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In recent pharmacoepidemiology research, the increasing use of elec-
tronic medication dispensing data provides an unprecedented opportunity to
examine various health outcomes associated with long-term medication us-
age. Often, patients may take multiple types of medications intended for the
same medical condition and the medication exposure status and intensity may
vary over time, posing challenges to the statistical modeling of such data. In
this article, we propose a penalized Cox proportional hazards (PH) model
with multiple functional covariates and potential interaction effects. We also
consider constrained coefficient functions to ensure a diminishing medication
effect over time. Hypothesis testing of interaction effect and main effect was
discussed under the penalized Cox PH model setting. Our simulation stud-
ies demonstrate the adequate performance of the proposed methods for both
parameter estimation and hypothesis testing. Application to a primary care
depression cohort study was also illustrated to examine the effects of two
common types of antidepressants on the risk of coronary artery disease.

1. Introduction. The increasing use of electronic medical records (EMR)
in health care systems has been routinely capturing medication dispensing data
including medication names, dosage and duration. The availability of such data
offers an unprecedented opportunity for pharmacoepidemiological studies to
examine various health outcomes associated with long-term medication use for
monitoring both treatment efficacy and potential side effects. Many medications
gain approval in relatively short-term randomized trials with strict exclusion cri-
teria. The use of electronic medication dispensing data will allow the investiga-
tion of the associations between long-term medication use and disease treatment,
prognosis and side effects in patient populations such as the elderly that may be
underrepresented in the original trials for drug approvals.

An important research question that can be addressed using medication dis-
pensing data is the association between medication exposure and time to various
clinical events. Existing statistical models, however, face a number of method-
ological challenges when analyzing medication dispensing data. First, a patient’s
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medication use and dosage vary over time. Thus, any appropriate measure of med-
ication exposure will need to consider both exposure status and its intensity as
time-varying variables. Second, for modeling exposure to medication or environ-
mental toxins, it is often assumed, based on the compounds’ half life, that expo-
sures occurring a long time before an outcome have negligible influence. There-
fore, analysis methods need to reveal not only the association between a clinical
event and a particular medication, but also the relevant time window when such
exposure is critical. Finally, patients may take multiple types of medications, con-
currently or sequentially, intended for the same medical condition. For example,
patients with depression may switch antidepressants due to side effects or lack
of efficacy. Patients with hypertension, on the other hand, may take more than
one class of antihypertensive medications at the same time to reach optimal blood
pressure control. Therefore, statistical models need to be able to detect potential
interactions among various types of medications.

Breslow et al. (1983) and Thomas (1988) proposed the concept of weighted
cumulative exposure (WCE) by assigning predetermined weights to time-varying
exposure levels and summing the exposures into a unidimensional variable. Ap-
plications using WCE with predefined parametric functions can also be found in
Abrahamowicz et al. (2006), Vacek (1997), Langholz et al. (1999) and Richardson
(2009). Extending the WCE approach, various approaches have also been proposed
to estimate the weight function using nonparametric splines in generalized linear
models [Berhane, Hauptmann and Langholz (2008), Hauptmann et al. (2000)] and
survival models [Gasparrini (2014), Sylvestre and Abrahamowicz (2009)]. Exten-
sion to multiple exposures with WCE functions was made by Gasparrini (2014)
under the additivity assumption. However, no studies to date have considered mod-
eling the potential interaction effects of multiple time-varying exposures.

Models for time-varying exposure have also been an active focus in functional
data analysis where functional coefficients from functional regression models are
equivalent to the weight functions for time-varying exposures in WCE models
with a difference of constant ratio. Many functional regression models include a
single functional covariate [Zhang, Lin and Sowers (2007), Schipper, Taylor and
Lin (2008) and Bhadra et al. (2012)]. Goldsmith et al. (2012) and Ferraty and
Vieu (2009) included two or more functional covariates using additive models.
Fuchs, Scheipl and Greven (2015) proposed a penalized scalar-on-function regres-
sion model with an interaction term, extending the main effect models in Wood
(2011). However, there has been little progress in modeling multiple time-varying
exposures with potential interactions for time-to-event data.

One characteristic of exposure models is the constraint that coefficient functions
should be bounded toward zero at a distant boundary. Previously, Schipper, Tay-
lor and Lin (2008) proposed two constraints in generalized functional models by
requiring a zero coefficient at zero dose and imposing monotonicity of the coeffi-
cient function so that a higher dose leads to more adverse outcomes. A constrained
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model for time-varying exposures for survival outcomes has not been considered
previously.

In this article, we propose a penalized Cox proportional hazards (PH) model for
multiple time-varying exposures with interactions. In particular, coefficient func-
tions for functional covariates are modeled using penalized cubic B-splines for
the main effects and tensor product splines for the interaction effect. We impose
ridge penalties on the coefficient functions for the main effect and the coefficient
surface for the interaction effect to better handle the issue of overfitting on coef-
ficient functions using regression splines [Sylvestre and Abrahamowicz (2009)].
Alternative penalties can be used for the WCE functions, including the L1 penalty
[Goeman, Meijer and Chaturvedi (2016)], P-splines [Muggeo (2008), Obermeier
et al. (2015)] or penalties on the second derivative for cubic regression splines
[Wood (2006)]. In particular, P-splines for the Cox PH model have been discussed
by Therneau, Grambsch and Pankratz (2003) and were implemented in the “sur-
vival” package in R. The coefficient functions and coefficient surface are estimated
by maximizing the penalized log partial likelihood [Perperoglou (2014), Therneau,
Grambsch and Pankratz (2003)]. The hypothesis testing is carried out using Wald’s
method [Gray (1992, 1994)]. The performance of the model is evaluated in simu-
lation studies.

Section 2 describes data from a primary care depression study as a motivating
example. Section 3 introduces the penalized Cox PH model with an interaction
term and describes the parameter estimation methods as well as the hypothesis
testing. Section 4 presents results from simulation studies. In Section 5, we ap-
ply the proposed model to the depression study data and estimate the association
between antidepressant exposures and the risk of coronary artery disease (CAD).

2. A primary care depression screening cohort. From January 1991 to June
1993, 3767 elderly patients, age 65 or older, attending primary care clinics at
Wishard Health Services were enrolled into a depression screening study [Callahan
et al. (1994)]. Electronic medical records of these patients from their enrollment
to December 31, 2010 were extracted from the Regenstrief Medical Record Sys-
tem (RMRS) [McDonald et al. (1999)]. RMRS is one of the first electronic med-
ical record systems in the United States and has been actively used for research
purposes. RMRS routinely captures laboratory results, narrative reports, orders,
medications, radiology reports, registration information, nursing assessments, vital
signs and other clinical data. The medical records include comprehensive medica-
tion dispensing information capturing medication names, daily dose and start/end
dates for each dispensing record.

Antidepressant is one of the most commonly prescribed medication groups in
the United States [Lindsley (2012)]. An older class of antidepressants, tricyclic an-
tidepressants (TCAs), has been shown to have a detrimental effect on the cardio-
vascular function by inhibiting cardiovascular Na(+), Ca(2+) and K(+) channels
often leading to life-threatening arrhythmia [Glassman (1984), Jefferson (1975)].
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A newer class of antidepressants, selective serotonin reuptake inhibitors (SSRIs),
became the preferred treatment for depression due to its comparable efficacy with
TCAs and its superior tolerability. SSRIs were hypothesized to show a different
cardiovascular effect from TCAs due to their pharmacologic profile [Bergstrom
et al. (1988)]. However, reports of the first-degree atrioventricular block, prolonged
QTc interval and orthostatic hypotension in SSRI-treated patients were raising
concerns that SSRIs may also have important cardiac and vascular effects [de la
Torre et al. (2001), Pacher and Kecskemeti (2004)]. Given that many of the studies
on antidepressants were conducted in laboratory settings with brief antidepres-
sant treatment, EMR data with detailed medication dispensing information offer a
unique opportunity to examine the effect of the long-term use on cardiac functions
in the population of elderly patients, a group often underrepresented in clinical
trials. Moreover, none of the previous studies considered the comprehensive in-
formation of time-varying antidepressant use. It is widely known that patients on
depression treatments receive different dosages and switch medications frequently;
it is therefore of interest to examine whether the time-varying exposures to TCAs
or SSRIs and their interaction are associated with the risk of CAD.

In the data set, we included patients who were taking TCAs or SSRIs during
the follow-up period. To derive comparable dosages among different medications,
we first standardized medication doses using each daily dose divided by the rec-
ommended minimum dose for the particular medicine [Damush et al. (2008), Gray
et al. (2015)]. In this cohort, antidepressant usage exhibits great variations in both
dose intensity and duration of treatment (Figure 1). Such exposure patterns demon-
strate the need for a statistical method that can account for the time-varying expo-
sure and potential interaction effect on the risk of a disease. We emphasize that
the conventional Cox PH model cannot be expected to provide a good fit to such a
scenario due to its assumption of time-invariant coefficients.

3. Methods.

3.1. A Cox PH model with multiple time-varying exposures. Let Āi(u) =
{D1

i (t)}ut=0 and B̄i(u) = {D2
i (s)}us=0 denote two series of time-varying exposures,

A and B , up to time u, and let Xi be a row vector of p covariates for subject i,
i = 1, . . . , n, with α = (α1, . . . , αp)T being the vector of corresponding regression
coefficients. The hazard function of a Cox PH model at time u given the history of
the exposures through u and covariates Xi can be defined as

h
(
u|Āi(u), B̄i(u),Xi

)

= h0(u) exp
{∫ u

0
w1(u − t)D1

i (t) dt +
∫ u

0
w2(u − s)D2

i (s) ds(3.1)

+
∫ u

0

∫ u

0
w3(u − t, u − s)D1

i (t)D
2
i (s) dt ds + Xiα

}
,
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FIG. 1. Examples of medication exposure from two patients. Top: patient who switched from TCAs
to SSRIs; Bottom: patient who took TCAs and SSRIs sequentially.

where h0(u) is an unspecified baseline hazard function, w1(u − t) and w2(u − s)

are unknown smooth coefficient functions for time-varying exposures D1
i (t) and

D2
i (s), respectively, and w3(u − t, u − s) is a bivariate coefficient surface func-

tion which quantifies potential interaction effect between the two exposures. The
term

∫ u
0 wk(u − t)Dk

i (t) dt summarizes the influence of time-varying exposure
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k, k = 1,2, up to time u. The coefficient functions were defined on reversed time
axes so that time 0 for coefficient functions corresponds to exposure at time u.
We further assume that past exposure occurring at certain time units, for example,
ak, k = 1,2, before time u has a negligible effect, and thus the coefficient functions
smoothly go to zero at time ak . We impose such constraint by defining the coeffi-
cient function as an integral wk(t) = ∫ −t

−ak
sk(c) dc, t ∈ [0, ak] so that wk(ak) = 0.

The integrand sk(c) can be flexibly expressed as a linear combination of some
spline basis functions as sk(c) = ∑Nk

l=1 βklBkl(c), where Nk is the number of basis
functions Bkl(c), with coefficients βkl . In this study, we use cubic B-spline bases,
and the total number of basis functions is Nk = Lk + 4 with Lk interior knots,
k = 1,2.

The coefficient surface w3(u − t, u − s) between two time-varying exposures
is modeled by a nonparametric bivariate function using tensor product splines as
w3(u − t, u − s) = ∑

l,r γlrBlr (u − t, u − s), where Blr(u − t, u − s) is obtained
by forming all pairwise products between the cubic B-spline basis functions as
Blr(u − t, u − s) = Bl(u − t)Br(u − s), l, r = 1, . . . ,N3, resulting in a total of
N3 × N3 basis functions, assuming the same number of interior knots along both
directions for simplicity.

Define row vector Mk
i (u) = (Mk

i1(u), . . . ,Mk
i,Nk

(u)), k = 1,2, where Mk
il(u) =∫ u

0 Dk
i (t)

∫ −(u−t)
−ak

Bkl(c) dc dt, l = 1, . . . ,Nk . And let Zi (u) = (Zi11(u), . . . ,

Zi,1,N3(u), . . . ,Zi,N3,N3(u)), where Zilr (u) = ∫ u
0

∫ u
0 Blr(u − t, u − s)D1

i (t) ×
D2

i (s) dt ds, l, r = 1, . . . ,N3. Denote βk = (βk1, . . . , βk,Nk
)T , k = 1,2, and γ =

(γ11, . . . , γ1,N3, . . . , γN3,N3)
T as the coefficient vectors for the B-spline basis and

tensor product basis, respectively. It follows that model (3.1) can be rewritten in a
more condensed form with regression parameter vector η = (αT ,βT

1 ,βT
2 ,γ T )T :

h
(
u|Āi(u), B̄i(u),Xi

)
(3.2)

= h0(u) exp
{
M1

i (u)β1 + M2
i (u)β2 + Zi (u)γ + Xiα

}
.

3.2. Penalized partial likelihood. The estimation of the Cox PH model (3.2)
can be implemented by maximizing the partial likelihood using a standard statisti-
cal software. The estimated coefficient functions will be represented by regression
splines, which, however, can be unstable and sensitive to the number and location
of knots [Hastie and Tibshirani (1986)] and suffer from overfitting issues [Gray
(1992)]. Therefore, we adopted the penalized spline method to estimate the coeffi-
cient functions for the time-varying exposures. The use of the penalized approach
is well known to avoid identifiability problems [Ramsay and Silverman (2005),
Scheipl and Greven (2015)]. In particular, a ridge penalty of the L2 norm of the
regression coefficients was imposed, and the resulting penalized log partial likeli-
hood [Perperoglou (2014)] has the form of

(3.3) �p(η,λ) = �(η) − λ1β
T
1 β1 − λ2β

T
2 β2 − λ3γ

T γ ,
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where �(η) is the log partial likelihood, and λ = (λ1, λ2, λ3)
T are the smoothing

parameters. The parameter estimates are obtained by maximizing the penalized log
partial likelihood in (3.3) for any given non-negative smoothing parameters λ via
the Newton–Raphson procedure.

In the penalized Cox PH model above, it is crucial to determine the appropri-
ate smoothing parameters λ, which balance the trade-off between the goodness
of fit and the smoothness of the coefficient functions. One way to optimize the
penalty weight is to conduct a grid search over some prespecified range of λ.
The models are fitted with different values of smoothing parameters, and the opti-
mal choice maximizes a chosen criterion such as the Akaike information criterion
(AIC) with AIC = 2�(η) − 2df [Perperoglou (2014)]. The degrees of freedom
(df) of the penalized Cox model can be calculated as df = trace[I (η)H−1(η,λ)],
where I (η) = −∂2�(η)/∂η2 is the observed information matrix for the par-
tial likelihood, H (η,λ) = I (η) + P (λ), and P (λ) is a block diagonal matrix
diag(λ1I 1, λ2I 2, λ3I 3) with I k being identity matrix of dimension Nk, k = 1,2,3
[Gray (1992)]. Alternatively, Hurvich, Simonoff and Tsai (1998) suggested a cor-
rected AIC (AICc), using n(df + 1)/(n− (df + 2)) (n is the total number of events
in the Cox PH model) as the correction term in place of df in AIC, based on the
argument that AIC can lead to models with an excessive number of degrees of
freedom. We consider both AIC and AICc and compare their performance in sim-
ulation studies described in Section 4.

In practice, the time-varying exposures are usually measured at discrete time
points, for example, daily medication intake, and the integrals in Mk

il(u) and
Zilr(u) can be replaced by corresponding summations, which are straightforward
and hence omitted here.

3.3. Inference. Several important scientific questions can be addressed by hy-
pothesis tests. For example, one hypothesis of interest is whether the two exposures
have interacting effects on the risk of a survival outcome, with a null hypothesis
of H0 : w3 = 0 on the coefficient surface w3. In the penalized spline model setup
(3.2), this hypothesis is equivalent to H0 : γ = 0, that is, coefficient vector γ is a
zero vector. If the null hypothesis on the interaction term is not rejected, the hazard
function becomes additive of the two exposure effects on the logarithm scale. Then
one would want to know if the two exposures individually contribute significant
influence to the risk of the outcome, leading to the null hypothesis of H0 : wk = 0,
or βk = 0, k = 1,2.

The above hypotheses follow a general form of Cη = 0 with a properly defined
matrix C of full row rank. Following Gray (1992), a Wald-type test statistic can
be defined as (Cη)T (CH−1CT )−1(Cη). In the penalized Cox model, however,
this test will be conservative if a standard Chi-square statistic is assumed. Gray
(1992) showed that the expectation of the test statistic under the null hypothesis is
approximately equal to df Wald = trace[(CH−1CT )−1(CH−1IH−1CT )], which
will be considered as the generalized degree of freedom of the Wald test in our
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proposed model. Simulation studies were conducted to examine the performance
of the hypothesis testing procedure.

To measure the variability of estimated coefficient functions, sample-based con-
fidence bands are provided. In simulations, the confidence bands are calculated
from simulated data sets. In applications, we relied on nonparametric bootstrap
resampling. For each of the samples, model (3.1) is estimated. Next, the empiri-
cal distribution of the point estimates of coefficient functions is constructed. The
percentile method can then be used to compute 95% pointwise confidence bands.

4. Simulations.

4.1. Simulation setup. To evaluate the performance of our proposed model,
simulation studies were conducted. Three patient groups were considered based on
the types of exposure. Subjects in the first group took medication A exclusively,
subjects in the second group took medication B exclusively and subjects in the
third group took both medications A and B over the follow-up period, sequentially
or concurrently. Assuming equal sample size in the three groups, three levels of
total sample size were investigated: 300, 450 and 600.

The timing of the exposure, measured by days taking medication or off medica-
tion in blocks of 7 days, was generated from a lognormal distribution with a mean
of 0.5 and a standard deviation of 0.8, that is, log(duration) ∼ N(0.5,0.82), and
rounded up to the nearest integer. The intensity of the time-varying exposure was
assumed to be constant over each treatment period (in a 7-day unit), and it could
take values of 0.005, 0.01, 0.015, 0.02, 0.025 or 0.03 during the follow-up period
with equal probabilities.

Several coefficient functions with a fixed time window of 90 days were consid-
ered: (1) zero function (w(t) = 0, t ∈ [0,90]) indicating no exposure effect over the
time window, (2) decreasing function (w(t) = sin(π

2
t

90 + π
2 ), t ∈ [0,90]) indicat-

ing a greater effect closer to the event time and a lesser effect for distant exposures,
and (3) U-shape function (w(t) = sin(π t

90 + π), t ∈ [0,90]) suggesting a greater
negative effect for mid-point exposures and lesser effects for recent and distant ex-
posures. All true coefficient functions smoothly go to zero at the distant boundary
of the exposure interval. The coefficient functions were defined on reversed time
axes so that day zero corresponds to a given time u when the hazard function is
measured. The assumption that exposures 90 days before have negligible effects
is equivalent to the assumption that coefficient functions are flat zero lines beyond
90 days. We generated 200 data sets under each of the four scenarios as shown in
Figure 2.

The bivariate function in Figure 3 was used to generate the interaction term be-
tween the two types of exposures with a time window of 30 days. Higher values
are along the diagonal direction, indicating that medications have a larger interac-
tion effect when taken simultaneously, and this effect decreases closer to the dis-
tant boundary. Similarly, the interaction surface was also defined on reversed time
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FIG. 2. Four scenarios of coefficient functions used in simulations: w1(t) is indicated by solid lines;
w2(t) is indicated by dashed lines. The coefficient functions were defined on reversed time axes so
that day zero corresponds to the time of outcome measures and increasing days correspond to the
more distant past. Scenario 3 has identical coefficient functions.

axes. The x-axis represents the exposure time for medication A and the y-axis for
medication B . For example, point (a, b) on the surface measures the interaction
effect between exposure to medication A that happened a days ago and exposure
to medication B that happened b days ago.

Survival outcomes were generated based on various combinations of corre-
sponding coefficient functions using the permutation algorithm, designed to simu-
late survival times with time-dependent covariates [Sylvestre and Abrahamowicz
(2008)].

4.2. Simulation results. For each of the 200 simulated data sets under each
scenario, we fitted the proposed model (3.1) with six equally spaced interior knots

Interaction surface (3D) Interaction surface (Contour)

FIG. 3. Interaction surface in 3D and contour plots under a prespecified time window of 30 days.
Surfaces were defined on reversed time axes. The x-axis indicates the exposure time for medication A
and the y-axis represents medication B.
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TABLE 1
Average mean squared error (AMSE) (×10−5) of coefficient functions and coefficient surface

estimated by penalized Cox PH model over 200 replications

Scenarios

Coefficient function Sample size Selection method S1 S2 S3 S4

w1(t) 300 (AIC) 4.40 4.76 9.11 9.06
300 (AICc) 3.58 3.86 8.84 8.26
450 (AIC) 3.08 3.66 5.72 5.43
450 (AICc) 2.96 3.33 5.44 5.24
600 (AIC) 2.26 2.30 5.05 4.46
600 (AICc) 2.16 2.14 4.77 4.07

w2(s) 300 (AIC) 7.91 12.4 7.97 14.7
300 (AICc) 6.93 12.1 7.59 14.0
450 (AIC) 5.60 9.60 5.82 9.39
450 (AICc) 5.31 9.41 5.68 9.15
600 (AIC) 4.44 8.08 4.67 7.71
600 (AICc) 4.37 8.07 4.50 7.61

w3(t, s) 300 (AIC) 2.45 2.28 2.37 1.84
300 (AICc) 1.83 1.89 2.00 1.52
450 (AIC) 1.29 1.20 1.88 1.17
450 (AICc) 1.19 1.08 1.68 1.07
600 (AIC) 0.81 0.93 1.24 0.88
600 (AICc) 0.77 0.89 1.16 0.80

for the coefficient functions, leading to N1 = N2 = 10 basis functions used for
each main effect. One interior knot was used for each direction of coefficient sur-
face, and in total there are 25 tensor product basis functions (N3 = 5) used for the
interaction effect. Both AIC and AICc were used for the selection of smoothing
parameters.

Estimates of coefficient functions ŵ1, ŵ2 and ŵ3 were obtained under each
scenario. The average mean squared error (AMSE) for the interaction effect is
calculated as

AMSE(w3) = 1

R

R∑
r=1

1

30 × 30

30∑
t=1

30∑
s=1

(
ŵ3(t, s) − w3(t, s)

)2
,(4.1)

where R represents the total number of replicates. The AMSE for w1 and w2 can
be similarly defined.

Results of the penalized spline estimates are presented in Table 1. The AMSE
of estimated coefficient functions and coefficient surface decreases as the sample
size increases. Models that use the corrected AIC (AICc) to select smoothing pa-
rameters have better performance when compared with models using AIC. Both
methods show satisfactory performance in terms of the mean squared error.
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FIG. 4. Mean estimated coefficient functions and mean estimated coefficient surface in Scenario 4
with a sample size of 600. True coefficient functions are denoted as solid lines. Dashed lines are
mean coefficient functions. Dotted lines are sample-based 95% point-wise confidence intervals

Figure 4 shows mean estimated coefficient functions and the mean estimated
coefficient surface under Scenario 4 with a sample size of 600. In the left panels,
the true coefficient functions are denoted by solid lines and the sample mean coef-
ficient functions are denoted by dashed lines. Dotted lines are sample-based 95%
point-wise confidence intervals. The estimated functions and surfaces are able to
capture the shape of the true functions and surfaces. Similar results were obtained
in the other three scenarios.

Another simulation study was conducted to assess the performance of the Wald
tests on the interaction effect and the coefficient functions discussed in Section 3.3.
A similar simulation setup was used except that no interaction term was included
when generating the data under all four scenarios. The empirical Type I error rates
of testing the null hypothesis of no interaction effect, that is, w3 = 0 or γ = 0,
were summarized in Table 2 with a sample size of 450 across 200 replications. In
Scenario 1 and Scenario 2, w1’s are flat zero lines, indicating no main effect from
exposure A. Therefore, hypothesis tests for the main effect of exposure A were
also performed under Scenario 1 and Scenario 2 by testing w1 = 0 or β1 = 0. The
results show that all empirical Type I error rates are close to the 0.05 nominal level
and the selection method using AIC has comparable performance to those using
AICc.



196 C. WANG, H. LIU AND S. GAO

TABLE 2
Empirical Type I errors of Wald tests with a sample size of 450 across 200 replications

Scenarios

Null hypothesis (Selection method) S1 S2 S3 S4

w3 = 0 (AIC) 0.06 0.07 0.05 0.03
w3 = 0 (AICc) 0.05 0.07 0.05 0.03
w1 = 0 (AIC) 0.06 0.04 – –
w1 = 0 (AICc) 0.06 0.04 – –

5. Application. In this section, we revisit the motivating example described
in Section 2 and apply the proposed model to the data set. Our primary interest is to
examine the effects of two classes of antidepressants (TCA and SSRI) on the risk
of CAD. We included only patients who started antidepressants after study enroll-
ment. For patients who started taking TCA or SSRI during follow-up, we redefined
study baseline as the time of the first antidepressant dispensing. Patients with diag-
noses of existing CAD [indicated by the International Classification of Diseases,
Ninth Revision (ICD-9) codes contained in inpatient, outpatient and emergency
room records] before initiating antidepressants were excluded. Incident CAD was
defined as any of the following events during the follow-up period: (a) acute my-
ocardial infarction (MI) indicated by ICD-10 codes as the cause of death (from Na-
tional Death Index); (b) first diagnosis of CAD by ICD-9 codes in EMR; or (c) the
first laboratory evidence of acute MI (Creatine kinase-myocardial band isoenzyme
value > 3.0 ng/ml or troponin value > 0.3 ug/L) in EMR. Time to event was cal-
culated as time to the first of the three CAD events defined above. Censoring time
was the last clinic visit time for those who were alive or time of death for deceased
patients without CAD. The analysis data set contained 297 subjects in total, with
160 patients taking TCAs exclusively, 93 patients taking SSRIs exclusively and
44 patients taking both. A total of 91 patients (30%) developed CAD during the
follow up.

We present patient demographic information in the three medication groups in
Table 3. Age at first dispensing is significantly different among the three patient
groups, and those in the SSRIs only group are on average older than the other
two groups. The group taking both TCAs and SSRIs included significantly fewer
African–American patients than the other two groups. Univariate Cox PH models
show that age is a risk factor for CAD. Therefore, we included both age at first
dispensing and race as covariates in our models. AICc was used as the criterion
to select smoothing parameters as suggested by simulation studies. A variety of
prespecified exposure time windows were examined. Penalized cubic B-splines
with 10 basis functions and cubic tensor product splines with 25 basis functions
were used for the estimation of coefficient functions (w1 and w2) and coefficient
surface (w3), respectively.
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TABLE 3
Comparison of demographic information among three groups. P -value is calculated using ANOVA

for continuous variables and Chi-square test for binary variables

SSRIs
(n = 93)

TCAs
(n = 160)

TCAs&SSRIs
(n = 44) P -value

Age at first serve Mean (SD) 73.62 (6.15) 70.21 (6.88) 69.73 (6.39) 0.0001
Years of education Mean (SD) 8.91 (2.67) 8.76 (2.83) 8.48 (3.45) 0.7094
Female (%) 80 (86.02) 120 (75) 35 (79.55) 0.1147
African–American (%) 69 (74.19) 115 (71.88) 24 (54.55) 0.0484
Smoke at any time (%) 31 (33.33) 69 (43.13) 16 (36.36) 0.2827
CAD Events (%) 27 (29.03) 53 (33.13) 11 (25) 0.5389

Table 4 presents coefficient estimates for the covariates and p-values obtained
from hypothesis tests for interaction and main effects under various prespecified
time windows (in months). For all the time windows considered, results from Wald
tests indicate that there is no interaction between TCAs and SSRIs. We also ob-
tained similar results with longer time intervals (results not shown). In all models,
we observed a marginally significant main effect for TCAs, but not for SSRIs. Fig-
ure 5 shows estimated coefficient functions for TCAs under various exposure time
intervals and under 12 months with a 95% bootstrap confidence band. All models
indicate that exposure to TCAs increases the risk of CAD. The largest influence
from TCAs exposure was consistently seen at around 3 months within event time,
implying the necessity of close monitoring after first initiate TCAs treatment.

6. Discussion. In this article, we proposed a penalized Cox PH model with
multiple functional covariates, interaction term and constraints on the coefficient
functions. In our proposed model framework, the coefficient function takes a flex-
ible form through the use of penalized splines, which provides a parsimonious
summary measure of both exposure time and intensity. The use of a penalized par-
tial likelihood method stabilizes parameter estimates and is less sensitive to the

TABLE 4
Estimates and P -values of hypothesis test of no interaction effect or no main effect under various

prespecified time intervals

Covariates estimates (P -value) P -values of hypothesis test
Time interval
(in month) African–American Age Interaction TCAs SSRIs

12 0.06 (0.79) 0.04 (0.01) 0.97 0.06 0.67
18 0.05 (0.83) 0.04 (0.01) 0.94 0.07 0.75
24 0.06 (0.80) 0.04 (0.01) 0.83 0.07 0.81
30 0.05 (0.83) 0.04 (0.01) 0.88 0.07 0.76
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FIG. 5. Left: estimated coefficient functions for TCAs under various prespecified time interval.
Right: estimated coefficient function for TCAs under 12 months with 95% bootstrap confidence band.

selection of knots. The inclusion of interactions in the models allows estimation
and inference on potential interactive effects from multiple classes of medications.
Potential interactions among multiple medications will be of particular interest
for the elderly population, as they may suffer from multiple chronic conditions
and many of these medication combinations had not been studied in randomized
clinical trials in the elderly. Our simulation studies demonstrate the adequate per-
formance of the proposed methods for parameter estimation as well as hypothesis
testing. Our proposed models can be readily applied to medication dispensing data
or other time-varying exposures to determine the association between multiple ex-
posures and time-to-event outcomes.

The models considered here have constraints at the right end of coefficient func-
tions for both scientific and model identification purposes. In a WCE model for a
single exposure, Sylvestre and Abrahamowicz (2009) imposed a similar constraint
by forcing the last two coefficients of basis functions to zero, leading to a loss
of degrees of freedom. Our proposed approach imposed the constraint through a
functional form, preserving the model’s degrees of freedom. In addition, with data
manipulation and formatting, our proposed models can be implemented in stan-
dard software packages, making the approach readily applicable to other studies.
Another significant development in our methods is the inclusion of potential in-
teractions among different medications. In aging studies involving patients with
multiple chronic conditions, most patients were found to be on multiple medica-
tions at any given period. Thus, it is important that statistical models take into
account all medications to which patients have been exposed so that potential risk
of adverse events can be detected.

For simplicity, we discussed only two time-varying exposures in this study.
When considering more than two medications, the model can be extended to



A PENALIZED COX PH MODEL WITH TIME-VARYING EXPOSURES 199

higher-order interactions analogously, such as three-way interactions with an in-
teraction surface w(s, t, u). It is likely that larger sample size will be needed to
estimate the interaction term and computational burden will increase due to the
increases in dimension [Fuchs, Scheipl and Greven (2015)]. Further study is re-
quired to implement the higher-order models more efficiently. A natural connec-
tion between penalized the Cox PH model and the frailty model has been observed
[Therneau, Grambsch and Pankratz (2003)]. In our proposed model, we used a
grid search to select smoothing parameters based on AIC and AICc. Thus, our
approach is computationally demanding, and the results depend on the intensity
of the grid search. An alternative approach is to consider the penalized parame-
ters as random effects in a frailty model framework, which may result in higher
computational efficiency. A limitation in our models is that the models force the
coefficient function to 0 at the end of the exposure window, regardless of whether
this is true or not. Obermeier et al. (2015) applied additional ridge penalties to
the spline coefficients, where smoothing parameters can be separately estimated
to very small values if the assumption of the coefficients approaching a null value
in the right tail is not met. It may be worthwhile to explore this new method in
modeling cumulative exposure data.

In summary, we proposed a penalized Cox PH model with multiple time-
varying exposures with potential interactions. The proposed methods performed
adequately in simulation studies. Electronic medication dispensing data have pro-
vided an ideal platform to apply our proposed methods to determine whether mul-
tiple long-term medication usages are associated with time-to-event outcomes.
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