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Abstract. We theoretically study the spatial behaviors of spin precessions modulated by an effective mag-
netic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction
between the spin and the effective magnetic field, we find some laws of spin precession in the system, by
which we explain some previous phenomena of spin precession, and predict a controllable electron spin po-
larization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like
or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths
of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit
interaction.

PACS. 72.25.Dc Spin polarized transport in semiconductors – 71.70.Ej Spin-orbit coupling, Zeeman and
Stark splitting, Jahn-Teller effect – 85.75.Hh Spin polarized field effect transistors

In recent years, there has been a great deal of interest
in manipulating the spin degrees of freedom in semicon-
ductors due to intriguing physics phenomena that are
observed experimentally or predicted theoretically [1–3].
Applying external magnetic fields and magnetic contacts
provide a possible approach to control the spin of elec-
tron [4]. Of particular interest is the spin manipulation
via an adjustment of a gate voltage in semiconductor het-
erostructures [5–8]. A consequence of the relativity is that
the spin and momentum states of an electron can inter-
act in the presence of an electric field, known as spin-
orbit interaction. This interaction, just like the interaction
between the spin and an effective magnetic field [9,10],
opened pathway to the manipulation of electron spins
within non-magnetic semiconductors. In general, the effec-
tive magnetic field, induced by Rashba spin-orbit interac-
tion (RSOI), is independent of crystallographic direction
in which a quantum well has been grown, while the re-
verse is true for the one induced by Dresselhaus spin-orbit
interaction (DSOI). However, the effective magnetic fields
are dependent on the strength of spin-orbit interaction
and the wave vector. A fascinating feature of RSOI is the
fact that its strength can be controlled by a gate voltage.
Thus the spin can be purely electrically manipulated in the
presence of the spin-orbit interaction. It could be of use
in areas from spintronics to quantum computing [5,7,8].

In spintronics, a plenty of theoretical and experimen-
tal works [11,18] were stimulated by the Datta-Das spin-
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field-effect transistor [19], in which the spin precessions are
modulated by an effective magnetic field induced by RSOI
when electrons are transmitted through a two-dimensional
(2D) semiconductor channel. Recently, using an 8 × 8
Kane model, Winkler has further demonstrated the spa-
tial spin precession in the electron system with spin-orbit
interaction [10]. On the other hand, a new spin-field-
effect transistor based on spin-orbit coupling of both the
Rashba and the Dresselhaus types was proposed [20]. Spin
transport through the transistor is tolerant against spin-
independent scattering processes. Then a spatial spin pre-
cession named persistent spin helix (PSH) was predicted
to exist in SU(2)-symmetry quantum wells with equal cou-
pling strengths of the Rashba and Dresselhaus types (RD
model) [21]. The PSH is a spetial spin precession pat-
tern with the precession angle depending only on the net
displacement along certain directions such as ±[110]. It
was also demonstrated by Liu using a contour-integral
method [22]. Recently, the PSH has been observed by
Koralek et al. using transient spin-grating spectroscopy
in [001]-grown quantum wells [23]. A spin polarization
wave is generated by the photon helicity wave, and is
modulated by an effective magnetic field, and then an en-
semble of spins curls into a helix, the collective spin life-
time is greatly enhanced [24], ultimately, a PSH is formed
in the two-dimensional electron gas. The experimental
demonstration of the persistent spin helix is a remarkable
breakthrough, which will be helpful to design spintronic
device.

In this paper, through analysis of the competition of
two effective magnetic fields induced by RSOI and DSOI
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respectively, and the interaction between the spin and the
total effective magnetic field in a [001]-grown quantum
well, we can explain the previous phenomena [21,22,25] of
spin precessions and predict some spin precessions which
form spin polarization wave (SPW). The SPW, excited
by two light beams with crossed-linear polarizations, can
form electron spin gratings [26,27] which has been widely
used in the study of spin dynamics [26–28], such as spin
relaxation and spin diffusion. The SPW, which we find,
excited by a linear polarization light beam, can also form
electron spin gratings. And the shape of the wave can be
controlled by a gate of voltage.

First, we discuss the competition of the two effec-
tive fields in a 2D electron system confined in a [001]-
grown quantum well made of III–V semiconductor. In
crystals lacking an inversion center such as InAs, bulk in-
version asymmetry [29] (BIA) results in the DSOI. It in-
evitably induces an unchangeable effective magnetic field
(DEMF). In heterostructures, structure inversion asym-
metry (SIA) [30] leads to the RSOI which induces another
adjustable effective magnetic field (REMF). The combined
effect of the two effective fields determines the properties
of the spin precessions in the quantum wells. The system
is characterized by the Hamiltonian

H[001] =
p2

x + P 2
y

2m∗ +
α

�
(pyσx−pxσy)+

β

�
(pxσx−pyσy), (1)

where m∗ is the effective electron mass, σx and σy are
the Pauli matrices. The second term of equation (1) orig-
inates from the SIA , and the third one originates from
the BIA. α and β, assumed to be constant at present, are
the Rashba and Dresselhaus strengths, respectively. The
eigenfunctions of the system are

Ψ↑↓ =
1√
2
e(i�k↑↓·�r)

(
ie(−iθ)

±1

)
, (2)

where θ = arg[α cosφ + β sin φ + i(α sin φ + β cosφ)], k↑
and k↓ are the vectors of spin-up and -down electron, re-
spectively. The corresponding eigenenergies are

E↑↓ =
�

2k2

2m∗ ± ξ(α, β, φ)k, (3)

where

ξ(α, β, φ) =
√

α2 + β2 + 2αβ sin(2φ), (4)

here φ is the argument angle of 	k ≡ (kx, ky) =
k(cosφ, sin φ). We assume that E↑ = E↓ = E, and then
we obtain

k↑↓ =
±m∗ξ + m∗√ξ2 + 2�2E/m∗

�2
. (5)

In accordance with references [9] and [10], the effective
magnetic field can be defined as 	B = Δk〈Ψ↑|	σ|Ψ↑〉 when
the wave vector is sufficiently small (k < 108 m−1), where
Δk = 2m∗ξ

�2 . So these effective magnetic fields in the sys-
tem can be expressed as

	BSIA =
2m∗α

�2
(sin φ,− cosφ, 0) (6)
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Fig. 1. Effective magnetic fields with (a) ratio = 0, (b)
ratio = 0.5, (c) ratio = 1, (d) ratio = 2, (e) ratio = 4, and
(f) ratio = ∞, i.e., β = 0.

for REMF,

	BBIA =
2m∗β

�2
(cosφ,− sin φ, 0) (7)

for DEMF,

	Btotal = 	BSIA + 	BBIA

=
2m∗ξ(α, β, φ)

�2
(sin θ,− cos θ, 0) (8)

for the total effective magnetic field in the system. Note
that when we fix coupling strengths α, β, these effec-
tive magnetic fields are determined by the direction of
wave vector (φ), and independent of its magnitude. We
also note that the fields have a rotational symmetry, i.e.,
	Btotal(φ) = − 	Btotal(φ+π). The total fields 	Btotal with dif-
ferent ratio of α to β are plotted in Figure 1 which exhibits
their rotational symmetry in the momentum space. With
the increase of the ratio, the symmetry of fields gradually
transits from 	BBIA to 	BSIA, but all the magnitudes of
the fields exhibit axial symmetry around the [1̄10] axis.
We show the directions of the effective fields only for a
circle in the kx-ky plane, because these results are typical,
for circles with different radii only trivial changes occur.

In Figure 2, the calculated magnitude of the field 	Btotal

is plotted as a function of the ratio α/β and the argument
angle φ in polar coordinates, where the radius stands for
the ratio. The figure distinctly shows axial symmetries of
the field, and we label its two symmetry axes with two
dash arrows. The magnitude of 	Btotal behaves as a pe-
riodic function of the argument angle φ, the period is
π. In addition, for a fixed ratio α/β, the field reaches a
maximum when φ = π/4 or 5π/4, and a minimum when
φ = 3π/4 or 7π/4. The reason is that the direction of
	BBIA is same as that of 	BSIA at φ = π/4 or 5π/4, but
opposite to that of 	BSIA at φ = 3π/4 or 7π/4 (see Figs. 1a
and 1f). With the increase of the ratio, the magnitude of
the field first decreases and then increases at φ = 3π/4
or 7π/4, and the minimum is zero when the ratio is 1,
because 	BBIA = − 	BSIA at the two argument angles.

In what follows, we consider the spin precessions in
the above systems, a spin with polar angle θs (the angle
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Fig. 2. (Color online) The calculated magnitude of �Btotal is
plotted as a function of the ratio and the argument angle φ
in polar coordinates. The radius stands for the ratio, and the
unit of the �Btotal is 2m∗β/�

2.

between the spin and z direction) and azimuthal angle ϕs

(the angle between the spin and x direction) is injected
at the origin of (0, 0) coordinates. Using the equations
[σx, H ] = 2i(αkx + βky)σz , [σy, H ] = 2i(αky + βkx)σz ,
and [σz , H ] = −2i(αkx + βky)σx − 2i(αky + βkx)σy, the
Heisengberg equation of motion i�σ̇i = [σi, H ] can be
solved to obtain the spin expectation values [22]

〈σx〉t = [〈σz〉0 sin ωt − (〈σx〉0 cos θ + 〈σy〉0 sin θ)
× (1 − cosωt)] cos θ + 〈σx〉0, (9)

〈σy〉t = [〈σz〉0 sin ωt − (〈σx〉0 cos θ + 〈σy〉0 sin θ)
× (1 − cosωt)] sin θ + 〈σy〉0, (10)

〈σz〉t = 〈σz〉0 cosωt − (〈σx〉0 cos θ + 〈σy〉0 sin θ) sin ωt,
(11)

with 〈σx〉0 = sin θs cosϕs, 〈σy〉0 = sin θs sin ϕs, 〈σz〉0 =
cos θs, and ωt = 2ktξ/�. We note that the group velocity is

v =
1
�

∂E

∂k
. (12)

Using equations (3) and (12), we obtain

�k

m
= v ∓ ξ

�2
, (13)

we set
v± = v ∓ ξ

�2
. (14)

Substituting equations (13) and (14) into ωt = 2ktξ/�,
one can obtain

ωt = 2m∗v±tξ/�
2

= 2m∗rξ/�
2

= �kr. (15)

In presence of spin orbit coupling, v+ �= v−, which means
that the spin-up electron will lag behind the spin-down

Fig. 3. (Color online) PSH patterns in a 2D electron system
for RD model with (a) ϕs = π/4, (b) ϕs = π/2. Arrows express
the component of 〈�σ〉 in the x-y plane. Color bar calibrates 〈�σz〉
with the unit �/2. All the injection points are (0, 0), and the
injected spins are shown by the bold arrows in (a) and (b).

electron when they travel a same distance. But they ob-
tain same phase difference �kr. The above deduction is
an approximate process because we assume the electron
is a free particle. A strict deduction was given by Liu us-
ing a contour-integral method [25]. The above equations
demonstrate that the phase of spin depends on its dis-
placement of electron and the difference of wave vectors.
Both spin-up and -down state follow the spatial evolution
law [22].

The overlap of the spin vector with the field 	Btotal is
given by

	Btotal · 〈	σ〉 =
2m∗ξ(α, β, φ)

�2
sin(θ − ϕs) sin θs. (16)

So when 	Btotal · 〈	σ〉 = 0, i.e., θs = nπ, or θ − ϕs = nπ (n
is an integer), equation (16) is independent of the spatial
position of the 2D electron system. The spin of injection
will be always perpendicular to and precess around the
field 	Btotal. On the other hand, when 	Btotal · 〈	σ〉 �= 0, i.e.,
θs �= nπ and θ−ϕs �= nπ, the spin of injection will precess
on a cone around the field 	Btotal, where the cone angle is
|π/2 − θ + ϕs| or π− |π/2 − θ + ϕs|.

Using the above law, we can easily explain the PSHs
found by Bernevig et al. [21,22]. Figure 3a shows the spe-
cial case in an InAs-based 2D electron system. The pa-
rameters are taken as α = β = 1.062 × 10−2 eVnm,
and m∗ = 0.023 m0, where m0 is the electron rest mass,
and the spin orientation of the injection point (0, 0) is
set as θs = π/2 and ϕs = π/4. Due to the equal cou-
pling strengths of the Rashba and Dresselhaus interac-
tions in RD model, θ = π/4. So we can easily deduce that
	B · 〈	σ〉 = 0, indicating that the spin will be always per-
pendicular to and precess around the field 	Btotal when the
electron propagates in the quantum well. Because the di-
rections of the field are constant, pointing to either [1̄10] or
[11̄0], we can see that the spins rotate along the directions
±[110] in Figure 3a. Furthermore, the antisymmetry of
PSH reflects the antisymmetry of the field which has been
plotted in Figure 1c. A more general PSH in the system
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(κλ)2 =
2( �

2κπ
m∗(α+β)

)2( �
2κπ

m∗(α−β)
)2

( �2κπ
m∗(α+β)

)2 + ( �2κπ
m∗(α−β)

)2 − (( �2κπ
m∗(α−β)

)2 − ( �2κπ
m∗(α+β)

)2)cos(2(φ + π/4))
. (17)

is plotted in Figure 3b. We set the spins as θs = π/2 and
ϕs = π/2 at the injection point, other parameters are the
same as above. It is shown that the spins precess around
the effective magnetic field 	Btotal with a cone angle π/4
or 3π/4. Due to the properties of the field, these PSHs ex-
hibit a special spin precession pattern with the precession
angle depending only on the net displacement in certain
directions ±[110], as shown in Figures 3a and 3b.

In addition, the spatial spin precessions discussed by
Liu [25] also reflect the law in [001]-grown quantum wells.
From equation (8), the direction of 	Btotal can be expressed
as (sin θ,− cos θ, 0). When the ratio α/β = 2.15, we can
obtain θφ=π/4 = π/4, and the cone angle |π/2 − θ +
ϕs|ϕs=π/4 = π/2. It indicates that the injected spin will be
always perpendicular to and precess around 	Btotal when it
propagates along the [110] direction in the quantum well.
We can also obtain θφ=0 ≈ 5π/36, and the cone angle
|π/2−θ+ϕs|ϕs=π/4 = 11π/18, which indicates that when
a spin propagates along the [100] direction, it will pre-
cess on a cone around the effective magnetic field 	Btotal,
where the cone angle is 11π/18. These spin precessions
were shown in reference [25].

Now, we consider the spatial behaviors of spin pre-
cessions in a [001]-grown quantum well with different ra-
tios between α and β. In order to meet the condition
	Btotal · 〈	σ〉 = 0, a z direction spin is assumed to be in-
jected at the origin of (0, 0) coordinates. Some interesting
spin precession patterns generate in this system plotted
in Figure 4. The spin precessions form spin polarization
waves which propagate in the quantum well, like water
wave. The spatial behaviors of 〈σz〉 exhibit elliptical or
circular symmetry when α �= β, and all the ellipses have
same symmetry axes [110] and [1̄10], which indirectly re-
flects the symmetry of the field 	Btotal in the system (see
Figs. 1 and 2). In addition, the spins, injected at the origin
of (0, 0) coordinates , will return exactly to the original
orientation when they propagate to the brightest ellipses
or circles, and turn to the reverse direction when they
propagate to the darkest ellipses or circles as shown in
the figures. The wavelength of the SPW is anisotropic in
the quantum wells when α �= β (see Figs. 4b and 4c). We
also note that the wavelength is isotropic in the quantum
wells with only one spin orbit interaction (see Figs. 4a
and 4d). Physically, these behaviors can be understood
from the period of the spin expectation value 〈σ〉. The
three equations (9), (10) and (11) can be expressed as the
form 〈σi〉 = A cos(2m∗rξ/�

2 + ϑ) + C, where i = x, y, z.
So the wavelength of the SPW for 〈σz〉 is λ = �

2π
m∗ξ . Sub-

stituting equation (4) into the wavelength, we can obtain

see equation (17) above

where κ = n or κ = n + 1/2, n is a positive integer. The
equation indicates that the distribution of the κλ is an

Fig. 4. (Color online) Spin precessions with a fixed DSOI
stength β = 1.062 × 10−2 eV nm and different ratios (α/β)
for (a) 0; (b) 0.25; and (c) 2.5; (d) ratio = ∞ (α = 1.062 ×
10−2 eV nm and β = 0). Arrows express the component of 〈�σ〉
in the x-y plane. Color bar calibrates 〈�σz〉 with the unit �/2,
all the injection points are (0, 0).

ellipse or circle in the real plane when α �= β. The major
semi-axis of the ellipse is �

2κπ
m∗(α−β) , and the minor semi-axis

of the ellipse is �
2κπ

m∗(α+β) . The cos(2(φ+π/4)), being a part
of the equation, indicates that the symmetry axes of the
ellipse are axes [110] and [1̄10]. Particularly, when α = 0
or β = 0, the distribution of λ is a circle. When κ = n,
equation (17) describes these brightest ellipses or circles
in Figure 4. In addition, when κ = n + 1/2, equation (17)
describes these darkest ellipses or circles in Figure 4. This
is why we can see that the spin of injection can return ex-
actly to the original orientation after propagating to these
brightest ellipses or circles, and turn to reverse direction
after propagating to these darkest ellipses or circles. we
also note that the positions of the major semi-axis and
the minor semi-axis exchange when the ratio between α
and β is less than zero (i.e., α < 0).

Using equation (17), we can obtain these elliptical ec-
centricity e = 2

√
α
β /(1+ α

β ). Figure 5 shows the eccentric-

ity as a function of the ratio α/β for the [001]-grown quan-
tum wells. With increase of the ratio, the eccentricity first
increases, then decreases. when α = β, the eccentricity
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Fig. 5. The eccentricity of the ellipse vs the ratio between α
and β.

reaches the maximum 1, it indicates that equation (17)
are no more an elliptical equation. The reason is that there
are no effective magnetic fields to manipulate the spin in
the directions [1̄10] and [11̄0] due to 	Btotal|φ=3π/4,7π/4 = 0
in the RD model.

Moreover, the SPW, excited by two spatial modulation
light beams with crossed-linear polarizations, forms elec-
tron spin gratings which has been widely used in the mea-
sure of spin transport and relaxation [26–28]. The SPWs
found in this paper, are easy to generate and control. We
only need a linear polarization light pulse to excite elec-
tron with z direction spin, or we directly inject the elec-
trons applying ferromagnet. The shapes of the wave can
be modulated by RSOI which is controlled by a gate volt-
age. Therefore the SPW can form electron spin gratings
in various shapes. The SPWs can be demonstrated using
Kerr rotation microscopy.

In summary, we have studied the spin precession in a
2D electron system with spin-orbit interaction. Through
analysis of the competition of two effective magnetic fields
and the interaction between the spin and the effective
magnetic field, we find some laws for the spatial spin
precessions in [001]-grown quantum wells. When the in-
jected spins are transmitted through the 2D electron gas,
they will precess on a cone around the effective magnetic
field 	Btotal, where the cone angle is |π/2 − θ + ϕs| or
π− |π/2 − θ + ϕs|. In addition, we predict a controllable
spin polarization wave in the 2D system. The shape of the
wave is controlled by the strength of RSOI and DSOI. Our
results may be helpful to the detection and manipulation
of electron spins within non-magnetic semiconductors.

The work was supported by the 973 program (2006CB604908,
2006CB921607), and the National Natural Science Foundation
of China (60625402).
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1. D. Awschalom, M. Flatté, Nature Phys. 3, 153 (2007)
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