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Many important engineering applications involve the interaction of free-moving objects with dispersed multi-
phase flows, however due to the challenge and complexity ofmodelling these systems,modelling approaches re-
main very limited and very few studies have been reported. This work presents a new method capable of ad-
dressing these problems. It integrates a dynamic meshing approach, used to explicitly capture the flow
induced by free-moving large object(s), with a conventional CFD-DEM method to capture the behaviour of
small particles in particle-fluid flow. The force and torque acting on the large object due to the fluid flow are ex-
plicitly calculated by integrating pressure and viscous stress acting on the object's surface and the forces due to
collisions with both the smaller particles and other structures are calculated using a soft-sphere DEM approach.
The developed model has been fully implemented on the ANSYS/Fluent platform due to its efficient handling of
dynamic meshing and complex and/or free-moving boundaries, thus it can be applied to a wide range of indus-
trial applications. Validation tests have been carried out for two typical gas-solid fluidization cases, they show
good qualitative and quantitative agreement with reported experimental literature data. The developed model
was then successfully applied to gas fluidization with a large immersed tube which was either fixed or free-
moving. The predicted interacting dynamics of the gas, particle and tube were highly complex and highlighted
the value of fully resolving the flow around the large object. The results demonstrated that the capability of a con-
ventional CFD-DEM approach could be enhanced to address free-body fluid-structure interaction problems en-
countered in particle-fluid systems.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The interaction between large objects and particle-fluid flows is
commonly encountered in a wide range of applications such as fluidiza-
tion [1], chemical reactors [2–5], mineral processing, milling [6,7] and
drug delivery devices [8]. The objects can have different forms, such as
fixed/free-moving internal structures or large free particles, whose
size is at least one order of magnitude larger than the small particles
that make up the majority of particles present. The co-existence of a
large object can have an important impact on the behaviour of the par-
ticulate phase, such as mixing, segregation, heat and mass transfer rate
[9]. For example, in gas-fluidized beds, immersed tubes are often used to
effectively remove heat from the system and to avoid hot spots caused
by chemical reaction [10,11]. In coal and wooden biomass combustion
processes, large fuel particles can affect mixing and segregation behav-
iour [2,3]. In some intensified chemical reactors, a free moving agitator
is used for mixing and particle suspension [4,5]. In the general case of
a free object, its motion is determined by both the fluid flow and its in-
teractionwith other particles, and conversely, the flow field and particle
. This is an open access article under
behaviour are affected by the movable object. Thus, successful model-
ling of the dynamics of such a multi-scale system requires a method to
solve fluid-structure interaction (FSI) problems in particle-fluid flows.

Numerical models of particle-fluid flows can be largely classified
into three methods according to the treatment of the particulate and
the fluid phases: Eulerian-Eulerian methods, Lagrangian-Lagrangian
methods and Eulerian-Lagrangian methods [12–14]. In Eulerian-
Eulerian methods, both the fluid and particulate phase are described
as interpenetrating continuous phases [15,16]. Constitutive or closure
relations are required to describe the solid phase pressure and viscosity.
Despite its advantages in handling large-scale industrial systems as
a continuum approach, these models lack the capability to access
information at the particle scale due to pseudo-fluid assumption of the
particulate phase. More recently, the application of Lagrangian-
Lagrangian methods, such as SPH-SPH [17] and SPH-DEM coupling
[18,19], has gained popularity due to their capability in handling free-
surface flows, large deformations and deformable boundaries but
at a cost of high computational time. As a compromise, Eulerian-
Lagrangian methods, which are normally referred as coupled CFD-
DEM approaches when particle-particle collisions are resolved, are
widely used. In coupled CFD-DEM, the particles are tracked individually
usingNewton's second law ofmotionwhile the fluidflow is determined
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2017.11.045&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.powtec.2017.11.045
mailto:Y.He1@leeds.ac.uk
Journal logo
https://doi.org/10.1016/j.powtec.2017.11.045
http://creativecommons.org/licenses/by-nc-nd/4.0/
Unlabelled image
http://www.sciencedirect.com/science/journal/00325910
www.elsevier.com/locate/powtec


Fig. 1. Schematic demonstrating the modelling approach.
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by CFDmethods on a computational cell level. The forces acting on par-
ticles are explicitly considered, thus a quantitative description of the
particle behaviour can be obtained. To date, most CFD-DEM studies
are concerned with fixed geometries, such as immersed tubes in fluid-
ized systems. Different approaches have been used to treat the station-
ary boundary of the tube in CFD calculation either using staircase
approximation on a Cartesian grid [20,21] or accurately representing
the boundary shape using body-fitted unstructured mesh [22,23]. Con-
siderable efforts have been devoted to various aspects of the fluidized
bed, including heat transfer [21,24,25], bubble hydrodynamics [20,26]
and erosion of the tube surface [27]. However, the capability of CFD-
DEMmethods to tackle FSI problems in particle-fluid flow is lacking, es-
pecially when the fluid field is described by a continuous mesh-based
method, such as Finite Volume Method (FVM) or Finite Difference
Method (FDM). In these cases where the free-object is represented by
a single or cluster of DEMelements, the computationalmesh is normally
required to be larger than the dimensions of the object or the size of the
largest particle present in the system to avoid the mesh being fully oc-
cupied by the solid phase. Therefore, the applicability of the convention-
al CFD-DEM approach is limited to particles with small size ratio.
Recently, Alobaid et al. [28] introduced an additional grid for the partic-
ulate phase. The grid resolution is allowed to be smaller than the parti-
cle size. More accurate predictions of the particle motion and pressure
drop are reported for the fluidized bed [28,29]. However, phase interac-
tion in thesemethods is still modelled by drag correlations, which inev-
itably leads to a lack of detailed flow structure around the large object.
Therefore, developing a new model to overcome the limitations of the
conventional CFD-DEM approach in addressing FSI problem encoun-
tered in particle-fluid flow is of great importance to both research and
industrial practice.

Due to the presence of large free-moving object, a resolved method
is necessary to obtain the inducedfluid structure. Several improvements
have been proposed under the CFD-DEM framework which are poten-
tially applicable to the FSI problem in particle-fluid flow. The immersed
boundary method (IBM) allows the use of a rectangular grid for com-
plex geometries [30] and has been applied to dispersed multiphase
flow. Takeuchi et al. [31] applied it to treat the cone surface of spouted
beds, with no dynamic motion of the boundaries. Guo et al. [32] intro-
duced the IBM to a CFD-DEM model and applied to several systems
with moving boundaries including a study of segregation in a vertically
vibrated bed, however, no systemswith free-bodymotion were report-
ed. The only work on free-body motion in these multi-phase systems is
reported by Tsuji et al. [33] who represent the large object using small
fictitious spheres using an idea similar to the volumepenalizationmeth-
od. The solidity of immersed object is approximated bymeans of perme-
ability controlled by input parameters of fictitious particle diameter and
solid volume fraction inside the object. Although the flow at the bodies
boundary is not fully resolved, experimental validation showed good
agreements on the position of a free-moving large sphere during and
after stopping the fluidization [33,34]. Its applicability formore complex
geometries is not clear, and additional computational costs will be re-
quired for complex geometries in order to identify those computational
cells containing the solid structure. Moreover, it is worth noting that the
above models may face challenges in the resolution of boundary layers
in turbulent flows.

With increasing demand on engineering applications, coupling DEM
with versatile commercial or open source CFD software, for instance,
Fluent, CFX, OpenFOAM andMFIX, among many others, is gaining pop-
ularity due to its generality and capability in handling complex geomet-
rical boundaries and robust turbulence handling. To implement the
coupling, two sets of model formulations are commonly used, referred
as Model A and B, depending on the treatment of pressure in the
governing .equations [35]. Pressure is attributed to the fluid phase
alone in themodel Bwhile it is shared by both the fluid and solid phases
in themodel A. To date, most of the coupling is based on the formulation
of model A. Based on the model A, Wu et al. [36] coupled a hard sphere
model with Fluent based on its single phase model through rearrange-
ment of the governing equation. Special treatment is needed to ensure
mass conservation [37]. Liu et al. [23] coupled DEM with Fluent based
on the Eulerian multiphase model in Fluent. A similar strategy is also
adopted in coupling between commercial software, like Fluent-EDEM
coupling [38] and Fluent-Rocky coupling [39]. Source terms are added
to both continuity and momentum equations to account for the exis-
tence of the solid phase. On the other hand, Chu andYu [40] implement-
ed a CFD-DEM model in Fluent based on the formulation of model B
[35]. It has been successfully applied in the study of various complex
flow systems, such as fluidized bed [41,42] and cyclones separator [43,
44].

In thework report here a newmodel capable of addressing FSI prob-
lems in particle-fluid flows is proposed and developed. It incorporates a
dynamic meshing method to fully resolve the effects of moving bound-
aries, and a six degrees of freedom solver to enable the motion of free
objects to be captured. Its application as a customization to a commer-
cial software framework allows for general application and simulation
of complex industrial problems. In the present model, a single, large,
free-moving object is considered. In analogy with discrete element
modelling, the object's motion is tracked by Newton's second law of
motion with a soft-sphere model used to treat object-structure colli-
sions. For the first time, a dynamic meshing approach is combined
with the conventional coupled CFD-DEM model to simultaneously re-
solve flow structures around the large free-moving object and to
capture the behaviour of the small particles. The algorithm is fully im-
plemented on the commercial software platform, ANSYS/Fluent,
through its UDFs (user defined functions) due to its efficiency in han-
dling dynamic meshing and complex geometries. The paper is orga-
nized as follows: a comprehensive model description is presented
first, thereafter the validity of the model is examined by comparing
the present simulation with literature data in different gas-fluidization
systems. On this base, the capabilities of the present model in handling
unstructured meshes and large, free-moving objects are demonstrated
by analysing the dynamics of a fluidized system with an immersed
tube that can be either fixed or free moving.
2. Model description and implementation

In thepresent study, the system consists of threemajor components:
fluid, small particles and large objects. Accordingly, the fluid-solid inter-
action can be classified into two groups: fluid-small particle interaction
and fluid-large object interaction, as schematically shown in Fig. 1. For
the large object, the induced flow structure and its motion are resolved
using a body-fitted dynamic meshing approach. The fluid forces acting
on the object are calculated directly. On the other hand, the motion of
small particles is modelled using an Euler-Lagrangian method which

Image of Fig. 1


Table 1
Equations used to calculate forces and torques in this work.

Terms Equation

Normal contact force Fn ¼ 4
3 E

�R�1=2δ3=2n n̂
Normal damping force Fd;n ¼ −cnð8m�E�

ffiffiffiffiffiffiffiffiffiffi
R�δn

p
Þ1=2vn

Tangential contact force
Ft ¼ − δtμt jFn j

jδt j
h
1−

�
1− minðjδt j;δt;max Þ

δt; max

�3=2i

Tangential damping force
Fd;t ¼ −ct

�
6μ tmE�jFnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−jδt j=δt;max

p
δt;max

�1=2
� vt

Torque due to tangential force Tt = (Ft + Fd, t) × R
Rolling torque Tr ¼ μrRjFnjω̂n

Where 1/R∗=1/Ri + 1/Rj, with Ri andRj being the radius of two particles in contact, 1/E∗=
(1 − νi

2)/Ei + (1 − νj
2)/Ej, with E and ν the Young's Modulus and Poisson's ratio,

respectively; δn and δt represent the overlap in normal and tangential directions;
δt, max = μt((2 − ν)/(2 − 2ν))δn, with μt the sliding friction and μr the rolling friction;

ω̂n ¼ωn=jωnjwithωn the angular velocity; cn ¼ − lne=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln2e

p
with e the restitution

coefficient (e is defined as the ratio of post-collisional contact velocity to pre-collisional
contact velocity) and ct is the tangential damping coefficient.
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includes particle-particle collisions, this method is often referred to as a
CFD-DEM approach. The CFD-DEM coupling between the two phases is
achievedby the particle-fluid interaction at different scales: cell level for
fluid phase and particle level for particulate phase. For the complete-
ness, a brief description of the developedmodel for the fluid-solid inter-
action is given below.

2.1. Fluid phase

For the fluid phase, the governing equations are the same as those of
the conventional Two Fluid Model (TFM) [45], referred as model A and
have been adopted in Fluent as the Eulerianmultiphasemodel, given as,

∂ ερ f

� �

∂t
þ ∇∙ ερ fu

� �
¼ 0 ð1Þ

∂ ερ fu
� �

∂t
þ ∇∙ ερ fuu

� �
¼ −ε∇P−Sp þ ∇∙ ετ f

� �þ ερ fg ð2Þ

where ρf, P, τf and g are the fluid density, pressure shared by twophases,
the viscous stress tensor and the acceleration due to gravity, respective-
ly. ε is the volume fraction of fluid in each cell. Sp is the source term due
to the rate of momentum exchange between the fluid phase and the
particulate phase.

2.2. Solid phase

For the solid phase, both the large object and the small particles
are treated as discrete elements whose motion can be described by
Newton's second law of motion, written as,

m
dv
dt

¼ F f þ Fc þmg ð3Þ

I
dω
dt

¼ T f þ Tc ð4Þ

wherem, I, v andω are, themass, inertia, translational and rotational ve-
locities of the element, respectively. The force and torques acting on
each element consists of several contributions, the hydrodynamic com-
ponents, Ff and Tf, arising from fluid-solid interaction, the collision com-
ponents, Fc and Tc, due to solid-solid interaction and gravity. If fine
particles or cohesive particles are involved, other non-contact forces,
such as van der Waals force and capillary force, have to be considered.
The collisions between particles are handled by a soft-sphere model
that allows for inter-particle overlap. The collision force includes the
normal contact force Fn, normal damping force Fd, n, tangential contact
force Ft and tangential damping force Fd, t while the collision torque Tc
is composed of Tt caused by tangential force and Tr due to particle rolling
friction resulting from the elastic hysteresis losses or viscous dissipation
[46]. The calculation of collision forces is based on the magnitude of
overlap, in which the normal contact behaviour is described by Hertz
theory while the tangential elastic frictional contact is based onMindlin
and Deresiewicz theory [47]. Table 1 lists the equations used in the cal-
culation. The details can be found elsewhere [48].

2.3. Phase coupling

The calculation of the fluid-solid interaction differs between the
large objects and the small particles. For the large objects, the force
and torque due to fluidfloware fully resolved at each CFD time-step, de-
termined by the integration of fluid stress σ on its surface.

F f ¼ ∯σ ∙ n̂dS ð5Þ
T f ¼ ∯ R� σ ∙ n̂ð ÞdS ð6Þ

However, for the small particles, forces caused by fluid flow are
modelled. The fluid-particle interaction is resolved at the fluid cell
level. The totalfluid-particle interaction force can be split into a pressure
gradient force and a drag force.

F f ¼ −Vp∇P þ Fd ð7Þ

where Vp, ∇P and Fd are, respectively, the volume of the particle, pres-
sure gradient and drag force. The particle drag force Fd is determined
by cell-averaged porosity, flow velocity and particle velocity, given as,

Fd ¼ βVp

1−ε
u−vð Þ ð8Þ

with β the interphase momentum exchange coefficient.
To test the impact of dragmodel on bubbling behaviour, dragmodel

proposed by Beetstra et al. [49] and dragmodel of Ergun andWen & Yu
[50,51] are used in this work. The Beetstra model is derived from
Lattice-Boltzmann simulation and is valid over awide range of Reynolds
numbers. Accordingly, the interphase momentum exchange coefficient,
β, is given as,

β ¼ A
μ
d2

1−εð Þ2
ε

þ B
μ
d2

1−ε
ε

Rep ð9Þ

in which the particle Reynolds number Rep is defined as Rep = ρdpε|u−
vp |/μ. The coefficient A ¼ 180þ 18ε4ð1þ 1:5

ffiffiffiffiffiffiffiffiffiffi
1−ε

p
Þ=ð1−εÞ and coeffi-

cient B= 0.31(ε−1+3ε(1−ε)+8.4Rep−0.343)/(1+103(1 − ε)Rep2ε − 2.5).
On the other hand, the dragmodel of Ergun andWen&Yu is based on ex-
perimental measurements. The interphase momentum exchange coeffi-
cient, β, is given as,

β ¼
150

μ 1−εð Þ2
εd2p

þ 1::75
1−εð Þρ f

dp
u−vp
�� �� ε b0:8ð Þ

3
4
CD

ε 1−εð Þ
dp

ρ f u−vp
�� ��ε−2:65 εN0:8ð Þ

8>>><
>>>:

ð10Þ

where CD = 24(1.0 + 0.15Rep0.687)/Rep when Rep b 1000 and CD = 0.44
when Rep N 1000.

The rate of momentum exchange in the right of Eq. (2) is calculated
by summing up the drag force acting on particles in a fluid cell so that
Newton's third law of motion is satisfied [13], given by,

Sp ¼ 1
Vcell

XNpc

n¼1

βVp u−vp
� �
1−ε

ð11Þ
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with Vcell being the volume of a fluid cell andNpc the number of particles
in the fluid cell.

In CFD calculation, flow properties, such as velocity, pressure and its
gradients, are normally stored at the cell centre. To calculate the fluid
force, Eulerian properties at the fluid cell level needs to be mapped to
the particle position. To this end, a linear interpolation is employed in
the present work. Flow property at the particle position is determined
as,

ϕp ¼ ϕcell þ ∇ϕcell ∙dr ð12Þ

where ϕp and ϕcell are the fluid properties at particle position and the
cell centre; dr is the distance vector directing from cell centre to particle
position. The gradient of fluid property ∇ϕcell at each cell is calculated
using the divergence theorem [22],

∇ϕcell ¼
1
ΔV

XNface

f

ϕ f A f ð13Þ

with ϕf being the fluid property at each face calculated by averaging
from two cells adjacent to the face.

2.4. Implementation on ANSYS Fluent

Commercial CFD code, ANSYS Fluent v17.1, has been used as the
modelling platform which solves the Navier-Stokes equations based
on FVM. The use of ANSYS/Fluent allows us to handle internal large ob-
ject with complex geometries and the re-meshing process can be han-
dled efficiently. To accurately describe the induced flow structure, the
computationalmesh is composed of twoparts: prismboundary layer at-
tached to the surface of the moving large object and tetrahedral part
containing the rest of the domain. The body-fitted tetrahedral mesh is
used due to its compatibility with the dynamic meshing. Re-meshing
is triggered only when the skewness and size of the mesh exceed spec-
ified thresholds. Consequently, flow field around the large object is fully
resolved. The present model can overcome the inaccuracy caused by
staircase approximation of the moving boundary. The force and torque
on the large object due to fluid flow are calculated by integrating pres-
sure and viscous stress over the surface of the large object. Meanwhile,
collisionwith small particles and boundingwalls are explicitlymodelled
by the soft-sphere DEMmodel. Consequently, the large object interacts
explicitly with fluid flow, bounding walls and small particles. The mo-
tion of large object is described by Newton's law of motion, like that of
small particles but using a time-step same as that of the CFD calculation.
Therefore, CFD time-step is also affected by the mass, size and stiffness
of the large object. At the end of each CFD time-step, the updated linear
and angular velocity are assigned to the large object as a boundary con-
dition. The displacement of the large object is then enforced by the CFD
solver and is accommodated by dynamic meshing, thus leading to a
two-way coupling between the fluid flow and the large object.

The coupling between fluid and the small particles, on the other
hand, are implemented by first performing the CFD calculation for one
CFD time-step and subsequently evaluating thefluid forces acting on in-
dividual particle based on the updated flow field. Particles are then ad-
vanced at a smaller DEM time-step until synchronized with the CFD
time, yielding updated particle information, such as particle position
and velocity. These information are then used to renew volume fraction
at each fluid cell and to update momentum exchange term for the CFD
calculation at next time-step. This calculation cycle continues until
reaching the total simulation time. In general, the present model takes
advantage of the conventional CFD-DEM approach whilst capturing
the dynamic of the large object in particle-fluid flows.

The algorithm is implemented in Fluent based on the Eulerian multi-
phasemodel bymeans of its User Defined Functions (UDFs). Fig. 2 shows
theflow chart of the algorithm of the UDFswhich are called at the end of
each CFD time-step throughmacro DEFINE_EXECUTE_AT_END. User de-
finedmemories (UDMs) are used to store cell-based information, includ-
ing the volume fraction and the momentum exchange terms. The
implemented algorithm supports both serial and parallel calculation of
the flowfield. For the small particles, the DEM loop for the small particles
may be executed multiple times due to the difference in time-steps be-
tween CFD and DEM calculation. To calculate fluid force acting on
the small particles, the CFD cell in which the particle of interest resides
needs to be identified in order to map the Eulerian properties to
the small particles. For parallel computing, particle properties, including
position, velocity and diameter, are first broadcast from host to
node. Searching of the cell is then conducted by using macro
DPM_Locate_Point together with macro DPM_Init_Oct_Tree_Search for
initialization and DPM_End_Oct_Tree_Search for clean-up of the memo-
ry. Both the initialization and clean-up are called at every CFD time-step
only if the dynamicmeshing is enabled. The dynamics of the large object,
translational and rotational velocities, are fed back to the Fluent through
macro DEFINE_CG_MOTION while the momentum sources are added to
the governing equations by macro DEFINE_SOURCE.

3. Results and discussion

To develop confidence in the proposed model, it is essential to vali-
date against well-defined experiments. In the present study, two differ-
ent fluidized bed test cases are adopted for this purpose. The first case
tests the validity of the developed CFD-DEM method implemented in
Fluent by comparing the predicted time-averaged velocity and porosity
profiles with both experiments and previous simulations. The second
case tests the capability of the presentmodel in the prediction of bubble
formation and propagation in a spouted bed and evaluates the perfor-
mance of two alternative drag models. The ability of the model to deal
with a large object is then demonstrated by simulating a fluidized bed
with an immersed tube. Initially the tube is kept stationary in order to
confirm the capability of the presentmodel in handling an unstructured
mesh. The tube is then allowed to move freely and the capability of the
present model to address a free-body FSI problem in a dispersed
particle-fluid flow is demonstrated.

For all the simulated cases, phase coupled SIMPLE scheme was used
for pressure-velocity coupling. The least squares cell based gradient
method was adopted for gradient while QUICK scheme was used for
momentum. The method has second order of accuracy in both time
and space. The gas flow was introduced uniformly from the bottom of
the fluidized bed by means of a velocity-inlet boundary condition. The
top of the bed was specified as pressure outlet while no-slip boundary
conditions were applied to the bounding walls. At each time-step, the
residual for each governing equation was controlled below 10−5 for
convergence. In this study, the turbulent gas flow is modelled by the
standard k-epsilonmodel since the impact of turbulence on the velocity
filed is minor for dense particle flow [28].

3.1. Fluidized bed

A fluidized bed with dimension of 44 mm × 10 mm × 120 mmwas
simulated, for which time-averaged porosity distribution [52] and ve-
locity profiles of the particles [53] measured by magnetic resonance
(MR) are available. The drag law of Beetstra [49] derived from Lattice
Boltzmann simulation is adopted here to simulate the fluidization of
poppy seeds in their experiments, as it gives a slightly better predictions
according to a comparison made by Muller et al. [52].

The parameters used for the simulation are summarized in Table. 2.
For convenience, the wall's material properties are the same as the
particle's but with an infinitely large contact radius when handling
particle-wall collision. The computational domain is discretised into a
uniform hexahedral mesh with 12 × 3 × 30 cells, giving a mesh size
that is at least 2.7 times the particle size. Non-overlapping particles
are initially generated randomly in the domain and fall under the
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Fig. 2. Flow chart of the algorithm of the UDF implementation of the CFD-DEM coupled with dynamic meshing approach.
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influence of gravity to form a packed bed. The bed is then fluidized with
a superficial gas velocity of 0.9 m/s, corresponding to 3 times the mini-
mum fluidization velocity. A total physical time of 20 s is simulated.
Transient results are recorded every 10 ms for post-processing.

The pressure drop across the fluidized bed is a critical parameter
normally used to determine the minimum fluidization velocity. Fig. 3
shows the temporal variation of pressure drop normalized by the
pressure caused by bed weight. The pressure drop reflects the dynamic
Table 2
Parameters used in simulation.

Parameters Value

Particle number, Np 9240
density, ρp (kg/m3) 1000
Particle diameter, dp (mm) 1.2
Young's modulus, E (Pa) 1.0 × 108

Poisson ratio, ν 0.3
Rolling fiction coefficient, μr 0.2
Sliding friction coefficient, μt 0.1
Normal restitution coefficient, en 0.98
Tangential damping coefficient, ct 0.02
Temperature of gas, Tg (K) 298
Viscosity of gas, μg (kg/(s·m)) 1.8 × 10−5

Superficial gas velocity, vg(m/s) 0.9
behaviour of the bed. It rises sharply shortly after introducing the fluid-
izing gas and then falls rapidly and fluctuates around the value of 1.0.
The fluctuations of the pressure drop are an indication of the bubbling
behaviour, as bubbles repeatedly emerge from the bottom and travel
through the bed before erupting at the top.

The bubbling behaviour is readily revealed by the particle flow pat-
tern. The general observations are similar as those reported by Muller
Fig. 3. Normalized bed pressure drop during fluidization with air velocity of 0.9 m/s.
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(a)

(b)

Fig. 5. Comparison of time-averaged porosity profiles for a superficial velocity of 0.9m/s at
different heights: (a) 16.4 mm and (b) 31.2 mm.
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et al. [52]. The fluidization quickly stabilizes and a repeatable particle
flow pattern is clearly observed. A single bubble grows on the distribu-
tor plate before detaching, the particles rising on top of the bubble and
falling back under gravity as it passes. A typical representation of the
bubble is shown in Fig. 4a, in which a single, large bubble can be seen.
As pointed out by Muller et al. [52], this bubbling behaviour is mainly
caused by the fairly small size of the bed. A snapshot of the particle ve-
locities corresponding to Fig.4a is shown in Fig. 4b. For clarity, only par-
ticles located in the 1.2 mm thick central slice of the bed are shown. It
can be seen that particles are moving upward in the central region
while downward in the vicinity of the walls. This typical core-annular
flow pattern captured by the present simulation agrees with the previ-
ous results reported [52]. The corresponding gas behaviour is presented
in Fig. 4c. The vector represents the direction of gas flowwhile the con-
tour denotes themagnitude of the gas velocity. Again, the gas behaviour
observed by Muller et al. [52] is qualitatively captured by the present
simulation, in which the gas moves upwards quickly in the bubble re-
gion and recirculates at the left and right side of the bubble.

To make a quantitative comparison, time-averaged volume fraction
and particle velocity is extracted and compared. The numerical results
during the start-up period, approximately 3 s, are excluded to make a
statistically meaningful comparison with the experiments. Fig. 5 com-
pares the time-averaged porosity profiles with both experiments and
CFD-DEM results reported in Muller et al. [52] at two heights above
the distributor plate: 16.4 and 31.2 mm. In general, the present results
are comparable with the experimental data but slightly over-predict
the porosity especially in the vicinity of the side walls, similar findings
are also reported in other validation tests of CFD-DEM methods [54,
55]. At the height of 16.4 mm, the maximum difference between the
predicted values and the experimental values is within 20% relative to
the experimental value. At the height of 31.2 mm, the difference is
smaller than 10% in the middle part of the bed while slightly larger
than 10% near the side walls. Compared to the simulation results of
Muller et al. [52], the present prediction is closer to the experimental
data. However, it should be noted that the present simulation shows
slightly large porosities in the central region of the bed than that of
the results predicted by Muller et al. [52]. It can be attributed to the ad-
ditional rolling resistance introduced by the rolling friction model
adopted in the present simulation. Therefore, less kinetic energy is con-
sumed by particle rotation andmore energy is transformed into transla-
tional motion. However, the particles in the current simulation belong
to Geldart's GroupD, consequently their behaviour ismainly dominated
by the gas hydrodynamics.
(a)                              

Fig. 4. (a) A typical bubble, in which particles are coloured by themagnitude of velocity; (b) sn
centres located in the 1.2 mm thick central slice of the bed are shown; (c) snapshot of the gas
Further validation is made against the time-averaged vertical parti-
cle velocity. Fig. 6 compares the time-averaged velocity profile of
particles with experiments at three different heights: 15 mm, 25 mm
and 35mm. A bettermatch in the central region is obtain by the present
model than that of the CFD-DEM simulation in [53]. The major differ-
encewith the experimental observation is the up-turning tail of velocity
profile in the vicinity of the side walls. This discrepancy may be related
to factors like the use of spherical particle shape instead of real shape of
the poppy seeds, particle-wall collision model, mesh resolution and
(b)     (c)

apshot of the vertical velocity of particles in the bubbling fluidized bed. Only particles with
velocity in the middle plane of the bed. The fluidization velocity is 0.9 m/s.
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(a)

(b)

(c)

Fig. 6.Comparison of profiles of vertical velocity of particles at different heights of the bed:
(a) 15 mm, (b) 25 mm and (c) 35 mm.

Table 3
Parameters used in simulation.

Parameters Value

Particle number, Np 30,000
Density, ρp(kg/m3) 2526
Particle diameter, dp (mm) 2.5
Young's modulus, E (Pa) 1.0 × 108

Poisson ratio, ν 0.3
Rolling fiction coefficient, μr 0.02
Sliding friction coefficient, μt 0.2
Normal restitution coefficient, en 0.97
Tangential damping coefficient, ct 0.33

t=2.5ms              50ms                   100ms               150ms  200ms

(a)

t=2.5ms              50ms                   100ms               150ms               200ms

(b)

Fig. 7. Particle distribution in the spout bed predicted by (a) the drag model of Beetstra
[49] and (b) the Ergun and Wen & Yu drag model at different times. Particles are
coloured by the vertical velocity.
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turbulence modelling. A dragmodel which considers the effect of parti-
cle shape is expected to improve the numerical prediction. In general,
both the qualitative and quantitative agreement confirms that the
present model has captured the key feature of this fluidization system,
which verifies our CFD-DEM method on the platform of Fluent.

3.2. Spout-bed

The mixing and segregation behaviour of fluidized bed are found to
be strongly influenced by bubble characteristics and dynamics [56]. In
this section, the capability of the presentmodel in the prediction of bub-
ble formation and propagation is tested in a spout bed. A single bubble is
injected in a pseudo-2D fluidized bed at incipient fluidization condi-
tions. Comparisons with experimental data obtained by Particle Image
Velocimetry (PIV) are made in terms of bubble shape and velocity pro-
file of the particles around the bubble. The experimentswere performed
by Bokkers et al. [56] in a bed with dimensions of 15 × 150 × 1000 mm
and with a central jet of 10 mm width. A total number of 30,000 glass
beads of 2.5 mmdiameter are used in the simulation. The computation-
al domain is discretised into hexahedral mesh with 15 × 3 × 45 cells.
Other simulation parameters are listed in Table 3. The simulation starts
with random generation of particles in the rectangular box, followed by
particle packing under gravity until velocities of all particles are negligi-
ble. Then, a jet at a velocity of 20 m/s is injected from the central orifice
for a duration of 0.15 swhile introducing background gas at a velocity of
1.2 m/s uniformly from the rest of the bottom.

To examine the influence of drag model on the bubble shape, two
different drag models are considered: the drag model of Beetstra [49]
as used above and thedragmodel of Ergun andWen&Yu [50,51]. To en-
sure the results are comparable, both cases are started from the same
packing condition. The bubble formation shows dependence on the
drag model, which can be readily demonstrated by the particle flow
pattern. Fig. 7 shows the particle distributions during single bubble
injection at different times predicted by two dragmodels, in which par-
ticles are coloured by the vertical velocity. Following an initial expan-
sion, the bubble gradually grows in size and moves upward over time.
The interface between the top of the bubble and the bed predicted by
the Beetstra model is less clear and less defined compared to that of

Image of &INS id=
Image of Fig. 7


Fig. 8.Comparison of bubble size predicted by different dragmodels with experiment. The
bubble is defined by a critical solid volume fraction of 0.2. Coloured layers of particles are
used in the experiment [56].
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the Ergun and Wen & Yu drag model. In Fig. 8, the bubble profile is de-
finedusing a critical solid volume fraction of 0.2 and comparedwith that
obtained from experiment at 200ms [56]. It can be seen that the bubble
size is under-predicted by the Beetstra drag model and slightly over-
predicted by the drag model of Ergun and Wen & Yu. In addition, the
drag model of Ergun and Wen & Yu give a bed expansion closer to
that of the experiments. Bokkers et al. [56] compared the drag model
of Ergun and Wen & Yu with the drag model of Koch and Hill which is
derived from LBM simulation. Similarly, they found that the drag
model of Ergun andWen & Yu gives a slightly larger bubble and less dif-
fuse interface between the air bubble and the particles.

Fig. 9 shows the vector plot of particle velocity for the two cases. The
overall trends in the two cases are similar. The particles around the bub-
ble are being pushed outwards and are deflected in the horizontal direc-
tion, making particles moving upwards and downwards along the side
(a)                  

Fig. 9. Vector plot of particle velocity in spout bed by (a) drag m
walls. Particles in the wake of the air bubble move towards the
central orifice to fill the space behind the rising air bubble. Two re-
circulations are formed in the bottom corners of the bed. The major dif-
ference lies in the particle velocities above the bubble with a much
highermagnitude using the Ergun andWen& Yu drag relations, leading
to a larger bubble size than that of the Beetstra model [49]. To sum up,
the qualitative agreement with experiment confirms the capability of
the present model in predicting bubble formation and propagation in
a spout bed. The comparison between two drag models further illus-
trates that the bubble size depends on the selection of drag model.

3.3. Fluidization with immersed tube

3.3.1. Fluidization with a stationary tube
In gas-fluidized bed, immersed tubes are often used to effectively

remove/provide heat from/to the bed. The existence of immersed tube
has a significant impact on the particle behaviour and heat transfer. Ex-
tensive experimental studies have been conducted in this regard [10,57,
58]. In this section, a pseudo-2D fluidized bedwith an immersed tube is
simulated. The purpose of this case is to demonstrate the capability of
the present model in handling an unstructured mesh. The fluidized
bed has dimensions 10 mm × 88 mm × 200 mm, in which a stationary
tube with diameter of 24 mm is fixed at a height of 60 mm. The geom-
etry and grid representation used in the simulation are illustrated in
Fig. 10. The whole domain is discretised into tetrahedral meshes with
a volume at least 3 times larger than that of a particle. In order to better
capture the flow structure, the mesh size in the boundary layer on the
tube is much smaller than particle size. In order to improve stability of
CFD calculation, a similar procedure in [42] was adopted here to limit
the solid volume fraction to 0.64 (typical random loose packing density)
and redistribute source terms to neighbour cells. A total number of
20,000 particles are generated randomly without overlap above the
tube to form a packed bed under gravity. The gas is then introduced uni-
formly from the bottom at a constant velocity of 0.9 m/s to fluidize the
bed. Other material properties used in the simulation can be found in
Table 2.

Fig. 11 shows the particle flow pattern during the initial stage of flu-
idization. Particles are coloured by velocity magnitude. Particle behav-
iour, especially the bubble characteristic, is strongly affected by the
presence of the immersed tube. Shortly after introducing the gas, the
particle flow is being divided and accelerated passing through the gap
between the tube and the side walls, forming a stagnant region right
below the tube (Fig. 11a). Then, due to the collision between particles
and the tube, an air film with varying thickness is formed blow the
                     (b)                       

odel of Beetstra and (b) Ergun andWen & Yu drag model.
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(a)                                              (b) 

Fig. 10. (a) Geometrical and (b) numerical grid representation of the fluidized bed with an immersed tube.

628 Y. He et al. / Powder Technology 325 (2018) 620–631
tube (Fig. 11b). Under the influence of gravity, an air bubble gradually
grows in size underneath the tube (Fig. 11c). As fluidization continues,
defluidized particles fall back, forming a stagnant region on top of the
tube. Meanwhile, the particles close to the distributor plate starts to flu-
idize again, leading to a reduction of bubble size below the fixed tube
(Fig. 11d). The formation of an air film below the tube and a stagnant
region above the tubequalitatively agreewith both experimental obser-
vation [59] and numerical simulation [32], thus confirming the capabil-
ity of the present model in dealing with an unstructured mesh.

3.3.2. Fluidization with a free-moving tube
In order to demonstrate the key capability of the present model,

namely its ability to model a large dynamic object, the previous case is
(a)                      (b)      

Fig. 11. Particle distribution in a fluidized bed with an immersed tube at different times: (a) t=
magnitude.
extended by allowing the immersed tube tomove freely. The numerical
setup is the same as the previous case, except that the density ratio be-
tween moving tube and particles is set to 1.0. The upper and lower
thresholds of the cell size are set as 1.2 and 0.8 times of the averaged
size in the initial mesh. The threshold value of skewness for re-
meshing is set to 0.75 to maintain an acceptable mesh quality.

Since the tube is free-moving, its motion is determined by the com-
bined effect of gas flow, collision with small particles and confinement
of the side walls. The motion of the tube will conversely introduce
change to the fluid field, further increasing the complexity of the sys-
tem. Fig. 12 shows the evolution of the particle flow pattern after fluid-
ization is started. Particles are coloured by velocity magnitude. The tube
sinks down shortly after the fluidization has started and bounce back
               (c)                    (d) 

0.07 s; (b) t= 0.12 s; (c) t= 0.20s and (d) t= 0.28 s. Particles are coloured by velocity
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(a)                  (b)                   (c)                  (d)              

(e)                 (f)                   (g)                  (h)         

Fig. 12. Particle distribution in a fluidized bedwith an immersed free-moving tube at different times: (a) t=0.03 s; (b) t=0.07 s; (c) t=0.10s; (d) t=0.20s; (e) t=0.23 s, (f) t=0.33 s,
(g) t = 0.39 s and (h) t = 0.52 s. Particles are coloured by velocity magnitude.
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and forth due to collision with the bounding walls. In contrast to the
fixed tube, there is no air film forming under the tube, as shown in
Fig. 12b. The particles below the tube are pushed downwards by the fall-
ing tube, forming a thick layer of particles below the tube. Meanwhile,
other particles are being dragged up by the fluidizing gas. In Fig. 12d,
shortly after the tube has hit the distributor plate, a clear gas bubble
forms between the tube and the plate. The presence of the tube causes
the bubble below it to split into two smaller bubbles with one on each
side of the tube (Fig. 12e). The bubble on the right side of the tube grad-
ually disappears as the tube begins to move towards right and particles
fall down under gravity. As fluidization continues, an air bubble is pro-
duced again behind the tube after it is being blown up by the gas
(Fig. 12g). Due to combined effect of fluidization and the effect of the
moving tube on the gas flow, large air bubbles are repeatedly formed
adjacent to the tube throughout the process (Fig. 12e).

The present model permits us to not only monitor the variations in
position and velocity of the internal structure but also enables a detailed
understanding of its dynamics. Fig. 13 shows the time history of themo-
tion and fluid force of the immersed tube during fluidization. Only ver-
tical positons are shown here. The fluid force on the tube is normalized
by the magnitude of the force due to gravity. It can be seen, for these
conditions, that there is an oscillation in the vertical position of the
tube. The sudden jump in the velocity is caused by the collision with
the bounding walls. One distinct advantage of the present model is to
allow the internal structure to rotate due to the fluid-structure interac-
tion, wall collision and particle-structure interaction. In this case, the
change in the angular momentum is mainly caused by collision with
the fluid bed's walls (Fig. 13c). As shown in Fig. 13d, the magnitude of
fluid force acting on the tube is lower than that of gravity and the fluc-
tuations in this force are due to the bouncing motion of the tube with a
magnitude significantly smaller than that of gravity, implying that the
motion of the tube is dominated by the gravity and the collision with
bounding walls. Although the discussion is purely based on a numerical
study, the predicted dynamics highlight the complexity of the interac-
tions in these systems. The unsteady, coupled, gas flow and particle
flows, and tube-wall collisions, all playing a significant role in the be-
haviors observed. Clearly, it is very important to resolve theflow around
the free object and accurately capture the collision dynamics when
modelling systems with large objects in particle fluid flows.

4. Conclusions

In this study, a new numerical model was developed to tackle free-
body fluid-structure interaction problems in particle-fluid flows, in
which a conventional CFD-DEMmethod was combined with a dynamic
meshing approach. The flow structure induced by the large free-moving
object was directly resolved by a body-fitted mesh while the dynamic
meshing was utilized to accommodate the large object's motion, thus
achieving a two-way coupling between the large object and fluid flow.
On the other hand, the behaviour of small particles were captured by
a coupled CFD-DEM method in which the fluid-particle interaction
was model by a drag correlation. By treating the large moving object

Image of Fig. 12


Fig. 13. Vertical position, velocity, angular velocity and fluid force acting on the tube
during fluidization.
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as a single element, its collisionwith small particles and boundingwalls
are handled by a soft-sphere DEMmodel. The proposedmodel has been
fully implemented on a commercial software platform, ANSYS/Fluent,
through its UDFs, thus allowing for the efficient handling of dynamic
meshing and general application to industrial systems with complex
geometries.

Validation of the CFD-DEMmethod has been conducted both quali-
tatively and quantitatively against available literature data in the cases
of fluidization. The profiles of time-averaged porosity and velocity
show a good quantitative agreement with experimental measurements
on a gas fluidized bed. The predicted dynamics of bubble growth in a
spout bed were shown to depend on drag model used, the Ergun and
Wen & Yu model gave a good agreement with experiment. The charac-
teristic particle flow patterns in a fluidized bed with a fixed tube were
also captured, confirming the capability of the present model in
handling an unstructured mesh. The model's ability to predict fluid-
structure interaction in particle-fluid flowwas demonstrated by a fluid-
ization case allowing the tube to move freely. The predicted interacting
dynamics of the gas, particle and tube were highly complex and
highlighted the value of fully resolving the flow around the large object.

The present model shows strong potential in modelling particle-
fluid flows with complex and/or free-moving large objects, such as
milling, drug delivery and agitated chemical reactors. It enables a
fully-resolved flow field around themoving objects but at the cost of ad-
ditional computational time due to thedynamicmeshing. Its application
to an agitated tubular reactor with a free-moving internal agitator will
be reported in the future. Experimental validation on the forcedmotion
of the internal agitator and the induced flow field will be examined in
more detail.
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