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Ca critical health concern and a
significant financial burden, not only in
North America, but worldwide. This
highlights the importance of colonos-
copy as a cost-effective means of pre-
venting CRC through the identification
and removal of polyps.1 However,
colonoscopy is operator dependent.
Variability in the skill and diligence of
the endoscopist to detect and remove
polyps impacts the ability of colonos-
copy to reduce the risk of interval
CRC and its associated mortality.2

Moreover, the use of colonoscopy
itself carries its own economic foot-
print, specifically, the associated costs
of removing and histologically evalu-
ating all identified polyps regardless of
their malignant potential.3 With the
above point in mind, efforts have been
made to improve the adenoma detec-
tion rate (ADR) through various
strategies, including the use of high-
definition endoscopes and cap attach-
ments.4 Furthermore, enhanced imag-
ing modalities have been developed
as a means of performing an “optical
biopsy,” thereby empowering the
endoscopist to resect and discard
diminutive adenomas without pathol-
ogy review or to leave diminutive
distal hyperplastic polyps in situ.
Unfortunately, these interventions have
their limitations, specifically outside
the hands of expert endoscopists.5

Therefore, a need exists for further
technical advancements to optimize
both the detection of polyps and their
endoscopic evaluation.

Computer-aided detection (CADe)
and computer-aided diagnosis (CADx)
are systems that incorporate a com-
puter’s ability to learn and perform
specific tasks. Through advances in
machine learning and deep learning
methodology, computers can now learn
and perform specific endoscopic tasks
that previously were the responsibility
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of the endoscopist. Although still in
their infancy, CADe and CADx have
the potential to revolutionize endos-
copy. This article’s focus is to provide
an overview of the use of CADe and
CADx in colonoscopy, focusing on 3
key areas: (1) adequacy of mucosal
inspection, (2) polyp detection, and
(3) optical biopsy.
Adequacy of Inspection
Technique

Careful inspection of the colonic
mucosa is the cornerstone of a quality
colonoscopy. A surrogate marker for
this is the ADR, defined as the per-
centage of patients with �1 adenoma
identified on screening colonoscopy.
ADR has been embraced as the pivotal
colonoscopy quality metric by the
quality task force of the American
College of Gastroenterology/American
Society for Gastrointestinal Endoscopy,
with an ADR target for asymptomatic
average-risk adults undergoing
screening colonoscopy of �25% (men,
�30%; women, �20%).6 The useful-
ness of ADR was validated by Corley
et al,2 who found a 3% reduction in the
risk of interval CRC and a 5% reduc-
tion in interval CRC-related mortality
for every 1% increase in the ADR. The
ADR can be improved by using high-
definition colonoscopes, split-dose
bowel preparations, nondevice tech-
niques such as optimized inspection
technique, and tools to improve
mucosal exposure and highlight flat
lesions.4 However, the highest ADRs
reported have been achieved by
endoscopists using only split-dose
preparations, high-definition colono-
scopes, and optimal technique.7 ADR
and its variants such as adenomas
per colonoscopy provide only a post-
procedure assessment of performance
quality that may lead to steps to
improve performance in future exami-
nations. Until recently, an automated
means of assessing and correcting
colonic mucosal inspection in real time
has been unavailable.

The EM-Automated-RT (EndoMetric
Inc, Ames, IA)8,9 is a computer system
that allows for real-time analysis and
_________________________
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feedback for mucosal inspection during
colonoscopy. It does so through 3
mechanisms: (1) differentiating infor-
mative and noninformative (blurry)
frames, (2) detecting and quantifying
residual stool/debris, and (3)measuring
the effort to inspect all colonic
mucosa. The latter is achieved by
dividing the endoscopic view into
quadrants (Supplemental Figure 1).
During withdrawal, when the colonic
lumen is seen in a particular quadrant,
the opposing quadrant of colonic
mucosa is marked as inspected. When
each quadrant has been sequentially
inspected, the EM-Automated-RT pro-
vides the endoscopist with an increase
in their inspection score. This technol-
ogy was recently evaluated in a pro-
spective study among 10 third-year
gastroenterology trainees performing
483 colonoscopies.9 The trainees were
randomly assigned to use the EM-
Automated RT. Subsequently, the
de-identified endoscopic videos were
evaluated by 2 blinded investigators.
The results showed that the EM-
Automated-RT leads to a significant
increase in the mean mucosal visuali-
zation score, the mean debris removal
score, the mean bowel distension
score, and the mean withdrawal time
(all P < .02). Although further studies
are needed to evaluate this software
as a means of assessing and affecting
colonoscopy quality among practicing
endoscopists, it seems to be a prom-
ising tool for objective real-time quality
assessment.
Polyp Identification
Even with diligent exposure of the

colonic mucosa, polyps may not be
detected because of their small or flat
morphology, or minimal color differ-
ences between the polyp and normal
mucosa. The relative contributions of
failed mucosal exposure and failed
recognition of exposed polyps are un-
certain. However, the contributions of
high definition10 and chromoendo-
scopy11 to detection and the recent
demonstrations that brighter forms of
electronic chromoendoscopy improve
detection are clear evidence that
118
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Figure 1.Computer-aided polyp detection. (Reprinted from Fernandez-Esparrach G
et al,14 Exploring the clinical potential of an automatic colonic polyp detection
method based on the creation of energy maps. Endoscopy 2016;48:837-842.
Copyright © 2016 with permission from Thieme Medical Publishers Inc).

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

COMMENTARY
119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236
failure to recognize exposed lesions is a
significant contributor tomissed lesions.
In a 2006 systematic review and meta-
analysis, 6 tandem colonoscopy studies
showed a pooledmiss rate of 22% for all
polyps.12 This varied by adenoma size
with pooled miss rates of 2.1% for
adenomas �10 mm, 13% for adenomas
5-10 mm, and 26% for adenomas 1-5
mm. This finding highlights that,
regardless of expertise, polyps can be
difficult to identify. Therefore, auto-
mating the detection of CRC and pre-
cancerous lesions through incorporation
of CADe carries the potential to improve
patient outcomes and resource use.

CADe for polyps has been evaluated
by several groups in the field of virtual
colonoscopy over the last decade,
but there has been, until recently,
less effort in optical colonoscopy. The
first computer-based system for polyp
detection, described by Karkanis et al,13

used color and texture analysis of the
colonic mucosa to identify polyps. Using
a set of 180 images derived from 60 co-
lonoscopy videos containing adenomas,
their detection system was able to
identify polyps with 90% sensitivity and
97% specificity. Because this system is
based on evaluation of static images, its
usefulness during endoscopy is limited.
2
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New CADe systems14,15 have
emerged (Figure 1). The Polyp-Alert
system (EndoMetric Inc, Ames, IA),15

described by Wang et al in 2015, uses
detection of polyp edges to highlight
exposed polyps during colonoscopy
videos. The technique analyzes every
third video frame, approaching real-time
analysis. Sixty-one complete colonos-
copy videos were randomly selected for
the study; 8 were used for training and
53 for testing the Polyp-Alert system.
The Polyp-Alert system correctly detec-
ted 98% of polyps, although it averaged
36 false-positive detections per colo-
noscopy. False positives commonly
resulted from protruding folds, the
appendiceal orifice, the ileocecal valve,
and areas with residual fluid. Several of
these causes of false positives should be
easily dismissed by experienced colo-
noscopists. Thus, near real-time CADe
systems for polyp detection hold great
promise for improving polyp detection
and reducing operator dependence
during colonoscopy.
Optical Biopsy
Optical biopsy refers to endoscopi-

cally predicting histology through the
use of advanced imaging modalities
YGAST61501 proof � 31 October 2017 � 8:5
alongside validated classification sys-
tems (eg, narrow-band imaging [NBI]
international colorectal endoscopic
[NICE] classification).16 A specific
paradigm of interest is the diagnosis
and differentiation of diminutive pre-
cancerous adenomas and diminutive
non-neoplastic hyperplastic polyps.
This is in part driven by the low like-
lihood of either invasive cancer or
advanced histology among polyps
�5 mm.17 Two strategies have
emerged: (1) the “resect and discard”
strategy of removing optically diag-
nosed diminutive adenomas without
sending them for pathology review,
and (2) the “diagnose and leave”
strategy of optically diagnosing dimin-
utive rectosigmoid hyperplastic polyps
and leaving them in situ without
sampling.18 Implementing the former
strategy has been estimated to save
upwards of US$1 billion in upfront
costs.3 The American Society for
Gastrointestinal Endoscopy produced
the Preservation and Incorporation
of Valuable Endoscopic Innovations
(PIVI) guidelines recommending:
(1) �90% agreement for post-
polypectomy surveillance intervals for
the “resect and discard” strategy, and
(2) �90% negative predictive value
(NPV) for adenomatous histology for
the “diagnose and leave” strategy.18

Unfortunately, optical biopsy is also
operator dependent, with a recent
systematic review and meta-analysis
highlighting the correlation between
operator expertise and the ability to
meet the PIVI benchmarks for perfor-
mance.5 Fortunately, CADx, or for this
purpose automated optical biopsy, has
the potential to allow even nonexperts
to effectively use optical biopsy in the
management of diminutive polyps.
Four imaging modalities that have
effectively assimilated automated opti-
cal biopsy are (1) magnifying NBI,19

(2) endocytoscopy,20 (3) laser-induced
fluorescence spectroscopy,21 and, more
recently, (4) nonmagnification NBI.22

Magnifying NBI is the combination
of NBI with high-definition magnifying
endoscopes, allowing for up to 80�
magnifying power. Its role in automated
optical biopsy was recently evaluated
among 118 colorectal lesions,19 with
histology as the gold standard refer-
ence. Lesions were differentiated by
7 pm � ce
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the computer system using the
Hiroshima classification into non-
neoplastic (ie, hyperplastic) and
neoplastic (ie, adenoma or adenocar-
cinoma with intramucosal invasion).
Accuracy, with reference to histology,
reached 93% (sensitivity 93%, speci-
ficity 93%, positive predictive value
[PPV] 93%, NPV 93%). Moreover,
there was 93% concordance for
subsequent surveillance colonoscopy
intervals, therefore meeting both PIVI
performance benchmarks.18

Endocytoscopy is a method of
contact microscopy which allows for
cellular, structural, and vessel atypia
evaluation in vivo.20 The EndoBRAIN
(Cybernet System Co., Tokyo, Japan),
which is a combination of endocyto-
scopy and NBI, is a platform for auto-
mated optical biopsy (Supplemental
Figure 2). Captured images by the
endoscopist during real-time endos-
copy are subsequently analyzed by the
EndoBRAIN, which then provides an
optical biopsy interpretation within
0.3 seconds. It was recently evaluated
on 100 randomly selected images of
colorectal lesions that were endoscop-
ically removed and underwent pathol-
ogy review.20 The accuracy of the
EndoBRAIN was 90% (sensitivity 85%,
specificity 98%, PPV 98%, NPV 82%).

Using laser-induced auto-
fluorescence spectroscopy, WavSTAT4
(Pentax Medical., Tokyo, Japan) per-
forms real time, in vivo, automated
optical biopsy of colon polyps.21 This is
through an optical fiber that is incor-
porated into standard biopsy forceps
and is triggered upon contact. In a
prospective observational study of 27
patients (137 polyps), the accuracy of
the WavSTAT4 was 85% (sensitivity
82%, specificity 85%, PPV 51%, NPV
96%).21 Upon stratified analysis for
only diminutive distal polyps, the
NPV increased to 100%. Concordance
between the WavSTAT4 and histology-
driven recommendations for interval
colonoscopy reached 89%.
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Deep Learning
Until recently, CADe and CADx in

endoscopy have been largely depen-
dent on traditional machine learning
methodology, whereby the program-
mer essentially “teaches” the computer
EDI 5.5.0 DTD �
which features to focus on; the
so-called human feature extraction.
However, the emergence of deep
learning methodology allows for depar-
ture from human perceptual limitations.
Deep learning methodology, specifically
through the use of deep convolutional
neural networks, allows for the use of
raw and unprocessed videos,23 thus,
allowing artificial intelligence to be
integrated during live endoscopy.

In an attempt to address historical
limitations of automated polyp detec-
tion, specifically the notable variability
in polyp appearance and the lack
thereof between polyps and potential
mimics (eg, prominent colonic folds,
residual debris), Yu et al24 recently
unveiled a CADe platform incorpo-
rating a 3-dimensional, fully convolu-
tional network. Their platform was
evaluated using the ASU-Mayo Clinic
Polyp Database,25 which contains 20
colonoscopy videos. Precision (P) [true
positive/(true positive þ false posi-
tive)], Recall (R) [true positive/(true
positive þ false negative)], F1 [2PR/
(P þ R)], and F2 [5PR/(4P þ R)] were
used for evaluation with the following
results of 88%, 71%, 79%, and 74%,
respectively.

To our knowledge, we recently
were the first to describe the use of
deep learning methodology for auto-
mated optical biopsy.22 Using raw and
unaltered NBI video recordings of
colorectal polyps, we trained, vali-
dated, and subsequently tested our
system’s ability to differentiate ade-
nomas from hyperplastic polyps using
the NICE classification system.16 These
videos were captured with standard
colonoscopes (Olympus 190 Series;
Olympus America, Center Valley, PA).
In real time, the system calculates a
credibility score based on fluctuations
in the system’s NICE classification
prediction over successive video
frames, after which a final polyp clas-
sification is provided within approxi-
mately 50 ms alongside an associated
probability for the correct diagnosis
(Figure 2). Ultimately, 125 diminutive
polyp videos were used to test the
model after training and validation
were completed. The credibility score
did not reach �50% for 19 polyps,
which were subsequently excluded
from analysis. Of the remaining 106
YGAST61501 proof � 31 October 2017 � 8:5
polyp videos, the overall accuracy, with
reference to histology, was 94%
(sensitivity 98%, specificity 83%, PPV
97%, NPV 90%). Our alignment with
the PIVI benchmarks using non-
magnification colonoscopy further
reinforces the importance of our find-
ings, which mark a step toward incor-
porating automated optical biopsy into
everyday colonoscopy.
Future Directions
CADe and CADx are rapidly

growing disciplines and have many
potential applications in healthcare,
including imaging, robotic surgery, and
genomics. Pertaining to endoscopy, we
have reviewed their potentials in co-
lonoscopy and colonic polyps, but it is
almost certain that CADe and CADx
will have growing roles in other
endoscopic domains; this includes the
assessment of mucosal healing and
dysplasia surveillance in inflammatory
bowel disease, dysplasia surveillance
in Barrett’s esophagus, and the evalu-
ation of pancreatic cystic neoplasms
during endoscopic ultrasound, to name
a few. “Transfer learning,” whereby
knowledge gained in one area can be
applied to a different but related
problem, means the work done to
date in the field of endoscopy can
help to accelerate future improve-
ments and new applications in other
areas. A recent review by the European
Society of Gastrointestinal Endos-
copy26 comments on “decision support
tools and computer-aided diagnosis,”
and questions how such systems will
be deployed; suggesting the most likely
scenario being as a “second reader”
with more work needed to have true
“stand alone” CADe and CADx systems.
We agree with this statement, but
only at this precise moment in time,
because evidence is lagging behind the
technology in this space. We are likely
to see rapid advances in the sophisti-
cation of CADe and CADx systems in
medicine in the near future, and
application of artificial intelligence in
many representations.

Although the emergence of CADe
and CADx technologies are promising,
they do have limitations. First, to
empower CADe and CADx platforms,
large datasets or “big data” are needed,
3
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Figure 2.Computer-aided optical biopsy, using deep learning methodology.p
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especially for those platforms using
deep learning methodology. Moreover,
with future platforms more likely to
incorporate deep learning methodol-
ogy, more powerful computers will be
needed to support them, potentially
limiting their ability to be readily
incorporated in a standard endoscopy
tower. It is also important to note
that although magnifying NBI, endo-
cytoscopy, and laser-induced auto-
fluorescence spectroscopy show
promise, there is a lack of worldwide
availability and expertise for these
modalities. Last, a key obstacle that
CADe will need to tackle is the
detection of flat lesions, with evidence
currently limited in this area.

Mori et al27 have described a
“roadmap” to facilitate the assimilation
of CADe and CADx into everyday co-
lonoscopy. This includes (1) product
development and feasibility studies,
(2) clinical trials, (3) regulatory
approval, and (4) insurance reim-
bursement. To start, continued meth-
odological development by
incorporating deep learning strategies
is needed in the areas of mucosal
exposure, lesion highlighting, and
optical biopsy. Alongside this, expan-
sion into less explored areas such as
submucosal invasion assessment and
residual polyp detection are essential.
This will naturally feed into further
feasibility studies, and, as the tech-
nology continues to develop, lead to
clinical trials. Of course, controlled
trials are needed to assess the ability
of computer-aided mucosal inspection
4

EDI 5.5.0 DTD �
and polyp detection strategies to
improve ADR, and to assess the perfor-
mance of automated optical biopsy.
This should be coupled with cost-
effectiveness analyses across all areas
of interest, especially as real-world data
begin to emerge. Regarding regulatory
approval, WavSTAT4 has already
obtained regulatory approval in both
the United States and Europe, which
will hopefully open the door for other
platforms. Last, incentives to accelerate
the adoption of CADe and CADx may be
necessary, something that is currently
being considered by leading countries in
this area.
Conclusion
It is now too conservative to

suggest that CADe and CADx carry
the potential to revolutionize colo-
noscopy. The artificial intelligence
revolution has already begun.

MICHAEL F. BYRNE
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Vancouver, British Columbia, Canada
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Note: To access the supplementary
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the online version of Gastroenterology at
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Supplemental Figure 1.Computer-aided colonic inspection. (Reprinted with permission from Stanek SR et al,8).
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Supplemental Figure 2.Computer-aided optical biopsy. (Reprinted with permis-
sionfrom Misawa M et al,20).
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