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1712 L. Gasiński, N. S. Papageorgiou

1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study

the following nonlinear parametric Neumann problem:

⎧
⎨

⎩

−�pu(z) + β(z)u(z)p−1 = λg
(
z, u(z)

) − f
(
z, u(z)

)
in �,

∂u

∂n
= 0 on ∂�, λ > 0, u > 0,

(P)λ

with β ∈ L∞(�)+, β �= 0. Here �p denotes the p-Laplace differential operator,
defined by

�pu = div
(‖∇u‖p−2∇u

) ∀u ∈ W 1,p(�),

with p ∈ (1,+∞). Also n(·) denotes the outward unit normal on ∂�. When the
reaction in (P)λ has the particular form

λζ q−1 − ζ r−1,

with q < r , then the resulting equation is the p-logistic equation (or simply the logistic
equationwhen p = 2). The logistic equation is important inmathematical biology (see
Gurtin and Mac Camy [21] and Afrouzi and Brown [1]) and describes the dynamics
of biological populations whose mobility is density dependent.

There are three different types of the p-logistic equation, depending on the value
of the exponent q with respect to p. More precisely, we have

• the “subdiffusive” type, when q < p < r ;
• the “equidiffusive” type, when q = p < r ;
• the “superdiffusive” type, when p < q < r .

The subdiffusive and equidiffusive cases are similar, but the superdiffusive case
differs essentially and it exhibits bifurcation phenomena (see Takeuchi [29,30] and
Filippakis et al. [7], where the Dirichlet problem is studied).

The aimof thiswork, is to prove a bifurcation-type theorem for the positive solutions
of (P)λ as the parameter λ > 0 varies in (0,+∞) and the reaction ζ 
−→ λg(z, ζ ) −
f (z, ζ ) (which is more general than the standard p-logistic equation; see Afrouzi and
Brown [1]), exhibits a superdiffusive kind of behavior. To the best of our konwledge,
the Neumann p-logistic equation has not been studied. There is only the recent work
of Marano-Papageorgiou [25], where the equidiffusive case is examined.

Our approach is variational based on the critical point theory, combined with suit-
able truncation and comparison techniques. In the next section, for the convenience
of the reader we recall main mathematical tools which we will use in the sequel.

This work is the outgrowth of a remark made by the referee of [19]. In that paper,
the authors deal with the parametric equation

{−�pu(z) = λ f
(
z, u(z)

)
in �,

u|∂� = 0 on ∂�
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Positive Solutions for the Neumann p-Laplacian... 1713

and some analogous bifurcation-type results were proved. It was pointed out by the
referee that in mathematical biology, the Neumann model is a more realistic one. For
some other recent results on nonlinear Neumann boundary value problems involving
p-Laplacian, we refer to Gasiński and Papageorgiou [11–17].

2 Mathematical Background

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X, X∗). Let ϕ ∈ C1(X). We say that ϕ satisfies the
Palais–Smale condition, if the following holds:

“Every sequence {xn}n�1 ⊆ X , such that
{
ϕ(xn)

}

n�1 ⊆ R is bounded and

ϕ′(xn) −→ 0 in X∗ as n → +∞,

admits a strongly convergent subsequence.”

Using this compactness-type condition on ϕ, we can state the following theorem,
known in the literature as the “mountain pass theorem”.

Theorem 2.1 If X is a Banach space, ϕ ∈ C1(X) satisfies the Palais–Smale condition,
x0, x1 ∈ X, 0 < 	 < ‖x0 − x1‖,

max
{
ϕ(x0), ϕ(x1)

}
< inf

{
ϕ(x) : ‖x − x0‖ = 	

} = η	,

c = inf
γ∈�

max
0�t�1

ϕ
(
γ (t)

)
,

where

� = {
γ ∈ C

([0, 1]; X
) : γ (0) = x0, γ (1) = x1

}
,

then c � η	 and c is a critical value of ϕ (i.e., there exists x̂ ∈ X, such that ϕ′(̂x) = 0
and ϕ(̂x) = c).

In the study of problem (P)λ, we will use the Sobolev space W 1,p(�) and the
ordered Banach space C1(�). The positive cone of the latter is

C+ = {
u ∈ C1(�) : u(z) � 0 for all z ∈ �

}
.

This cone has a nonempty interior, given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ �

}

.

The next result relates local minimizers in W 1,p(�) with local minimizers in the
smaller Banach space C1(�). A result of this type was first proved for the Dirichlet
Laplacian by Brézis and Nirenberg [5] and was later extended to the p-Laplacian by
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1714 L. Gasiński, N. S. Papageorgiou

García Azorero et al. [8] and Guo and Zhang [20] (in the latter, for p � 2). Extensions
to the Neumann p-Laplacian or Neumann p-Laplacian-like operators can be found in
Motreanu et al. [26] and Motreanu and Papageorgiou [28].

So let f0 : �×R −→ R be a Carathéodory function (i.e., for all ζ ∈ R, the function
z 
−→ f0(z, ζ ) is measurable and for almost all z ∈ �, the function ζ 
−→ f0(z, ζ )

is continuous), which exhibits subcritical growth in ζ ∈ R, i.e.,

∣
∣ f0(z, ζ )

∣
∣ � a(z) + c|ζ |r−1 for almost all z ∈ �, all ζ ∈ R,

with a ∈ L∞(�)+, c > 0 and 1 < r < p∗, where

p∗ =
{

N p
N−p if p < N ,

+∞ if p � N .

We set

F0(z, ζ ) ds =
∫ ζ

0
f0(z, s) ds

and consider the C1-functional ψ0 : W 1,p(�) −→ R, defined by

ψ0(u) = 1

p
‖∇u‖p

p −
∫

�

F0
(
z, u(z)

)
dz ∀u ∈ W 1,p(�).

Theorem 2.2 If u0 ∈ W 1,p(�) is a local C1(�)-minimizer of ψ0, i.e., there exists
	1 > 0, such that

ψ0(u0) � ψ0(u0 + h) ∀h ∈ C1(�), ‖h‖C1(�) � 	1,

then u0 ∈ C1(�) and it is a local W 1,p(�)-minimizer of ψ0, i.e., there exists 	2 > 0,
such that

ψ0(u0) � ψ0(u0 + h) ∀h ∈ W 1,p(�), ‖h‖ � 	2.

Remark 2.3 In [26,28], the result was stated in terms of W 1,p
n (�) = C1

n(�)
‖·‖

, where

C1
n(�) =

{

u ∈ C1(�) : ∂u

∂n
= 0 on ∂�

}

.

Actually, there is no need for this restriction.

Let A : W 1,p(�) −→ W 1,p(�)∗ be the nonlinear map defined by

〈
A(u), y

〉 =
∫

�

‖∇u‖p−2(∇u,∇ y)RN dz ∀u, y ∈ W 1,p(�). (2.1)

The next result can be found in Aizicovici et al. [3, Proposition 2].
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Positive Solutions for the Neumann p-Laplacian... 1715

Proposition 2.4 The map A : W 1,p(�) −→ W 1,p(�)∗ defined by (2.1) is continuous,
strictly monotone (hence maximal monotone too) and of type (S)+, i.e., if {un}n�1 ⊆
W 1,p(�) is a sequence, such that un −→ u weakly in W 1,p(�) and

lim sup
n→+∞

〈
A(un), un − u

〉
� 0,

then un −→ u in W 1,p(�).

The next simple lemma, will be useful in our estimations and can be found in
Aizicovici et al. [4, Lemma 2]. Recall that by ‖ · ‖ we denote the norm of the Sobolev
space W 1,p(�), i.e.,

‖u‖ = (‖u‖p
p + ‖∇u‖p

p
) 1

p ∀u ∈ W 1,p(�).

Lemma 2.5 If β ∈ L∞(�), β(z) � 0 for almost all z ∈ � and β �= 0, then there
exists ξ0 > 0, such that

‖∇u‖p
p +

∫

�

β|u|p dz � ξ0‖u‖p ∀u ∈ W 1,p(�).

We conclude this section by fixing some notation. By | · |N we denote the Lebesgue
measure on R

N . For every u ∈ W 1,p(�), we set u± = max{±u, 0}. We know that

u± ∈ W 1,p(�), u = u+ − u−, |u| = u+ + u−.

Finally for every measurable function h : � × R −→ R, we define

Nh(u)(·) = h
(·, u(·)) ∀u ∈ W 1,p(�)

(the Nemytskii map corresponding to h).

3 A Bifurcation-Type Theorem

The hypotheses on the data of problem (P)λ are the following:
Hg g : � × R −→ R is a Carathéodory function, such that g(z, 0) = 0 for almost all
z ∈ � and

(i) we have

∣
∣g(z, ζ )

∣
∣ � a(z) + c|ζ |r−1 for almost all z ∈ �, all ζ ∈ R,

with a ∈ L∞(�)+, c > 0 and p < r < p∗;
(ii) there exist ϑ > q > p, such that

0 < ηg � lim inf
ζ→+∞

g(z, ζ )

ζ q−1 � lim sup
ζ→+∞

g(z, ζ )

ζ q−1 � η̂g
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1716 L. Gasiński, N. S. Papageorgiou

uniformly for almost all z ∈ � and for almost all z ∈ �, the function ζ 
−→ g(z,ζ )

ζϑ−1

is nonincreasing on (0,+∞);
(iii) we have

lim
ζ→0+

g(z, ζ )

ζ q−1 = 0

uniformly for almost all z ∈ �;
(iv) there exist two functions σ0, σ1 : (0,+∞) −→ (0,+∞), both upper semicon-

tinuous, such that

σ0(ζ ) � g(z, ζ ) � σ1(ζ ) for almost all z ∈ �, all ζ > 0.

H f f : �×R −→ R is a Carathéodory function, such that f (z, 0) = 0 for almost all
z ∈ � and

(i) we have

∣
∣ f (z, ζ )

∣
∣ � a(z) + c|ζ |r−1 for almost all z ∈ �, all ζ ∈ R,

with a ∈ L∞(�)+, c > 0 and p < r < p∗;
(ii) with ϑ > q > p as in hypothesis Hg(i i), we have

0 < η f � lim inf
ζ→+∞

f (z, ζ )

ζ ϑ−1 � lim sup
ζ→+∞

f (z, ζ )

ζ ϑ−1 � η̂ f

uniformly for almost all z ∈ � and for almost all z ∈ �, the function ζ 
−→ f (z,ζ )

ζ p−1

is nondecreasing on (0,+∞);
(iii) we have

0 � lim inf
ζ→0+

f (z, ζ )

ζ q−1 � lim sup
ζ→0+

f (z, ζ )

ζ q−1 � ζ ∗

uniformly for almost all z ∈ �;
(iv) there exists a lower semicontinuous function σ2 : (0,+∞) −→ (0,+∞), such

that

σ2(ζ ) � f (z, ζ ) for almost all z ∈ �, all ζ > 0.

H0 For every λ > 0 and 	 > 0, we can find γ	 = γ	(λ) > 0, such that for almost all
z ∈ �, the function ζ 
−→ λg(z, ζ ) − f (z, ζ ) + γ	ζϑ−1 is nondecreasing on [0, 	]
(ϑ > q > p as in the hypothesis Hg(i i)).

Remark 3.1 Since we are interested in positive solutions and hypotheses Hg , H f and
H0 concern the positive semiaxis R+ = [0,+∞), we may (and will) assume that

g(z, ζ ) = f (z, ζ ) = 0 for almost all z ∈ �, all ζ � 0.
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Positive Solutions for the Neumann p-Laplacian... 1717

Example 3.2 The following functions satisfy hypotheses Hg , H f and H0 (for the sake
of simplicity we drop the z-dependence):

(a) g(ζ ) =
{

ζ s−1 if ζ ∈ [0, 1],
ζ q−1 if ζ > 1

and f (ζ ) = ζϑ−1 for all ζ � 0, with p <

q < s < ϑ < p∗.

(b) g(ζ ) =
{

ζ s−1 − ζϑ−1 if ζ ∈ [0, 1],
ζ q−1 − ζ p−1 if ζ > 1

and f (ζ ) = ζϑ−1 − ζ s−1 for all ζ � 0,

with p < q < s < ϑ < p∗.
Example (a) corresponds to the standard superdiffusive p-logistic reaction (see

Afrouzi and Brown [1]).

By a positive solution of problem (P)λ, we understand a function u ∈ W 1,p(�),
u �= 0, which is a weak solution of (P)λ. Then u ∈ L∞(�) (see e.g., Gasiński
and Papageorgiou [9,18] and Hu and Papageorgiou [23]). Invoking Theorem 2 of
Lieberman [24], we have that u ∈ C+ \ {0}. Let 	 = ‖u‖∞ and let γ	 = γ	(λ) > 0
be as postulated by hypothesis H0. We have

−�pu(z) + β(z)u(z)p−1 + γ	u(z)ϑ−1

= λg
(
z, u(z)

) − f
(
z, u(z)

) + γ	u(z)ϑ−1 � 0 for almost all z ∈ �

(see Motreanu and Papageorgiou [27]), so

�pu(z) �
(‖β‖∞ + γ		ϑ−p)u(z)p−1 for almost all z ∈ �

and finally

u ∈ int C+

(see Vázquez [31]).
So, we see that the positive solutions of problem (P)λ, if they exist, belong in

int C+.
Let

Y = {
λ > 0 : problem (P)λ has a positive solution.

}

Proposition 3.3 If hypotheses Hg, H f and H0 hold, then inf Y > 0.

Proof By virtue of hypothesis Hg(i i), we can find η1 > 0 and M > 0, such that

g(z, ζ ) � η1ζ
q−1 for almost all z ∈ �, all ζ � M. (3.1)

On the other hand, from hypothesis Hg(i i i), for a given ε > 0, we can find δ ∈ (0, 1)
small, such that

g(z, ζ ) � εζ p−1 for almost all z ∈ �, all ζ ∈ [0, δ]. (3.2)
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1718 L. Gasiński, N. S. Papageorgiou

The function ζ 
−→ σ1(ζ )

ζ q−1 is upper semicontinuous on [δ, M] and so, we can find

ξ̂ ∈ [δ, M], such that

σ1(ζ )

ζ q−1 � σ1(̂ζ )

ζ̂ q−1
= η2(ε) ∀ζ ∈ [δ, M],

so
g(z, ζ ) � η2ζ

q−1 for almost all ζ ∈ [δ, M] (3.3)

(see hypothesis Hg(iv)). From (3.1), (3.2) and (3.3), it follows that

g(z, ζ ) � εζ p−1 + η̂ζ q−1 for almost all ζ � 0, (3.4)

with η̂(ε) = max{η1, η2} > 0.
In a similar fashion, using hypotheses H f (ii), (iii) and (iv), for a given ε > 0, we

can find ϑ = ϑ(ε) > 0, such that

f (z, ζ ) � ϑζ q−1 − εζ p−1 for almost all ζ � 0. (3.5)

Let us fix ε ∈ (
0, ξ0

2

)
(ξ0 > 0 as in Lemma 2.5) and let λ̂ � min

{
1, ϑ

η̂

}
. From (3.4)

and (3.5), we have

λ̂g(z, ζ ) − f (z, ζ ) � (̂λ + 1)εζ p−1 + (̂λη̂ − ϑ)ζ q−1

� 2εζ p−1 for almost all z ∈ �, all ζ � 0. (3.6)

Suppose that for λ ∈ (0, λ̂), problem (P)λ has a positive solution (i.e., λ ∈ Y).
Then we can find a positive solution uλ ∈ int C+ of (P)λ. Hence

A(uλ) + βu p−1
λ = λNg(uλ) − N f (uλ) (3.7)

(see (2.1) for the definition of A). On (3.7) we act with uλ and obtain

‖∇uλ‖p
p +

∫

�

βu p
λ dz =

∫

�

(
λg(z, uλ) − f (z, uλ)

)
uλ dz,

so using Lemma 2.5 and (3.6), we have

ξ0‖uλ‖p � 2ε‖uλ‖p.

recalling that ε ∈ (
0, ξ0

2

)
, we conclude that uλ = 0, a contradiction. Therefore inf Y �

λ̂ > 0. ��
IfY = ∅, then inf Y = +∞. In the next proposition, we establish the nonemptiness

of Y .

Proposition 3.4 If hypotheses Hg, H f and H0 hold, then Y �= ∅ and if λ ∈ Y and
τ > λ, then τ ∈ Y .
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Positive Solutions for the Neumann p-Laplacian... 1719

Proof Let ϕλ : W 1,p(�) −→ R be the energy functional for problem (P)λ, defined
by

ϕλ(u) = 1

p
‖∇u‖p

p + 1

p

∫

�

β|u|p dz − λ

∫

�

G(z, u) dz +
∫

�

F(z, u) dz

for all u ∈ W 1,p(�). Evidently ϕλ ∈ C1
(
W 1,p(�)

)
. By virtue of hypotheses

Hg(i), (i i), we can find ξ1 > 0 and c1 > 0, such that

G(z, ζ ) � ξ1(ζ
+)q + c1 for almost all z ∈ �, all ζ ∈ R. (3.8)

Since q < ϑ , using Young inequality with ε > 0, from (3.8) we see that for a given
ε > 0, we can find c2 = c2(ε) > 0, such that

G(z, ζ ) � ε(ζ+)ϑ + c2 for almost all z ∈ �, all ζ ∈ R. (3.9)

Also, from hypotheses H f (i), (i i), we see that we can find ξ2 > 0 and c3 > 0, such
that

F(z, ζ ) � ξ2(ζ
+)ϑ − c3 for almost all z ∈ �, all ζ ∈ R. (3.10)

Then

ϕλ(u) = 1

p
‖∇u‖p

p + 1

p

∫

�

β|u|p dz − λ

∫

�

G(z, u) dz +
∫

�

F(z, u) dz

� ξ0

p
‖u‖p + (ξ2 − λε)‖u+‖ϑ

ϑ − c4 ∀u ∈ W 1,p(�), (3.11)

for some c4 = c4(ε) > 0 (see Lemma 2.5 and (3.9), (3.10)).
We choose ε ∈ (

0, ξ2
λ

]
. Then, from (3.11), it follows that ϕλ is coercive. Also, it

is easy to see that ϕλ is sequentially weakly lower semicontinuous. Therefore, by the
Weierstrass theorem, we can find uλ ∈ W 1,p(�), such that

ϕλ(uλ) = inf
u∈W 1,p(�)

ϕλ(u) = mλ. (3.12)

Let u ∈ intC+. Then clearly for λ > 0 big, we have ϕλ(u) < 0. Hence

ϕλ(uλ) = mλ < 0 = ϕλ(0) ∀λ > 0, big

(see (3.12)), so
uλ �= 0. (3.13)

From (3.12), we have

ϕ′
λ(uλ) = 0 ∀λ > 0, big

so
A(uλ) + β|uλ|p−2uλ = λNg(uλ) − N f (uλ). (3.14)
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1720 L. Gasiński, N. S. Papageorgiou

On (3.14) we act with −u−
λ ∈ W 1,p(�) and we obtain

‖∇u−
λ ‖p

p +
∫

�

β(u−
λ )p dz = 0,

so

ξ0‖u−
λ ‖p � 0

(see Lemma 2.5), i.e., uλ � 0, uλ �= 0 (see (3.13)).
Then (3.14) becomes

A(uλ) + βu p−1
λ = λNg(uλ) − N f (uλ),

so

uλ solves problem (P)λ,

i.e., Y �= ∅.
Now suppose that λ ∈ Y and τ > λ. We choose s ∈ (0, 1), such that

λ = sϑ−1τ (3.15)

(recall that ϑ > p and λ < τ ). Since λ ∈ Y , problem (P)λ has a solution uλ ∈ int C+.
We set u = suλ ∈ intC+. Then

−�pu +βu p−1 = s p−1(−�uλ +βu p−1
λ

) = s p−1(λg(z, uλ)− f (z, uλ)
)
. (3.16)

By virtue of hypothesis Hg(i i) and since s ∈ (0, 1), we have

g(z, uλ(z))

uλ(z)ϑ−1 � g(z, u(z))

u(z)ϑ−1 = g(z, u(z))

sϑ−1uλ(z)ϑ−1 ,

so

sϑ−1g
(
z, uλ(z)

)
� g

(
z, suλ(z)

) = g
(
z, u(z)

)
for almost all z ∈ �. (3.17)

Similarly, using hypothesis H f (i i), we have

f (z, uλ(z))

uλ(z)p−1 � f (z, u(z))

u(z)p−1 = f (z, u(z))

s p−1uλ(z)p−1 ,

so

s p−1 f
(
z, uλ(z)

)
� f

(
z, suλ(z)

) = f
(
z, u(z)

)
for almost all z ∈ �. (3.18)
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Positive Solutions for the Neumann p-Laplacian... 1721

Returning to (3.16) and using (3.15), (3.17) and (3.18), we have

−�pu(z) + β(z)u(z)p−1

= λs p−1g
(
z, uλ(z)

) − s p−1 f
(
z, uλ(z)

)

� sϑ−1τg
(
z, uλ(z)

) − f
(
z, u(z)

)

� τg
(
z, u(z)

) − f
(
z, u(z)

)
for almost all z ∈ �. (3.19)

We consider the following truncation of the reaction in problem (P)τ :

hτ (z, ζ ) =
{

τg
(
z, u(z)

) − f
(
z, u(z)

)
if ζ � u(z),

τg(z, ζ ) − f (z, ζ ) if u(z) < ζ.
(3.20)

This is a Carathéodory function. We set

Hτ (z, ζ ) =
∫ ζ

0
hτ (z, s) ds

and consider the C1-functional ψτ : W 1,p(�) −→ R, defined by

ψτ (u) = 1

p
‖∇u‖p

p + 1

p

∫

�

β|u|p dz −
∫

�

Hτ (z, u) dz ∀u ∈ W 1,p(�).

Aswe did for ϕλ earlier in this proof, we can check thatψτ is coercive and sequentially
weakly lower semicontinuous. So, we can find uτ ∈ W 1,p(�), such that

ψτ (uτ ) = inf
u∈W 1,p(�)

ψτ (u),

so

ψ ′
τ (uτ ) = 0,

thus
A(uτ ) + β|uτ |p−2uτ = Nhτ (uτ ). (3.21)

On (3.21) we act with (u − uτ )
+ ∈ W 1,p(�) and obtain

〈
A(uτ ), (u − uτ )

+〉 +
∫

�

β|uτ |p−2uτ (u − uτ )
+ dz

=
∫

�

hτ (z, uτ )(u − uτ )
+ dz

=
∫

�

(
τg(z, u) − f (z, u)

)
(u − uτ )

+ dz

�
〈
A(u), (u − uτ )

+〉 +
∫

�

βu p−1(u − uτ )
+ dz
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(see (3.20) and (3.19)), so

∫

{u>uτ }
(‖∇uτ‖p−2∇uτ − ‖∇u‖p−2∇u, ∇uτ − ∇u

)

R
dz

+
∫

{u>uτ }
β
(|uτ |p−2uτ − u p−1)(uτ − u) dz � 0. (3.22)

We recall the following elementary inequalities (see e.g., Gasiński and Papageorgiou
[10, Lemma 6.2.13, p. 740]). If 1 < p � 2, then

(p − 1)|y − v|2(1 + |y| + |v|)p−2

≤ (|y|p−2y − |v|p−2v, y − v
)

RN ∀y, v ∈ R
N (3.23)

and if 2 < p, then

1

2p−2 |y − v|p ≤ (|y|p−2y − |v|p−2v, y − v
)

RN ∀y, v ∈ R
N . (3.24)

If 1 < p � 2, then from (3.22), (3.23) and since uτ , u ∈ int C+, we have

p − 1

c5

∫

{u>uτ }
‖∇uτ − ∇u‖2 dz � 0

for some c5 > 0, so

∣
∣{u > uτ }

∣
∣
N = 0,

i.e., u � uτ .
If 2 < p, then from (3.22) and (3.24), we have

1

2p−2

∫

{u>uτ }
‖∇uτ − ∇u‖p dz � 0,

so

∣
∣{u > uτ }

∣
∣
N = 0,

i.e., u � uτ .
So, finally u � uτ and then (3.21) becomes

A(uτ ) + βu p−1
τ = τ Ng(uτ ) − N f (uτ )

(see (3.20)), so uτ ∈ int C+ is a positive solution of (P)λ, i.e., τ ∈ Y . ��
Proposition 3.5 If hypotheses H f , Hg and H0 hold and λ > λ∗, then problem (P)λ
has at least two positive solutions.
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Proof Let τ ∈ (λ∗, λ) ∩ Y . Then, we can find uτ ∈ int C+, such that

⎧
⎨

⎩

−�puτ (z) + β(z)uτ (z)
p−1 = τg

(
z, uτ (z)

) − f
(
z, uτ (z)

)
in �,

∂uτ

∂n
= 0 on ∂�.

(3.25)

Proceeding as in the proof of Proposition 3.4, we introduce the following truncation
of the reaction:

ĥλ(z, ζ ) =
{

λg
(
z, uλ(z)

) − f
(
z, uλ(z)

)
if ζ � uτ (z),

λg(z, ζ ) − f (z, ζ ) if uτ (z) < ζ.
(3.26)

This is a Carathéodory function. We set

Ĥλ(z, ζ ) =
∫ ζ

0
ĥλ(z, s) ds

and consider the C1-functional ψ̂ : W 1,p(�) −→ R, defined by

ψ̂λ(u) = 1

p
‖∇u‖p

p + 1

p

∫

�

β|u|p dz −
∫

�

Ĥλ(z, u) dz ∀u ∈ W 1,p(�).

As we did for ϕλ in the proof of Proposition 3.4, we can check that ψ̂λ is coercive and
sequentially weakly lower semicontinuous. So, we can find u0

λ ∈ W 1,p(�), such that

ψ̂λ(u
0
λ) = inf

u∈W 1,p(�)
ψ̂λ(u),

and

ψ̂ ′
λ(u

0
λ) = 0,

so

A(u0
λ) + β|u0

λ|p−2u0
λ = Nĥλ

(u0
λ).

From this, as before, acting with (uτ − u0
λ)

+ ∈ W 1,p(�) and using (3.25) and (3.26),
we show that uτ � u0

λ. Hence, we have

A(u0
λ) + β(u0

λ)
p−1 = λNg(u

0
λ) − N f (u

0
λ)

(see (3.26)), so u0
λ ∈ int C+ is a solution of (P)λ and u0

λ � uτ .

Claim 1 u0
λ − uτ ∈ int C+.
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1724 L. Gasiński, N. S. Papageorgiou

Let 	 = ‖u0
λ‖∞. By hypothesis H0, we can find γ	 = γ	(λ) > 0, such that for all

z ∈ �, the function ζ 
−→ λg(z, ζ ) − f (z, ζ ) + γ	ζϑ−1 is nondecreasing on [0, 	].
For δ > 0, we set

uτ = uτ + δ ∈ int C+.

Then

−�puτ + βu p−1
τ + γ	uϑ−1

τ

� −�puτ + βu p−1
τ + γ	uϑ−1

τ + ξ(δ)

= τg(z, uτ ) − f (z, uτ ) + γ	uϑ−1
τ + ξ(δ)

= λg(z, uτ ) − f (z, uτ ) + (τ − λ)g(z, uτ ) + γ	uϑ−1
τ + ξ(δ)

� λg(z, uτ ) − f (z, uτ ) − (λ − τ)σ0(uτ ) + γ	uϑ−1
τ + ξ(δ) (3.27)

with ξ(δ) → 0 as δ ↘ 0 (see hypothesis Hg(iv) and recall that τ < λ).
Since uτ ∈ int C+, the function z 
−→ σ0

(
uτ (z)

)
is upper semicontinuous on �

(see hypothesis Hg(iv)). So, we can find z0 ∈ �, such that

σ0
(
uτ (z0)

) = max
z∈�

σ0
(
uτ (z)

)
> 0. (3.28)

We use (3.28) in (3.27). Since ξ(δ) ↘ 0 and δ ↘ 0 and λ > τ , we infer that

−�puτ + βu p−1
τ + γ	uϑ−1

τ

� λg(z, uτ ) − f (z, uτ ) + γ	uϑ−1
τ

� λg(z, u0
λ) − f (z, u0

λ) + γ	(u0
λ)

ϑ−1

= −�pu0
λ + β(u0

λ)
p−1 + γ	(u0

λ)
ϑ−1 for almost all z ∈ �.

for δ > 0 small (see H0 and recall that uτ � u0
λ). Acting on this inequality with

(uτ − u0
λ)

+ ∈ W 1,p(�) and using the nonlinear Green’s identity (see e.g., Gasiński
and Papageorgiou [9]) as above, we obtain

uτ = uτ + δ � u0
λ ∀δ > 0 small,

so

u0
λ − uτ ∈ int C+.

This proves Claim 1.
Let

[uτ ) = {
u ∈ W 1,p(�) : uτ (z) � u(z) for almost all z ∈ �

}
.
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From (3.26), we see that
ψ̂λ|[uτ ) = ϕλ|[uτ ) + ĉ, (3.29)

for some ĉ ∈ R. Then Claim 1 and (3.29) imply that u0
λ is a local C1(�)-minimizer

of ϕλ. From Theorem 2.2, it follows that u0
λ is a local W 1,p(�)-minimizer of ϕ(λ).

By virtue of hypotheses Hg(iii) and H f (iii), for a given ε > 0 we can find δ =
δ(ε) > 0, such that

G(z, ζ ) � ε

p
ζ p and F(z, ζ ) � − ε

p
ζ p for almost all z ∈ �, all ζ ∈ (0, δ].

(3.30)
So, if u ∈ C1(�) with ‖u‖C1(�) � δ, then

ϕλ(u) = 1

p
‖∇u‖p

p + 1

p

∫

�

β|u|p dz − λ

∫

�

G(z, u) dz +
∫

�

F(z, u) dz

� ξ0

p
‖u‖p − λ + 1

p
ε‖u+‖p

� ξ0 − (λ + 1)ε

p
‖u‖p

(see Lemma 2.5) and (3.30). Choosing ε ∈ (
0, ξ0

λ+1

)
, we infer that

ϕλ(u) � 0 = ϕλ(0) ∀u ∈ C1(�), ‖u‖C1(�) � δ,

so

u = 0 is a local C1(�)-minimizer of ϕλ

and thus

u = 0 is a local W 1,p(�)-minimizer of ϕλ

(see Theorem 2.2).
Without any loss of generality, we may assume that

ϕλ(0) = 0 � ϕλ(u
0
λ)

(the analysis is similar if the opposite inequality is true). Moreover, we may assume
that both local minimizers u = 0 and u = u0

λ are isolated (otherwise it is clear that we
have a whole sequence of positive solutions of (P)λ and so we are done). Reasoning
as in Aizicovici et al. [2, Proposition 29], we can find 	 ∈ (

0, ‖u0
λ‖

)
small, such that

ϕλ(0) = 0 � ϕλ(u
0
λ) < inf

{
ϕλ(u) : ‖u − u0

λ‖ = 	
} = ηλ

0 . (3.31)

Recall thatϕλ is coercive (see the proof ofProposition3.4).Hence it satisfies thePalais–
Smale condition. This fact and (3.1) permit the use of the mountain pass theorem (see
Theorem 2.1) and so, we obtain ûλ ∈ W 1,p(�), such that
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1726 L. Gasiński, N. S. Papageorgiou

η	 � ϕλ(̂uλ) (3.32)

and
ϕ′

λ(̂uλ) = 0. (3.33)

From (3.31) and (3.32), it follows that ûλ /∈ {0, u0
λ}. From (3.33), we have

A(̂uλ) + βû p−1
λ = λNg (̂uλ) − N f (̂uλ),

so ûλ ∈ int C+ is a solution of (P)λ.
So, we conclude that (P)λ (λ > λ∗) has at least two positive solutions u0

λ, ûλ ∈
int C+. ��

Next we examine what happens in the critical case λ = λ∗.

Proposition 3.6 If hypotheses H f , Hg and H0 hold, then λ∗ ∈ Y .

Proof Let λn > λ∗ for n � 1 be such that λn ↘ λ∗ and let un = uλn ∈ int C+ be
positive solutions for problem (P)λ for n � 1 (see Proposition 3.4). We have

A(un) + βu p−1
n = λn Ng(un) − N f (un) ∀n � 1. (3.34)

By virtue of hypothesis Hg(i i) and since ϑ > q, we have

lim
ζ→+∞

g(z, ζ )

ζ ϑ−1 = 0 uniformly for almost all z ∈ �.

This fact combined with hypothesis Hg(i), implies that for a given ε > 0, we can find
c6 = c6(ε) > 0, such that

g(z, ζ )ζ � ε

ϑ
(ζ+)ϑ + c6 for almost all z ∈ �, all ζ ∈ R. (3.35)

In a similar fashion, using hypotheses H f (i) and (i i), we see that we can find η > 0
and c7 > 0, such that

f (z, ζ )ζ � η

ϑ
(ζ+)ϑ − c7 for almost all z ∈ �, all ζ ∈ R. (3.36)

On (3.34) we act with un ∈ W 1,p(�) and obtain

‖∇un‖p
p +

∫

�

βu p
n dz = λn

∫

�

g(z, un)un dz −
∫

�

f (z, un)un dz

� λnε − η

ϑ
‖un‖ϑ

ϑ + c8 ∀n � 1, (3.37)

for some c8 > 0 (see (3.35) and (3.36)).
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We choose ε ∈ (
0, η

λ1

)
(recall that λn � λ1 for all n � 1). Then from (3.37) and

Lemma 2.5, it follows that

ξ0‖un‖p � c8 ∀n � 1

and so the sequence {un}n�1 ⊆ W 1,p(�) is bounded.
So, passing to a subsequence if necessary, we may assume that

un −→ u∗ weakly in W 1,p(�), (3.38)

un −→ u∗ in Lθ (�), (3.39)

with θ < p∗. On (3.34) we act with un − u∗, pass to the limit as n → +∞ and use
(3.38). We obtain

lim
n→+∞

〈
A(un), un − u∗

〉 = 0,

so
un −→ u∗ in W 1,p(�) (3.40)

(see Proposition 2.4).
So, if in (3.34) we pass to the limit as n → +∞ and use (3.40), we obtain

A(u∗) + βu p−1∗ = λ∗Ng(u∗) − N f (u∗),

so u∗ ∈ C+ and it solves problem (P)λ∗ .
It remains to show that u∗ �= 0. Arguing by contradiction, suppose that u∗ = 0.

From (3.34), we have

⎧
⎨

⎩

−�pun(z) + β(z)un(z)p−1 = λg
(
z, un(z)

) − f
(
z, un(z)

)
in �,

∂un

∂n
= 0 on ∂�.

(3.41)

From (3.41) and Theorem 2 of Lieberman [24], we know that we can find α ∈ (0, 1)
and M > 0, such that

un ∈ C1,α(�) and ‖un‖C1,α(�) � M ∀n � 1.

From the compactness of the embedding C1,α(�) ⊆ C1(�), we have

un −→ u∗ in C1(�).

Let

yn = un

‖un‖ ∀n � 1.

123



1728 L. Gasiński, N. S. Papageorgiou

Then

yn � 0, ‖yn‖ = 1 ∀n � 1.

So, passing to a subsequence if necessary, we may assume that

yn −→ y∗ weakly in W 1,p(�), (3.42)

yn −→ y∗ in Lϑ(�). (3.43)

From (3.34), we have

A(yn) + βy p−1
n = λn

Ng(un)

‖un‖p−1 − N f (un)

‖un‖p−1 ∀n � 1. (3.44)

From hypotheses Hg(i), (iii) and H f (i), (iii), it follows that

the sequences

{
Ng(un)

‖un‖p−1

}

n�1
,

{
N f (un)

‖un‖p−1

}

n�1
⊆ L p′

(�) are bounded

(where 1
p + 1

p′ = 1).
Acting on (3.44) with yn − y∗, passing to the limit as n → +∞ and using (3.42),

we obtain

lim
n→+∞

〈
A(yn), yn − y∗

〉 = 0,

so
yn −→ y∗ in W 1,p(�) (3.45)

(see Proposition 2.4) and so ‖y∗‖ = 1.
Note that by virtue of hypotheses Hg(iii) and H f (iii), we have

N f (un)

‖un‖p−1 −→ 0 and
Ng(un)

‖un‖p−1 −→ ζ̂ y p−1∗ weakly in L p(�), (3.46)

with 0 � ζ̂ (z) � ζ ∗ for almost all z ∈ �. So, if in (3.44) we pass to the limit as
n → +∞ and we use (3.45) and (3.46), we obtain

A(y∗) + βy p−1∗ = −ζ̂ y p−1∗ ,

so

‖∇ y∗‖p
p +

∫

�

βy p∗ dz � −
∫

�

ζ̂ y p∗ dz � 0,

thus

ξ0‖y∗‖p � 0

(see Lemma 2.5) and finally, we have that y∗ = 0, which contradicts to (3.45).
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This proves that u∗ �= 0. Hence u∗ ∈ int C+ is a solution of problem (P)λ∗ .
Therefore λ∗ ∈ Y . ��

We show that for every λ � λ∗, problem (P)λ has an extremal (smallest) positive
solution.

Proposition 3.7 If hypotheses H f , Hg, and H0 hold and λ � λ∗, then problem (P)λ
has a smallest positive solution u∗

λ ∈ int C+.

Proof Let S(λ) be the set of positive solutions for problem (P)λ. Since λ � λ∗,
S(λ) �= 0 and S(λ) ⊆ int C+. Let C ⊆ S(λ) be a chain (i.e., a nonempty linearly
ordered subset of S(λ)). From Dunford and Schwartz [6, p.336], we know that we can
find a sequence {un}n�1 ⊆ C , such that

inf
n�1

un = inf C.

Moreover, from Lemma 11.5(a) of Heikkilä and Lakshmikantham [22, p. 15], we
know that we may assume that the sequence {un}n�1 is decreasing. We have

A(un) + βu p−1
n = λNg(un) − N f (un) ∀n � 1, (3.47)

so

‖∇un‖p
p +

∫

�

βu p
n dz =

∫

�

(
λg(z, un) − f (z, un)

)
un dz � M1 ∀n � 1,

for some M1 > 0 (see hypotheses Hg(i), H f (i) and recall that un � u1 for all n � 1).
So,

ξ0‖un‖p � M1 ∀n � 1

(see Lemma 2.5) and thus the sequence {un}n�1 ⊆ W 1,p(�) is bounded.
So, passing to a subsequence if necessary, we may assume that

un −→ u∗ weakly in W 1,p(�), (3.48)

un −→ u∗ in Lθ (�), (3.49)

with θ < p∗. On (3.47) we act with un − u∗, pass to the limit as n → +∞ and use
(3.48). Then

lim
n→+∞

〈
A(un), un − u∗

〉 = 0,

so

un −→ u∗ in W 1,p(�)

(see Proposition 2.4).
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Reasoning as in the proof of Proposition 3.6, we show that u∗ �= 0 and so u∗ ∈
int C+ is a positive solution of (P)λ. Hence u∗ = inf C ∈ S(λ) and since C was an
arbitrary chain, from the Kuratowski-Zorn lemma, we infer that S(λ) has a minimum
element u∗

λ ∈ int C+. But S(λ) is downward directed (i.e., if u, v ∈ S(λ), then there
exists y ∈ S(λ), such that y � min{u, v}; see Aizicovici et al. [3]). So, it follows that
u∗

λ � u for all u ∈ S(λ), i.e., u∗
λ ∈ int C+ is the smallest positive solution of problem

(P)λ. ��
Summarizing the situation,we have the following bifurcation-type theoremdescrib-

ing the dependence of positive solutions of (P)λ on the parameter λ > 0.

Theorem 3.8 If hypotheses H f , Hg and H0 hold, then there exists λ∗ > 0, such that:

(a) for all λ > λ∗, problem (P)λ has at least two positive solutions

u0, û ∈ int C+;

(b) for λ = λ∗, problem (P)λ has at least one positive solution u∗ ∈ int C+;
(c) for all λ ∈ (0, λ∗), problem (P)λ has no positive solution.

Moreover, if λ � λ∗, then problem (P)λ has a smallest positive solution u∗
λ ∈ int C+.
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