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Abstract. The results of magnetic susceptibility as well as electric resistivity measurements 

complemented with 
155

Gd Mössbauer spectroscopy investigations carried out within wide 

temperature range for GdAgSn compound are discussed.   

1.  Introduction 

The ternary equiatomic stannides (R, A)TSn (R or A = rare earth or actinide element, respectively; T = 

3d, 4d or 5d transition element) have intensively been studied with respect to their largely varying 

magnetic and electrical properties [1-3]. Among them the title compound reveals interesting magnetic 

behaviour as it was shown by the AC  susceptibility and Mössbauer measurements at low temperatures 

[4, 5]. It has been found that on cooling down this compound orders first anitiferromagnetically at 

TN=34.3(2) K, while at Tf = 15.3 K undergoes spin glass-like transition (SG). 

2.  Experimental  

Our polycrystalline GdAgSn sample was synthesized by arc melting the constituent elements with 

purity better than 99.9% in argon atmosphere and consecutive annealing procedure for better 

homogeneity as previously described [4]. The X-ray powder diffraction pattern was recorded at room 

temperature with a Siemens D-501 diffractometer using the Ni-filtered CuK and the results has 

already been published elsewhere [4, 5]. Magnetic susceptibility and magnetization measurements 

were carried out with a 7225 Lake Shore AC Susceptometer/DC Magnetometer operating in AC mode 

on powdered samples in the temperature range 4.2 K – 200 K and in the external magnetic fields up to 

60 kOe. The electrical resistivity () measurements were performed by means of Physical Property 

Measurement System (Quantum Design, PPMS-9T) on a bulk probe using a steady-current, standard 

four point technique and applying an excitation current of 80 mA in zero external magnetic field. Our 

specimen had of approximate dimensions 1x1x5 mm3.  (86.5 keV (Ig = 3/2, E1, Ie = 5/2 transition) 
155Gd Mössbauer spectra were collected in a transmission geometry cryostat using a conventional 

constant-acceleration spectrometer of the Kankeleit type. The 20 mCi 155Eu:SmPd3 source was kept at 

4.2 K to increase the efficiency of the resonance emission. The temperature of the absorber was varied 

between 4.2 and 50 K with a stabilisation better than 0.05 K. In contrast to the fitting method applied 

in our previous investigations (where Lorentzian approximation was used [5]), for the proper 

description of the recorded 155Gd Mössbauer spectra a least-squares fitting procedure which includes 

the diagonalization of the full hyperfine Hamiltonian within the transmission integral approximation 

was used. 
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3.  Results and discussion 

X-ray diffraction investigations made on the polycrystalline GdAgSn sample revealed the existence of 

only single phase and confirmed that this compound crystallizes in the hexagonal CaIn2-type of 

structure with space group P63/mmc and the derived lattice parameters are following: a = 470.9(1) pm 

and c = 742.5(3) pm [2]. The temperature dependence for the absolute value of the magnetic AC 

susceptibility AC = [(’)2 + (’’)2]1/2 and its reciprocal are displayed in figure 1.  
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Figure 1. Temperature dependence for the absolute value of the magnetic ac susceptibility AC = [(’)2 

+ (’’)2]1/2 (left-hand scale) and its reciprocal (right-hand scale) recorded for GdAgSn in zero external 

magnetic field at the internal frequency f = 375 Hz and the applied oscillating field strength HAC = 5 

Oe. The solid line is a result of the fitting procedure in the paramagnetic range, for details see the text. 

 

The temperatures observed here for both maxima are in perfect agreement with those previously 

published [4, 5] i.e. a phase transition from a paramagnetic to an antiferromagnetic state (PM→AFM) 

takes place at the Néel temperature TN = 34.3(2) K while the second one at Tf = 15.3(2) is that which 

have been ascribed to the spin-glass transition. Above 52 K (see Fig. 1), the recorded susceptibility 

obeys fairly well a modified Curie-Weiss law in the form: AC = 0 + C/(T – θp) with the temperature 

independent factor 0 = 1.2110-6 cm3/g, the Curie constant C = 2.09210-2 Kcm3/g, and the 

paramagnetic Curie temperature θp = 53.7 K. The negative value of θp is indicative for 

antiferromagnetic correlations. The effective magnetic moment was derived from the formula eff = 

2.83(MC) 1/2 where M is the molar mass. The experimental value eff = 8.01 B is somewhat higher but 

agrees well with the theoretical Russel-Saunders value eff = gB[J(J+1)]1/2 = 7.94 B for the free Gd3+ 

ion. Figure 2 shows the temperature variation of electrical resistivity recorded at zero external 

magnetic field.  
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Figure 2. Temperature dependence of electrical resistivity recorded for GdAgSn. The continuous lines 

present the least-squares fits to the low and high temperature parts of (T) according to the given 

formulas below each part, respectively. 
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The linear behavior at high temperatures and the positive temperature coefficient of resistivity 

(d/dT>0) indicate the metallic nature of the compound. The striking feature is a lack of any resistivity 

anomaly around Tf =15.3 K while a drastic change of resistivity slope is registered at T = 32.5 K, i.e. 

close to TN = 34.3. It has to be underlined here, that such an observation is in line with the proposed 

spin glass-like character of GdAgSn below Tf and its ordered antiferromagnetic character below TN 

[4,5]. As a matter of fact, the transport properties do not reveal any transition at spin glass temperature 

but only a gradual transformation which is associated with the lack of ordered state (see [6]). Below TN 

we have found that the best fit to the experimental data in an expanded range (see Fig. 2.) may be 

approximated by the simple power low in the form: (T) = 0 + ATn with the 0 = 15.44 cm, A = 

0.069 cm/K1.77 and n = 1.77. At high temperatures (T>TN) the resistivity mag(T)  spd(T) = 

constant, where spd is the spin-disorder contribution and the phonon contribution ph(T) is fairly well 

linear function of T [7]. Thus, in this temperature region the formula: (T) = spd + AT can be fitted. 

The estimated in such a way values of spd and A are 45.27 cm, and 0.218 cm/K, respectively.  
Low temperature 155Gd Mössbauer spectra obtained around and below TN for GdAgSn can be fitted 

with the single magnetic hyperfine component rather well, and no drastic change can be registered in 

the shape of these spectra below Tf in spite of expected field distribution characteristic for spin glass 

state. The obtained quadrupole interaction constant EQ = eQgVzz = –1.592(2) mm/s can be easily 

converted into value of the electric field gradient (EFG) Vzz at the gadolinium nuclei by the formula: 

Vzz = 2.2206·1021 EQ [mm/s] V/m2 = –3.535(4)x1021 V/m2. Furthermore, knowledge of the EFG at the 

Gd site allows an estimation of the quadrupolar term 
0

2B  in the Stevens expansion of the crystal field 

Hamiltonian: 
m

nB m

nO . This term is directly related to EQ(155Gd) by the expression:  

0

2B [K] =  J  <r2>4f  90.2  EQ (155Gd) 

Here, J is the appropriate Stevens factor, the mean squared radius <r2>4f is expressed in atomic units 

and EQ in mm/s. Under assumption that 
0

2B  is the leading term in the crystal field Hamiltonian, then 

when translated for other rare earth ions in the family of isostructural RAgSn compounds, where the 

rare earths metals have non-zero angular momentums its sign gives information about the 

magnetocrystalline anisotropy, since then 
0

2H  (CEF) = 
0

2B  [3Jz
2 – J(J+1)]. For a negative 

0

2B  the 

ground state doublet is built up of states with a maximum absolute value of Jz which means that the 

magnetic moment is pointed in the direction of the z-quantization axis. In contrary, for positive values 

of 
0

2B  only states with the possible smallest Jz contribute to the electronic ground state and the 

magnetic moment is aligned in the basal plane (z).  

 

Conclusions 

All carried measurements confirm very well the transition observed at TN, however, the transition at Tf 

has no noticeably influence on the shape of 155Gd spectra what could be explained by an assumption 

that the local nearest-neghbour Gd3+ spin configuration below Tf is not significantly modified. 
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