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Abstract: Human skin is constantly exposed to damaging ultraviolet radiation (UVR), which induces
a number of acute and chronic disorders. To reduce the risk of UV-induced skin injury, people
apply an additional external protection in the form of cosmetic products containing sunscreens.
Nowadays, because of the use of some chemical filters raises a lot of controversies, research focuses
on exploring novel, fully safe and highly efficient natural UV-absorbing compounds that could
be used as active ingredients in sun care products. A promising alternative is the application
of multifunctional mycosporine-like amino acids (MAAs), which can effectively compete with
commercially available filters. Here, we outline a complete characterization of these compounds and
discuss their enormous biotechnological potential with special emphasis on their use as sunscreens,
activators of cells proliferation, anti-cancer agents, anti-photoaging molecules, stimulators of skin
renewal, and functional ingredients of UV-protective biomaterials.

Keywords: MAAs; ultraviolet radiation; UV-absorbing compound; sunscreen; erythema; melanoma;
photoaging; skin renewal; biomaterial

1. Introduction

Ultraviolet radiation (UVR) is the part of the solar electromagnetic spectrum with a wavelength
ranging from 200 to 400 nm. Based on its physical properties and biological activity, UVR is divided
into three bands: UV-A (320–400 nm), UV-B (280–320 nm) and UV-C (200–280 nm). Nevertheless,
UVR reaching the Earth’s surface represents only a small portion of the entire UVR emitted by the
sun and is mainly composed of wavelengths above 290 nm (UV-A with a small UV-B component
up to 10%). The remaining short-wavelength part of the UV-B spectrum (90%) and the entire UV-C
spectrum usually do not penetrate the Earth’s stratosphere as they are absorbed by the ozone layer [1,2].
The incident UV rays are considered to be the main harmful environmental factor for living beings [3].
UVR is damaging to a wide variety of biological systems because short waves with high frequencies
are extremely energetic. UV-A is ubiquitous and is present during the entire year, and its intensity is
constant regardless of season and weather conditions. The acuteness of UV-B is the highest during
the summer months in the 4-hour period around solar noon and under a clear sky [4–6]. Moreover,
since the late 1970s, the progressive depletion of the ozone and changes in its permeability have
been observed, and these changes have contributed to a marked increase of UV-B amount reaching
the Earth’s surface [4,7]. These changes are primarily a consequence of rapid industrialization that
increases the level of anthropogenic air pollution [7,8]. As a result, the intensity of UV-B can be up to

Mar. Drugs 2017, 15, 326; doi:10.3390/md15100326 www.mdpi.com/journal/marinedrugs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/141925666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/marinedrugs
http://www.mdpi.com
http://dx.doi.org/10.3390/md15100326
http://www.mdpi.com/journal/marinedrugs


Mar. Drugs 2017, 15, 326 2 of 29

1.5 W·m−2 in the temperate zone or up to 2 W·m−2 in the equatorial zone, whereas the intensity of
UV-A and visible light (400–700 nm) is approximately 50–60 W·m−2 and 500 W·m−2, respectively [8].
These outcomes are not satisfactory, especially now when the incidence rates of various human skin
disorders are dramatically escalated each year [9–11]. Therefore, the issue of ensuring adequate fully
safe protection for human beings to reduce the risk of sun exposure is crucial in the coming years.
Currently, a lot of research focusing on exploring the novel, highly efficient natural UV-absorbing
compounds that could be used as active ingredients in sun care products to protect human skin is
inspired by the resourceful defense strategies developed by various terrestrial and marine organisms
to minimize UV-induced damage [12–14].

In this review, we cover the group of relevant UV-protective mycosporine-like amino acids (MAAs)
and summarize (1) their detailed structure and physicochemical properties; (2) their biosynthetic
pathways and regulation; (3) the current state of knowledge of their ecological functions with special
emphasis on the photoprotective role; (4) their occurrence, distribution, and natural sources; (5) their
application potential as bioactive substances. The primary aim of this article is to update and
complete the information described in previous reviews on MAAs with particular emphasis to their
biotechnological and industrial potential [3,12,15–20].

2. Mycosporine-Like Amino Acids

Recently, mycosporine-like amino acids (MAAs) have attracted increasing research interest.
They belong to a family of secondary metabolites produced by a wide range of different organisms,
especially those inhabiting ecosystems with a high concentration of sunlight, such as marine and
freshwater environments, to protect against solar radiation [12,16,21–24]. The history of research
on MAAs dates back to the late 60s of the last century [25]. Since the discovery of MAAs,
knowledge including information on their structure, properties, functions, and distribution is
constantly developing.

2.1. Structure and Physicochemical Properties

MAAs are of low molecular weight (generally < 400 Da), colourless, uncharged, water-soluble
ampholytes, and they share the same chemical structure but differ in the substituents and/or presence
of amino acids. They are composed of a cyclohexenone or cyclohexenimine chromophore with the
nitrogen substituent (Figure 1) [26–28].

Mar. Drugs 2017, 15, 326  2 of 30 

 

of UV-B can be up to 1.5 W·m−2 in the temperate zone or up to 2 W·m−2 in the equatorial zone, 
whereas the intensity of UV-A and visible light (400–700 nm) is approximately 50–60 W·m−2 and 500 
W·m−2, respectively [8]. These outcomes are not satisfactory, especially now when the incidence rates 
of various human skin disorders are dramatically escalated each year [9–11]. Therefore, the issue of 
ensuring adequate fully safe protection for human beings to reduce the risk of sun exposure is 
crucial in the coming years. Currently, a lot of research focusing on exploring the novel, highly 
efficient natural UV-absorbing compounds that could be used as active ingredients in sun care 
products to protect human skin is inspired by the resourceful defense strategies developed by 
various terrestrial and marine organisms to minimize UV-induced damage [12–14]. 

In this review, we cover the group of relevant UV-protective mycosporine-like amino acids 
(MAAs) and summarize (1) their detailed structure and physicochemical properties; (2) their 
biosynthetic pathways and regulation; (3) the current state of knowledge of their ecological 
functions with special emphasis on the photoprotective role; (4) their occurrence, distribution, and 
natural sources; (5) their application potential as bioactive substances. The primary aim of this article 
is to update and complete the information described in previous reviews on MAAs with particular 
emphasis to their biotechnological and industrial potential [3,12,15–20]. 

2. Mycosporine-Like Amino Acids 

Recently, mycosporine-like amino acids (MAAs) have attracted increasing research interest. 
They belong to a family of secondary metabolites produced by a wide range of different organisms, 
especially those inhabiting ecosystems with a high concentration of sunlight, such as marine and 
freshwater environments, to protect against solar radiation [12,16,21–24]. The history of research on 
MAAs dates back to the late 60s of the last century [25]. Since the discovery of MAAs, knowledge 
including information on their structure, properties, functions, and distribution is constantly 
developing. 

2.1. Structure and Physicochemical Properties 

MAAs are of low molecular weight (generally < 400 Da), colourless, uncharged, water-soluble 
ampholytes, and they share the same chemical structure but differ in the substituents and/or 
presence of amino acids. They are composed of a cyclohexenone or cyclohexenimine chromophore 
with the nitrogen substituent (Figure 1) [26–28]. 

 
(a) (b)

Figure 1. (a) Aminocyclohexenone and (b) aminocyclohexeniminone rings. 

Aminocyclohexenone derivatives possess a cyclohexenone conjugated with an amino acid. This 
group includes e.g., mycosporine-glycine (Myc-Gly), mycosporine-taurine (Myc-Tau), 
mycosporine-alanine, mycosporine-serine, mycosporine-serinol, mycosporine-glutamicol, 
mycosporine hydroxylglutamicol, mycosporine-glutamine, mycosporine-glutaminol and collemin A 
(Figure 2) [15,29]. Aminocyclohexenimines are represented by e.g., shinorine (SH), porphyra-334 
(PR), usujirene (Usu), asterina-330 (AS), palythine (PI), palythinol (PL), palythene (PE), 
mycosporine-2-glycine (Myc-2-Gly), mycosporine-glutamic acid-glycine, mycosporine-glycine-valine, 
catenelline, euhalothece-263, aplysiapalythine A, B, C and 13-O-β-galactosyl-porphyra-334 
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Figure 1. (a) Aminocyclohexenone and (b) aminocyclohexeniminone rings.

Aminocyclohexenone derivatives possess a cyclohexenone conjugated with an amino
acid. This group includes e.g., mycosporine-glycine (Myc-Gly), mycosporine-taurine (Myc-Tau),
mycosporine-alanine, mycosporine-serine, mycosporine-serinol, mycosporine-glutamicol, mycosporine
hydroxylglutamicol, mycosporine-glutamine, mycosporine-glutaminol and collemin A (Figure 2) [15,29].
Aminocyclohexenimines are represented by e.g., shinorine (SH), porphyra-334 (PR), usujirene (Usu),
asterina-330 (AS), palythine (PI), palythinol (PL), palythene (PE), mycosporine-2-glycine (Myc-2-Gly),
mycosporine-glutamic acid-glycine, mycosporine-glycine-valine, catenelline, euhalothece-263,
aplysiapalythine A, B, C and 13-O-β-galactosyl-porphyra-334 (13-O-β-galactosyl-PR) (Figure 2) [30–32].
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Typically, each cyclohexenimine ring backbone contains the glycine attached to the 3rd carbon atom
and an additional amino acid or amino alcohol or enaminone chromophore to the 1st carbon atom.
Also, the glycine may be substituted by methylamine [33], and within the imine group may occur
glycosidic bonds or sulphate esters [34,35].
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Figure 2. Chemical structure of selected MAAs with their absorption maxima (λmax).
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Differences in the structure of these compounds, namely in the type of ring and substituents,
determine their specific absorption spectra. The outstanding characteristic of all MAAs is their ability
to absorb UV radiation in the harmful range from 309 to 362 nm and a high molar absorptivity (ξ)
from 2.81 × 104 to 5.00 × 104 M−1·cm−1 [1,16,22,24,36–42]. The oxo-mycosporines exhibit absorption
maxima in the UV-B region, and imino-mycosporines in the UV-A region [43]. Myc-Gly is the primary
MAA and is converted to the imino-mycosporines via chemical or biochemical modifications [44–47].
Increased level of oxygen stimulates these transformations because the absorption of UV-A effectively
prevents the UV-A-induced formation of oxygen free radicals. The ketone group in the Myc-Gly
molecule is replaced by a nitrogen atom, which leads to a shift in the absorption spectrum to the UV-A
fraction [45,48,49]. MAAs are widely regarded as the most effective UV-A-absorbing compounds in
nature [50]. A full understanding of their stability under the influence of different physicochemical
stressors is still far from being complete and the literature data clearly indicate that there is no common
pattern for all MAAs. For example, Myc-Gly is highly resistant to various pH conditions up to 24 h [51],
whereas exposed to 80 ◦C converts to β-diketone (6-deoxygadusol) and glycine within 3 h [52]. In turn,
PR in solutions of pH from 1 to 11 remains stable up to 24 h and rapidly degrades at extremely high
pH 12 and 13 [53]. The process of its degradation is correlated with an increase in temperature up to
60 ◦C and 100 ◦C, regardless of the pH [53,54], and at 120 ◦C dehydrates to a derivative with a high
antioxidant potential [55].

2.2. Biosynthetic Pathways and Their Regulation

A long-standing assumption suggests that MAAs biosynthesis takes place through the first branch
of the shikimate pathway (Figure 3) [22,39,56]. The core of MAAs, derived from 3-dehydroquinate
(3-DHQ), is converted to the immediate precursor of MAAs, 4-deoxygadusol (4-DG), and then
to cyclohexenones (gadusols) [16,22,27,56–58]. This assumption is supported by an experiment
showing that the production of MAAs in the coral Stylophora pistillata is blocked after the application
of glyphosate, a specific shikimate route inhibitor [56]. Singh et al. (2010b) proposed that two
genes, YP_324357 (Ava_3857) and YP_324358 (Ava_3858), encoding the enzymes of this route, the
O-methyltransferase (O-MT) and the dehydroquinate synthase (DHQS), respectively, are involved
in the process of MAAs synthesis in the cyanobacterium Anabaena variabilis PCC 7937 [59]. Recently,
the assumption that MAAs are synthesized by the shikimate route has been challenged. Research
conducted by Balskus and Walsh (2010) on A. variabilis PCC 7937 shed new light on this process [60].
Their findings suggest that MAAs biosynthesis occurs via the pentose-phosphate pathway (Figure 3).
MAAs originate from the intermediate, sedoheptulose-7-phosphate (SH-7-P), produced by the pentose
phosphate route and an adenosine triphosphate (ATP)-dependent enzymatic imine formation through
a four-enzyme pathway. Their study confirmed that the primary MAA, SH, can be synthesized
by a four-step pathway encoded by a gene cluster containing DHQS, O-MT, ATP-grasp and the
nonribosomal peptide synthetase (NRPS) homolog. DHQS YP_324358 and O-MT YP_324357 convert
SH-7-P into 4-DG, then ATP-grasp homologue YP_324356 (Ava_3856) converts 4-DG and Gly
into Myc-Gly, and finally NRPS-like enzyme YP_324355 (Ava_3855) attaches Ser to Myc-Gly to
create SH. The cluster of genes corresponding to the SH biosynthetic route has been confirmed
in cyanobacteria and other organisms, such as fungi, sea anemones, dinoflagellates (in chloroplasts)
and corals (in sperm) [60,61]. Generally, MAAs biosynthetic pathways are not specific for each
species and depend on the several abiotic conditions, which stimulate their course [62–64]. MAAs
biosynthesis is regulated in particular by the spectral distribution and intensity of solar radiation [39].
Blue light in the photosynthetically active radiation (PAR) spectrum and UV-A boost the production
of MAAs in free-living dinoflagellates [36,65–68] and Antarctic diatoms [69–71]. UV-A is the
most important wavelength range to induce the synthesis of SH and PI in the red macroalga
Chondrus crispus [72,73], whereas UV-B has the most pronounced effect to enhance the accumulation
of MAAs in cyanobacteria [74,75]. In turn, MAAs synthesis in corals requires a combination of three
wavelength ranges, UV-B, UV-A and PAR [56,76]. The conversion of Myc-Gly into the secondary
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MAAs, PR and SH, in A. doliolum occurs under combined UV and PAR irradiation [77]. Furthermore,
MAAs concentration and composition are correlated with the intensity of UVR [78]. Therefore, MAAs
accumulation decreases with the increasing depth of reservoir. In addition, the highly UV-B-stressed
cells of the dinoflagellate Alexandrium tamarense synthesize more secondary MAAs, while less-stressed
cells contain more primary MAAs [67]. The regulation of MAAs production involves also other
abiotic factors, such as desiccation, temperature, salinity, and nutrients availability, which can affect
alone or in combination with UVR [22,74,79,80]. MAA levels in the soft corals Sinularia flexibilis and
Lobophytum compactum have been shown to be up-regulated under the thermal stress as well as during
the simultaneous exposure to UVR [81]. In contrast, the cyanobacterium Chlorogloeopsis PCC 6912
exposed to the increased temperature or cold shock does not demonstrate the formation of MAA;
only UVR and salt stress induce its biosynthesis [82]. Research confirms that nitrogen (N) is an
essential element for MAAs synthesis. High concentrations of ammonium significantly promote their
accumulation in the red alga Porphyra columbina [83] and A. variabilis PCC 7937 either with or without
UV irradiation [74]. An opposite effect was observed in two dinoflagellates Gymnodinium cf. instriatum
and Akashiwo sanguinea under nitrate limitations [84]. Moreover, nitrogen availability can influence
the composition of MAAs. The N-starved cells of A. sanguinea have a much higher concentration of
the primary MAA, Myc-Gly, containing only one atom of nitrogen [84]. In turn, phosphate depletion
in the dinoflagellate Glenodinium foliaceum cultures can stimulate the synthesis of secondary MAAs,
SH, PI and AS [85], and sulphur deficiency can regulate the production and conversion of Myc-Gly
into the secondary MAAs in the A. variabilis PCC 7937 [86]. However, the conclusions regarding the
biosynthetic pathway of MAAs remain unclear, and its detailed identification will help provide a better
understanding of the function of MAAs in response to the environmental stress factors.

2.3. Occurrence and Distribution in the Environment

To survive, nearly all organisms have developed a variety of natural defense strategies to
counteract the adverse effects of UVR exposure, including biosynthesis of UV-screening compounds
such as MAAs [16,37,44,45,56,87–91]. MAAs are widely distributed in the environment [92]. For the
first time, their presence has been detected in cyanobacterium and several species of corals from
the Great Barrier Reef [25]. Currently, MAAs family consists of more than 33 compounds [30], but
obviously, further comprehensive studies using more sensitive techniques, such mass spectrometry,
can reveal the existence of other MAA forms [33,93]. Reports have indicated that many taxonomically
various groups of marine and terrestrial organisms from tropical latitudes to polar regions have
evolved the ability to synthesize, accumulate and metabolize MAAs [1,22,23,37,39,44,89,94,95]. MAAs
are present particularly in organisms living in a high UVR environment. The de novo synthesis
ability of MAAs was demonstrated in marine heterotrophic bacteria, cyanobacteria, micro- and
macroalgae, fungi, and lichens [22,23,95]. Furthermore, MAAs have been identified in bodies of
some marine multicellular organisms (e.g., sponges, corals, sea stars, sea urchins, and fishes) despite
the absence of the shikimate pathway in their cells [22–24,40,95–101]. It is assumed that animals
can absorb MAAs from their algal food by diet transfer or that they can acquire them through
symbiosis with algae and cyanobacteria or as a result of bacterial associations [22–24,96,97], and then
subsequently accumulate them or intraconvert to other MAAs forms to function as photoprotective
molecules [81,102]. Nevertheless, in a recent paper Osborn et al. (2015) reported that fishes
are able to synthesize de novo gadusol and similar pathways occur in amphibians, reptiles, and
birds [103]. Moreover, even genetically modified yeast with the fish genes can produce and secrete
gaduzol [103,104]. MAAs might be located in the ocular tissue, skin, especially on the dorsal surface,
external mucus, eggs, reproductive tissues (ovaries) and digestive track of the tropical shallow water
reef fish [22,24,98,103,105–110]. MAAs concentration and composition depend on several factors,
including diet. Carnivores accumulate much lower MAAs levels than herbivores [107]. Generally,
their concentration in the cells is not more than 1% of dry weight. MAA composition varies depending
on the taxonomic group. SH, PI and AS are most typical in algae, invertebrates, and chordates,
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respectively [107]. Additionally, the simultaneous coexistence of several MAAs with different
absorbance maxima in the UV-A and UV-B ranges has been identified. This phenomenon undoubtedly
allows for more effective protective filter than the presence of just one of these compounds [1]. Thus far,
the richest composition of MAAs was observed in the S. pistillata [44].
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2.4. Functions

The accurate role of MAAs in living organisms is still under discussion. They are characterized by
a high biological activity, which has important therapeutic and ecological significance. The majority of
studies on MAAs are focused on their photoprotective capability. Nevertheless, they are multifunctional
secondary metabolites that have many cellular functions, such as antioxidant activity, osmotic regulation,
reproduction control, nitrogen reservoirs [22].

2.4.1. Photoprotection

The most important function of MAAs is photoprotection [3,17,22,39], and they are commonly
described as “microbial sunscreens”. These compounds protect the cell due to their ability to disperse
the harmful UVR into heat energy that dissipates into the surroundings without forming reactive
photoproducts [42,80,111]. Several physicochemical characteristics of MAAs including a strong
absorption in UV-A and UV-B regions of solar radiation spectrum, high molar extinction coefficients
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and resistance to several abiotic stressors give a strong evidence in favour of MAAs as efficient
photoprotective compounds [51,112–114]. MAAs also effectively block the UVR-induced creation of
thymine dimers in vitro [115]. The photoprotective efficiency of MAAs depends on their position
in the cell. These compounds have been found mainly in the cytoplasm of several cyanobacterial
species which prevent three out of every ten photons from reaching sensitive cellular targets [116–118].
However, in the cyanobacterium Nostoc commune, MAAs are actively excreted and extracellularly
accumulated, thus resulting in more effective protection against UVR [80,118,119]. The presence of
MAAs in marine animals confirms their photoprotection function not only to producers but also even
to herbivores and carnivores [120]. Detection of MAAs in the fossils also supports their protection
function against the harmful effects of UVR in the early geological eras [121].

2.4.2. Biological Antioxidant Molecules

Although the synthesis of MAAs occurs mainly in response to UVR, MAAs can perform
other functions in addition to UV-protection. It is suggested that certain MAAs, namely Myc-Gly
and Myc-Tau, exhibit a strong antioxidant activity by quenching the reactive oxygen species
(ROS) [30,80,119,120,122–125]. Myc-Gly effectively reduces the amount of singlet oxygen formed under
illumination by the endogenous photosensitizers, methylene blue and eosin Y, and suppresses the
adverse effects of photosensitization (type II reactions) in biological systems, such as lipid peroxidation,
inactivation of mitochondrial electron transport, and hemolysis of erythrocytes [122,123]. Its high
antioxidant efficacy is likely related to the lower reduction potential and greater capability to donate
electrons to stabilize and inactivate the free radicals [123]. The results of in vitro experiments have
shown, however, that Myc-Gly and Myc-Tau have moderate antioxidant activity compared to 4-DG,
the MAA precursor, which has a strong antioxidant property [126]. AS, in combination with PI, is also
characterized by a high antioxidant activity, although significantly lower than Myc-Gly and ascorbic
acid. Moreover, it effectively inhibits the oxidation of β-carotene, an indicator of protection of lipid
peroxidation. Other imino-mycosporines such as SH and PR show less activity or its absence [127].

2.4.3. Protection against Abiotic Stress Factors

It was observed that MAAs can enhance cellular tolerance to abiotic stress factors such as salinity,
desiccation, and temperature [80,128,129]. A hypersaline environment can lead to dehydration of cells
and accumulation of ROS, which results in the generation of oxidative stress. Thus, MAAs provide
osmotic balance to the cells [80]. In this regard, MAAs are abundant in high-salt ecosystems and
often called “osmotic solutes” or “compatible solutes”. Many microorganisms store MAAs in the
intracellular space, contributing to the formation of an osmotic pressure inside the cell, thus relieving
pressure from salt stress in a hypertonic environment. Freshwater organisms also tend to accumulate
these substances but in much smaller concentrations. Additionally, it is believed that MAAs, which
have been demonstrated to exist in cold aquatic ecosystems, can also act as osmoprotectants under
freezing conditions [68,80]. MAAs also contribute to the increase of the resistance of organisms to
conditions where water becomes a limiting factor. The high concentrations of glycosylated MAAs have
been reported in the extracellular matrix or sheath around microorganisms. However, the presence of
only those substances does not provide sufficient protection against drought stress [130]. Moreover,
MAAs can play a significant role in counteracting the effects caused by high temperatures.

2.4.4. Nitrogen Storage

MAAs are considered to be an intracellular nitrogen reservoir. MAA molecules contain one or
two nitrogen atoms, which can be released by suitable mechanisms when necessary [80,83].

2.4.5. Other Functions

In addition to the above-mentioned functions, several other roles are attributed to MAAs.
Mycosporines can act as metabolites, which regulate the processes of sporulation and germination of
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fungi, especially among the class Ascomycetes, Basidiomycetes, Deuteromycetes and Zygomycetes [131,132].
They are located in the mucus coat surrounding the fungal conidia, extracellular matrix, and outer
layers of the cell wall of microcolonial structures. MAAs are also considered to be regulatory
metabolites of reproduction in marine invertebrates [133,134]. Another hypothesis concerns the
theoretical role of MAAs as accessory pigments in photosynthesis. It assumes that MAAs are
fluorescent compounds that convert UV rays to light utilized for photosynthesis, which increases its
efficiency [42,47,80,88,101,111,135]. Nevertheless, this claim has not been verified yet, because MAAs
exhibit a low fluorescence, if at all [112,114]. Additionally, several MAAs, such as AS, aplysiapalythine
A, B, play a role in ecological connectivity between organisms. MAAs have been described as
intraspecific chemical alarm cues for the sea hares Aplysia californica and as molecules of keystone
significance. The largest concentration of aplysiapalythines A and B has been demonstrated in the
defensive secretions and skin of these organisms [98].

3. MAAs: A Commercial Approach

3.1. Harmful Effects of UV on the Human Body

Human skin is constantly exposed to UVR and exhibits a high sensitivity to its influence [136].
Therefore, ensuring the adequate photoprotection for this largest and one of the most important organs
is essential for the proper functioning of the whole body. The exposure to sunlight carries a number of
detrimental biological consequences, and these consequences are mainly dependent on the amount of
absorbed radiation and the depth of penetration, which is proportional to the incident wavelength.
Thus, shorter wavelengths of UV-B are absorbed mostly by keratinocytes of the stratum corneum (SC)
to a depth of 160–180 µm, and the longer wavelengths of UV-A penetrate deeper up to approximately
1 mm, thus reaching the dermis layer [137]. Consequently, UV load leads to a wide range of skin
damage types. Taking into account the criterion of time between exposure to UV and the occurrence
of photoreaction on the skin, skin photolesions are divided into acute and chronic [137,138]. Acute
photoreactions on the skin are predominantly generated by overexposure to all fractions of UVR.
Alterations typically appear at the site of irradiation within 24 h and are reversible. The most notable
alterations include suntan, erythema, edema, blisters, sunburn cells (SBC) formation, phototoxic
reactions, photoallergy, photosensitivity and acute photoimmunosuppression [138]. Suntan is one
of the visible symptoms of solar irradiation. It is formed by darkening or browning of the melanin
pigment in the epidermal layer of the skin. However, it is believed that this process is preceded by
previous DNA damage, which stimulates a series of changes leading to the direct oxidation, transfer
and synthesis of melanin [139]. There are two types of pigmentation: immediate and late. The first
type occurs quickly after UV-A exposure. Melanin precursors are photooxidized to darker melanin,
and melanosomes are transferred to keratinocytes. Delayed pigmentation is caused by both UV-A
and UV-B within 24 to 72 h, and it involves the stimulation of melanogenesis in melanocytes in the
basal layer of the epidermis. The action spectrum of melanogenesis extends from 250 to 400 nm,
and its maximum action occurs at 297 nm. Typically, late pigmentation can persist even for several
weeks [137,138,140]. Among the other acute skin disorders caused mainly by UV-B rays is erythema.
UV-B rays are known as burning rays due to their ability to induce the effect of sunburn 1000 times
faster than UV-A. Erythema is an expression of the skin inflammatory process with varying degrees of
severity. The skin becomes abnormally reddened, which is a consequence of increased blood flow in
connection with the dilatation of superficial vessels. This reaction can be accompanied by a feeling of
warmth, pain, burning, general malaise, fever, nausea and headaches. Higher doses of UV can cause
edemas (first degree burn) and blisters (second degree burn). Additionally, histological examination of
the epidermis reveals the presence of characteristic keratinocytes undergoing apoptosis called SBC.
A few days following exposure, erythema regresses spontaneously, leading to darkening and peeling
of the skin. Moreover, erythema is regarded as a biomarker of skin photodamages that can stimulate
cancer development [137–140]. One of the most intriguing phenomena caused by UVR is suppression
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of local or systemic immune response [141,142]. At the cellular level, UVR favours the inhibition of the
production of antibodies and immune cells that affect the increase of the body’s sensitivity to various
types of infections [143]. In addition, UVR can lead to modifications of morphology and role of the
Langerhans cells and can cause enhanced expression of immunosuppressive and anti-inflammatory
cytokines (e.g., IL-10) as well as intensive prostaglandin synthesis [144–146]. Moreover, UV-B rays
absorbed by the SC skin layer stimulate the isomerization of trans-urocanic acid to cis-urocanic
acid [147]. The cis isomer has immunosuppressive properties in relation to cellular hypersensitivity and
Langerhans cells. UV-A rays can also induce phototoxic reactions, photoallergy and photosensitivity
of the skin. In turn, long-term changes in the mammalian skin structure are mainly induced by
repetitive and intensive radiation exposure to both UV-B and UV-A. Damage is irreversible and
becomes evident after many years. The most important chronic adverse biological effects of UV
irradiation include skin-related disorders such as photocarcinogenesis, photoaging and sustained
photoimmunosuppression [148–150]. UVR is one of the ubiquitous cancer-causing agents [149].
Neoplastic lesions can occur by the direct effect of UV-B and indirect impact of UV-A radiation. UV-B
is the most active component of solar light, and its high doses cause disorders at the molecular level.
UV-B photons are directly absorbed by biological chromospheres, which are chemical groups of organic
molecules, especially by nucleic acids and proteins [151–153]. As a consequence of UV-B exposure,
these chromospheres undergo conformational changes that disturb their functions, which can lead to a
distortion of the course, efficiency and accuracy of many physiological, biochemical and metabolic
processes [154–157]. In the case of keratinocyte DNA, UV-B is absorbed by the purines and pyrimidines
representing UV-absorbing chromophores. The main photochemical reactions of these nucleobases
proceed by photoisomerization with development of cyclobutane-pyrimidine dimers (CPDs, including
thymine dimers) and 6-4 pyrimidine-pyrimidine (6-4-PP) photoproducts [138,140,153,158–161]. These
compounds can aid in the disruption of replication and form deletions and other mutations as well as
block RNA transcription. When the cell repair mechanisms fail, the p53 gene is activated, and this gene
is responsible for the induction of keratinocyte apoptosis [162]. However, UV-B can cause mutations in
this gene that result in the loss of the keratinocyte apoptotic mechanism, which in turn can result in
the initiation of epidermal carcinogenesis [139,151,152,163]. Thus, UV-B radiation is considered to be
the most important etiologic agent in skin cancer [164]. Prolonged UV exposure of the skin can lead to
precancerous changes or chronic neoplastic skin lesions. Skin cancer is derived from the following
three main cell types: basal, squamous and melanocytes. The most dangerous and least frequently
occurring skin cancer is tumours arising from melanocytes resulting in malignant melanoma [165].
Two other skin cancers, namely squamous and basal cell carcinoma, are more frequent but less
aggressive carcinomas [138,140,166]. In opposition to UV-B, UV-A is absorbed by photosensitizers,
which readily decompose to form ROS [167–171]. Excess ROS affects the formation of oxidative stress,
which contributes to the damage of proteins, lipids and nucleic acids in the skin cells [172–176]. Lipid
peroxidation causes the degradation of the cell membrane and loss of cell integrity leading to the loss
of skin resilience [169]. Protein oxidation changes the biochemical properties of proteins. In the case
of nucleic acids, ROS cause DNA structural modifications by single- and double-strand breaks, and
abnormal expression of the genes [176]. Consequently, UV-A indirectly enhances alterations induced
by exposure to UV-B. Serious detriments result in cell death [177], whereas minor changes accumulate
over years and can lead to the formation of cancer cells. UV-A has been associated with 67% of
melanoma cases [178,179]. One of the other symptoms of long-term UV-A exposure is premature
skin aging. Thus, this radiation is frequently called aging rays [180]. Persistent UV-A influence can
cause progressive deterioration of the dermis structures by the formation of free radicals that in
fibroblasts and keratinocytes can elicit activation of matrix metalloproteinases (MMPs). These enzymes
are responsible for enhanced degradation of the proteins of extracellular matrix (ECM) that build
the skin skeleton, collagen and elastin [181]. As a result, the skin loses elasticity and hardness, thus
causing sagging, which accelerates the aging process [180,182]. Exogenous aging is accompanied by
the formation of discoloration, spider veins and deepening wrinkles and folds as well as thickening of
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the SC skin layer, and it is also accompanied by the rough and dry appearance of the skin, widening of
the pores and impaired wound healing [182]. The chronic skin lesions include also the sustained UV
immunosuppression. UV exposure impairs the effectiveness of the immune system in the fight against
tumours by reducing the activity of tumour necrosis factor. This phenomenon significantly supports
the growth of melanoma and nonmelanoma cancers [143,148,183].

3.2. Internal and External Skin Protection Against UV

A natural skin protection against UV-induced damage is provided by melanin [138]. This dark-coloured
pigment accumulates in the form of “umbrella” above the nucleus and is involved in UV absorption and
neutralization of the free radicals, protecting keratinocytes DNA against photolesions [138,184]. However,
during the excessive exposure to sunlight, the level of its production is low and not sufficient for adequate
skin photoprotection. To reduce the risk of UV-induced skin injury, an additional external protection
is topically applied, typically in the form of cosmetic products that contain inorganic and organic
sunscreens. These filters are able to absorb radiant energy in the range of UV-A and UV-B [185,186].
Inorganic sunscreens are mineral compounds that include zinc oxide and titanium dioxide. On the
surface of the epidermis, they form a barrier or “shield” that do not penetrate deep into the epidermis
and attenuate UV mainly by absorption superimposed by some scattering [187,188]. They are generally
stable and chemically inert, thus do not cause the formation of free radicals or allergic sensitization [8].
In opposition, organic sunscreens are aromatic compounds containing carbonyl groups [89]. They work
by absorbing the UVR and converting it into energy [186]. Nevertheless, the ability of some chemical
filters, particularly avobenzone, oxybenzone, cinnamates, para-aminobenzoic acid (PABA) and its
esters, to absorb UVR makes them vulnerable to photolysis with generation of highly reactive products
that can penetrate the superficial layers of the epidermis and interact with the cutaneous molecules
causing irritation or other photo-sensitizing reactions [20,150,189–191]. Organic and inorganic filters
in sunscreens show the accumulation potential in the body of water-dwelling organisms, therefore
people can be exposed to these compounds also through the food chain [192,193]. Due to the lack of
awareness of the above-mentioned threats, people apply chemical sunscreens to the skin frequently,
before any exposure to sunlight, believing that it effectively protects their health. Therefore it becomes
increasingly important to develop new fully safe for people and environmentally friendly UV filters to
address these issues. A promising alternative is the application of multifunctional MAAs, which can
be biotechnologically exploited in various ways [12,15,16,20,191,194–196].

3.3. Potential of MAAs in Skin Protection

3.3.1. MAAs as Sunscreens

In recent studies, MAAs have gained considerable attention as highly active photoprotective
candidates for prevention of the harmful effects of UVR on human skin. Oyamada et al. reported
that three MAAs, Myc-Gly, SH and PR, extracted from the scallops Patinopecten yessoensis ovaries
and added to the medium efficiently shielded the WI-38 human lung fibroblasts from UV-induced
apoptosis in a dose-dependent manner [109]. Myc-Gly exhibited the strongest photoprotective
activity expressed as a half maximal effective concentration (EC50) of 24 µM. EC50 values for SH
and PR were equal to 64 µM and 294 µM, respectively. Moreover, MAAs showed a promotion
effect on the TIG-114 normal human skin fibroblasts proliferation. The highest growth-enhancing
activity on cells revealed Myc-Gly and SH, which at concentrations of 50 µM augmented fibroblasts
proliferation by approximately 35% compared to the untreated control cells. Cell culture experiments
conducted by Schmid et al. also demonstrated that the presence of PR and SH from the P. umbilicalis in
medium stimulated the concentration-dependent growth of the 3T3 mouse fibroblasts exposed to UV-A
radiation [197]. Ryu et al. confirmed, in addition, that PR, the most abundant MAA synthetized by the
P. yezoensis, added at concentrations from 0 to 200 µM to the CCD-986sk human skin fibroblasts
culture had no cytotoxic effect on cells viability, and moreover added at concentrations from 0
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to 40 µM to fibroblasts previously treated with UVR efficiently protected them against damage
in a dose-dependent manner [198]. In contrast, Kim et al. examined the sunscreen effect of
80% methanol extract of the P. yezoensis, instead of pure individual MAAs, on the HaCaT human
keratinocytes after UV-B irradiation. The treatment with the extract at concentrations of 0.5, 1.0
and 3.0 mg·mL−1 following the UV-B exposure significantly enhanced the number of viable cells
in the extract concentration-dependent mode, exhibiting the lower degree of increment under the
influence of the highest dose of UV-B (70 mJ·cm−2) [199]. The authors also showed that the viability of
keratinocytes shame-exposed to UVR but treated with the extract increased up to 0.5 mg·mL−1, and
at higher concentrations has been attenuated. Recent investigations have proved that the protective
role of PR against UV-stimulated apoptosis in HaCaT cells involved the suppression of the caspase
pathway by lowering the level of a caspase-3 protein [200]. The activity of PR may also relate to
the modulation of miRNAs or genes expression patterns associated with UV-affected biological
processes such as Wnt (Wingless/integrase-1) and Notch pathways, apoptosis, cell proliferation and
translational elongation [201]. Moreover, Ishihara et al. demonstrated that a novel glycosylated
MAA, 13-O-β-galactosyl-PR, extracted from the cyanobacterium Nostoc sphaericum had even higher
protective activity on HaCaT culture treated with UV-B and UV-A plus 8-methoxypsoralen induced
cell damage than PR [32]. In turn, Torres et al. tested in vitro and in vivo photoprotective effects of
a novel MAA, collemin A, isolated from the lichenized ascomycete Collema cristatum [29]. In vitro
experiment showed that collemin A provided a dose-dependent protection for the HaCaT human
keratinocytes against UV-B-promoted cell membrane destruction, while in vivo study where it was
diluted to 1:10 in olive oil at a concentration of 6 µg·cm−2 completely prevented the formation of
erythema, when applied to the human skin 15 min before irradiation. In vivo analysis of the cutaneous
UV-protective properties of other MAAs has also been performed by de la Coba et al. for PR and SH
isolated from the P. rosengurttii [202]. They showed that the galenic formulation containing PR and
SH (ratio 88:12) applied topically at a concentration of 4 mg·cm−2 to the dorsal skin of the SkhR-1 H
female albino hairless mice prevented UV-induced clinical and histophathological damage including
erythema, edema, SBC formation, skinfold thickening and other typical structural and morphological
alterations observed in non-UV-protected skin biopsies. Additionally, PR and SH counteracted the
biochemical changes in UV-exposed skin by maintaining the expression of the heat shock protein
Hsp70, a potential biomarker of acute UV damage, and the antioxidant defense system through an
effective protection against the strong decrease in the activity of antioxidant enzymes, superoxide
dismutase and catalase. In turn, Tosato et al. analysed the direct effect of PR and SH extracted from
P. leucosticta and incorporated into the Pluronic F-127® polymer gel up to 0.01% weight/volume of
MAAs, on the human skin by in vivo confocal Raman spectroscopy [203]. The permeation depth
profile of MAAs gel varied within the SC skin layer; the most concentrated was at 2 µm depth with
the amount 103.4% higher compared to the outermost layer of SC, and at 4 µm depth decreased by
almost 35%. They evaluated the sunscreen efficacy of MAAs formulation by monitoring trans-urocanic
acid and histidine amount after UV-exposure. The application of MAAs, even at low concentration,
prevented UV-induced reduction in the trans-urocanic acid and UV-stimulated histidine, maintaining
their levels close to normal skin values. In UV-exposed skin treated with the MAAs gel two modes
related with trans conformation of lipids increased their absorbance compared to normal skin, whereas
gauche conformation completely disappeared. Therefore, MAAs formulation effectively protected
the human skin against the stress of the natural defense mechanism caused by high doses of UVR.
Great efficacy of MAAs as potential sunscreens has also been confirmed by Torres et al., who showed
that the crude methanol extract of the cyanobacterium Aphanizomenon flos-aquae, rich in PR, exhibited
maximum UV-A protection comparable to that specified for the commercial sun care product Boots
Soltan Extra Moisturizing Sun Lotion [91]. The extract was characterized by a sun protection factor
(SPF) equal to 4, a mean critical wavelength below which 90% of UV absorption occurred equal to
388 nm and a mean ratio of UV-A/UV-B protection factors equal to 0.95. These photoprotection
indicators suggest that PR can be one of the compounds providing a wide protection against UVR
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and serve as UV-A filter. However, Torres et al. recommends that MAAs structures should be slightly
modified by replacing the amino acid or amino alcohol moieties by alkyl amino groups to reduce their
hydrophilic properties [91].

3.3.2. MAAs as Anti-Cancer Agents

MAAs can also be considered as anti-cancer agents due to their anti-proliferative activities on
neoplastic cells. Yuan et al. confirmed that the extracts of red alga, Palmaria palmata (dulse), rich in
PI, PL, AS, SH and PR exhibited a dose-dependent inhibition of proliferation of the B16-F1 murine
skin melanoma cell line [204]. EC50 inhibition values for extracts of dulse specimens harvested from
locations with low (grade 1) and high (grade 2) UVR intensity after 48 h of incubation were equal to
5.3 and 3.2 mg·mL−1, respectively. The greater anti-proliferative efficacy of the grade 2 dulse extract
was likely due to the presence of additional MAA, Usu, and reflected its absorption and bioactivity
into the murine skin melanoma cells membranes. Moreover, both tested extracts, grades 1 and 2,
had comparable the oxygen radical absorbance capacity (ORAC) values which are equal to 36.42
and 38.78 µmol·Trolox·g−1 extract, respectively, regardless of the different UV-exposure conditions
in locations where dulse specimens were harvested. ORAC activities were likely correlated with the
presence of SH and Usu in the extracts. Antioxidant activity of these MAAs can also be involved
in the suppression of tumour proliferation. A similar dose-dependent antiproliferative effect of the
extracts of wild-harvested (C. crispus, P. palmata, Mastocarpus stellatus) and cultivated (C. crispus) red
algae containing the same MAAs profile was also revealed against the human HeLa adenocarcinoma
cervical and U-937 histiocytic lymphoma cell lines in vitro at concentrations from 0.125 to 4 mg·mL−1.
Moreover, HeLa cells treated with the extracts of wild P. palmata or cultivated C. crispus exhibited
characteristic apoptotic changes indicating that the antiproliferative activity of these extracts occurs
through induction of apoptosis [205]. In turn, Mason et al. revealed the concentration-dependent
uptake of SH, the principal UV-absorbing compound in the aqueous extract of red alga M. stellatus, by
the A431 human epidermal basal carcinoma cells during 48 h exposure in vitro [105]. Interestingly,
some MAAs, especially PR, were able to protect DNA molecules in the P. yezoensis cells by blocking the
UV-dependent production of both CPDs and 6-4-PP in vitro [115]. Also, collemin A at a concentration
of 6 µg·cm−2 partially protected the irradiated HaCaT human keratinocytes in vitro against pyrimidine
dimer formation [29]. Moreover, the prevention of SBC formation in UV-exposed skin by the galenic
emulsion with PR and SH applied topically may suggest the contribution of these compounds in DNA
protection [202]. Kim et al. also revealed that the MAA abundant P. yezoensis extract which has the
ability to stimulate apoptosis of UV-damaged HaCaT cells might be an important strategy to prevent
development and progression of cancers [199]. Post-treatment of UV-B-exposed (30, 70 mJ·cm−2)
keratinocytes with the red alga extract at concentrations of 0.5, 1.0 and 3.0 mg·mL−1 dose-dependently
stimulated an increase of the early and late apoptotic cells fractions, and the increment was proportional
to the UV-B doses. Therefore, the extract had a dual impact on the UV-B-exposed HaCaT keratinocytes
by enhancing apoptosis of damaged cells while simultaneously inducing overall proliferation and
viability of healthy cells. The keratinocytes fate may depend on the extract effect on the changes in
redox status and total content of glutathione, the primary cellular antioxidant, under oxidative stress
conditions. Cells subjected to the extract treatment at concentrations of 1.0 and 3.0 mg·mL−1 showed
a dose-dependent increase in the relation of reduced to oxidized glutathione and a decrease in its
total content, particularly at the highest concentration. The increase in the apoptotic cell population of
damaged keratinocytes can occur via activating the c-Jun N-terminal kinase (JNK) and extracellular
signal-regulated kinase (ERK) signalling pathways, in which modulation of a functional system
of glutathione can take significant parts. The extract treatment enhanced both the JNK and ERK
phosphorylation in UV-B-exposed cells in a dose-dependent manner, but the degree of stimulation of
ERK activation was up to 10-fold greater at 3 mg·mL−1 compared to JNK. The sham-exposed cells
treated with the extract also exhibited a concentration-dependent JNK activating effect, whereas ERK
activation was almost negligible. On the other hand, MAAs extract isolated from the edible microalga
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Aphanizomenon flos-aquae at the concentrations up to 5 µM had no significant effect on the human
UDP-α-D-glucose 6-dehydrogenase activity, a cytosolic enzyme involved in tumour progression [206].

3.3.3. MAAs as Anti-Photoaging Agents

A few studies also examined the anti-photoaging role of some MAAs. According to in vitro
analysis of de la Coba et al., AS, in combination with PI, can effectively reduce the lipid peroxidation
that is involved in initiating and/or mediating of the aging process [127]. Also, a mixture of PR and
SH, isolated from P. umbilicalis, revealed the capacity to suppress UV-A-induced premature aging of
human skin in vivo [50,197,207]. Two-week treatment with twice daily application of the formulation
containing 0.005% MAAs encapsulated in lecithin liposomes on the inner side of the forearm inhibited
the UV-A-stimulated lipid peroxidation by 37%, and four-week treatment significantly improved
the skin parameters, firmness, and smoothness, by 10% and 12%, respectively [50,197,207]. Another
human in vivo study using similar MAAs preparation shown that it further reduced the depth of
wrinkles on the face by almost 20% after 4 weeks of treatment with twice-daily doses [197,207]. Tested
MAAs formulation proved to be as efficient as a standard cream with 1% synthetic UV-A filters, Parsol®

1789, and 4% UV-B filters, Neo Heliopan® AV [197]. MAAs ability to prevent extrinsic skin aging was
also confirmed in in vitro studies. PR, SH and PI obtained from the dulse and Porphyra sp. can serve as
anti-skin aging molecules protecting against wrinkles due to their inhibitory properties against MMPs.
They showed a dose-dependent inhibition against the bacterium Clostridium histolyticum collagenase
activity with a half maximal inhibitory concentration values (IC50) equal to 104.0 µM, 105.9 µM and
158.9 µM for SH, PR and PI, respectively [208]. Moreover, Ryu et al. revealed that PR at concentrations
from 0 to 40 µM efficiently suppressed in a dose-dependent manner the intracellular ROS production
and the activity of senescence-associated beta-galactosidase in the UV-A-irradiated CCD-986sk human
skin fibroblasts [198]. It also exhibited a concentration-dependent inhibition of UV-A-enhanced MMPs
expression; the concentration of 40 µM reduced MMP-1 mRNA expression level even up to 56.2%.
Furthermore, PR simultaneously increased the levels of ECM components in UV-A-exposed cells.
In the presence of MAA at concentrations of 10, 20 and 40 µM the procollagen secretion levels increased
by approximately 23.9%, 16.8%, and 25.1% compared with the non-protected UV-A-irradiated cells,
respectively. Similarly, PR enhanced in a dose-dependent manner the expression of type I collagen
and elastin as well as blocked their degradation in UV-A-irradiated fibroblasts. It also showed an
inhibitory effect on the UV-increased activity of elastase, which leads to elastin decomposition and
wrinkles formation; MAA treatment at 10, 20 and 40 µM suppressed the elastase activity by 51.9%,
51.9%, and 82.5% compared with the non-protected UV-A-irradiated cells, respectively. Ryu et al.
confirmed that PR has a protective effect on UV-enhanced collagen destruction and can be involved
in its synthesis by the negative regulation of MMPs expression and elastinase activity as well as by
increasing the secreted procollagen level in UV-damaged human skin fibroblasts [198]. In addition
to PR also SH and Myc-Gly isolated from the green algae Chlamydomonas hedleyi can modulate the
expression of genes related to skin aging, elastin and procollagen, in the UV-irradiated HaCaT human
keratinocytes. In the MAAs presence at doses of 0.03 and 0.5 mM, the UV-B-suppressed expression of
elastin had significantly enhanced in a dose-dependent way. Similarly, MAAs increased the expression
level of the enzyme, procollagen C-endopeptidase enhancer, which bound to the type I procollagen
and stimulated the activity of procollagen C-proteinase, but only when SH and PR were applied the
increase was concentration-dependent. Additionally, the treatment with Myc-Gly and SH suppressed
the UV-induced expression of other gene linked to the aging process, involucrin, which is a marker of
keratinocytes differentiation. Moreover, Myc-Gly due to its strong antioxidant properties can block the
extrinsic skin aging arising from the UV-induced ROS production. The radical-quenching capacity
of Myc-Gly enhanced with a concentration up to 1.5 mM and IC50 was equal to 4.23 ± 0.21 mM.
Additionally, MAAs can protect the skin against photoaging through the regulation of the expression
level of inflammation-related genes, such as COX-2. The treatment of Myc-Gly at concentrations of
0.03, 0.15, or 0.3 mM caused a dose-dependent inhibition of mRNA levels of the COX-2 gene up to
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about 50% of the control. In contrast, SH at a concentration of 0.03 mM exhibited the anti-inflammatory
properties from UV exposure, whereas PR at any concentration studied did not affect the COX-2
expression level. The authors assume that Myc-Gly ability to modulate the UV-stimulated COX-2
expression can be associated with the oxidative process involving the compound [125].

3.3.4. MAAs as Wound Healing Agents

Moreover, MAAs can even act as wound healing agents. Myc-Gly, PR and SH, extracted from
the C. hedlyei and P. yezoensis, at concentrations of 0.1 mg·mL−1, 0.05 mg·mL−1 and 0.05 mg·mL−1,
respectively, promoted the wound repair in the HaCaT human keratinocytes on a comparable level as
the epidermal growth factor, which typically plays an important role in this process. The molecular
mechanism underlying the MAAs-accelerated wound healing in skin cells was associated with the
activation of signaling pathways of the focal adhesion kinases (FAK) and mitogen-activated protein
kinases (MAPK). The application of MAAs considerably increased the FAK phosphorylation at Y397,
which in turn facilitated the activation of MAPKs extracellular signal-regulated kinases (ERK). Cells
treated with MAAs were also characterized by the activation of c-Jun N-terminal kinases (JNK), mainly
JNK1. Therefore, MAAs likely induce the skin repair by triggering the activation of both kinases,
wherein the JNK could be a key player in the process [199].

3.3.5. MAAs as Functional Components of UV-Protective Materials

Recently, MAAs have also gained significant attention due to their potential use as additives to
protect non-biological materials such as fabrics, plastics, paints and varnishes against UVR, which
affects their properties, durability, quality and lifetime [16,123,209]. Fernandes et al. have developed
a new fully natural UV-protective materials consisting of chitosan (CS) as the matrix on which
MAAs, Myc-Gly, PR and SH purified from the lichen Lichina pygmaea, red algae P. rosengurttii and
Gelidium corneum, respectively, were grafted through amide bond formation based on carbodiimide
coupling [210]. The CS-MAA conjugates exhibited a high UV-absorption activity in both UV-A and
UV-B regions and the coefficients ξ comparable to those determined for the corresponding free MAAs,
which are significantly greater than values of UV-protective compounds currently used in sun care
products. All three materials showed a high stability under the influence of UVR and temperature
of 80 ◦C for up to 12 h. CS-MAA films pre-incubated independently with culture media for 24 and
48 h have proven to be non-cytotoxic to the L-929 murine fibroblasts. They were biocompatible with
cell proliferation, adhesion, and tissue formation. The L-929 cells cultured directly in contact with the
different CS-MAA conjugates were able to grow; the highest biological performance assessed based on
the proliferation rate, the extent of cell confluence and completeness of adhesion showed CS-Myc-Gly
material at 21st day of culture. Additional advantages of constructed films are their biodegradable
nature and possibility of their further modifications with other active molecules to produce new
multifunctional materials. CS-MAA conjugates have a great potential to use in a variety of biomedical
applications to provide an efficient protection against acute and chronic UV-induced skin disorders
and to develop the analogues of extracellular matrixes for cell growth and tissue regeneration. Novel
biomaterials can be incorporated in wound repair therapy, in the manufacture of artificial skin, artificial
cornea and contact lenses, outdoor materials and textiles, food and drug packaging, and coatings.

3.3.6. MAAs Commercial Applications

A formulation developed by Schmid et al. containing the liposomal PR and SH has been
commercialized under the name of Helioguard®365 and is currently available in the global market [207].
Researchers revealed that apart from a high anti-aging activity, the formulation exhibits protective
properties against UV-A-induced loss of cell viability and DNA damage. In vitro studies demonstrated
that Helioguard®365 added at the concentrations of 0.125% and 0.25% to the HaCaT human
keratinocytes exposed to 10 min of UV-A irradiation improved their viability in a dose-dependent
manner; the cells viability in the presence of 0.25% Helioguard®365 amounted to 97.8%. The addition
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of 3% and 5% of Helioguard®365 to the IMR-90 human fibroblasts irradiated with UV-A range visibly
reduced the DNA damage in a concentration-dependent manner. Moreover, Schmid et al. have
found that MAAs content in the preparation is stable at 4 ◦C and room temperature for at least
3 months, while at 37 ◦C decreases by 20% after this period [207]. Also, 3 months exposure of the
formulation to the simultaneous impact of UV-A and various temperatures does not affect the stability
of MAAs. Therefore, Helioguard®365 exhibits a high preventive effectiveness against UV-A-caused
damage to the human skin. Another product offering natural protection against sunburning is
Helionori® containing as active ingredients MAAs sunscreens, PI, PR and SH, extracted from the
P. umbilicalis. The formulation is resistant to solar light exposure by 6 h and to 120 ◦C by 30 min
and stored at a temperature from 15 to 25 ◦C is stable for at least 18 months. 3 days application
of a cream with 5% Helionori® effectively prevented the formation of SBC by 94% compared to an
untreated control. Moreover, the formulation exhibited an efficient protective effect on the metabolism
of fibroblasts and keratinocytes exposed to UV-A-induced oxidative stress. After 24 h of irradiation
in the presence of 2% Helionori® the protection of keratinocytes increased by 57%, and fibroblasts
by 135%. The product also provided protection of cellular components against UV-A. 2% Helionori®

strongly preserved membrane lipids of keratinocytes by 139% and fibroblasts by 134% as well as
offered the maximal protection for DNA [211]. The application potential of MAAs due to their
photoprotective and antioxidant activity has also been outlined in a number of patents (Table 1) [17,212].
Interestingly, the discovery of Osborn et al. and Traverso that engineering yeast can efficiently
synthesize the natural small-molecule sunscreens opens up the opportunity for their large-scale
production for use in the pharmaceutical and cosmetic industries [103,104]. Similarly, their extensive
production may take place using an integrated multi-trophic aquaculture (IMTA) system described
by Barceló-Villalobos et al. [213]. Moreover, the ability of MAAs to withstand prolonged exposure to
UV has prompted researchers to develop based on their UV-absorbing chromophores a new class of
synthetic analogues, such as 1-alkyl-3-alcanoyl-1,4,5,6-tetrahydropyridines, which are hydrolytically
and oxidatively more stable for commercial use as sunscreens [209,214,215]. Recently, Andreguetti et al.
have developed a highly efficient, easy to use and environmentally friendly procedure for the synthesis
of nine different MAAs analogues, which can represent a new pathway to obtaining sunscreen
agents [216].

Table 1. Application related patents on MAAs.

Patent Title Patent Number References

Extracts of Aphanizomenon flos aquae and nutritional, cosmetic and
pharmaceutical compositions containing the same

CN 101489527

[217–222]

WO 2008000431
CA 2656160

MX 2009000137
KR 1020090048399

US 20100021493
US 8337858
EP 2032122

Topical composition comprising transformed bacteria expressing a
compound of interest

WO 2014025938

[223,224]
US 20140044677
US 20140044653
US 20160000701

US 9234204

Topical formulations for UV protection WO 2015195546 [225]

Method for producing mycosporine-like amino acid using microbes WO 2015174427 [226]
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Table 1. Cont.

Patent Title Patent Number References

Synthesis of UV absorbing compounds WO 2014082124
[227,228]US 20150299124

UV absorbing compounds, compositions comprising same and
uses thereof

WO 2015006803
[229,230]US 20160244409

Imino compounds as protecting agents against ultraviolet radiations WO 2013181741
[231,232]US 20150152046

Mycosporin-like amino acids, production method thereof, UV
protecting agents and antioxidants JP 2014227339 [233]

Preparation method for laver mycosporine-like amino acids
phorphyra-334 CN 102659621 [234]

Beaty product containing desert algae radiation-proof ingredient
and natural medical whitening ingredient and preparation
method thereof

CN 102764206 [235]

Method for preparing UV screening nontoxic extract from red algae,
and nontoxic sunscreen using same

WO 2011096628
[236,237]CN 102740869

Topical composition WO 2011158041 [238]

Cosmetic sunscreen composition GB 2472021 [239]

Aphanizomenon flos aquae preparation, extracts and purified
components thereof for the treatment of neurological,
neurodegenerative and mood disorders

WO 2008000430
[240–242]US 20090311286

EP 2046354

Method for manufacturing non-toxic extract for blocking UV from
red algae KR 100969325 [243]

Mycosporin-like amino acid derivative having glycosyl group and
method for producing the same JP 2009120562 [244]

Sunscreen composition with extract of algae and lichens ES 2317741 [245]

Compositions comprising Porphyra and methods of making and
using thereof

WO 2007144779
[246,247]US 20070220806

EP 2001311

Uso de aminoácido tipo micosporina (shinorine) en productos para
prevención y tratamiento de eritema actínico, fotocarcinogénesis y
fotoenvejecimiento

ES 2301426 [248]

Uso de aminoácido tipo micosporina (porfira 334) en productos
para prevención de procesos cancerígenos ES 2301293 [249]

Use of a mycosporin-type amino acid (porphyra 334) as
an antioxidant WO 2007026035 [250]

Use of a mycosporin-type amino acid (M-gly) as an antioxidant WO 2007026036 [251]

Use of a mixture of mycosporin-type amino acids (asterin 330 +
palythine) as an antioxidant WO 2007026037 [252]

Use of a mycosporin-type amino acid (shinorine) as an antioxidant WO 2007026038 [253]

Fibroblast growth promoter JP 2007016004 [254]

Cosmetic including natural substance having sun-screening
function CN 101061995 [255]

Beta-glucuronidase inhibitors for use in deodorants and
antiperspirants

US 20040234466
[256,257]US 7294330

Amino-benzophenone UV filter formulations for the prevention
of tanning GB 2412866 [258]
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Table 1. Cont.

Patent Title Patent Number References

The utilization of natural pigments from lichens, cyanobacteria,
fungi and plants for sun protection

WO 2003020236

[259–261]
AU 2002329025

EP 1424990
US 20050129630

Cosmetic skin care products and cosmetic agents for protecting skin
against premature aging EP 1473028 [262]

Solar radiation protection composition
WO 2000024369

[263–265]EP 1123083
US 6787147

Personal care compositions WO 2002039974
[266,267]EP 1341514

Natural UV filters derived from pigments of lichens IL 0200725 [268]

Algal extracts containing amino acid analogs of mycosporin are
useful as dermatological protecting agents against ultraviolet
radiation

FR 2803201 [211]

Topical cosmetic composition, useful for protecting skin and hair
against sunlight, contains an extract from the red alga
Polysiphonia lanosa

FR 2803200 [269]

UV-absorbing compounds and compositions WO 1990009995 [214]

Sunscreen compositions and compounds for use therein WO 1988002251 [215]

Mycosporine-like amino acid JPS 59137450 [270]

4. Conclusions

It is becoming clear that MAAs, due to their multiple roles, are commercially attractive compounds.
They show a promising future for the application in pharmaceutical and cosmetic industries as
natural sunscreens, activators of cells proliferation, anti-cancer agents, anti-photoaging molecules and
stimulators of skin renewal. Recently, they have gained much attention due to their ability to use in
the manufacture of novel biological and non-biological UV-protective biomaterials. However, a full
understanding of pure MAAs effect on the human skin is still far from being complete, and research on
the raw extracts are not sufficiently informative due to their changing composition and the synergetic
effects between the various constituents.
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