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Genetic and Transcriptional Analysis of
Human Host Response to Healthy Gut
Microbiota
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Roger Pique-Regi,a,e Ran Blekhman,b,c Francesca Lucaa,e

Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USAa;
Department of Genetics, Cell Biology, and Development, The University of Minnesota, Minneapolis,
Minnesota, USAb; Department of Ecology, Evolution, and Behavior, The University of Minnesota,
Minneapolis, Minnesota, USAc; Department of Pediatrics, Sainte-Justine Hospital Research Centre,
University of Montréal, Montreal, Québec, Canadad; Department of Obstetrics and Gynecology, Wayne
State University, Detroit, Michigan, USAe

ABSTRACT Many studies have demonstrated the importance of the gut microbi-
ota in healthy and disease states. However, establishing the causality of host-
microbiota interactions in humans is still challenging. Here, we describe a novel ex-
perimental system to define the transcriptional response induced by the microbiota
for human cells and to shed light on the molecular mechanisms underlying host-gut
microbiota interactions. In primary human colonic epithelial cells, we identified over
6,000 genes whose expression changed at various time points following coculturing
with the gut microbiota of a healthy individual. Among the differentially expressed
genes we found a 1.8-fold enrichment of genes associated with diseases that have
been previously linked to the microbiome, such as obesity and colorectal cancer. In
addition, our experimental system allowed us to identify 87 host single nucleotide
polymorphisms (SNPs) that show allele-specific expression in 69 genes. Furthermore,
for 12 SNPs in 12 different genes, allele-specific expression is conditional on the ex-
posure to the microbiota. Of these 12 genes, 8 have been associated with diseases
linked to the gut microbiota, specifically colorectal cancer, obesity, and type 2 diabe-
tes. Our study demonstrates a scalable approach to study host-gut microbiota inter-
actions and can be used to identify putative mechanisms for the interplay between
host genetics and the microbiota in health and disease.

IMPORTANCE The study of host-microbiota interactions in humans is largely lim-
ited to identifying associations between microbial communities and host pheno-
types. While these studies have generated important insights on the links between
the microbiota and human disease, the assessment of cause-and-effect relationships
has been challenging. Although this relationship can be studied in germfree mice,
this system is costly, and it is difficult to accurately account for the effects of host
genotypic variation and environmental effects seen in humans. Here, we have devel-
oped a novel approach to directly investigate the transcriptional changes induced
by live microbial communities on human colonic epithelial cells and how these
changes are modulated by host genotype. This method is easily scalable to large
numbers of host genetic backgrounds and diverse microbiota and can be utilized to
elucidate the mechanisms of host-microbiota interactions. Future extensions may
also include colonic organoid cultures.

KEYWORDS: complex traits, gene expression, genetics, host response, host-
microbiota interaction
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A healthy, human adult contains over 1,000 species of bacteria in the gut (1). These
bacteria live in a symbiotic relationship with us and compose the gut microbiota.

Recent studies suggest that the gut microbiota may play a role in both physiological
and pathological states. The composition of the gut microbiota has been correlated
with complex diseases, such as Crohn’s disease and diabetes (2–5). The two most
abundant phyla in the human gut are Bacteroidetes and Firmicutes (1). In obese
individuals, the ratio of these two phyla is altered (6–8). Turnbaugh et al. showed that
transplanting the fecal microbiota of an obese mouse to a germfree mouse caused
greater weight gain in the recipient than in recipients that received the microbiota of
lean mice (9). Goodrich et al. showed that this relationship exists even when the
microbiota from obese humans is transplanted into mice (10). The microbiota has also
been linked to colorectal cancer (11, 12) and to diseases not directly related to the gut,
such as arthritis, Parkinson’s disease, and other types of cancer (13–16).

While there are many species that are common among humans, studies have shown
that microbiome composition can vary widely across individuals (17, 18). These differ-
ences have been correlated to several factors, such as breastfeeding, sex, and diet
(19–24). In addition to environmental factors, recent studies also support a key role for
host genetics in shaping the gut microbiota. Indeed, microbiome composition is more
similar in related individuals than in unrelated individuals (10, 25–28). One caveat of
these studies is that, especially in humans, related individuals often share environments
and follow similar eating habits, which have a strong effect on the microbiota. In an
effort to control for this factor, other studies have attempted to estimate the role of
host genetics on the microbiota in mice, where the environment can be regulated, or
in groups of people that all share the same environment regardless of relatedness
(29–32).

To further examine the effect of host genetic variation on the gut microbiota, some
groups have performed association studies between host genotypes and microbiome
composition (32–35). For example, Blekhman et al. studied 93 individuals and identified
loci that are associated with microbiome composition in 15 body sites that were
sequenced as part of the Human Microbiome Project (18, 33). Among loci that are
associated with changes in abundance of microbiota species, Blekhman et al. found
enrichment of single nucleotide polymorphisms (SNPs) that were previously identified
as expression quantitative trait loci (eQTLs) across multiple tissues in the Genotype-
Tissue Expression (GTEx) project (36). Additionally, microbiome composition has been
found to be tissue specific and, therefore, likely influenced by host gene expression
patterns in the specific tissue that interacts with the microbiota (18, 33). Together, these
results suggest that host genetic variants affect microbiota composition through
influencing host gene and protein expression. However, we know little about the
interplay between human genetic variation, gene expression, variations in microbiota
composition, and the effects of these factors on susceptibility to complex disease.

Molecular studies of genetic effects on cellular phenotypes (eQTLs, DNase I sensi-
tivity QTLs [dsQTL], and transcription factors binding QTL mapping studies) have been
successful in elucidating the link between genetic variation and gene regulation and
have identified hundreds of variants associated with gene expression and transcription
factor binding changes (37–42). Here, we present a novel approach to study the
interaction between the microbiota, human genetic variation, and gene expression in
a dynamic and scalable system. We cocultured primary human colonocytes (epithelial
cells of the colon) with the gut microbiota of a healthy individual (extracted from a fecal
sample) to study host cell gene expression responses to microbiota exposure. We
identified over 6,000 genes that significantly change their expression in the host
following microbiota exposure. These genes are enriched for genome-wide association
study (GWAS) signals, suggesting that regulation of their expression is a potential
mechanism for the associations found between host disease status and microbiota
composition. In addition, to learn about host genetic variants that play a role in
host-microbiota interactions, we studied allele-specific expression (ASE) and identified
12 genes that demonstrated an interaction between genotype and microbiota expo-
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sure. Future studies can use this approach to characterize the host response to the
microbiota and determine the causal relationships in the context of specific diseases
and traits.

RESULTS
Study design. While many recent studies have shown the importance of the micro-
biota in physiological and pathological states, in humans the direct impact of exposure
to the microbiota on host cells is still unclear. To analyze the host transcriptional
changes induced by a normal gut microbiota, we designed an experiment in which we
cocultured human colonic epithelial cells (colonocytes) with an extract containing the
fecal microbiota (Fig. 1A). The fecal microbiota was purchased from OpenBiome and
was collected from a healthy individual, as characterized by a broad range of biomark-
ers (http://www.openbiome.org). We analyzed the DNA of the fecal microbiota through
16S rRNA gene sequencing followed by data processing using QIIME (12, 43, 44) to
quantify the microbial species present (Fig. 1B; see also Table S1 in the supplemental
material). To assess the technical variability introduced at any point of the microbiome
analysis protocol, we sequenced three technical replicates (aliquots of the same fecal
microbiota sample), and we found only minor variations. This fecal microbiome showed
a normal composition of bacteria phyla, with Firmicutes and Bacteroidetes representing
the most abundant taxa, consistent with previous studies of gut microbiota composi-
tion in healthy individuals (see Table S1) (18).

We exposed the colonocytes to two different densities of live microbiota (measured
by the optical density at 600 nm [OD600]), including 10:1 and 100:1 bacteria:colonocyte
ratios, termed the high and low concentrations, respectively. We cultured the colono-

FIG 1 Coculturing of human colonocytes and fecal microbiota. (A) Treatment scheme to coculture
colonocytes and microbiota, which was then followed by RNA sequencing of mRNA to assess host
gene expression. Cells were treated for 4 and 6 h using a high or low concentration of fecal
microbiota (or no fecal microbiota, as controls). (B) 16S rRNA gene sequencing results from fecal
microbiota of a healthy, 22-year-old male used to coculture with colonocytes. Each bar denotes a
replicate of the same uncultured fecal microbiota. The most abundant phyla are depicted as their
percentages of the total microbiome detected.
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cytes in low oxygen (5% O2), to recapitulate the gut environment, for 4 and 6 h under
three conditions: with high and low concentrations of bacteria and alone (as controls)
(Fig. 1A). We collected samples after 4 and 6 h of coculturing, because culture times
between 2 and 8 h have proven to be informative when determining early gene
expression changes following a variety of different treatments, including infection
(45–48). We also cocultured the colonocytes with 2 concentrations of microbiota, low
and high, to find an optimal concentration that allowed both the colonocytes and
microbial cells to thrive. The high concentration at 6 h led to reduced colonocyte
viability and so it was removed, resulting in 5 experimental conditions: Low-4, Low-6,
High-4, CO4, and CO6. Experimental replicates were collected for each condition: two
replicates for Low-4 and High-4 and three replicates for Low-6, CO4, and CO6. We
collected and sequenced the RNA in order to learn about the host cell response
through study of gene expression levels and to identify genes with allele-specific
expression induced by the microbiota.

Transcriptional changes induced by the gut microbiota. First, we searched for

genes that were differentially expressed (DE) in the colonocytes following exposure to
the gut microbiota. We used DESeq2 (49), as described in Materials and Methods to
characterize differential gene expression in the treatment samples, across replicates.
We focused on genes with significant differences by using a Benjamini-Hochberg
adjusted P value of �0.1 and |log2(fold change)| of �0.25. For each treatment, we
compared the differences in expression to the those in time-matched controls. This was
done to account for any differences in expression that were independent of the
treatment but may depend on other factors, such as cell cycle and the extended time
under the specific culturing condition (antibiotic-free medium and 5% oxygen). With
this method, we identified 3,320 genes that changed expression in Low-4 relative to
CO4 (55% upregulated), 1,790 genes in Low-6 relative to CO6 (57% upregulated), and
5,182 genes in High-4 relative to CO4 (49% upregulated), resulting in 6,684 genes that
had at least one transcript that was DE under any of the three conditions (Fig. 2; see
also Fig. S1A and Table S2 in the supplemental material). When we compared DE genes
across treatment conditions, we found that over 50% of DE genes overlapped, with 735
genes that were DE under all 3 treatment conditions (Fig. 2B). Additionally, the heat
map for genes DE in any of the 3 treatment groups (Fig. 2A) showed that even genes
that may not reach the significance threshold in a given treatment still changed
similarly across all treatments compared to their respective controls. More specifically,
while High-4 seemed to have the same gene expression changes as Low-4 but to a
greater extent, Low-6 was the least concordant sample. This can also be seen by
principal-component analysis (PCA), where the first PC separated the 5 samples by time
(see Fig. S1B), suggesting that longer culturing times may have a global effect on gene
expression, possibly affecting host cell viability.

To determine whether our results recapitulated gene expression patterns observed
in in vivo models, we performed a comparison to an existing data set and assessed the
effect of the microbiota on colonic gene expression in mice (50). Camp et al. studied
mice that were divided into three groups: conventionally raised (CR), mice raised in a
germfree environment and were then conventionalized with microbiota for 2 weeks
(CV), and mice only raised in a germfree environment (GF) (50). Those authors per-
formed transcriptome sequencing (RNA-seq) and identified 194 and 205 genes that
were differentially expressed in colonic epithelial cells in CR and CV mice, respectively,
compared to GF mice. When we searched for the overlap of the 6,684 DE genes in our
data set, we found a significant enrichment for genes differentially expressed in CR
mice (42 genes out of 63 DE genes in CR mice with orthologs in humans; Fisher’s exact
test, P � 0.001, odds ratio [OR], 2.3) but not with CV mice (45 genes out of 88 genes
with human orthologs DE in CV mice; Fisher’s exact test P � 0.39) (Fig. 2C). These
findings suggest that our model more accurately represents a normal, healthy inter-
action with the microbiota, compared to the acute response observed in the CV mice.
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We next examined the function of the genes that had changed expression levels in
the host. We identified genes involved in pathways previously shown to be affected by
exposure to microbiota, including cell-cell junctions (51, 52) and lipid metabolism (50,
53) (Fig. 3A). Similar to Camp et al. (50), we also identified changes in gene expression
of transcription factors. Specifically, Camp et al. identified 75 differentially expressed
transcription factors with binding sites enriched near genes differentially expressed
between CV and CR mice. We found that in our analysis, 50 out of the 75 transcription
factors were differentially expressed, corresponding to 2.3-fold enrichment over non-
differentially expressed genes (Fisher exact test P � 0.0004) (see Table S3 in the
supplemental material). These transcription factors included EGR1, a gene involved in
the intestinal response to injury (54), and several STAT genes, which are part of a
pathway that is upregulated in colorectal cancer (55). This overlap suggests that our in
vitro system accurately depicted an in vivo response and that the changes in host gene
expression are mediated by changes in the abundance of key transcription factors in
humans, as Camp et al. had seen in mice.

FIG 2 Host gene expression changes following exposure to the microbiota. (A) Heat map depicting
averages across replicates of the log2(fold change) for each sample compared to the respective
control (Low-4 and High-4 were compared to CO4, while Low-6 was compared to CO6). Green
indicates a decrease in expression in the treatment sample, while purple indicates an increase in
expression. One transcript from each of 6,684 genes that were DE in any of the 3 treatment groups
(Benjamini-Hochberg adjusted P value of <0.1; |log2(fold change)| > 0.25) is shown. (B) Venn
diagram depicting the number of genes that contained any transcript differentially expressed under
the various treatment conditions. The overlap numbers require that the same gene was DE in the
different samples. (C) Depiction of the percentage of DE genes from Camp et al. (either in CR or CV
mice) that were DE in colonocytes in our study. P values are from a Fisher exact test on a two-by-two
contingency table, looking at the overlap of DE genes in our data compared to DE genes in either CR
or CV mice.
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Previous reports from animal models have demonstrated an enrichment for genes
involved in the immune response among those that change expression following
short-term and long-term exposure to the microbiota (50, 56, 57). Indeed, we found
similar GO categories, such as “immune system process” (GO:0002376), were enriched
(Benjamini-Hochberg adjusted P � 0.05) among genes that are differentially expressed
following coculturing. While we identified immune-related categories among genes
differentially expressed among all three conditions, we wondered whether immune
response activation is stronger under certain conditions. Specifically, we hypothesized
that colonocytes cocultured with a high dose of microbiota for 4 h would have a

FIG 3 Functional enrichment of differentially expressed genes. (A) GO enrichment was assessed using GeneTrail (95) for any gene differentially expressed
in any of the 3 treatment groups (6,684 genes). Enrichments for the top 10 categories that were overrepresented are indicated with a black dash (details
in Materials and Methods). GO enrichment was performed for genes differentially expressed in each of the 3 treatment groups separately, and if these
categories were significantly overrepresented, the enrichment in that category is shown by a closed circle (Low-4 is blue, High-4 is red, Low-6 is green).
The closed circles were weighted based on the �log10(Benjamini-Hochberg adjusted P value). The black dash indicates enrichment among genes that
were differentially expressed under any of the 3 treatment conditions. (B) Fold enrichment of DE genes (y axis) among genes associated in GWAS for a
given disease at progressively stringent P value thresholds (x axis). For each GWAS and P value cutoff, we identified the overlap between the genes
significantly associated with the disease at that cutoff and DE genes in our study, and we calculated a fold enrichment (plotted along the y axis), defined
as the ratio of observed/expected overlap between the two gene sets. Colored lines indicate an enrichment significant at P < 0.05 (using Fisher’s exact
test), with the point of maximum enrichment indicated by a circle. The GWAS disease name is listed next to the line for diseases with a fold enrichment
of >30 or x axis position with maximum enrichment of >10.
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stronger immune response than colonocytes cocultured with a low dose for 4 h. We
identified 2,094 genes that were DE between the High-4 and Low-4 groups. We found
that transcripts from 1,308 genes showed increased expression at the higher concen-
tration and transcripts from 788 genes showed decreased expression at the higher
concentration of microbiota (see Table S4 in the supplemental material). When we
searched among the genes that were increased in expression with the higher concen-
tration of microbiota, we found several immune-related GO categories (see Fig. S1C in
the supplemental material). These data suggested that a higher microbiota concentra-
tion elicits a stronger immune response in host cells.

Transcriptional response and human diseases. The impact of microbiota
exposure on gene expression led us to ask whether these changes affect human
diseases. Several diseases have been linked to variation in the composition of the gut
microbiome, including obesity, type 2 diabetes, inflammatory bowel disease, Crohn’s
disease, ulcerative colitis, and colon cancer (7, 27, 58–65). Many GWAS analyses have
identified genetic loci associated with these diseases (66), but in most cases, the
mechanism by which the gene influences the disease is still unclear. Similarly, the
mechanisms by which microbiota composition may influence human diseases are
mostly still unknown. Our data allowed us to investigate these questions, using primary
human colonic cells.

First, we hypothesized that if we identified a differentially expressed gene in our
data that was also associated with a disease, it was likely that changing the expression
of this gene is a mechanism by which the microbiota can affect host health. To test this
hypothesis, we studied genes that were previously reported to be associated with any
complex trait (NHGRI GWAS database) (66), as defined in Materials and Methods. We
searched among genes that were differentially expressed, in the same direction, in all
3 treatment groups, and we found enrichment for genes associated with complex traits
(Fisher’s exact test P � 10�10; OR, 1.8). We then focused on several diseases that have
already been linked to microbiome composition. We found that DE genes were
enriched for genes associated with obesity-related traits (Fisher’s exact test P � 0.03;
OR � 1.5) and colorectal cancer (Fisher’s exact test P � 0.01; OR, 3.0) with suggestive
enrichment for inflammatory bowel disease (Fisher’s exact test P � 0.06; OR, 1.7) and
ulcerative colitis (Fisher’s exact test P � 0.09; OR, 1.9). There was no significant
enrichment for type 2 diabetes or Crohn’s disease (see Table S5 in the supplemental
material). Additionally, we found that the enrichment of genes associated with colo-
rectal cancer was also significant when we used a complementary approach that
accounted for the differences in the distribution of P values across GWAS (Fig. 3C). For
this analysis, we used a range of �log10(P value) cutoffs for each disease in the GWAS
catalog, and we identified the overlap between the genes significantly associated with
the disease at each cutoff and DE genes in the current study. Using this approach, we
also found enrichment among several autoimmune diseases that have been previously
linked to variation in the microbiome, such as atopic dermatitis, celiac disease, and
inflammatory bowel disease (67–69). These results support our system as a useful
method for studying the genes through which the microbiota may interact with the
host and affect human complex traits. Moreover, dysregulation of the genes that were
both differentially expressed and associated with these diseases may represent a
mechanism that causes the pathological state through the host cell response to the gut
microbiota. Future studies utilizing microbiota from healthy and diseased individuals
will be able to shed further light on how different microbes may influence disease risk
through changes in host gene expression.

Allele-specific expression. Genetic variants associated with microbiome compo-
sition have previously been linked to expression changes in humans through eQTL
studies (33). However, to date, there are no reports for humans on the effects of genetic
variants on the host transcriptional response to the microbiota. In order to identify
genetic loci that may influence host-gut microbiota interactions through their influence
on gene expression, we studied ASE (37–42). This analysis is ideal for our study (using
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colonocytes from a single individual), as it uses the genotypes and allelic imbalance for
each individual separately to assess genetic control, as opposed to using multiple
individuals to determine a correlation in a population between genotypes and expres-
sion (37–42). The caveat is that we can only assess SNPs that are heterozygous in our
sample and deeply covered by sequencing reads. To characterize ASE in our samples,
we utilized QuASAR (70), a method to detect heterozygous sites in a sample and utilize
these sites to identify ASE. We found an average of 5,984 heterozygous SNPs per
sample covered by at least 20 RNA-seq reads. Among these heterozygous sites, we
identified 131 events of ASE at 87 SNPs in 69 unique genes (Storey false-discovery rate
[FDR], �10%) across our samples, including controls (see Fig. S2A and B and Tables S6
and S7 in the supplemental material). Three of these SNPs showed the same ASE in all
samples, suggesting that these may play a role in the baseline regulation of colono-
cytes. Forty ASE events (at 30 SNPs) occurred in the treatment samples, and 18 events
(at 16 SNPs) occurred in genes that were differentially expressed at the same time
point (see Table S6). This suggests that these ASE events may be a result of either
new transcription of the favored allele or specific degradation of the other allele.
The 22 remaining ASE events may involve genes where there are changes in
expression of transcripts containing both alleles such that the gene expression
remains constant though the ASE may change. We observed a difference in the
proportion of ASE between the two controls, which could be due to incomplete
power and technical variation. The lower proportion of ASE detected after 6 h (in
both the control and the cocultured sample) may also reflect changes in regulation
of colonocyte gene expression after prolonged culturing in low oxygen. These data
reinforce the validity of comparing each cocultured sample to a control cultured
under the same conditions (without microbiota exposure) for the same length of
time. Additionally, the differences in ASE across samples may also be caused by
differences in sequencing depth. While the total number of reads for each sample
was similar, they each had various numbers of heterozygous sites that had sufficient
coverage to test for ASE.

We then formally tested whether host transcriptional response may be modu-
lated by an interaction between host genetics and the microbiota. Previous studies
have examined gene-by-environment interactions in response to infection by
searching for response expression quantitative trait loci (reQTLs), where the genetic
effect on gene expression is only present under certain conditions (71–74). How-
ever, this type of study requires many individuals in order to gain enough statistical
power. Instead, we searched for gene-by-environment interactions by examining
ASE conditional on the exposure to the microbiota (conditional ASE [cASE]). Due to
differences in sequencing depth and number of ASE identified in each sample, we
only tested for cASE on SNPs with sufficient coverage in both the treatment and the
corresponding control. We identified 12 SNPs in 12 different genes that showed
cASE under any of the three treatment conditions (empirical FDR, �12%) (Fig. 4A
and B; see also Table S8 and Fig. S2C in the supplemental material). These genes
represent the host response that is regulated by both host genetics and the
interaction with the gut microbiota.

Two of the 12 genes with cASE have been implicated in the immune response
(USP36, PIP5K1A), while 8 of them have been linked to a disease affected by dysbiosis
in the gut (USP36, PIP5K1A, AFAP1L2, GIPC1, ASAP2, RNF213, KCTD12, LASP1) (75–85). For
example, we found cASE at SNP rs1130638, favoring the reference allele, in LASP1 as
well as increased total expression of LASP1 following exposure to the high concentra-
tion of microbiota at 4 h (Fig. 4A and C). This suggests that the gut microbiota has a
stronger effect on LASP1 upregulation in the presence of a specific allelic variant.
Because previous reports have shown that LASP1 has increased expression in colorectal
cancer (80, 81, 83), these results suggest that microbiota exposure may increase the risk
for colorectal cancer in individuals carrying the allele associated with higher expression
of LASP1.
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DISCUSSION

The gut microbiota has been shown to be complex and variable under physiological
and pathological conditions. While studies of the microbiome have become more
common, in humans they have been mostly limited to identifying associations between
microbial communities and host phenotypes. Here, we have developed a novel ap-
proach to directly investigate the transcriptional changes induced by live microbial
communities on host colonic epithelial cells and how these changes are modulated by
host genotype. The advantage of this method, compared to in vivo studies in mice, is
that it allows for high-throughput testing of multiple microbiota and host combinations
with quick assessment of the interaction. Future applications of this method may
extend to colonic organoids. Organoid cultures closely resemble the three-dimensional
structure of the colonic epithelium observed in vivo and can be derived from individual
biopsy specimens (86).

In this study, we were able to learn about the human colonocyte response to fecal
microbial communities. We identified over 6,000 host genes that change expression
following coculture with the microbiota. These genes are enriched for certain functions,
including cell-cell interaction and cell migration, and in higher concentrations of

FIG 4 Gene-by-environment interactions in human colonocytes. (A) Forest plots depicting conditional cASE for 5 randomly chosen
SNPs from the 12 with cASE (remaining are shown in Fig. S2C in the supplemental material). Allele-specific expression is shown for
samples with at least 20 reads covering the indicated SNP (samples without 20 reads are not shown, as we could not accurately
measure ASE). Positive � indicates allele-specific expression favoring the reference allele. (B) QQ-plot showing the nominal P values
of SNPs that could be tested for cASE (20 reads covering SNP in both a treatment and the corresponding control or for both CO6
and CO4). (C) Gene expression changes in each treatment group (compared to the corresponding control) for each of 5 transcripts
of LASP1 expressed in colonocytes. Error bars indicate standard errors for log2(fold change) among replicates.
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microbiota we saw enrichment for genes involved in the immune response. Our study
design allowed us to assess how the host-microbiota relationship changes under
various conditions (Low-4, Low-6, and High-4). Our results suggest that a higher
microbiota concentration leads to a more pronounced immune response that may be
more representative of an infection. We also observed that prolonged coculturing (6 h)
results in the least concordant gene expression changes, suggesting that culturing for
6 h may lead to lower cell viability (as could also be seen following visual inspection of
the host cells). Therefore, while there is a high degree of overlap of differentially
expressed genes across all 3 treatments, our data suggest that a 10:1 ratio for 4 h is the
optimal treatment condition, as the genes that change expression are those involved
in cell-cell junctions and cell viability is still high.

Although we did not assess changes to the composition of the microbiota following
culturing, the composition may change due to the molecular interactions between host
cells and microbiota, similar to changes that occur in vivo. However, the composition of
the microbiota could also be influenced by the culturing environment. For example, the
nutritional environment and oxygen level may impact the microbiota. Moreover, even
though we cultured in antibiotic-free medium, residual antibiotics may still affect
community composition. Future studies that profile microbiota dynamics in the cul-
turing system will be able to address these questions.

In addition to our novel experimental design, our analysis also adds to the under-
standing of the interaction between human genetic variation and the microbiota.
Previous work has searched for quantitative trait loci that are associated with the
abundance of certain bacteria, but these studies have lacked power to detect many loci
(32, 33, 35). Our analysis of allele-specific expression maximized the information
available for each individual and allowed us to identify 12 loci that demonstrated
conditional allele-specific expression and evidence of gene-by-microbiota interaction in
a single individual. This system is easily amenable to scaling up in order to perform
eQTL and response eQTL analysis (37–42, 71–74).

When we further searched for genes where genetic variation affected the response
to microbiota exposure, we found 12 genes containing cASE. Several of these genes can
be linked to cell adhesion and migration (AFAP1L2, PIP5K1A, GIPC1, ARFGAP3, ASAP2,
LASP1) (84, 85, 87). These interactions demonstrate how the microbiota may influence
cell-cell junctions and cell surface receptors, likely due to the in vivo reaction of
colonocytes to protect the body from infection by sealing tight junctions and replacing
cells that have been sloughed off by intestinal movement (52, 88–90). This influence
may have an adverse effect on the host, as demonstrated by cASE for LASP1. LASP1
encodes a protein that binds to actin and regulates the cytoskeleton, and it has
previously been shown to increase in expression following infection. Specifically,
infection with hepatitis B virus X increased LASP1 expression and led to cell migration
(97). However, when LASP1 expression was knocked down following exposure to the
virus, subsequent cell migration and movement were also reduced. Furthermore,
colorectal cancer cells also show higher expression of LASP1, suggesting that LASP1
plays a similar role in colonocytes (80, 81, 83). Together, these data suggest another
mechanism by which the microbiota may influence cell migration and perhaps carci-
nogenesis through genotype-dependent expression changes in LASP1.

Additionally, we identified several genes with cASE that have been associated with
diabetes (GIPC1, USP36, RNF213, KCTD12) or obesity (PIP5K1A) (78, 79, 81–83). Both
diabetes and obesity have been linked to microbiome composition (7, 27, 58). These
genes may play a role in host-microbiota interactions and the dysbiosis that leads to
these diseases.

Our study demonstrates a scalable approach to study host-gut microbiota interac-
tions that depicts the in vivo relationship. This technique allowed us to start decipher-
ing the impact of the microbiota on host cells and will help to determine how the
microbiota may lead to disease through its influence on host cell gene regulation. We
also highlight the importance of gene-by-microbiota interactions and suggest that it is
not simply the genetics of an individual but the interplay between genetics and
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microbiota that can influence health and disease. Future studies using this approach
with multiple individuals and microbiota will identify key host factors and microbial
communities that jointly influence human disease.

MATERIALS AND METHODS
Cell culture and treatment. Experiments were conducted using primary human colonic epithelial cells
(HCoEpiC, lot 9810), which we also termed colonocytes (ScienCell 2950). The cells were cultured on plates
or flasks coated with poly-L-lysine (PLL), according to the supplier’s specifications (ScienCell 0413).
Colonocytes were cultured in colonic epithelial cell medium supplemented with colonic epithelial cell
growth supplement and penicillin-streptomycin according to the manufacturer’s protocol (ScienCell
2951) at 37°C with 5% CO2. At 24 h before treatment, cells were changed to antibiotic-free medium and
moved to an incubator at 37°C, 5% CO2, and 5% O2.

Fecal microbiota was purchased from OpenBiome and arrived frozen on dry ice. The following briefly
describes the protocol by which OpenBiome processes stool samples. The sample is collected and given
to a technician within 1 h. The mass of the sample is measured and transferred to a sterile biosafety
cabinet. The stool sample is put into a sterile filter bag, and a sterile filtered dilutant of 12.5% glycerol
is added with a normal saline buffer (0.90% [wt/vol] NaCl in water). The sample solution is then
introduced to a homogenizer blender for 60 s and aliquoted into sterile bottles. The bottles are then
immediately frozen at �80°C. Any sample not fully processed within 2 h of passage is destroyed.

Upon arrival in our lab, the extract was not thawed until the day of treatment. Fecal microbiota was
collected from a healthy, 22-year-old male (Unit ID 02-028-C). Prior to treatment, the fecal microbiota was
thawed at 30°C, and the microbial density (OD600) was assessed via a spectrophotometer (Bio-Rad
SmartSpec 3000). Medium was removed from the colonocytes and fresh antibiotic-free medium was
added to the cells, with a final microbial ratio of 10:1 or 100:1 microbe:colonocyte in each well (low and
high conditions, respectively). Additional wells containing only colonocytes were also cultured in the
same 24-well plate for use as controls.

Following 4 or 6 h, the wells were scraped on ice, pelleted, and washed with cold phosphate-buffered
saline (PBS) and then resuspended in lysis buffer (Dynabeads mRNA Direct kit) and stored at �80°C until
extraction of colonocyte RNA. Treatments of control and Low-6 groups were done in triplicate, while the
Low-4 and High-4 treatments were done in duplicate. The colonocytes exposed to the high concentra-
tion of microbiota for 6 h were unhealthy, and RNA could not be collected.

RNA library preparation from colonocytes. Polyadenylated mRNAs were isolated from thawed cell
lysates by using the Dynabeads mRNA Direct kit (Ambion) and following the manufacturer’s instructions.
RNA-seq libraries were prepared using a protocol modified from the NEBNext Ultradirectional (NEB)
library preparation protocol to use bar codes from BIOOScientific added by ligation, as described in
reference 91. The individual libraries were quantified using the KAPA real-time PCR system, following the
manufacturer’s instructions and using a custom-made series of standards obtained from serial dilutions
of the phiX DNA supplied (Illumina). The libraries were then pooled and sequenced on two lanes of the
Illumina Next-seq 500 in the Luca/Pique laboratory by using the high-output kits for 75 cycles and 300
cycles to obtain paired-end reads for an average of 150 million and 50 million total reads per sample,
respectively.

16S rRNA gene sequencing and analysis of the microbiome. Microbial DNA was extracted from
the uncultured microbiota sample in triplicate by using the PowerSoil kit from MoBio Laboratories as
directed, with a few modifications. Briefly, the fecal microbiota was spun, the pellet was then resus-
pended in 200 �l of phenol:chloroform and added to the 750-�l bead solution from the PowerSoil kit.
The kit protocol was then followed, and the column was eluted in 60 �l. This eluate was then purified
using the MinElute PCR purification kit (Qiagen) according to the manufacturer’s instructions.

16S rRNA gene amplification and sequencing were performed at the University of Minnesota
Genomics Center (UMGC), as described by Burns et al. (12). Briefly, DNA isolated from the fecal microbiota
was quantified by quantitative PCR (qPCR), and the V5-V6 regions of the 16S rRNA gene were PCR
amplified. Nextera indexing primers were added in the first PCR, using the V5F primer, 5=-AATGATACG
GCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC-3=, and V6R, 5=-CAAGCAGAAGACGGCATACGAGAT[i7]
GTCTCGTGGGCTCGG-3=, where [i5] and [i7] refer to the index sequences used by Illumina. This PCR was
carried out using the KAPA HiFidelity Hot Start polymerase (Kapa Biosystems) for 20 cycles. The
amplicons were then diluted 1:100 and used as input for a second PCR using different combinations of
forward and reverse indexing primers for another 10 cycles. The pooled, size-selected product was
diluted to 8 pM, spiked with 15% phiX, and loaded onto an Illumina MiSeq instrument to generate the
16S rRNA gene sequences (v3 kit; paired-end 2 � 300 bp), resulting in 2.2 million raw reads per sample,
on average. Bar codes were removed from the sample reads by UMGC, and the Nextera adaptors were
trimmed using CutAdapt 1.8.1.

The trimmed 16S rRNA gene sequence pairs were quality filtered (q-score of �20, using QIIME 1.8.0),
resulting in 1.41, 1.06, and 1.53 million high-quality reads for sample replicates 1, 2, and 3, respectively
(43, 44). Operational taxonomic units (OTUs) were picked using the closed reference algorithm against
the Greengenes database (August 2013 release) (12, 43, 44, 92). The resulting OTU table was analyzed to
determine microbial community diversity, using QIIME scripts and rarefying to 280,000 reads.

RNA sequencing and differential gene expression analysis. Reads were aligned to the hg19
human reference genome by using STAR (93) (https://github.com/alexdobin/STAR/releases, version
STAR_2.4.0h1) and the Ensemble reference transcriptome (version 75) with the following options: STAR
--runThreadN 12 --genomeDir �genome�; --readFilesIn �fastqs.gz� --readFilesCommand zcat;
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--outFileNamePrefix �stem� --outSAMtype BAM Unsorted; --genomeLoad LoadAndKeep, where �ge-
nome� represents the location of the genome and index files, �fastqs.gz� represents that sample’s
fastq files, and �stem� represents the file name stem of that sample. For each sample, we merged
sequencing replicates from the 2 different sequencing runs by using samtools (version 2.25.0). We further
required a quality score of 10 to remove reads mapping to multiple locations. We used the WASP suite
of tools (98) (https://github.com/bmvdgeijn/WASP; downloaded 9/15/15) for allele-specific mapping and
to remove duplicates, to ensure that there was no mapping bias at SNPs. The resulting alignments were
used for the following analyses, and the read counts can be found in Table S7 in the supplemental
material.

To identify DE genes, we used DESeq2 (49) (R version 3.2.1; DESeq2 version 1.8.1) over experimental
replicates for each treatment condition. DESeq2 was performed over each transcript expressed in all
samples. A transcript was differentially expressed when the log2(fold change) was greater than 0.25 and
had a Benjamini-Hochberg adjusted P value of �0.1 (94). A gene was considered DE if at least one of its
transcripts was DE.

Gene ontology analysis. We utilized GeneTrail (95) to find enrichment of gene ontology terms. We
compiled a list of unique genes that changed gene expression under any of the 3 conditions (Low-4,
High-4, and Low-6) and determined which GO categories were under/overrepresented compared to a list
of all genes expressed in colonocytes (15,781 genes). We considered a category over/underrepresented
if the Benjamini-Hochberg adjusted P value was �0.05. Figure 3A depicts the top 10 categories
overrepresented that had an expected number of genes between 10 and 500. Enrichment was calculated
by dividing the observed number of genes in a category by the expected number based on the total
gene set.

Comparison of differentially expressed genes to those reported by Camp et al. The genes from
Table S3 in the report by Camp et al. (46) were mapped to their orthologs in humans via the Ensembl
BioMart tool (96) tool for comparison to the genes in our data set.

Enrichment of DE genes among genome-wide association studies. We downloaded the GWAS
catalog (version 1.0.1) (66) on 5 January 2016. To identify the overlap between DE genes in our data set
and those associated with a GWAS trait, we intersected genes that contained transcripts that changed
significantly and in the same direction in all 3 treatment groups with the reported genes from the GWAS
catalog. We report enrichment with specific categories from the GWAS catalog: “Obesity-related traits,”
“Inflammatory bowel disease,” “Ulcerative colitis,” “Colorectal cancer,” “Type 2 diabetes,” and “Crohn’s
disease.” We used Fisher’s exact test and a two-by-two contingency table by using 2 groups: genes that
contained transcripts that were DE, in the same direction, in the 3 treatment groups (“ALL”), and other
genes that were expressed in each sample (“NOT”). We then split these groups into two subgroups:
genes that were associated with the select disease (“TRAIT”) and genes that were associated with any
other trait in the GWAS catalog (“OTHER GWAS”). Values are shown in Table S5 in the supplemental
material.

Joint genotyping and ASE inference. First, we identified SNPs to be studied for ASE. We used all
1KG SNPs from the phase 3 release (v5b.20130502; downloaded on 8/24/15) but removed SNPs if their
minor allele frequency was less than 5% or they were found in annotated regions of copy number
variation and ENCODE-blacklisted regions (39). The resulting 7,340,521 SNPs were then studied in the
following analysis.

Using samtools mpileup and the hg19 human reference genome, we obtained the read counts at
each SNP in each sample from the RNA-seq data. These pileups were then processed using the QuASAR
package (70) by combining the RNA-seq reads from each sample (as they are all derived from the same
colonocyte cell line) for joint genotyping. From the genotype information we identified heterozygous
SNPs with read coverage of at least 20 and we tested them for ASE by using QuASAR (70). Because all
samples were collected from the same host cell line, we used read counts combined across all samples
and all replicates to call genotypes. However, when we study ASE, we study each sample separately, only
combining the 75- and 300-cycle runs across the experimental replicates.

Analysis of cASE. To identify cASE, we transformed the Quasar � parameters to differential Z scores
(ZΔ) by using the following formula: ZΔ � (�T � �C)/�(seT

2 � seC
2), where � and se represent the

estimates for the ASE parameter and its standard error (se) for either the treatment (T) or control (C)
samples.

The ZΔ scores were then normalized by the standard deviation across ZΔ scores corresponding to
control versus control (controls at 4 and 6 h). Finally, P values (PΔ) were calculated from the ZΔ scores as
follows: PΔ � 2 � pnorm(�|z|). Under the null hypothesis, ZΔ values are asymptotically normally
distributed. To further correct for this small deviation, we used the control-versus-control P values to
empirically estimate the FDR. A list of significant cASE SNPs (empirical FDR, �12%) is provided in Table S8
in the supplemental material.

Accession number(s). All 16S rRNA gene sequencing data of uncultured microbiota and RNA
sequencing data of colonocytes under all conditions were submitted to the Sequence Read Archive (SRA)
under accession number SRP080110.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSystems.00067-16.

Table S1, XLSX file, 0.1 MB.
Table S2, XLSX file, 3.6 MB.
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Table S3, XLSX file, 0.01 MB.
Table S4, XLSX file, 0.5 MB.
Table S5, XLSX file, 0.01 MB.
Table S6, XLSX file, 0.02 MB.
Table S7, XLSX file, 0.01 MB.
Table S8, XLSX file, 0.01 MB.
Figure S1, JPG file, 0.2 MB.
Figure S2, JPG file, 0.2 MB.
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