n−1)/2h(t−1z), z ∈ ∂Ωt. (3.258)

Finally, we notice that Ut ∈ B(H1(Ωt), H
1(Ω)), U∂

t ∈ B(H1/2(∂Ωt), H
1/2(∂Ω)), and

define U∂
t : H−1/2(∂Ωt)→ H−1/2(∂Ω) by

〈U∂
t g, φ〉−1/2 :=H−1/2(∂Ωt) 〈g, U

∂
1/tφ〉H1/2(∂Ωt), φ ∈ H

1/2(∂Ω). (3.259)
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It follows that the subset

G∂Ωt :=
{(
U∂

1/tf, U
∂
1/tg
)

: (f, g) ∈ G
}
⊂ H1/2(∂Ωt)×H−1/2(∂Ωt), (3.260)

is Lagrangian with respect to the natural symplectic form ωt defined on H1/2(∂Ωt)×

H−1/2(∂Ωt). Let SΩt denote the self-adjoint extension of −∆min,t + V |Ωt associated

with G∂Ωt via Theorem 3.8.

Hypothesis 3.29. Assume that Specess (SΩt)∩(−∞, 0] = ∅, t ∈ [τ, 1), and that there

exists λ∞ < 0 such that

Spec (SΩt) ⊂ [λ∞,+∞) for all t ∈ [τ, 1). (3.261)

Proposition 3.30. Assume Hypotheses 3.28 and 3.29. Then, for arbitrary τ > 0,

one has

Mor(SΩτ )−Mor(SΩ1) = Mas
(
(K0,t,Gt)|t∈[τ,1]

)
, (3.262)

where K0,t is defined by (3.247) with λ = 0 and Q replaced by Ω, and

Gt :=
{

(f, g) ∈ H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm) : (f, t−1g) ∈ G
}
, t ∈ [τ, 1].

Proof. Clearly, the map t 7→ Gt, t ∈ [τ, 1] is contained in

C1
(
[τ, 1],Λ

(
H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm)

))
.

Let Lt be the self-adjoint operator associated (via Theorem 3.8) with the differential

expression

Lt = −t−2∆ + V (tx), x ∈ Ω, (3.263)

and the Lagrangian plane Gt, t ∈ [τ, 1]. By [50, Lemma 4.1],

w ∈ ker
(
SΩt − λ

)
if and only if (Utw) ∈ ker

(
Lt − λ

)
, t ∈ [τ, 1], λ ∈ R. (3.264)
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Hence, Mor(SΩt) = Mor(Lt), t ∈ [τ, 1]. The one-parameter family of self-adjoint op-

erators Lt acting in L2(Ω) together with the one-parameter family of the Lagrangian

planes Gt, t ∈ [τ, 1] satisfy hypotheses of Theorem 3.25, therefore

Mor(Lτ )−Mor(L1) = Mas
(
(K0,t,Gt)|t∈[τ,1]

)
. (3.265)

Combining (3.265), L1 = SΩ1 and Mor(SΩτ ) = Mor(Lτ ), we arrive at (3.262).

Example 3.31. Assume Hypothesis 3.28. Let Θ be a given function satisfying

0 ≤ Θ ∈ L∞(∂Ω,Cm×m), Θ(x) = Θ(x)
>
, x ∈ Ω.

The Lagrangian plane

G :=
{

(f, g) ∈ H1/2(∂Ω,Cm)×H−1/2(∂Ω,Cm) : Θf + g = 0
}
, (3.266)

gives rise to a one-parameter family of self-adjoint Schrödinger operators SΩt , t ∈ [τ, 1]

acting in L2(Ωt), t ∈ [τ, 1], 0 < τ < 1 and given by

SΩtu = −∆u+ V |Ωtu, u ∈ dom(SΩt),

dom(SΩt) = {u ∈ D1
∆(Ωt) : Θ (x/t) γD,tu(x) + γN,tu(x) = 0, x ∈ ∂Ωt}.

By [78, Theorem 2.6], the operator SΩt is bounded from below and has compact

resolvent. Hypothesis 3.29 is satisfied since Θ is bounded and nonnegative. Therefore,

(3.262) holds in case of Schrödinger operators with Robin boundary conditions on

star-shaped domains.

3.5 The abstract boundary value problems

In this section we elaborate on a natural relation between the theory of ordinary

boundary triples originated in [38], [82], [108] and the theory of abstract boundary

value spaces exploited in [29].
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3.5.1 Lagrangian planes and self-adjoint extensions via the
abstract boundary triples

We begin with several abstract results concerning the relations between the Morse

and Maslov indices in the context of boundary triples. The following hypothesis is

imposed throughout this section.

Hypothesis 3.32. Let H,H be complex, separable Hilbert spaces. Assume that A is a

densely defined, symmetric operator acting in H. Assume that A has equal deficiency

indices, that is,

dim ker(A∗ − i) = dim ker(A∗ + i). (3.267)

Definition 3.33 ([82]). Assume Hypothesis 3.32. Let Γ1,Γ2 : dom(A∗)→ H be linear

maps. Then (H,Γ1,Γ2) is said to be a boundary triple if the following assumptions

are satisfied:

1) the abstract second Green identity holds, that is, for all f, g ∈ dom(A∗),

〈A∗f, g〉H − 〈f, A∗g〉H = 〈Γ1f,Γ2g〉H − 〈Γ2f,Γ1g〉H; (3.268)

2) the map trH := (Γ1,Γ2) : dom(A∗)→ H× H is onto, i.e., for arbitrary (ϕ, ψ) ∈

H× H there exists u ∈ dom(A∗), such that Γ1u = ϕ, Γ2u = ψ.

If Hypothesis 3.32 holds then there always exists a boundary triple associated to

A, cf., [82]. Moreover,

trH ∈ B(dom(A∗),H× H) and ker(trH) = dom(A), (3.269)

where dom(A∗) is viewed as a Hilbert space equipped with the graph norm of A∗

‖x‖2
A∗ := ‖x‖2

H + ‖A∗x‖2
H, x ∈ dom(A∗). (3.270)
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The quotient space dom(A∗)/ dom(A) equipped with the bounded, non-degenerate,

skew-symmetric form ωHA defined by

ωHA([x], [y]) := 〈A∗x, y〉H − 〈x,A∗y〉H, [x], [y] ∈ dom(A∗)/ dom(A), (3.271)

is a symplectic Hilbert space with respect to the standard quotient norm induced by

‖ · ‖A∗ , where [x] denotes the equivalence class of the vector x ∈ dom(A∗). The space

dom(A∗)/ dom(A) was originally used in [29].

Proposition 3.34. Let (H,Γ1,Γ2) be a boundary triple. The map

t̃rH : dom(A∗)/ dom(A)→ H× H, , (3.272)

dom(A∗)/ dom(A) 3 [x] 7→ (Γ1x,Γ2x) ∈ H× H, (3.273)

is well defined, bounded, has bounded inverse, and

ωHA ([x], [y]) = ωH

(
t̃rH[x], t̃rH[y]

)
, [x], [y] ∈ dom(A∗)/ dom(A), (3.274)

where the symplectic form ωH is defied by

ωH((f1, g1), (f2, g2)) := 〈f1, g2〉H − 〈g1, f2〉H, (fk, gk) ∈ H× H, k = 1, 2. (3.275)

That is, t̃rH is a symplectomorphism of (dom(A∗)/ dom(A), ωH) onto (H× H, ωH).

Proof. Combining (3.269) and the fact that trH is onto, we infer that t̃rH is well de-

fined, one-to-one, onto, and bounded. By the Open Mapping Theorem, (t̃rH)−1 ∈

B (H× H, dom(A∗)/ dom(A)). The abstract second Green identity (3.268) yields

(3.274).

We will now provide a description of all self-adjoint extensions of A in terms

of Lagrangian subspaces of (H × H, ωH) (which is a consequence of the Lagrangian
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description via the abstract traces acting into the quotient space dom(A∗)/ dom(A)

cf. [29, Lemma 3.3]), and prove the equivalence of the resolvent convergence of the

extensions to the convergence of respective Lagrangian subspaces.

Theorem 3.35. Assume Hypothesis 3.32 and let (H,Γ1,Γ2) be a boundary triple,

see, Definition 3.33. Then the self-adjoint extensions of A are in one-to-one corre-

spondence with the Lagrangian planes in H × H, that is the following two assertions

hold.

1. Let D ⊂ dom(A∗), and let AD be an operator acting in H and given by

ADu = A∗u, u ∈ dom(AD) := D . (3.276)

If AD is self-adjoint, then the subspace

trH(D) = {(Γ1u,Γ2u) : u ∈ D} ⊂ H× H, (3.277)

is Lagrangian with respect to the symplectic form (3.275).

2. Conversely, if G ⊂ H × H is a Lagrangian subspace, then the operator Atr−1
H (G)

acting in H and given by

Atr−1
H (G)u = A∗u, u ∈ dom(Atr−1

H (G)) := tr−1
H (G), (3.278)

is self-adjoint (here tr−1
H (G) := {u : trH u ∈ G} denotes the preimage of the set G).

Moreover, let An, n ≥ 0, be a sequence of self-adjoint extensions of the operator A

and let Gn ⊂ H× H, n ≥ 0, be the corresponding sequence of Lagrangian planes such

that An and Gn are related to each other as indicated in (3.276), (3.277), (3.278).

Then

R(i, An)→ R(i, A0), n→∞, in B(H), (3.279)
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(here R(i, An) denotes the resolvent of An) if and only if

Gn → G0, n→∞, in Λ(H× H). (3.280)

Proof. Assume that AD is self-adjoint. Then by Lemma 3.3 in [29], the subspace

[D ] := {[x] : x ∈ D}, (3.281)

is Lagrangian in dom(A∗)/ dom(A) with respect to the symplectic form ωHA , cf.,

(3.271). Since t̃rH is a symplectomorphism, t̃rH([D ]) is a Lagrangian plane in H× H

with respect to the form ωH, cf., (3.275). Furthermore,

t̃rH([D ]) = trH(D), (3.282)

hence, trH(D) is also Lagrangian.

Conversely, assume that G is Lagrangian in H×H. Then, since ker(trH) = dom(A),

one has

A ⊂ Atr−1
H (G). (3.283)

By Proposition 3.34, t̃r
−1

H (G) is Lagrangian in dom(A∗)/ dom(A). Since t̃r
−1

H (G) =

[tr−1
H (G)] (we denote [tr−1

H (G)] = {[x] : x ∈ tr−1
H (G)}), by Lemma 3.3 in [29] the

operator Atr−1
H (G) is self-adjoint in H.

Next, we prove the last statement of the theorem. To this end, let us notice first

that since

‖Anx‖H = ‖A∗x‖H, x ∈ dom(An), (3.284)

the Hausdorff distance (cf., e.g., [103, Section IV.2]) between the graphs of An and

A0 with respect to the norm of H × H is equal to the Hausdorff distance between

dom(An) and dom(A0) with respect to the graph norm of A∗.
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Combining convergence of the resolvents (3.279) and [103, Theorem IV-2.25], we

obtain that graph(An)→ graph(A0), n→∞, with respect to the Hausdorff distance

in H × H, hence, dom(An) → dom(A0), n → ∞, with respect to the Hausdorff

distance in dom(A∗) equipped with the graph norm of A∗. That is, Pn → P0 in

B(dom(A∗), ‖ · ‖A∗), where Pn, n ≥ 0, denote the orthogonal projections on dom(An)

in the Hilbert space (dom(A∗), ‖ · ‖A∗). Let P denote the orthogonal projection on

dom(A), then, since dom(A) ⊂ dom(An), n ≥ 0, the operator Qn := Pn − P is

an orthogonal projection on dom(An) 	 dom(A), n ≥ 0 (with respect to A∗−graph

inner product). Furthermore, since dom(A∗)/ dom(A) is isometrically isomorphic to

dom(A∗)	 dom(A), the orthogonal projections Qn, n ≥ 0, give rise to a sequence of

projections Q̃n, n ≥ 0 in B(dom(A∗)/ dom(A)) with t̃rH(ran(Q̃n)) = Gn. Therefore

Gn → G0.

Conversely, assume that Gn → G0, n→∞. Then using Proposition 3.34, we obtain

a sequence of orthogonal projections Q̃n, n ≥ 0, in dom(A∗)/ dom(A) with ran(Q̃n) =

t̃r
−1

H (Gn), n ≥ 0 and Q̃n → Q̃0, n→∞ in B(dom(A∗)/ dom(A)). Then for a sequence

of orthogonal projections Qn ∈ B(dom(A∗)	 dom(A), ‖ · ‖A∗), n ≥ 0, with ran(Qn) =

dom(An)	 dom(A), n ≥ 0, one has

Qn → Q0, n ≥ 0, in B(dom(A∗)	 dom(A), ‖ · ‖A∗).

Let P denote the orthogonal projection on dom(A), then

ran(Qn + P ) = dom(An), n ≥ 0,

and

Qn + P → Q0 + P, n ≥ 0, in B(dom(A∗), ‖ · ‖A∗).
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Therefore, dom(An) → dom(A0), n → ∞, with respect to the Hausdorff distance in

dom(A∗) equipped with the graph norm of A∗, and graph(An)→ graph(A0), n→∞,

with respect to the Hausdorff distance in H × H. Finally, [103, Theorem IV-2.25]

yields (3.279).

Remark 3.36. 1) The convergence Gn → G, as n → ∞ from the last statement of

Theorem 3.35, in fact, yields that if z ∈ C \ Spec(A0) then z ∈ C \ Spec(Ak) for all

sufficiently large k ∈ N.

2) We remark that in some instances the Krein-type resolvent formulas (cf., e.g.,

[78, 135]) can be used in order to deduce resolvent convergence from the convergence

of the corresponding Lagrangian planes, see Proposition 3.10 above.

Next we turn to the Maslov index in the context of self-adjoint, Fredholm exten-

sions of symmetric operators.

Hypothesis 3.37. (1) Assume that a one-parameter family t 7→ Vt ∈ B(H) is con-

tained in C1([α, β],B(H)), α < β, and V ∗t = Vt, t ∈ [α, β].

(2) Assume Hypothesis 3.32 and that ker(A∗ + Vt − λ) ∩ dom(A) = {0} for all

t ∈ [α, β], and λ ≥ λ∞ for some λ∞ < 0.

(3) Assume that (H,Γ1,t,Γ2,t), t ∈ [α, β], is a one-parameter family of boundary

triples associated with A such that the family t 7→ trH,t := (Γ1,t,Γ2,t) is contained in

C1
(
[α, β],B(dom(A∗),H× H)

)
.

We remark that the second condition in Hypothesis 3.37 often holds in case of

second order differential operators considered on bounded domains Ω ⊂ Rn (and can

be viewed as an abstract version of the unique continuation principle, cf. [96, Theorem

3.2.2]). The third condition is natural in the context of the geometric deformations
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of domain Ω and the corresponding change of variables in conormal derivative, cf.

Subsections 3.3.4 and 3.4.3.

The following theorem is a corollary of results from [29] and Proposition 3.34,

hence we will only sketch the proof.

Theorem 3.38. Assume Hypotheses 3.32 and 3.37. Let t 7→ Gt be a one-parameter

family containing in C1([α, β],Λ(H× H)). Let ADt , t ∈ [α, β], denote the self-adjoint

extension of the operator A with domain tr−1
H,t(Gt), t ∈ [α, β]. Assume that ADt , t ∈

[α, β], has compact resolvent and that

ker(ADt + Vt − λ) = 0 for all t ∈ [α, β], λ < λ∞,

where λ∞ is defined in Hypothesis 3.37 (2). Then

Mor (ADα + Vα)−Mor
(
ADβ + Vβ

)
= Mas

(
(K0,t,Gt)|t∈[α,β]

)
, (3.285)

where Kλ,t denotes the traces of the “strong” solutions of the equation A∗u + Vtu =

λu, u ∈ dom(A∗), that is,

Kλ,t := trH,t
(

ker(A∗ + Vt − λ)
)
, t ∈ [α, β], λ ∈ R. (3.286)

Proof. First, using parametrization (3.108)-(3.112) we introduce two loops with values

in Λ(H× H) by the formulas

Σ 3 s 7→ Kλ(s),t(s) ∈ Λ(H× H), (3.287)

Σ 3 s 7→ Gt(s) ∈ Λ(H× H). (3.288)

By [29, Theorem 3.9], the one-parameter family Σ 3 s 7→ ker(A∗+Vt(s)−λ(s))/ dom(A)

is continuous and contained in C1(Σk,Λ(dom(A∗)/ dom(A)), 1 ≤ k ≤ 4. That is,
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there exists a family of orthogonal projections Σ 3 s 7→ Ps ∈ B (dom(A∗)/ dom(A))

such that

ran(Ps) = ker(A∗ + Vt(s) − λ(s))/ dom(A), (3.289)

s 7→ Ps ∈ C1(Σk,B(dom(A∗)/ dom(A))), 1 ≤ k ≤ 4, (3.290)

s 7→ Ps ∈ C(Σ,B(dom(A∗)/ dom(A))). (3.291)

Then Σ 3 s 7→ Qs := t̃rH,t(s)Ps(t̃rH,t(s))
−1 ∈ B(H × H) is a family of bounded projec-

tions such that

ran(Qs) = trH,t(s)
(

ker(A∗ + Vt(s) − λ(s)
)
, s ∈ Σ, (3.292)

s 7→ Qs ∈ C1(Σk,B(H× H)), 1 ≤ k ≤ 4, s 7→ Qs ∈ C(Σ,B(H× H)). (3.293)

The projection Qs may not be orthogonal, however, it can be replaced by orthogonal

projection while preserving regularity as in (3.293).

Second, we observe that Mas
(
(Kλ(s),t(s),Gt(s))|s∈Σ

)
= 0 by the homotopy invariance

of the Maslov index. On the other hand,

Mas
(
(Kλ(s),t(s),Gt(s))|s∈Σ

)
=

+ Mas
(
(Kλ(s),t(s),Gt(s))|s∈Σ1

)
+ Mas

(
(Kλ(s),t(s),Gt(s))|s∈Σ2

)
+ Mas

(
(Kλ(s),t(s),Gt(s))|s∈Σ3

)
+ Mas

(
(Kλ(s),t(s),Gt(s))s∈Σ4

)
.

(3.294)

Finally, proceeding as in the proof of Theorem 3.18 one can show that the crossings

on Σ1 are negative definite, the crossings on Σ3 are positive definite, and that there

are no crossings on Σ4. Thus,

0 = −
∑

λ∞<λ<0

dim (ker(ADα + Vα − λ))

+ Mas
(
(Kλ(s),t(s),Gt(s))|s∈Σ2

)
+

∑
λ∞<λ<0

dim(ker(ADβ + Vβ − λ)),
(3.295)

as asserted in (3.286).
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We will now discuss several particular applications of the abstract results of this

subsection.

3.5.2 Spectra of θ−periodic Schrödinger operators on [0,1]
and the Maslov index

The boundary triple technique employed in Theorem 3.38 is well suited for ordinary

differential operators. Indeed, let

Tmin := −∂2
x, dom(Tmin) := H2

0 [0, 1], Tmax := (Tmin)∗,

and recall from [82, Chapter 3] that

Tmax := −∂2
x, dom(Tmax) := H2[0, 1].

The operator Tmin admits a boundary triple

H = C2m, Γ1 : H2[0, 1]→ C2m,Γ1u := (u(1), u(0))>,

Γ2 : H2[0, 1]→ C2m,Γ2u := (u′(1),−u′(0))>.

(3.296)

Next we turn to a self-adjoint extension of Tmin. For each fixed θ ∈ [0, 2π) the operator

(−∂2
x)θ : L2([0, 1],Cm)→ L2([0, 1],Cm), (−∂2

x)θu := −u′′, u ∈ dom((−∂2
x)θ),

dom((−∂2
x)θ) := {u ∈ AC([0, 1],Cm) : u′ ∈ AC[0, 1], u′′ ∈ L2([0, 1],Cm),

u(1) = eiθu(0), u′(1) = eiθu′(0)},

is self-adjoint with compact resolvent. Let V ∈ L∞([0, 1],Cm×m), V = V
>

, and denote

Lθ := (−∂2
x)θ + V . Then Lθ is also self-adjoint, has compact resolvent, and

inf
θ∈[0,2π)

min{λ : λ ∈ Spec(Hθ)} > −∞. (3.297)

Let us denote Gθ := (Γ1,Γ2)(dom(Lθ)). Clearly, the map θ 7→ Gθ, where

Gθ = {(eiθa, a,−eiθb, b) : a, b ∈ Cm}, (3.298)
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is contained in C1([0, π],Λ(C2m × C2m)). Hence, the one-parameter family Lθ, θ ∈

[0, π], together with boundary triple (C2m,Γ1,Γ2) satisfy hypotheses of Theorem 3.38.

Then

Mor(Lθ1)−Mor(Lθ2) = Mas
(
(K,Gθ)|θ∈[θ1,θ2]

)
, 0 ≤ θ1 < θ2 ≤ π, (3.299)

where

K := {(u(1), u(0), u′(1),−u′(0))> : −u′′ + V u = 0} ⊂ C4m.

Remark 3.39. We stress that the result concerning equality of the spectral flow and

the Maslov index for Sturm-Liouville operators on [0, 1] is obtained in full generality

in [37, Theorem 0.4] . In particular, (3.299) can be alternatively derived using [37,

Theorem 0.4]. The symplectic structure used in [37, Theorem 0.4] is determined

by the first order system of ODE’s equivalent to the eigenvalue problem for original

Sturm-Liouville operator. In contrast, our symplectic structure is induced by the

right-hand side of the Green’s formula (3.268) and we do not need to rewrite the

eigenvalue problem as the first order ODE. As a result we deal with Lagrangian

planes that are symplectomorphic to their counterparts from [37].

3.5.3 Spectra of self-adjoint Schrödinger operators and the
Maslov index

In this section we illustrate (3.285) in the context of the self-adjoint extensions of

−∆min, cf. (3.227), (3.228). Hypothesis 3.1 is assumed throughout this subsection.

Let as recall the following two facts from [77]:

1) there exists a unique linear, bounded operator

γ̂D : D1
∆(Ω)→ (N1/2(∂Ω))∗, (3.300)
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which is compatable with the Dirichlet trace γD, cf. (3.205);

2) there exists a unique linear, bounded operator

γ̂N : D1
∆(Ω)→ (N3/2(∂Ω))∗, (3.301)

which is compatable with the Neumann trace γ
N

, cf. (3.206).

The Dirichlet-to-Neumann map MD,N is defined by

MD,N :

{
(N1/2(∂Ω))∗ → (N3/2(∂Ω))∗

f → −γ̂N(uD),
(3.302)

where uD is the unique solution of the boundary value problem

−∆u = 0 in Ω, u ∈ L2(Ω), γ̂Du = f in ∂Ω. (3.303)

Denoting τ
N
u := γ̂Nu+MD,N(γ̂Du), one has

(−∆u, v)L2(Ω) − (u,−∆v)L2(Ω)

= N1/2(∂Ω)〈τNv, γ̂Du〉(N1/2(∂Ω))∗ −N1/2(∂Ω) 〈τNu, γ̂Dv〉(N1/2(∂Ω))∗ , (3.304)

for every u, v ∈ dom(−∆max), cf. [77]. In other words, −∆min admits the following

boundary triple

H := N1/2(∂Ω),Γ1 := R−1γ̂D, Γ2 := τN , (3.305)

where R : N1/2(∂Ω) → (N1/2(∂Ω))∗ is the Riesz duality isomorphism. With this at

hand, the following proposition is a corollary of Theorem 3.38.

Corollary 3.40. Assume Hypothesis 3.1. Let D ⊂ D1
∆(Ω) and assume that the

operator −∆D acting in L2(Ω,Cm),m ∈ N, and given by

−∆Du = −∆u, u ∈ dom(−∆D) := D . (3.306)
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is self-adjoint, bounded from below and has compact resolvent. Let

t 7→ Vt ∈ L∞(Ω,Cm×m), Vt(x) = Vt(x)>, x ∈ Ω,

be a one-parameter family containing in C1([α, β], L∞(Ω,Cm)). Then

Mor(−∆D + Vα)−Mor(−∆D + Vβ) = Mas
(
(K0,t,G)|t∈[α,β]

)
, (3.307)

where

K0,t = (R−1γ̂D, τN )
(
{u ∈ D1

∆(Ω) : −∆maxu+ Vtu = 0}
)
, G := (R−1γ̂D, τN )(D).
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Appendix A

A Minimization Problem

In this appendix we carry out the explicit minimization in α for α > 0 of the integral

IK(α) := α−1

∫
Rn

[
α− |η|4m + |η|2m

]
+
dnη. (A.1)

Since the integral is only over the region of n-space where α−|η|4m+ |η|2m is positive,

and this function is radial, our problem immediately reduces to the minimization of

α−1 times a radial integral in r = |η|. Since the function r4m − r2m = r2m(r2m − 1) is

negative on 0 < r < 1 and is positive and increasing for r > 1, for α > 0 the relation

α = r4m − r2m implicitly determines a unique value rα > 1, with r2m
α given explicitly

by

r2m
α =

1

2
+
(
α +

1

4

)1/2

. (A.2)

It is clear that the value of rα is a strictly increasing function of α and runs from 1

to ∞ as α runs from 0 to ∞.

By the reductions mentioned above, one obtains

IK(α) = nvnα
−1

∫ rα

0

[α + r2m − r4m] rn−1 dr, (A.3)

where vn is the volume of the ball of unit radius in Rn as mentioned with (2.153).

Since the vn here is included explicitly in (2.153), to prove (2.153), in what remains
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we will show that the function fn,m(α) defined by

fn,m(α) := nα−1

∫ rα

0

[α + r2m − r4m] rn−1 dr (A.4)

has minimum given by

f̃n,m :=
(

1 +
2m

n+ 2m

)n/(2m)

, m, n ∈ N. (A.5)

By integrating (A.4), it is easy to see that

fn,m(α) := nα−1

[
αrnα
n

+
rn+2m
α

n+ 2m
− rn+4m

α

n+ 4m

]
. (A.6)

Replacing the explicit α appearing inside the square brackets here using α = r4m
α −r2m

α

and simplifying, one finds

α fn,m(α) =
4mrn+4m

α

n+ 4m
− 2mrn+2m

α

n+ 2m
. (A.7)

We shall have need of this expression shortly.

Next, some further properties of fn,m and its derivative will be developed. One

has

α fn,m(α) = n

∫ rα

0

[α + r2m − r4m] rn−1 dr, (A.8)

and therefore, by Leibniz’s rule,

[α fn,m(α)]′ =n[α + r2m
α − r4m

α ] rn−1
α r′α + n

∫ rα

0

rn−1 dr = rnα, (A.9)

with the simplification in the last step occurring due to the implicit relation defining

rα. From (A.9) it follows that

α f ′n,m(α) = rnα − fn,m(α), (A.10)

and hence, using (A.7) and α = r4m
α − r2m

α , that

α2f ′n,m(α) =α rnα −
[

4mrn+4m
α

n+ 4m
− 2mrn+2m

α

n+ 2m

]
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=n

(
r2m
α −

n+ 4m

n+ 2m

)
rn+2m
α

n+ 4m
. (A.11)

It is now clear that fn,m(α) has a minimum on α ∈ (0,∞), and that it occurs at

r2m
α =

n+ 4m

n+ 2m
:= r̃2m

α (A.12)

(one notes that this value is clearly larger than 1, and hence corresponds to an α > 0).

The corresponding value of α, denoted by α̃, may then be computed as

α̃ = r̃2m
α (r̃2m

α − 1) =
n+ 4m

n+ 2m

2m

n+ 2m
=

2m(n+ 4m)

(n+ 2m)2
. (A.13)

Finally one computes f̃n,m using (A.7), (A.12), and (A.13), which leads to

f̃n,m = fn,m(α̃) =
(n+ 4m

n+ 2m

)n/(2m)

=
(

1 +
2m

n+ 2m

)n/(2m)

, m, n ∈ N, (A.14)

in accordance with our statement above. This completes the proof of Theorem 2.21.

We conclude with some remarks comparing the constant f̃n,m found here with the

corresponding constants g̃n,m (our notation) found by Laptev in [114] (the comparison

is most apt if we restrict our attention to the case of the Laplacian (i.e., a = In,

b = q = 0), as that is the main case considered by Laptev [114]). Laptev’s g̃n,m are

given by

g̃n,m =
(

1 +
2m

n

)n/(2m)

, m, n ∈ N. (A.15)

It is clear from these expressions that

f̃n,m < g̃n,m, m, n ∈ N. (A.16)

This shows that the bound given in Theorem 2.21 is always better than the bound

(2.41) combined with the earlier work of Laptev [114]. Of course in the large n limit

(for fixed m) both constants become arbitrarily close, since the limit of either g̃n,m
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or f̃n,m as n → ∞ is e ≈ 2.71828. On the other hand, in the large m limit (with

n fixed) both constants go to 1 from above (with 1 being the best possible value of

the constant that could be obtained in our upper bounds, at least in the case of the

Laplacian).

In fact, it is generally true that

1 < f̃n,m < g̃n,m < e, m, n ∈ N, (A.17)

that is, that

1 < (1 + 2m/(n+ 2m))n/2m < (1 + (2m/n))n/(2m) < e, m, n ∈ N, (A.18)

with 1 and e being the best possible lower and upper bounds for both f̃n,m and g̃n,m

for all m,n ∈ N. These claims can be proved using elementary calculus by focusing

on the functions G(x) := (ln(1 + x))/x and F (x) := (ln(1 + x/(1 + x)))/x for x > 0

(note that with the identification x = 2m/n these are the logarithms of g̃n,m and

f̃n,m, respectively, and that all x > 0 can be approximated arbitrarily closely by such

ratios for m,n ∈ N). In fact, one can show that the functions G(x) and F (x) are

both strictly decreasing on (0,∞), with limiting value 1 as x→ 0+, and with limiting

value 0 as x → ∞. This implies, in particular, that in all upper bound formulas for

counting functions N(·) in this paper the bound would continue to hold (as a strict

inequality) if the constant represented by (1 + 2m/(n + 2m))n/2m were replaced by

the value e.
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[21] M. Š. Birman and M. Z. Solomjak, Spectral asymptotics of nonsmooth elliptic

operators. I, Trans. Moscow Math. Soc. 27, 1–52 (1972).
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Birkhäuser, Springer, Basel, 2015, pp. 213–239.

[76] F. Gesztesy, M. Mitrea, Generalized Robin Laplacians and some remarks on a

paper by Filonov on eigenvalue inequalities, J. Diff. Eq. 247, 2871–2896 (2009).

[77] F. Gesztesy, M. Mitrea, A description of all self-adjoint extensions of the Lapla-

cian and Krein-type resolvent formulas on non-smooth domains, J. Analyse

Math. 113, 53–172 (2011).

[78] F. Gesztesy, M. Mitrea, Generalized Robin boundary conditions, Robin-to-

Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on

bounded Lipschitz domains, In: Perspectives in partial differential equations,

harmonic analysis and applications, 105 – 173, Proc. Sympos. Pure Math., 79,

Amer. Math. Soc., Providence, RI, 2008.

[79] F. Gesztesy, M. Mitrea, Robin-to-Robin maps and Krein-type resolvent formulas

for Schrödinger operators on bounded Lipschitz domains, Oper. Theory Adv.

Appl. 191, 81–113 (2009).

[80] G. Geymonat, Trace theorems for Sobolev spaces on Lipschitz domains. Necessary

conditions., Annales mathmatiques Blaise Pascal 14, 187–197 (2007).

[81] I. Gohberg, S. Goldberg, and M. Kaashoek, Classes of linear operators. Vol. I.,
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[108] A. N. Koc̆ubĕı, On extensions of symmetric operators and symmetric binary

relations, Mat. Zametki 17, 41-48 (1975).

[109] V. A. Kozlov, Estimation of the remainder in a formula for the asymptotic

behavior of the spectrum of nonsemibounded elliptic systems, Vestnik Leningrad.

Univ. Mat. Mekh. Astronom. 1979, no 4., 112–113, 125 (Russian).

[110] V. A. Kozlov, Estimates of the remainder in formulas for the asymptotic behav-

ior of the spectrum for linear operator bundles, Funktsional. Anal. i Prilozhen

151



17, no. 2, 80–81 (1983). Engl. transl. in Funct. Anal. Appl. 17, no. 2, 147–149

(1983).

[111] V. A. Kozlov, Remainder estimates in spectral asymptotic formulas for lin-

ear operator pencils, Linear and Nonlinear Partial Differential Equations. Spec-

tral Asymptotic Behavior, pp. 34–56, Probl. Mat. Anal. 9, Leningrad Univ.,

Leningrad, 1984; Engl. transl. in J. Sov. Math. 35, 2180–2193 (1986).

[112] M. G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian

transformations and its applications. I, Mat. Sbornik 20, 431–495 (1947) (Rus-

sian).

[113] S. G. Krein, Ju. I. Petunin, and E. M. Semenov, Interpolation of Linear Op-

erators, Transl. Math. Monographs, Vol. 54, Amer. Math. Soc., Providence, RI,

1982.

[114] A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Eu-

clidean spaces, J. Funct. Anal. 151, 531–545 (1997).

[115] Y. Latushkin, S. Sukhtaiev, The Maslov index and the spectra of second order

differential operators, Preprint, https://arxiv.org/abs/1610.09765.

[116] Y. Latushkin, S. Sukhtaiev, A. Sukhtayev, The Morse and Maslov

indices for Schrödinger operators, J. D’Analyse Math., to appear,

http://arxiv.org/abs/1411.1656.

[117] Y. Latushkin, A. Sukhtayev, Hadamard-type formulas via the Maslov form, to

appear in Journal of Evolution Equations, https://arxiv.org/abs/1601.07509.

152
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