
Role of SHP2 in Hematopoiesis and Leukemogenesis 

Ruchi Pandey1,2, Mallika Saxena1 and Reuben Kapur1,2,3,4 

Department of Pediatrics, Herman B Wells Center for Pediatric Research1; 

Department of Microbiology and Immunology2; Department of Medical and 

Molecular Genetics3; Department of Molecular Biology and Biochemistry4, 

Indiana University School of Medicine, Indianapolis, IN 46202, USA 

Corresponding Author: 

Reuben Kapur 

E-mail: rkapur@iupui.edu 

Phone: 317-274-4658 

Indiana University School of Medicine 

1044 W Walnut Street 

R4-168 

Indianapolis 

IN 46202 

USA 

Manuscript (Inc. Abstract and Key Words)

___________________________________________________________________

This is the author's manuscript of the article published in final edited form as:

Pandey, R., Saxena, M., & Kapur, R. (2017). Role of SHP2 in hematopoiesis and leukemogenesis. Current opinion in 
hematology. https://doi.org/10.1097/MOH.0000000000000345

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/141923312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1097/MOH.0000000000000345


Abstract 

Purpose of review: SH2 domain-containing tyrosine phosphatase 2 (SHP2), 

encoded by PTPN11 plays an important role in regulating signaling from cell 

surface receptor tyrosine kinases during normal development as well as 

oncogenesis. Herein we review recently discovered roles of SHP2 in normal and 

aberrant hematopoiesis along with novel strategies to target it. 

Recent findings: Cell autonomous role of SHP2 in normal hematopoiesis and 

leukemogenesis has been recognized for long. The review will discuss the newly 

discovered role of SHP2 in lineage specific differentiation. Recently, a non-cell 

autonomous role of oncogenic SHP2 has been reported in which activated SHP2 

was shown to alter the bone marrow microenvironment resulting in 

transformation of donor derived normal hematopoietic cells and development of 

myeloid malignancy. From being considered as an ‘undruggable’ target, recent 

development of allosteric inhibitor has made it possible to specifically target 

SHP2 in receptor tyrosine kinase driven malignancies. 

Summary: SHP2 has emerged as an attractive target for therapeutic targeting in 

hematological malignancies for its cell autonomous and micro-environmental 

effects. However a better understanding of the role of SHP2 in different 

hematopoietic lineages and its crosstalk with signaling pathways activated by 

other genetic lesions is required before the promise is realized in the clinic.  
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SH2 domain-containing tyrosine phosphatase 2 (SHP2), a non-receptor 

tyrosine phosphatase is encoded by PTPN11 gene. It is a positive regulator of 

signaling downstream of several receptor tyrosine kinases such as cKIT and 

FLT3 [1,2]. Recruitment of SHP2 to an activated receptor releases the self-

inhibitory conformation and leads to catalytic activation of its phosphatase 

domain. In addition to its function as a phosphatase, SHP2 also serves as a 

docking protein to recruit other signaling intermediates through the two amino 

terminus SH2 domains. Since SHP2 is a positive regulator of cellular signaling 

leading to proliferation, differentiation and survival, its constitutive activation is 

associated with oncogenesis. 

 

SHP2 in Hematopoiesis 

Normal hematopoietic development and homeostasis is maintained by cell 

to cell interactions between cells of the hematopoietic system and their 

surroundings as well as through soluble mediators that include growth factors, 

cytokines and chemokines. Collectively these factors constitute a complex niche 

in which hematopoietic stem cells reside and wherein their function is governed 

by both cell autonomous genetic programs and niche properties [3]. Given that 

SHP2 plays a role in signaling through multiple tyrosine kinases in response to 

different cytokines, deregulation of SHP2 has broad consequences on 

hematopoiesis [4,5]. Mouse models with conditional deletion of Ptpn11, the gene 

encoding SHP2 have conclusively established an indispensable role for SHP2 in 

regulating normal hematopoietic stem cell (HSC) function [6,7]. According to 



general consensus, SHP2 is a positive regulator of hematopoiesis and loss of 

SHP2 or decrease in its catalytic activity is associated with reduced stem and 

progenitor cell numbers and function. Reciprocal transplantation experiments 

have shown that the defects in HSC function due to loss of SHP2 are primarily 

cell autonomous with no significant involvement of the bone marrow 

microenvironment [6,7]. Likewise, in human CD34+ cord blood cells, knockdown 

of SHP2 has been associated with decrease in cell growth and colony formation 

[8]. A similar reduction in colony formation were observed upon expression of 

SHP2 with a point mutation, resulting in loss of phosphatase function in human 

CD34+ cord blood cells [9]. Conversely, a gain of phosphatase function mutant of 

SHP2 promoted colony formation in this study. Interestingly, expression of a 

phosphatase domain truncated version of SHP2 with adaptor function intact 

functioned in a dominant negative manner [9]. These mouse models and human 

cord blood studies indicate that phosphatase function of SHP2 is integral to 

normal HSC function.  

At the molecular level, modulation in the expression of transcription factors 

such as GATA2, C/EBP and induction of p53 independent apoptosis in the stem 

and progenitor cell compartment have been implicated in deregulation of HSC 

number and function in response to loss of SHP2 [6,7]. Thus far, downregulation 

of the Ras- extracellular regulated kinase (ERK) signaling axis in the absence of 

SHP2 is considered as the major mediator of the above described molecular 

changes. Recently RUNX1, a master regulator of hematopoiesis, has been 

identified as a direct target of SHP2 phosphatase activity [10]. In the progenitor 



cells, RUNX1 is phosphorylated by Src family kinases (SFK) and removal of this 

phosphorylation by SHP2 is required during megakaryocyte differentiation [10]. 

The dephosphorylation of RUNX1 enabled its association with the transcription 

factors such as GATA1 and SWI/SNF chromatin remodeling complex for 

execution of megakaryocyte terminal differentiation program (Figure 1) [10]. 

Consistent with these findings, conditional deletion of Ptpn11 in megakaryocyte 

lineage cells is associated with suppression of thrombopoietin and integrin 

signaling, reduction in proplatelets and development of macrothrombocytopenia 

[11]. In addition to the megakaryocyte lineage, dephosphorylation of RUNX1 is 

also required for differentiation of T cells into CD8+ single positive cells [10]. 

Thymocytes with deletion of Ptpn11 show increase in RUNX1 phosphorylation 

and defects in the development of CD8+ cells [10]. Thus SHP2 plays an 

important role in regulating the transcriptional activity of RUNX1 during cellular 

differentiation through its phosphatase activity. Level of RUNX1 activity then 

determines the differentiation of the progenitor cells along either megakaryocyte 

or erythroid lineage. While RUNX1 promotes development of megakaryocytes, 

inhibits erythroid development through repression of KLF1 [12]. 

In line with this, expression of oncogenic Ptpn11 that is constitutively 

active blocks erythrocyte differentiation and maturation suggesting that 

downregulation of SHP2 activity is required for erythrocyte differentiation [13]. 

Interestingly, a similar block in erythrocyte differentiation was observed as a 

result of loss of SHP2 activity in the context of phosphatase and tensin homolog 

(PTEN) deficiency [14]. Contrasting results have been reported on the role of 



MAPK\ERK activation in erythropoiesis due to loss or gain of function of SHP2. In 

one study, MEK inhibitor U0126 inhibited the hyperproliferation of erythroblasts 

[13] while the other study using trametinib, another MEK inhibitor, phenocopied 

the loss of SHP2 mediated defect in erythropoiesis [14]. It is possible that these 

differences are due to off target effects of the different MEK inhibitors used in the 

two studies. Further studies are needed to clarify these contradictory 

observations and further clarify the role SHP2/ ERK axis in erythropoiesis. These 

cell lineage specific functions of SHP2 are going to be valuable while designing 

strategies to target SHP2 in hematological malignancies. 

 

SHP2 in Leukemogenesis 

SHP2 is the first phosphatase to be recognized as a bonafide oncogene. 

Constitutive activation of SHP2 in the hematopoietic stem and progenitor 

compartment due to point mutations in its N-terminus SH2 domain results in the 

development of cell autonomous leukemia in different cell lineages independent 

of the stage of differentiation [15]. In addition to the hematopoietic compartment, 

PTPN11 has been recognized as an oncogene in 41 different cancer types with 

Q510, A72, E76 and G503 identified as hotspots of mutation in a panel of 119 

tumors [16]. Interestingly, all these mutations have a positive impact on the 

phosphatase activity of SHP2 through either reducing regulatory N-SH2 domain 

(A72, E76) interaction with the catalytic domain or alter the active site (G503, 

Q510) [17,18]. Mutations in PTPN11 that lead to alterations in the catalytic 

activity of SHP2 have been implicated in pathogenesis of Noonan syndrome 



(NS), Leopard syndrome (LS) and juvenile myelomonocytic leukemia (JMML) 

[4,5]. PTPN11 is also frequently mutated in secondary acute myeloid leukemia 

(AML) [19], relapsed pediatric AML [20] and acute lymphoblastic leukemia (ALL) 

[21]. The frequency of PTPN11 mutations in AML is higher in patients older than 

60yrs [22] and also has prognostic significance. Secondary AML patients 

carrying mutations in PTPN11 show rapid disease progression and reduced 

overall survival [19]. In AML, PTPN11G503A mutation has been reported to co-

occur with mixed lineage leukemia (MLL) translocation, MLL-AF10. In a mouse 

model co-expression of MLL-AF10 and PTPN11G503A resulted in accelerated 

disease development as compared to MLL-AF10 alone [23]. Increase in leukemia 

stem cell frequency along with rapid AML development is also seen when 

Ptpn11E76K is co-expressed with MLL-AF9 fusion oncogene [24]. In presence of 

mutant PTPN11, the leukemic cells show increase in the transcription of colony 

stimulating factor 1 (Csf1) and secretion of macrophage colony stimulating factor 

(M-CSF) resulting in enhanced differentiation of HSCs into myeloid lineage cells 

[23]. Although co-expression of MLL-AF9 with constitutively active SHP2 does 

not alter the expression of Meis1 or HoxA9 [24], it can reverse cytokine induced 

tyrosine phosphorylation of HoxA9 and HoxA10 leading to sustained expression 

of CDX4, a homeodomain transcription factor (Figure 2) [25]. During normal 

myelopoiesis CDX4 is downregulated as HSCs differentiate into myeloid cells. 

Thus its sustained high expression would inhibit differentiation and contribute to 

more stem cell like phenotype of leukemic cells. AML cells co-expressing mutant 

Ptpn11 with MLL fusion oncogenes are also more resistant to Mcl-1 inhibitor and 



daunorubicin [23,24]. These studies provide insights into how co-existence of 

PTPN11 mutations can alter disease progression and drug resistance.  

Recent studies have shed novel light on our understanding of the non-cell 

autonomous role of constitutively active SHP2 in leukemogenesis. Bone marrow 

transplant recipients are known to develop donor cell derived secondary 

leukemia. One of the contributing factor resulting in this observation likely relates 

to the oncogenic signaling initiated by the microenvironment [3,26]. The 

microenvironment induced leukemogenic effects could be a result of the 

presence of genetic aberrations in the microenvironmental cells or modulation of 

the niche by leukemic cells [3,26]. Dong et al [27] have shown that expression of 

Noonan syndrome associated leukemogenic Ptpn11 mutations in mesenchymal 

stem and osteoprogenitor cells can modulate chemokine and cytokine secretion 

resulting in a favorable environment for recruitment of monocytes to the HSC 

niche (Figure 3). The inflammatory nature of such modified stem cell niche 

promotes myeloid hyperproliferation and development of donor derived 

myeloproliferative neoplasm (MPN). Using conditional activation of leukemogenic 

Ptpn11, authors demonstrated that donor cell derived MPN was observed only 

when the mutant Ptpn11 was expressed in mesenchymal stem and bone 

progenitor cells [27]. Expression of mutant Ptpn11 in more differentiated cells 

such as osteoblasts or endothelial cells did not induce donor derived MPN. In 

addition, antagonist of CCL3 receptor mitigated development of donor derived 

MPN confirming the pivotal role of modulation of secreted factors in driving 

cellular transformation. These studies underline the importance of targeting the 



alterations in the microenvironment for successful therapy of diseases involving 

germline PTPN11 mutations.   

 

Targeting SHP2 in Hematological Malignancy 

Targeting the aberrant signaling through tyrosine kinase inhibitors (TKI) 

led to initial success but subsequent acquisition of resistance to TKI due to 

additional mutations has been a major challenge in the long-term management of 

these malignancies [28,29]. Therefore, efforts have shifted to target further 

downstream mediators of the oncogenic signals [29]. While constitutively active 

SHP2 leads to the development of hematological malignancies such as JMML, 

wild type SHP2 is required by oncogenic tyrosine kinases for cellular 

transformation [30-32]. Thus, SHP2 has emerged as a therapeutic target not only 

for diseases involving PTPN11 mutations but also in malignancies driven by 

receptor tyrosine kinases such as AML, MPN. However, traditionally 

phosphatases have been considered as undruggable in part due to the inability 

to efficiently and selectively target their catalytic site with cell permeable small 

molecule inhibitors [33]. Protein phosphatases have highly conserved residues 

around catalytic sites, and therefore attaining selectivity has been a formidable 

challenge. Over the course of last several years, efforts have been made to 

develop inhibitors of SHP2 for clinical use based on their activity in vitro and in 

vivo [34]. However, despite promising pre-clinical results, little progress has been 

made in translating these findings into clinic. Thus far, only one SHP2 inhibitor, 

Sodium Stibogluconate (SB), also known as Pentostam has entered clinical 



trials. It is one of the first known compounds to irreversibly inhibit SHP2 along 

with related phosphatases such as SHP1 and PTP1B in hematopoietic cells [35]. 

Phase I/II clinical trials were conducted with co-administration of SB with IFN- 

α2B in advanced cancers and melanoma with or without chemotherapy 

(NCT00629200 and NCT00498979). Though the drug combination was well 

tolerated in patients with decrease in target phosphoproteins in peripheral blood; 

but no objective disease regression was observed in any of the patients [36].  

Development of allosteric inhibitors has been a major step in overcoming 

non-specificity in targeting phosphatases. Since allosteric inhibitors do not bind to 

the catalytic site, they can be targeted to the non-conserved domains of the 

protein to alter the active site structure and function. The pharmaceutical 

company, Novartis has recently been successful in identifying a small molecule 

allosteric inhibitor of SHP2 from a library of compounds [37,38]. SHP099, 

obtained after a series of optimization steps, is a potent, orally bioavailable 

allosteric inhibitor of SHP2 that selectively inhibits the proliferation of receptor 

tyrosine kinase driven cancer cell lines in vitro without impacting BRAF or KRAS 

driven cancer cells [38]. SHP099 was also shown to be effective in vivo models 

of tumor xenograft including in AML model. Inhibition of growth of cancer cells 

correlated with the ability of SHP099 to downregulate ERK signaling pathway 

with no significant impact on the phosphatidylinositol-3-kinase (PI3K)/AKT 

pathway. Interestingly, SHP099 was as effective as the FDA approved EGFR 

tyrosine kinase inhibitor, Erlotinib in inhibiting activation of ERK and tumor growth 

in xenograft models [38]. Additionally, negligible activity against a broad panel of 



phosphatases, kinases and other potential off target effectors strongly suggest 

that SHP099 is highly specific for SHP2 [38]. However, it still remains to be seen 

whether allosteric inhibition will be as successful against leukemogenic SHP2 

wherein the self-inhibitory state is perturbed. In addition to the chemically 

synthesized inhibitors, recently Fumosorinone (Fumos) has been isolated from 

entomogenous fungi and characterized as an effective inhibitor of SHP2 [39]. 

Similar to SHP099, Fumos showed significant inhibition of the RAS/ERK pathway 

downstream of EGFR but was ineffective in the presence of oncogenic RAS or 

phorbol myristate acetate (PMA) [39]. With the development and availability of 

such specific and potent inhibitors of SHP2, the likelihood of moving these drugs 

in clinic seems imminent.  

Some unintended consequences in non-myeloid lineage cells due to 

targeting SHP2 for myeloid malignancies have also been described. Zhu and 

colleagues [14] have shown that inhibition of SHP2 using either a genetic or a 

chemical approach though successful in ameliorating myeloid cell 

hyperproliferation induced by loss of PTEN, appeared to have a negative impact 

on red blood cells (RBC), resulting in anemia and shortened overall life span. In 

these studies, a similar effect was observed when mice were treated with MEK 

inhibitor, trametinib highlighting the differential role of the MEK/ERK pathway in 

myeloid versus erythroid lineages. While proliferation was suppressed in myeloid 

lineage cells; in the erythroid progenitor cells differentiation into mature RBCs 

was blocked [14]. Interestingly, treatment with antioxidants partially rescued 

these mice from development of anemia by extending the lifespan of erythrocytes 



but had no significant impact on differentiation of erythroblasts [14]. Though the 

molecular mechanisms for the differential impact of inhibition of Shp2/MEK/ERK 

on myeloid versus erythroid lineage cells are not clear, AKT 

hyperphosphorylation may be one of the factors. AKT phosphorylation is 

abrogated in myeloid cells due to loss of SHP2 in the context of PTEN deficiency; 

however it remained elevated in TER119+ erythroblasts [14]. Therefore, it may be 

essential to investigate the impact of SHP2 inhibition in cells that are not 

intended to be targeted especially in the context of additional genetic aberrations 

present. These deleterious effects on erythroid lineage were not observed by 

loss of SHP2 alone but only in the presence of concurrent loss of PTEN and 

SHP2.  To this end, PI3K/AKT inhibitors are being actively pursued in pre-clinical 

and clinical trials in various hematological malignancies [40]. Association of 

GAB2 with mutant SHP2 can also activate the PI3K/AKT/mTOR pathway and 

inhibition of mTOR by rapamycin ameliorates myeloid cell expansion [41]. Similar 

results have been shown with inactivation of the PI3K catalytic unit p110δ or the 

regulatory unit coded by Pik3r1 in oncogenic Ptpn11 dependent model of JMML 

[42,43]. In these studies, hypersensitivity to GM-CSF is lost in the absence of 

activation of the PI3K/AKT pathway. Consistent with these observations, a 

combination of SHP2 inhibitor IIB08 and PI3K inhibitor, LY294002 shows 

synergism in inhibiting cell proliferation and prolonging survival in receptor 

tyrosine kinase driven lung carcinoma and MPN models [30,44]. Similar benefits 

of combined targeting have been observed in vitro with SHP2 inhibitor, IIB08 and 

SYK inhibitor R406 through their effects on STAT5 pathway in FLT3-ITD AML 



cells [45]. With the availability of newer more specific, potent and well tolerated 

SHP2 inhibitor such as SHP009, it should be possible to further explore the 

combinations that give best effect with least toxicity and off target effects in 

hematological malignancies.  

 

In conclusion, SHP2 is a crucial node for integration of signals from 

different cell surface receptors with all the major cellular signaling pathways 

within the cells. Therefore, while aberrant activation of SHP2 triggers activation of 

signaling pathways leading to the development of hematological malignancies; it 

also provides a vulnerable therapeutic target. However, given its ubiquitous 

expression and functional role in different tissues and organs further studies are 

needed before SHP2 targeted therapeutics enter the clinic.   

 

Key points 

 PTPN11 mutations are frequently present in hematological malignancies 

and carry prognostic significance. 

 Constitutive activation of SHP2 has both cell autonomous and non-cell 

autonomous role in pathogenesis of myeloid hyperproliferation. 

 Highly selective small molecule allosteric SHP2 inhibitor, SHP099 is 

effective in suppressing growth of receptor tyrosine kinase driven tumor 

cells both in vitro and in vivo. 
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Legends to figures 
 
Figure 1: SHP2 regulates RUNX1 interaction with GATA1 and SWI/SNF 

chromatin remodeling complex during megakaryocyte and T cell differentiation. 

The auto-inhibitory domain of RUNX1 is phosphorylated by SFK in progenitor 

cells and is dephosphorylated by SHP2. 

 

Figure 2:  Constitutive activation of SHP2 suppresses the phosphorylation of 

HoxA9 in response to differentiation inducing cytokines during myelopoiesis. This 

leads to increased expression of CDX4 transcription factor and block in 

differentiation. 

 

Figure 3: Expression of mutant Ptpn11 in MSC and osteo-progenitor cells leads 

to donor cell derived myeloproliferation. Mutant Ptpn11 expressing MSC and 

osteo-progenitor cells have increased secretion of chemokine, CCL3 which 

recruits inflammatory IL-

changes in the niche contribute to loss of HSC quiescence and increased 

myeloid lineage commitment. 
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