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Abstract 

Establishing relationships between the long-term landscape evolution of drainage basins and 

the fill of sedimentary basins benefits from analysis of bedrock river terrace deposits. These 

fragmented detrital archives help to constrain changes in river system character and 

provenance during sediment transfer from continents (source) to oceans (sink). Thick 

diamondiferous gravel terrace deposits along the lower Orange River, southern Namibia, 

provide a rare opportunity to investigate controls on the incision history of a continental-scale 

bedrock river. Clast assemblage and heavy mineral data from seven localities permit detailed 

characterisation of the lower Orange River gravel terrace deposits. Two distinct fining-upward 

gravel terrace deposits are recognised, primarily based on mapped stratigraphic relationships 

(cross-cutting relationships) and strath and terrace top elevations, and secondarily on the 

proportion of exotic clasts, referred to as Proto Orange River deposits and Meso Orange River 

deposits. The older early to middle Miocene Proto Orange River gravels are thick (up to 50 m) 

and characterised by a dominance of Karoo Supergroup shale and sandstone clasts, whereas 

the younger Plio-Pleistocene Meso Orange River gravels (6-23 m thick) are characterised by 

more banded iron formation clasts. Mapping of the downstepping terraces indicates that the 

Proto gravels were deposited by a higher sinuosity river, and are strongly discordant to the 

modern Orange River course, whereas the Meso deposits were deposited by a lower sinuosity 

river. The heavy minerals present in both units comprise magnetite, garnet, amphibole, 

epidote and ilmenite, with rare titanite and zircon grains. The concentration of amphibole-

epidote in the heavy minerals fraction increases from the Proto to the Meso deposits. The 
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decrease in incision depths, recorded by deposit thicknesses above strath terraces, and the 

differences in clast character (size and roundness) and type between the two units, are 

ascribed to a more powerful river system during Proto-Orange River time, rather than 

reworking of older deposits, changes in provenance or climatic variations. In addition, from 

Proto- to Meso-Orange River times there was an increase in the proportion of sediments 

supplied from local bedrock sources, including amphibole-epidote in the heavy mineral 

assemblages derived from the Namaqua Metamorphic Complex. This integrated study 

demonstrates that clast assemblages are not a proxy for the character of the matrix, and vice 

versa, because they are influenced by the interplay of different controls. Therefore, an 

integrated approach is needed to improve prediction of placer mineral deposits in river gravels, 

and their distribution in coeval deposits downstream.  

 

 

Key words: heavy minerals, gravel terraces, drainage basin, source-to-sink, Orange River, 

clast assemblage 

  

  



3 
 

1. Introduction  

Constraining the dynamics of long-term landscape evolution requires analysis of the 

coeval downstream stratigraphic record (e.g., Morton, 1991; Dickinson and Gehrels, 

2003; Mange and Otvos, 2005; Bhattacharya et al., 2016; Romans et al., 2016). 

However, environmental signals (e.g., climate, tectonic uplift) and provenance 

signatures are modified during sediment transfer from continents (source) to oceans 

(sink) through the sediment transfer zone (Romans et al., 2016). Terrace deposits 

within bedrock river systems provide a fragmented archive of landscape evolution in 

the sediment transfer zone (e.g., Bridgland and Westaway, 2008; Wegmann and 

Pazzaglia, 2009). Therefore, improved understanding of these records in sites 

dominated by erosion will help to constrain controls on long-term changes in ancient 

river system character and provenance, and to predict and unravel the downstream 

depositional record of quasi-contemporaneous marine sediments (Pazzaglia and 

Gardner, 1993; Aalto et al., 2008; Marsaglia et al., 2010; Kuehl et al., 2016). Analysis 

of clast assemblages is the most common approach used to investigate changes in 

provenance of fluvial gravels and to establish the denudation and evolution of drainage 

basins (Gibbard, 1979; Green et al., 1982; Bridgland, 1999). An alternative technique 

is the use of heavy minerals, because they are more physically and chemically resilient 

than many clasts, and may survive multiple phases of weathering and transport 

(Hassan, 1976; Morton, 1984, 1991; Goodbred et al., 2014).  

Most drainage reconstruction studies have either used clast assemblage analysis 

(Gibbard, 1979; Dowdeswell et al., 1985; Bridgland, 1999; Jones, 2000; Mikesell et 

al., 2010) or heavy mineral assemblages (Uddin et al., 2007; Morton et al., 2011). Both 

techniques are problematic. Clasts derived from mechanically or chemically unstable 

bedrock might be preferentially degraded owing to abrasion during transport or 
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chemically weathered post deposition (Green et al., 1980), which hinders accurate 

fingerprinting of source areas. Heavy mineral studies also contain inherent 

weaknesses (Smale and Morton, 1987; Dill, 1994; Morton and Hallsworth, 1999, 2007; 

Faupl et al., 2007; Uddin et al., 2007; Tsikouras et al., 2011; Wong et al., 2013; do 

Nascimento et al., 2015; Caracciolo et al., 2016; Krippner et al., 2016). For example, 

the relatively high density of heavy minerals may restrict their transport distance 

(Komar and Wang, 1984; Komar, 2007). Maher et al. (2007) present a rare example 

of combining clast assemblage and heavy minerals analysis to reconstruct a drainage 

capture event of the Rio Alias, southeast Spain. 

In this study, we aim to integrate clast assemblage and heavy mineral signatures 

within a critical part of source-to-sink systems, the sediment transfer zone, where a 

depositional record is found within sites dominated by erosion, to provide information 

on sediment transport, bypass, deposition, and provenance controls. The lower 

Orange River, southern Namibia, was chosen because it is a rare example of a 

continental-scale bedrock river with a well-constrained drainage basin geology, and 

accessible, extensive, and unlithified gravel terrace deposits owing to the arid climate 

and active mining operations (Fig. 1). Furthermore, the gravel terrace deposits 

represent multiple cycles of degradation and aggradation, allowing investigation into 

changing controls through time. Finally, the coeval marine gravels offshore southern 

Namibia host economic diamond deposits, and therefore an improved understanding 

of the drainage history of the lower Orange River can feed into revised offshore 

exploration strategies. Specific objectives are i) to reconstruct the drainage history of 

the lower Orange River using two river terrace deposits, ii) to investigate extrinsic and 

intrinsic controls on the clast assemblage and heavy minerals assemblage, and iii) to 
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evaluate the value of a combined approach to understanding continental-scale 

bedrock river evolution. 

 
 

2. Geological Setting and Geomorphology 

2.1 Geological Setting 

The Orange River and its major tributary, the Vaal River, are the main bedrock 

confined rivers in a ~106 km2 catchment in southern Africa (Garzanti et al., 2014). The 

geology exposed in the catchment is highly variable. In the east, geology comprises 

the Archaean Kaapvaal Craton (de Wit et al., 1992) intruded by Cretaceous and older 

diamondiferous kimberlites (de Wit, 1999; Shirey et al., 2001; Moore and Moore, 

2004). The upper Orange River traverses rocks of the extensively eroded Permo-

Carboniferous to Jurassic Karoo Supergroup (Visser, 1993; Johnson et al., 1997; 

Catuneanu et al., 1998, 2005; Key et al., 1998; Bangert et al., 1999). Between 

Noordoewer (300 km east of the Orange River mouth) and Oranjemund (Fig. 2), the 

lower Orange River cuts through the Mesoproterozoic Namaqua Metamorphic 

Complex (Thomas et al., 1994; Jacobs et al., 2008) before incising the Neoproterozoic 

Gariep Belt (Frimmel and Frank, 1998; Frimmel et al., 2004) close to the river mouth 

on the Atlantic Ocean coast (Fig. 2). The Namaqua Metamorphic Complex forms the 

basement of the area. The Gariep Belt, which also extends into northwestern South 

Africa (Fig. 2), comprises mainly metamorphosed rocks, including chert, quartzite, 

meta-greywacke, metapelite and metadiamictite (Frimmel et al., 1996; Frimmel and 

Frank, 1998; Basei et al., 2005). The mineralogy of the Namaqua Metamorphic 

Complex rocks and Gariep Belt rocks is summarised in Table 1. Around the 

Noordoewer area, the Ediacaran to early Cambrian Nama Group, a foreland basin 

succession (DiBenedetto and Grotzinger, 2005; Grotzinger et al., 2005; Grotzinger 
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and Miller, 2008) caps the Namaqua Metamorphic Complex basement (Fig. 2). These 

rocks are possible sources of sediment in the Orange River terrace deposits. Along 

the lower Orange River, three distinct terrace deposits are recognised based on 

terrace elevation, bedrock strath level and exotic clast suite, which Jacob (2005) 

informally termed, in stratigraphic order, Pre-Proto Orange River, Proto Orange River, 

and Meso Orange River deposits. This nomenclature has been adopted in the present 

study. Here, we concentrate on Proto and Meso Orange River gravels in terms of the 

clast assemblage and heavy minerals.  

Eocene marine gravel is the oldest Orange River-derived sediments on the west coast 

of Namibia and is preserved at 160 m above present-day sea level (Stocken, 1978). 

However, no equivalent Eocene-age gravel is preserved in the lower Orange River. 

The age of Pre-Proto Orange River deposits remains unknown. Dating of coarse 

grained fluvial terraces is challenging due to lack of continental biostratigraphy. The 

Proto Orange River suite has been dated as early to middle Miocene, using 

macrofauna fossils, including Lopholistriodon moruoroti found in gravel terrace 

deposits at Auchas and Arrisdrif of the lower Orange River (Corvinus and Hendey, 

1978; Hendey, 1978; Pickford, 1987; Pickford and Senut, 2002) (Fig. 1). The Meso 

Orange River gravel suite has not been dated due to lack of macrofauna fossils, but 

is inferred to be Plio-Pleistocene (2-5 Ma) in age based on correlations with littoral 

beach gravel deposits (Pether, 1986). 

 

2.2 Geomorphology 

2.2.1 Regional Geomorphology 

Over the last 66 Ma, the southern African landscape has been shaped by tectonics, 

climate and geomorphic processes (Knight and Grab, 2016a) although feedbacks 
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produced by tectonics and climate are often difficult to isolate (Knight and Grab, 

2016b). Periods of uplift and associated increased erosion in southern Africa include 

during the late Cretaceous (de Wit, 1999; Stevenson and McMillan, 2004; Richardson 

et al., 2017), the Miocene and the Pliocene (Partridge and Maud, 2000; Green et al., 

2017). Alternatively, van der Beek et al. (2002) propose that the topography of the 

southeast African margin is a result of a thin elastic lithosphere (~10 km). Evidence of 

major Cretaceous uplift is recorded offshore where sediment supply rates in the 

Orange Basin offshore Namibia and South Africa (Rust and Summerfield, 1990; 

Aizawa et al., 2000; Rouby et al., 2009) and the Outeniqua Basin, offshore South 

Africa (Tinker et al., 2008a; Sonibare et al., 2015) show a significant increase. There 

is a general consensus that erosion rates have decreased from the Cretaceous to the 

present (Richardson et al., 2017), as shown by apatite fission track denudation (Brown 

et al., 1999; Tinker et al., 2008b; Wildman et al., 2015) and cosmogenic dating 

evidence (Fleming et al., 1999; Cockburn et al., 2000; Bierman et al., 2014).  

During the Miocene, southeastern Africa underwent a maximum uplift of 250 m, almost 

twice that of the western subcontinent (150 m) (Partridge and Maud, 2000). This is in 

agreement with Hanson et al. (2009), who estimated high erosion rates for the 

Monastery kimberlite pipe (~1350 m) in eastern South Africa, relative to the Kimberley 

and Koffiefontein pipes (~850 m) in central South Africa. However, there is also a 

possibility that the eastern subcontinent might have already been relatively more 

elevated than the western subcontinent prior to uplift (Roberts and White, 2010; 

Richardson et al., 2016). Apatite fission track studies have estimated 2.5 to 3.5 km of 

land surface erosion for the late Cretaceous (Brown et al., 1999; Gallagher and Brown, 

1999; Tinker et al., 2008b; Decker et al., 2013; Wildman et al., 2015; Green et al., 
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2017), and that the uplift events increased the erosive power of rivers in southern 

Africa. 

The central part of southern Africa is marked by a low relief elevated central plateau 

(> 1000 m above mean sea level) whereas the coastal margins along the Indian and 

Atlantic Oceans are characterised by a high relief low elevation coastal plain (Knight 

and Grab, 2016a). The two are separated from each other by the Great Escarpment 

(Gallagher and Brown, 1999), which occurs between 50-200 km inland from the coast 

(Partridge and Maud, 1987, 2000; Partridge et al., 2010). In addition to uplift, rivers 

have also played an important role in shaping the southern African landscape. The 

Orange River is one of the major drainage systems in southern Africa, and with its 

many tributaries, has played a major role in shaping the landscape since the late 

Mesozoic. According to Jacob (2005), the Orange River deeply incised the landscape 

(between 600-1000 m deep) following Cretaceous uplift. However, contrasting views 

regarding the evolution and development of the Orange River fluvial system remain 

(Jubb, 1964; Dingle and Hendey, 1984; Skelton, 1986; de Wit, 1999; de Wit et al., 

2000).  

 

2.2.2 Geomorphology of the lower Orange River 

Outcrops of both Namaqua Metamorphic Complex and Gariep Belt rocks together with 

the Orange River make up the main geomorphic features in the study area. The area 

between Noordoewer and the Orange River mouth is characterised by a low relief 

coastal plain and high relief inland area. High relief in the area is a product of the 

resistant lithologies that comprise Namaqua Metamorphic Complex rocks (Fig. 2). 

Ephemeral tributaries to the lower Orange River include the Gamkab River, Fish River 

and Boom River. From Noordoewer towards the river mouth, the palaeo-Orange River 
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(early to middle Miocene) valley widens from 550 m to 2300 m, and its gradient 

decreases downstream (from 0.87 m/km to 0.38 m/km) with an average gradient of 

0.69 m/km (Jacob, 2005) (Fig. 3A).  

 
 

3. Methods 

3.1 Terrace mapping, river profiles and gradients 

Mapping flights of downward-stepping terrace surfaces on the northern and southern 

banks of the Orange River was performed using a handheld Global Positioning System 

(GPS). In the field, two stratigraphically distinct fining-upward terrace deposits were 

differentiated based on their bedrock strath terrace height and elevation of terrace 

deposit, the mapped palaeo-river course and overall geometry (Fig. 3), and where 

terrace deposits are in contact, their cross-cutting relationships. Given the bedrock 

river valley setting, the older and higher terraces (the Proto) are less continuous and 

more dissected than the younger terrace deposits (the Meso) that are lower in 

elevation (Jacob et al., 1999). In general, this elevation difference is also recorded by 

the height of the strath terrace, although deep scours on the Proto strath can be lower 

in elevation than nearby Meso strath terraces. Four planform types of terrace deposits 

are present in the study area: i) cut-off meander loops, ii) unpaired terraces, iii) 

terraces preserved downstream of the tributary input points, and iv) paired terraces. 

The cut-off meander loop terraces are the thickest, and are exclusive to the Proto 

Orange River deposits, whereas paired terraces are only observed in the Meso 

Orange River deposits. The gradient of the Proto and Meso Orange River terrace 

profiles (Fig. 3A) were calculated using the strath terrace height and terrace deposit 

height recorded in meters above sea level (Fig. 3A). Overall, both the Proto and Meso 
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Orange River terrace deposits form downstream thickening and fining wedges (Jacob 

et al., 1999) coincident with the widening of the Orange River valley (Fig. 3C).  

 

3.2 Clast Analysis 

Clast analysis was performed on the Orange River gravel terrace deposits flanking the 

modern lower Orange River on the Namibian side of the river. These are the Proto 

Orange River deposits and the stratigraphically younger Meso Orange River deposits. 

The clast assemblage analyses were undertaken in order to characterise the gravel 

deposits of different ages according to the assemblages of exotic clasts.  

Fourteen and twelve samples were analysed from the Proto and Meso Orange River 

deposits, respectively. To avoid bias towards clasts that are resistant to surface 

weathering, the surface gravel was avoided. Sampling was completed by excavating 

a 2 m x 2 m area of gravel from the head of an in-channel bar deposit, which is the 

most stable part of a gravel bar (Li et al., 2014). After excavation, the gravel was 

screened on site through stacked sieves, which split the clasts into +300 mm, +200 

mm, +90 mm, +40 mm, +25 mm, +16 mm, +8 mm and +3 mm. The clasts were split 

further with a sample splitter until the desired number of clasts was attained per size 

fraction. The size fraction below 3 mm was retained for heavy mineral analysis. A 

minimum of 50 clasts was inspected in the +300 mm, +200 mm, +90 mm, +40 mm 

and +25 mm size fractions, and a minimum of 100 clasts was analysed for the +16 

mm, +8 mm and +3 mm size fractions. In total, 7700 and 6600 clasts were analysed 

for the Proto and Meso deposits, respectively. A minimum of 50 clasts was analysed 

for the coarse size fractions (> 25 mm) given the large volume of sample needed. 

Similar studies have used a minimum of 100 clasts although they have not indicated 

the size fractions analysed (Jones, 2000; de Carvalho Faria Lima Lopes et al., 2016). 
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Lithology, clast shape and clast roundness were recorded for each individual clast. 

Clast roundness, which is a proxy of distance travelled and lithology durability, was 

visually estimated using the roundness chart developed by Powers (1953).  

 

3.3 Heavy Mineral Analysis 

Heavy minerals were recovered from the smaller than 3 mm sand samples. Fourteen 

and twelve samples were analysed for the Proto and Meso Orange River deposits, 

respectively. To make the separation of heavy minerals from the light minerals and the 

rest of the sand more effective, the bulk samples were first sieved into 2-4 mm, 1-2 

mm, 0.5-1.0 mm, 0.25-0.50 mm, 0.125-0.250 mm, 0.063-0.125 mm and below 0.063 

mm size fractions using an automatic electrical sieve shaker.  

Heavy minerals were separated from the rest of the sample material using a Met-Solve 

Analytical Table, a flowing film gravity separator which produced a heavy mineral 

concentrate. Only the 1-2 mm, 0.5-1.0 mm and 0.25-0.50 mm size fractions were 

processed on the gravity settling table for heavy mineral recovery because very few 

heavy mineral particles were observed in the coarser fractions. The selected size 

fractions were processed at 1° slope angle, 1.5 litres/minute water flow rate and  60 

strokes/minute deck rocking speed. The 1-2 mm size fraction was also processed at 

a slope angle of 1°, as opposed to the manufacturer recommended steeper angle of 

2° (Met-Solve, 2016) because even a slope angle of 1.5° p roved too steep for retention 

of sub-rounded and rounded garnets, the dominant heavy mineral in this size fraction. 

A single concentrate was produced for each size fraction because the heavy minerals 

recovered from the gravels have overlapping densities. The heavy mineral 

concentrates were dried and weighed. 
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Heavy mineral proportions were determined by counting a minimum of 300 grains per 

size fraction per sample under a binocular microscope following the methodology of 

Dill (1998), Faupl et al. (2007), Scheneiderman and Chen (2007), Garzanti et al. 

(2015) and Krippner et al. (2016). The sample was reduced in volume by coning and 

quartering to generate a sub-sample of 300 grains per sample. This equates to a total 

of 4200 and 3600 grains analysed for Proto and Meso samples, respectively. 

Magnetite was removed using a hand magnet, and grain counts according to mineral 

type were undertaken on the remaining sub-sample. Minerals that could not be 

identified visually on the microscope were mounted on polished epoxy blocks (n = 10, 

16, 2, 4, 1, for garnet, amphibole, epidote, titanite and zircon, respectively) and 

identified using the EDS facility of FEI Quanta FEG 650 Scanning Electron Microscope 

(SEM), at the University of Leeds using a 20 kV accelerating voltage and 5 nm spot 

size. Representative heavy mineral grains of garnet, magnetite and epidote were 

mounted on double sided adhesive tape attached to a metal plate for grain surface 

texture analysis. The grains were coated with a thin layer of iridium (~2 nm). The grains 

were examined in secondary image mode using the same SEM. Garnet composition 

was analysed with JEOL JXA8230 electron microprobe at the University of Leeds 

under operating parameters of 20 kV accelerating voltage, 30 nA beam current, 30 

seconds on-peak count time and 15 seconds off-peak count time. 

 

4. Results 

4.1 Stratigraphic relationship and gravel terrace characterisation 

Fluvial gravel terrace successions, such as those deposited on bedrock flanking the 

lower Orange River (Fig. 1) form during a cycle of incision then aggradation (e.g., 

Bridgland and Westaway, 2008). During incisional phases, the palaeo-Orange River 
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cut into the bedrock, locally forming deep scours (10-30 m) below the bedrock strath 

terrace level (Figs. 3A, 4). Gravel deposition above strath terraces occurs during 

aggradational phases that are driven by the combined effects of decreased stream 

power and increased sediment supply (e.g., Blum and Törnqvist, 2000). The location 

of scours are coincident with the outside of meander bends, changes in bedrock 

lithology, structural features (e.g., joints), and tributary input points. The scours 

underlying the Proto Orange River deposits are deeper (average depth 10-30 m), than 

those beneath the younger Meso Orange River deposits, and have a maximum depth 

of 40-50 m (Fig. 3A). For the Meso Orange River deposits, their underlying scours 

show varying depths but have a maximum depth of 35-40 m (Fig. 3A). Some scours 

that underlie Meso deposits might have been formed during earlier phases of incision 

given that the Orange River is a superimposed river. Multiple cycles of bedrock incision 

and aggradation resulted in flights of downward-stepping strath surfaces and 

dissected overlying terrace deposits (Fig. 4A). Although the thickness of the terrace 

deposits varies between deposit sites, the Proto deposits are thicker (up to 50 m 

thickness) than the Meso deposits (6-23 m) (Fig. 3A). In the study area, the bedrock 

river valley widens downstream from 1300 m between Boom and Lorelei to 2340 m 

between Sendelingsdrif and the river mouth. The widening of the river valley in 

downstream reaches of the river has enhanced the preservation of terrace deposits 

(Fig. 1).  

 

In terms of river courses, the Proto Orange River had a higher sinuosity than the Meso 

Orange River, which had a course similar to that of the modern Orange River (Fig. 3). 

The higher sinuosity Proto Orange River course is supported by the preservation of 

cut-off meander loop terraces (Fig. 3). The depth of incision (Figs. 3A, 4B, 4C), size of 
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imbricated clasts (Fig. 5A) and height of coarse grained cross bedding (Fig. 5B) 

suggest a high energy river system during the Proto incision and aggradation cycle 

than during the Meso (e.g., Dott and Bourgeois, 1982).   

 

4.2 Gravel Characterisation 

The overall makeup of the gravel is a combination of both exotic and locally derived 

clasts, with the large cobble size fractions (> 25 mm) dominated by quartzite clasts. 

Exotic clasts include agate (Fig. 6A), Karoo Supergroup shales and sandstones (Fig. 

6B), Karoo Supergroup basalt and banded iron formation (BIF) (Fig. 6C). These clasts 

are derived from the Orange River catchment area. The relative abundance of each 

clast in a given gravel deposit is related to the timing and geomorphic evolution of the 

Orange River drainage basin.  

 

4.2.1 Clast Assemblage 

Size fractions 16-25 mm, 8-16 mm and 3-8 mm are reported (Fig. 7) because these 

contain prominent distinctions between the stratigraphically-distinct Proto and Meso 

Orange River gravels in terms of key exotic clasts. The Proto Orange River gravel 

terrace signature is characterised by a dominance of Karoo Supergroup shales and 

sandstones among the exotic clasts (Figs. 6B, 7). The exotic clast suite of Meso 

Orange River gravels is dominated by BIF relative to other exotic clasts (Figs. 6C, 7). 

For example, in the 16-25 mm size fraction, Karoo Supergroup sedimentary rock clasts 

constitute 22% and 7% of the Proto Orange River and Meso Orange River gravels, 

respectively, and BIF is 6% in the Proto Orange River gravel and 10% in the Meso 

Orange River gravel (Fig. 7). At Auchas Major, the Meso Orange River gravel has an 

uncharacteristic abundance of Karoo shales and sandstones (Fig. 7).  
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Another feature of Meso Orange River gravel is the presence of Karoo Supergroup 

basalt clasts (Fig. 7), sourced from the early Jurassic (190-183 Ma) Drakensberg 

Flood Basalts (Duncan et al., 1997; Marsh et al., 1997; Jacob, 2005; Jourdan et al., 

2007), but these are rare in the older gravels (Fig. 7). Feldspar clasts were recorded 

in the small size fractions (8-16 mm and 3-8 mm) in both Proto and Meso Orange River 

gravels (Figs. 6D, 7).  

 

4.2.2 Clast Roundness 

The lithology of a clast and the distance it travels before deposition is reflected in the 

degree of rounding (Lindsey et al., 2007; Miao et al., 2010). Proto Orange River 

gravels show a higher degree of rounding than the Meso Orange River gravels (Fig. 

8). For size fractions smaller than 40 mm, clast roundness decreases exponentially 

with decreasing clast size in both the Proto and Meso Orange River gravels (Fig. 8). 

 

4.3 Heavy Mineral Assemblages of the Proto Orange River and Meso Orange River 
gravels 

The heavy minerals present in the Proto and Meso Orange River gravels are 

magnetite, garnet, amphibole, epidote and ilmenite. Titanite, and zircon are present in 

trace amounts. Figures 9 and 10 illustrate the relative abundance of individual heavy 

minerals within the overall heavy fraction according to locality and gravel stratigraphy. 

In plotting the heavy mineral assemblages, the lower density minerals amphibole 

(2.97-3.13 g/cm3) and epidote (3.3-3.6 g/cm3) have been grouped together, because 

they have similar chemical stabilities (Morton and Hallsworth, 2007; Andò et al., 2012). 

These are referred to as amphibole-epidote throughout. 
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The Proto Orange River gravel shows relatively higher magnetite and ilmenite 

contents than the Meso Orange River gravel for the 0.5-1.0 mm and 0.25-0.50 mm 

size fractions (Figs. 9, 10). Most of the garnets in the Proto Orange River gravel are in 

the coarsest size fraction such that garnet abundance decrease by more than half 

from the coarse (1-2 mm) to the fine size fraction (0.25-0.50 mm) (Fig. 9). In contrast, 

in the Meso Orange River deposits, garnet reduces gradually from the coarse to the 

fine size fraction (Fig. 9). For example, at Arrisdrif, garnet content reduces from an 

average of 89% of the total heavy mineral in the 1-2 mm size fraction to 30% in the 

0.25-0.50 mm, whereas in the Meso Orange River gravel it changes from 34% to 26%, 

respectively (Fig. 9).  

The Meso Orange River samples are characterised by a relative higher abundance of 

amphibole-epidote than the Proto Orange River samples (Figs. 9, 10). The distinction 

between the Proto and Meso Orange River deposits in terms of amphibole-epidote 

content is clear at Arrisdrif, Auchas Lower, Daberas, Lorelei and Boom (Figs. 9, 10). 

However, at Auchas Major and Sendelingsdrif, the Meso Orange River samples have 

low amphibole-epidote content that is similar to the Proto Orange River samples (Figs. 

9, 10). In the Meso Orange River gravel, amphibole-epidote content increases 

downstream from Boom to Arrisdrif, whereas magnetite decreases downstream most 

especially for the 0.5-1.0 mm size fraction (Fig. 10B). However, neither trend is 

observed in the Proto Orange River gravel (Fig. 10). At Boom, for example, the 

average amphibole-epidote:magnetite ratio of the Meso Orange River sample is 0.3 in 

the 0.5-1.0 mm size fraction, whereas farther downstream at Arrisdrif it is 0.96 in the 

same size fraction (Fig. 10B).  

There is no difference in the range of grain surface textures on garnets between the 

Proto and Meso Orange River gravels. Conchoidal fractures and etch pits were 



17 
 

recorded on both units (Fig. 11A, B). Magnetite shows a much lower degree of 

dissolution textures compared to garnet (Fig. 11C, D). Etch pits are present but rare.  

Epidote shows much more extensive chemical etching relative to garnet and magnetite 

in both the Proto and Meso Orange River deposits (Fig. 11E, F). Saw-tooth 

terminations are present on Meso Orange River epidotes (Fig. 11F) but none was 

recorded in the Proto Orange River gravels.  

 

4.4 Distinction between Proto and Meso Orange River deposits on basis of clast and 
heavy mineral assemblages 

There is a clear distinction between the Proto and Meso Orange River gravels, at both 

clast and heavy mineral scales (Figs. 12, 13). The Proto Orange River gravel is 

characterised by a high percentage of Karoo shales and sandstones and low 

amphibole-epidote content, and the Meso Orange River gravel is characterised by 

high BIF and amphibole-epidote content (Figs. 12, 13). The assemblage difference in 

the 3-25 mm size population between the Proto and Meso is significant (at a 5% 

significance level). For example, there are 17 more Karoo shales and sandstones 

clasts, and 9 less BIF clasts, in every 100 counted between the Proto to Meso (Fig. 

13). Namaqua Metamorphic Complex clasts are higher in the Meso Orange River 

gravels than the Proto Orange River gravels (Figs. 7, 13). 

Proto and Meso Orange River garnets show similar FeO compositions but with a very 

narrow range (Fig. 14B, D). However, a small number of garnets from Proto Orange 

River deposits (n = 4) and Meso Orange River deposits (n = 2) show slightly lower 

FeO than the rest of the group (Fig. 14). When compared to the Namaqua 

Metamorphic Complex garnets (Humphreys and Van Bever Donker, 1990; Diener et 

al., 2013; Bial et al., 2015) the Orange River garnets are similar to the Namaqua 
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Metamorphic Complex garnets in both their FeO, MgO and MnO contents (Fig. 14). 

An exception are the low FeO, low MgO garnets that are different from the Namaqua 

Metamorphic Complex garnets (Fig. 14). These are similar to the Gariep Belt garnets 

(Diener et al., 2017) (Fig. 14B, D).  

 

5. Discussion 

5.1 Controls on clast assemblage differences  

An interplay of provenance, palaeohydraulics, and reworking, influence clast 

assemblages in the different terrace successions. Provenance is widely invoked as a 

dominant control on compositional differences between sediments on a regional to 

local scale (e.g., Gibbard, 1979; Green et al., 1982; Bridgland, 1999; Roberts et al., 

2008; Claude et al., 2017). Clast provenance can vary through time due to changes in 

surface exposure and availability of different rock types, or through drainage re-

organisation (e.g., Mather, 2000). Re-organisation of drainage basin networks can be 

caused by tectonism and volcanism (e.g., Maddy et al., 2012; Richardson et al., 2016), 

or through drainage capture events (e.g., Mather, 2000; Maher et al., 2007) during the 

evolution of degradational landscapes. Periods of tectonic uplift, and increased 

erosion and sediment flux in southern Africa, that could have influenced the clast 

assemblage of the Proto and Meso Orange River deposits include during the 

Cretaceous (de Wit, 1999; Stevenson and McMillan, 2004; Tinker et al., 2008b; 

Guillocheau et al., 2012; Richardson et al., 2016, 2017), and the Miocene and Pliocene 

(Partridge and Maud, 2000; Green et al., 2017). A Pliocene period of uplift, which 

occurred after deposition of the Proto Orange River gravel, could be invoked to have 

driven drainage re-organisation and influenced clast assemblage differences between 

the Proto and Meso Orange River gravels. However, there is neither a diagnostic clast 
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lithology in either Proto Orange River or Meso Orange River gravels, nor 

geomorphological evidence for drainage re-organisation reported for the Orange River 

catchment during this period. 

Only the relative dominance of exotic clasts distinguishes the clast assemblages 

between the stratigraphically distinct Proto and Meso Orange River successions in the 

Orange River gravel deposits (Figs. 7, 12, 13). This suggests that there has not been 

a major change in sediment provenance available to the Orange River between the 

Proto and Meso periods of terrace deposition, although different lithologies have been 

eroded and transported during different periods. For example, the proportions of Karoo 

shales and sandstones suggest that the majority of the Karoo Supergroup sediments 

within the Orange River drainage basin were entrained by the end of Proto-Orange 

River times and were less available to the Orange River in Meso-Orange River times. 

The opposite is true for the BIF (Figs. 7, 12, 13). Although the erosion rates, and 

associated sedimentation rates, of the southern African landscape remain highly 

debated (Hawthorne, 1975; Brown et al., 1999; Gallagher and Brown, 1999; Tinker et 

al., 2008b; Hanson et al., 2009; Richardson et al., 2017), sedimentation rates in the 

Orange Basin offshore Namibia and South Africa (Rust and Summerfield, 1990; 

Aizawa et al., 2000; Rouby et al., 2009) and Outeniqua Basin, offshore South Africa 

(Tinker et al., 2008a), suggest that sediment production and deposition continued to 

decrease after the Cretaceous uplift event. The Proto and Meso Orange River deposits 

are younger than the Cretaceous, therefore tectonic uplift may have not directly 

influenced the clast assemblage between the two sets of deposits. However, tectonic 

uplift may have influenced the rate at which Karoo rocks were eroded such that most 

of the Karoo shales and sandstone were eroded during the Proto Orange River period 

and were less extensively exposed and available for transport in the Meso Orange 
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River period. In summary, changes in the availability of rocks exposed in the drainage 

basin were a more significant control on differences between the Proto and Meso 

Orange River deposits clast assemblages than drainage re-organisation, as 

evidenced by decreasing Karoo shale and sandstones rock clasts and increasing BIF 

from the Proto Orange River deposits to the Meso Orange River deposits (Fig. 7).  

Rivers vary in their discharge capacity and power through time due to changes in 

channel dimensions, drainage basin area, gradient, and climate (Schumm and Lichty, 

1965; Bull, 1979; Charlton, 2008; Hamers et al., 2015). This impacts their ability to 

erode and transport sediment of different calibre (size and density), and the clast 

character (Charlton, 2008). The higher degree of clast roundness in the Proto Orange 

River gravel relative to the Meso Orange River gravel (Fig. 8) suggests a higher 

sediment load and/or a higher supply of relatively abrasive quartzite (Lindsey et al., 

2007; Miao et al., 2010). The thicker, and volumetrically larger Proto Orange River 

gravel terrace deposits (up to 50 m thick) (Figs. 3, 4A) provide evidence for a more 

powerful river, with higher sediment loads, during the incisional phase compared to 

the Meso Orange River incisional phase with thinner gravel terrace deposits (6-23 m 

thick) (Fig. 3A). Within the study area, there is a steeper river gradient of the Proto age 

Orange River (0.69 m/km) compared to the Meso age Orange River (0.60 m/km) (Fig. 

3A). A steeper surface gradient would increase the power and carrying capacity of the 

Proto age Orange River, despite its more sinuous planform (Fig. 3C). 

There is a paucity of Karoo Supergroup basalt clasts in the Proto Orange River gravel 

(1%) relative to the Meso Orange River gravel (3%) (Figs. 7, 13) even though they are 

both derived from the Drakensburg Karoo Supergroup, the youngest member of the 

Karoo Supergroup (Duncan et al., 1997; Marsh et al., 1997; Jourdan et al., 2007; 

Hanson et al., 2009), which could be expected to have been eroded relatively early in 
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the erosional history of the drainage basin. There are two possible explanations for 

this difference. Firstly, a wetter and more humid climate both before and during the 

Proto Orange River period may have eliminated basalt preferentially through chemical 

weathering (Amiotte Suchet and Probst, 1993; Louvat and Allègre, 1997; Dessert et 

al., 2001; Malvoisin et al., 2012; Cox et al., 2016). Secondly, the majority of the basalt 

clasts might have been mechanically broken down during transport in the Proto 

Orange River period, which would explain their presence mostly in the smaller size 

fractions of 3-8 mm (Fig. 7C). The presence of unweathered feldspar clasts, in the 

Proto Orange River gravel (Fig. 6D), does not support the hypothesis of climate 

induced chemical weathering of basalt (Pellant, 2000; Maddy et al., 2012; Tan et al., 

2017). In addition, Bluck et al. (2007) and Miller (2008) reported that arid conditions in 

the region were prevalent in the Eocene, based on the occurrence of thick (18 m) 

aeolian sandstone overlying basal marine gravel at Buntfeldschuh, an Eocene outcrop 

of shoreline deposits about 130 km north of the Orange River mouth. Therefore, the 

Proto and Meso deposits were exposed to similar arid conditions. Evidence from 

incision rates and clast roundness suggests that the Proto-Orange River was a higher 

energy environment than the Meso-Orange River sedimentary system, and one in 

which basalt clasts would be preferentially mechanically degraded (Figs. 3A, 8). 

However, the garnet composition data suggest that the heavy minerals are sourced 

locally from the Namaqua Metamorphic Complex and Gariep Belt (Fig. 14). Therefore 

the heavy mineral anomalies that have been liberated from the mechanical 

disintegration of catchment area derived Karoo basalts could not be established. 

However, this does not exclude that some heavy minerals could be derived from 

higher in the catchment.  
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The Proto Orange River and older deposits were incised by the Meso Orange River 

system, and were available to be reworked and incorporated into the Meso Orange 

River deposits. Locally, downstream reworking of older deposits can be an important 

process as suggested by the uncharacteristic abundance of Karoo Supergroup shales 

and sandstones in the Auchas Major Meso deposit (Fig. 7). However, in general, the 

absence of significant reworking of the Proto Orange River deposits is striking (Fig. 7). 

The lack of evidence for extensive reworking is possibly because the Orange River 

evolved to a straighter planform during the Meso period (Fig. 3C), such that the Proto 

Orange River gravel terraces are well preserved because they are largely situated 

outside the influence of the Meso Orange River course. The decrease in clast 

roundness from the Proto to the Meso Orange River deposits also suggests minimal 

reworking and downstream redeposition of older deposits within the study area (Fig. 

8). 

 

5.2 Controls on mineralogy of heavy mineral assemblages 

Physical sorting, mechanical breakdown, and dissolution by chemical weathering 

influence the preservation of heavy mineral assemblages (Morton and Hallsworth, 

2007; Weibel and Friis, 2007). The distance a heavy mineral grain travels before 

deposition depends both on its density and size (Komar and Wang, 1984).  

Amphibole-epidote shows significant changes in proportion between the Proto and 

Meso Orange River deposits (Figs. 9, 10, 12, 13). Amphibole-epidotes are sourced 

from the local Namaqua Metamorphic Complex rocks (Botha and Grobler, 1979; Bailie 

et al., 2010) (Table 1) on the basis that high amphibole-epidote proportions coincide 

with high amounts of Namaqua Metamorphic Complex clasts (Fig. 13). In addition, the 

similarity in composition of the detrital Orange River garnets and the Namaqua 
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Metamorphic Complex garnets, and to a lesser extent the Gariep Belt garnets, 

constrain the provenance of the majority of the detrital heavy minerals in the Orange 

River gravels to these rocks (Fig. 14). Among the trace minerals in the Orange River 

gravels (titanite and zircon), titanite has been reported in the Gariep Belt rocks 

(Frimmel et al., 1996; Frimmel and Frank, 1998) (Table 1) but not in Namaqua 

Metamorphic Complex rocks. Therefore, titanite provides evidence for a contribution 

of Gariep Belt rocks to the lower Orange River gravels. Commonly, amphibole is 

absent in buried sediment owing to its chemical instability at depths greater than 600 

m (Morton, 1984; von Eynatten and Gaupp, 1999; Mange and Morton, 2007). Epidote 

also has similar diagenetic stability to amphibole persisting only to 1100 m (Morton 

and Hallsworth, 2007). However, loss of amphibole and epidote due to dissolution 

alone cannot explain their relatively low abundance in the Proto Orange River deposits 

that have a maximum thickness of 50 m (Jacob, 2005) (Fig. 3A) and a thin sand cover 

(<2 m). Furthermore, chemical weathering is considered unlikely given the presence 

of unweathered feldspar (Fig. 6D). The increase of amphibole-epidote content from 

the Proto to Meso Orange River deposits (Figs. 9, 10, 13) could be influenced by the 

interpreted decrease in river energy that increased the preservation potential of 

mechanically weaker and softer minerals, such as amphibole and epidote. This is 

supported by garnet showing conchoidal fractures that are produced by mechanical 

processes (Velbel et al., 2007), although conchoidal fractures are also present on 

garnets from the Meso Orange River deposits (Fig. 11A). Therefore, the dominant 

control on the increase in the proportion of amphibole-epidote (Figs. 9, 10, 13) is 

interpreted to be a consequence of the larger influx of Namaqua Metamorphic 

Complex-derived material (Fig. 15). 



24 
 

The downstream decrease of magnetite and increase of amphibole-epidote between 

Boom and Arrisdrif in the Meso Orange River gravel (Fig. 10) coincides with the 

downstream decrease in gravel grain size and increase in sand content for both Proto 

and Meso Orange River deposits. Given that both magnetite and amphibole-epidote 

were liberated from Namaqua Metamorphic Complex and Gariep Belt rocks (Fig. 14), 

their different downstream changes in concentrations may be controlled by density, of 

5.2 g/cm3 and 2.97-3.13 g/cm3, respectively (Pellant, 2000) where more magnetite is 

retained in the upstream deposits. This trend also suggests that there is no further 

addition of Namaqua Metamorphic Complex material to the Orange River downstream 

of Boom. The low abundance of amphibole-epidote in the Auchas Major Meso Orange 

River sample (Figs. 9, 13) coincides with a high abundance of Karoo Supergroup shale 

and sandstone (Fig. 7), which are characteristic features of the Proto Orange River 

deposits. This suggests that reworking of the Proto Orange River gravel affected the 

clast and heavy mineral assemblages by diluting the amphibole-epidote content of the 

sand sized fractions at this location. The lack of reworking of the older Proto Orange 

River deposits is also evident in mineral surface textures, because the magnitude of 

chemical dissolution (e.g., etch pits) increases with decreasing mineral stability from 

magnetite and garnet to epidote in both the older and younger deposits. A large 

percentage of the garnets in the Proto Orange River gravel are relatively coarse (1-2 

mm) (Fig. 9A) whereas the fine grained garnets (0.5-1.0 mm and 0.25-0.50 mm) 

appear to be much less common (Fig. 9B, 9C), presumably removed by higher water 

energy in the Proto period and transported offshore. Imbricated clasts in the Proto 

Orange River gravel attest to a high energy bedload-dominated river system (e.g., 

Ashley et al., 1988; Wittenberg, 2002) (Fig. 5A).  
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This study has established that the Proto and Meso Orange River deposits are not 

only distinguishable from each other at clast scale, but also at a heavy mineral scale 

(Figs. 7, 9, 13). The integrated clast and heavy mineral assemblage of the Orange 

River deposits can therefore be used to understand the distribution and timing of the 

deposition of the coeval marine gravels in response to the evolving depositional and 

erosional phases of the Orange River. A good understanding of the stratigraphic 

record of the gravels, in terms of age of deposition and sediment distribution patterns 

for marine deposits, is important for better resource exploitation and improved 

sampling and resource exploration techniques. 

 

5.3 Implications for river terrace deposits analysis 

The clast assemblage of the Proto and Meso Orange River gravel terrace deposits is 

controlled by catchment-scale processes (Fig. 15). In contrast, differences in the 

heavy mineral assemblages between the two gravels (Figs. 9, 13) is influenced by 

local controls, such as the availability of Namaqua Metamorphic Complex rocks to the 

Orange River and the lower preservation potential of amphibole-epidote. This implies 

that extrinsic controls on clast assemblage and intrinsic controls on heavy mineral 

assemblage of the Orange River gravels need to be considered in evaluation of terrace 

deposits of other bedrock river systems globally. The sand size fraction and the clasts 

can be derived from different sources such that they carry different provenance 

signatures and reflect different transport histories. This is likely to be a similar scenario 

in other continental-scale bedrock rivers. Therefore, prediction of the nature of the 

fine size fraction on the basis of clast provenance alone is problematic. Mechanically 

weaker rocks such as basalt may be lost. Therefore, using clast assemblages to 

reconstruct the drainage history of high energy river systems should take into account 
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the possibility of loss of mechanically weaker clasts. Bridgland (1999) used clast 

analysis to reconstruct the drainage evolution of the Thames River, England, and 

argued that tributaries have been re-organised over its history and that the river has 

diverted its course in response to middle Pleistocene glaciation based on evidence 

from changes in the composition of clasts. However, chalk is an important rock type 

exhumed in the Thames drainage basin. Therefore reconstructing palaeo-tributaries 

that have drained solely through chalk on the basis of clast assemblage alone is 

problematic in this case, because chalk is mechanically weak. Through clast analysis 

of late Quaternary sediments, Jones (2000) noted a downstream decrease of granite 

clasts in the Pineta Basin, Spain, and attributed it to mechanical breakdown. If these 

Pineta Basin sediments were deposited by a higher energy river system, the granite 

clasts might have been broken down and their signature lost. In such cases, an 

integrated analysis of clast assemblages and heavy mineral assemblages would be a 

better approach because heavy minerals would have survived mechanical breakdown 

and retained the source signature. Therefore, the heavy mineral assemblage 

technique is a useful tool for studying drainage basin evolution in areas where rivers 

and their associated tributaries drain areas whose geology is dominated by 

mechanically weaker rock types. Studies that use clast analysis to deduce provenance 

of sediments make an implicit assumption that sand sized sediments are from the 

same source as the clasts (e.g., Bridgland, 1999; Mikesell et al., 2010).  

This study has shown that assessment of the controls on clast and heavy mineral 

assemblages needs to be treated separately due to the differences in density that 

affect the preservation and behaviour of pebble sized clasts and sand sized heavy 

minerals. However, despite different factors controlling the clast assemblage and 

heavy mineral contents of the lower Orange River deposits, the Proto and Meso 
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Orange River deposits differ in terms of both clasts and heavy minerals (Figs. 7, 9, 

13).    

 

6.  Conclusions 

We have integrated clast and heavy mineral assemblages to investigate the character 

and controls in downstepping flights of bedrock-confined river terrace deposits formed 

during multiple incision and aggradation cycles by the palaeo-Orange River. The 

stratigraphic decrease in terrace deposit thickness, and clast character, between the 

Proto and Meso Orange River deposits is linked to a more powerful river system during 

Proto times driven by a changing drainage basin geomorphology, rather than 

reworking of older deposits or changes in provenance. Local reworking of Proto 

Orange River gravel into younger deposits (Auchas Major) is evidenced by a 

significant increase in Karoo Supergroup sedimentary clasts, and decrease in 

amphibole-epidote content, in the Meso Orange River gravel. The decrease in incision 

depths, and sediment transport from Proto to Meso Orange River deposits was 

accompanied by an increase in the proportion of sediments supplied to the river from 

local lithologies, including an increase of amphibole-epidote in the heavy mineral 

assemblages sourced from the Namaqua Metamorphic Complex rocks. This study 

indicates that clast assemblage analysis should not be uncritically used as a proxy for 

the character of the matrix and vice versa. An integrated approach in analysis of these 

important but fragmented archives in source-to-sink studies is recommended when 

evaluating the controls on drainage basin evolution, and to improve prediction of heavy 

minerals and placer minerals in time equivalent deposits in downstream sedimentary 

basins. 
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Table 1. Mineralogy of the Namaqua Metamorphic Complex and Gariep Belt rocks. 
Source 
Lithology 

Heavy Minerals 
Density > 2.8 g/cm3 

Other Minerals  References 

Namaqua 
Metamorphic 
Complex 

Garnet 
Amphibole  
Epidote 
Spinel 
Pyroxene 
Ilmenite 
Magnetite 
Sillimanite 
Zoisite 

Plagioclase  
Feldspar 
Biotite 
Cordierite 
Chlorite 
 

Botha and Grobler 
(1979) 
Waters (1989) 
Robb et al. (1999) 
Diener et al. (2013) 
Bial et al. (2015) 
 
 

Gariep Belt Amphibole 
Epidote 
Ilmenite 
Titanite 

Biotite 
Plagioclase 

Frimmel et al. (1996) 
Frimmel and Frank 
(1998)  
 
 

 

 

Fig. 1. Study area with distribution of gravel terrace deposits (grey colour) along the 
lower Orange River. Deposits analysed in this study are marked in bold. Modified from 
Jacob et al. (1999). The boxed area with the broken line represent the area shown in 
Figure 3C. 
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Fig. 2. Simplified geology of the lower Orange River. Locations of Sendelingsdrif, 
Daberas, Auchas and Arrisdrif deposits are indicated for reference. Namibia GIS-
based data obtained from the Geological Survey of Namibia. South African data after 
de Villiers and Sohnge (1959).  
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Fig. 3. (A) Proto Orange River and Meso Orange River profiles relative to the modern 
Orange River profile. (B) Google Earth image of the Proto terraces between Auchas 
Major and Daberas (C) Proto Orange River, Meso Orange River and modern Orange 
River courses. Figures A and C modified from Jacob (2005). 
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Fig. 4. (A) Representative photograph of the thick Proto Orange River terrace deposit 
at Auchas deposit. Photograph taken looking southeast. (B) and (C) Photograph of 
deep scours cut into bedrock below the bedrock strath level at Auchas deposit. Note 
the smooth walls of the scours formed by abrasion.  
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Fig. 5. Imbricated clasts (marked by white lines) (A) and coarse cross bedding (B) as 
seen in Proto Orange River unit and above Meso Orange River unit, respectively. (C) 
Meso Orange River gravel.  
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Fig. 6. Agate (A), Karoo sedimentary rocks (B) and banded iron formation (C) clasts 
that comprise the exotic clast suite of the Orange River derived gravels. (D) Fresh non-
weathered feldspar clasts from Proto Orange River gravel, Daberas deposit.  
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Fig. 7. Clast assemblage of Proto and Meso Orange River gravels for size fractions 
(A) 16-25 mm, (B) 8-16 mm and (C) 3-8 mm for different locations along the river. Data 
from Jacob (2005). 
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Fig. 8. Clast roundness of the Proto and Meso Orange River gravels. Modern Orange 
River data is included for comparison. Size fraction are +300 mm, +200 mm, +90 mm, 
+40 mm, +25 mm, +16 mm, +8 mm and +3 mm. All data from Jacob (2005). 
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Fig. 9. Heavy mineral assemblage of Proto and Meso Orange River deposits for size 
fractions (A) 1-2 mm, (B) 0.5-1.0 mm and (C) 0.25-0.50 mm for different locations 
along the river.  
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Fig. 10. Downstream change in amphibole-epidote/magnetite ratio from Boom to 
Arrisdrif for the Proto Orange River gravel (orange symbols) and Meso Orange River 
gravel (black symbols). (A) 1-2 mm, (B) 0.5-1.0 mm and (C) 0.25-0.50 mm size 
fractions.  
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Fig. 11. SEM images of mineral grains from the Orange River. (A) Etch pits on 
conchoidally fractured surface (arrows) on garnet from Proto Orange River 
Sendelingsdrif deposit. (B) Euhedral etch pits on garnet from Boom Meso Orange 
River deposit. (C) Honeycomb dissolution texture on magnetite (arrows) from Proto 
Orange River Arrisdrif deposit. (D) Large dissolution pit (arrows) on magnetite from 
Meso Orange River Sendelingsdrif deposit. (E) Irregular etching on epidote from Proto 
Orange River Auchas Major deposit. (F) Saw-tooth terminations on epidote from Meso 
Orange River Arrisdrif deposit.  
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Fig. 12. Clast assemblage and heavy mineral assemblage variations between Proto 
Orange River and Meso Orange River gravel. Heavy mineral assemblage data is from 
0.5-1.0 mm size fraction whereas clast assemblage data is for (A) 16-25 mm, (B) 8-16 
mm and (C) 3-8 mm size fractions. 
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Fig. 13. Clast assemblage (inset) and heavy mineral assemblage of Proto and Meso 
Orange River deposits. Size fractions are 3-25 mm and 0.25-0.50 mm for clast and 
heavy mineral assemblage data, respectively. Clast assemblage and elevation data 
after Jacob (2005) and Jarvis et al. (2008), respectively.  
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Fig. 14. Comparison of Orange River garnets with garnet composition of Namaqua 
Metamorphic Complex and Gariep Belt. (A) Garnet compositions in MgO versus FeO 
from the Namaqua Metamorphic Complex (Humphreys and Van Bever Donker, 1990; 
Cornell et al., 1992; Diener et al., 2013; Bial et al., 2015) and Gariep Belt garnets 
(Diener et al., 2017). (B) Data for Proto and Meso Orange River garnets. (C) MgO 
versus FeO from the Namaqua Metamorphic Complex and Gariep Belt (D) Data for 
Proto and Meso Orange River garnets. 
 



59 
 

 
 
Fig. 15. Synthesis on major changes in clast and heavy mineral assemblage of the 
Orange River deposits, and the interpreted controls. Yellow, brown and green arrows 
point in the direction of increase. 


