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Abstract: In semiparametric and nonparametric statistical inference, the asymptotic nor-
mality of estimators has been widely established when they are \/n-consistent. In many
applications, nonparametric estimators are not able to achieve this rate. We have a result
on the asymptotic normality of nonparametric M-estimators that can be used if the rate
of convergence of an estimator is n=/2 or slower. We apply this to study the asymptotic
distribution of sieve estimators of functionals of a mean function from a counting process,
and develop nonparametric tests for the problem of treatment comparison with panel count
data. The test statistics are constructed with spline likelihood estimators instead of non-
parametric likelihood estimators. The new tests have a more general and simpler structure
and are easy to implement. Simulation studies show that the proposed tests perform well
even for small sample sizes. We find that a new test is always powerful for all the situations

considered and is thus robust. For illustration, a data analysis example is provided.
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1 Introduction

Weak convergence theory and empirical theory (van der Vaart and Wellner (1996)) have been
widely used to study the asymptotic properties of estimators in semiparametric and nonpara-

/2 the asymptotic distribution

metric models. When the convergence rate of estimators is n™
of the estimators can be derived by using the weak convergence theorem on Z-estimators
(van der Vaart and Wellner (1996, page 310)). For example, Zeng, Lin, and Yin (2005) and
Zeng and Lin (2006, 2007) obtained the desired asymptotic normality of the estimators for
the proportional odds model and the semiparametric transformation models by verifying the
conditions of Theorem 3.3.1 of van der Vaart and Wellner (1996). When the convergence
rate is slower than n~/2, for example, the convergence rates of nonparametric maximum
likelihood estimators of cumulative distribution functions based on interval-censored data
are n~/® (Groeneboom and Wellner (1992)), this theorem is no longer applicable. For such
situations, it is difficult to derive the asymptotic distribution of nonparametric estimators.
Zhang (2006) and Balakrishnan and Zhao (2009) investigated the asymptotic normality of
functionals of the nonparametric maximum pseudo-likelihood and likelihood estimators for
panel count data. We have a general theorem dealing with the asymptotic normality of non-
parametric M-estimators and we apply this to panel count models as illustrative examples.

For the nonparametric inference of panel count data, several estimation and testing meth-
ods have been developed. Sun and Kalbfeisch (1995), Wellner and Zhang (2000), Lu, Zhang,
and Huang (2007), and Hu, Lagakos, and Lockhart (2009a, b) studied the nonparametric
estimation of the mean function of the underlying counting process with panel count data by

using isotonic regression techniques, the likelihood approach, the spline likelihood approach,
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the estimating equation approach, and the generalized least squares method, respectively;
Thall and Lachin (1988), Sun and Fang (2003), Zhang (2006), and Balakrishnan and Zhao
(2009) presented some nonparametric tests for nonparametric comparison of mean function
of counting process with panel count data. For a comprehensive review about the analysis
of panel count data, see Sun and Zhao (2013).

Lu, Zhang, and Huang (2007, 2009) showed that the spline likelihood estimators have

~1/2 but faster than n~Y?, and are more efficient both

a convergence rate slower than n
statistically and computationally than the nonparametric maximum likelihood estimators in
simulations. In this paper, we explore asymptotic normality of functionals of spline likelihood
estimators of mean functions, and propose some new nonparametric tests based on them to
compare with existing tests for the nonparametric comparison of counting processes with
panel count data.

The remainder of the article is organized as follows. In Section 2, we present a general
theorem regarding the asymptotic normality of nonparametric M-estimators. In Section 3,
we briefly review the nonparametric spline-based likelihood estimators for panel count data
and establish the asymptotic normality of their functionals. Section 4 presents two classes of
nonparametric test statistics for comparing two treatment groups with respect to their mean
functions. The asymptotic normality of the proposed test statistics are established. Section
5 reports some simulation results to assess the finite-sample properties of the proposed
test procedure and to compare them with the tests based on the nonparametric likelihood
estimators. A data analysis example is provided in Section 6. Section 7 contains some

concluding remarks. The proofs of theorems are given in the Supplementary Materials

available at the Statistica Sinica journal website.
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2 Asymptotic Distributional Theory of Nonparametric

M-Estimators

Suppose X = (Xi,...,X,) is a random sample taken from the distribution of X, and
(A X) = >0 m(A; X;) is an objective function based on X, where A is an unknown

function in the class F. Let F,, be the sieve parameter space satisfying
FunCFp1 C---CF, forn>1.

Assume that A, is the estimator of Ay that maximizes l,(A; X) with respect to F,.
Suppose A, is a parametric path in F through A, A, € F and A,|,—0 = A. Let H = {h:
h = % n=0} and [*°(H) be the space of bounded functionals on H under the supermum

norm || f||ec = suppey | f(h)|. For h € H, we define a sequence of maps G, of a neighborhood

of Ay, denoted by U, in the parameter space for A into [*°(H) by

%MM]ZH”%MMXmﬂ
= _1Z—m/\ X))o
= Puyp(A; X)[n],

and take G(A)[h] = Py(A; X)[h], where P and P, denote the probability measure and
empirical measure with Pf = [ fdP and P,f =n~'Y ", f(X;), respectively.

To establish the asymptotic normality, we need the following conditions.

AL V(G — Q) (AR — V(G — G)(Ao) ] = 0,(1).

A2. G(Ao)[h] = 0 and G, (A,)[R] = 0,(n~1/?).
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A3. /n(G, — G)(Ao)[h] converges in distribution to a tight Gaussian process on I*°(H,.).
A4. G(A)[h] is Fréchet-differentiable at Ay with a continuous derivative Gy, [h].
A5, G(AR)[A] = G(Ao)[h] = Gag(Ay — Ao)[h] = 0p(n7172).

Theorem 2.1 If A1-A5 hold, then for any h € H,

—VnGiay (A = Do) [h] = V(G — G)(Ao)[h] + 0,(1).

REMARK 1. The above theorem does not require the A, be \/n-consistent, while the
conditions stated in Theorem 3.3.1 of van der Vaart and Wellner (1996) imply that the

estimator has the usual convergence rate n=/2.

REMARK 2. Assumptions A2-A4 are the analytical conditions given in Theorem 3.3.1
of van der Vaart and Wellner (1996). Assumptions Al and A5 require the remainder in a
Taylor expansion be negligible; they are weaker than those required by van der Vaart and

Wellner (1996).

The theorem can be widely used to establish the asymptotic normality of nonparametric

1/2

estimators no matter whether the rate of convergence is n="/=, or is slower. We focus on

counting process models with panel count data to illustrate applications of the theorem.
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3 Asymptotic Normality of Functionals of Nonpara-
metric Spline-based Likelihood Estimators for Panel

Count Data

3.1 Nonparametric Spline-based Likelihood Estimation

Consider a recurrent event study that consists of n independent subjects and let N;(¢) denote
the number of occurrences of the recurrent event of interest before or at time ¢ for subject <.
For subject i, suppose that N;(-) is observed only at finite time points Tg, 1 < -+ < Tk, k;, <
7, where K; denotes the potential number of observation times, ¢ = 1,...,n, and 7 is the
length of the study.

In the following, we assume that (K;; Tk, 1, ..., Tk, k,) are independent of the counting pro-
cesses N;’s. Let X = (K, T,N), where T = (Tk 1, ..., Tk ) and N = (N(Tx 1), ..., N(Tk x))-
Then { X; = (K;, T;,N;), i =1,...,n} is a random sample of size n from the distribution of
X, where T; = (Tk, 1, Tr, ;) and N; = (N; (T, 1) - -, Ni(Tk, k,))-

Suppose that for each subject, N;(¢) is a non-homogeneous Poisson process with the mean

function A(t). The log pseudo-likelihood and the log-likelihood functions for A are

(A Zi Ni(Ti ;) log {A(Tie. )} — MTx))]
M) = 303 (AN Tk, ) log (AA(Ti )} — AA(Ti)]

after omitting the parts independent of A, where Ty,o = 0, AATk, ;) = ATk, ;) —



Statistica Sinica: Preprint
do0i:10.5705/s5.202014.0021

ATy, j-1), and AN;(Tk, ;) = Ni(Tk, ;) — Ni(Tk, j-1)-

For estimation of the smooth function A (), we use B-spline function approximation (Lu,

Zhang, and Huang (2007)). Let 7 = {s;,i =1,...,m, + 2}, with
To=81=""=8 <841 < " <Smptl <Smy+i+1 = " = S, 420 = T,

be a sequence of knots that partition |1, 7] into m,, + 1 subintervals I; = [s;4;, S;1441], for
1 =20,1,...,m,. Let ®, be the class of polynomial splines of order [ > 1 with the knot
sequence 7. Then @, can be linearly spanned by the normalized B-spline basis functions

{Bi,i=1,...,04,} with ¢, = m, + [ (Schumaker (1981)). Define a subclass of ®,,,

qn
_{ZOJZ'BiSOSOdlg"'SOéqn}.
i=1

Following Lu, Zhang and Huang (2007), the estimators /A\ﬁs and A, are the values that
maximize [?*(A) and [,(A) with respect to A € ¥,,, respectively.
We denote the spline pseudo-likelihood and spline likelihood estimators of A by Ai’f =

I A B, and A, " GinB;.

3.2 Asymptotic Normality

Let B denote the collection of Borel sets in R, and let By ;) = {BN|0, 7] : B € B}. Following

Wellner and Zhang (2000), define measures p1 and i as follows: for B, By, By € B -,

m(B) = Y P(K=k)> P(Ty; € BIK =k)

k=1 j=1

K
—E{ ITKJEB}
j=

[y
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0o k
pa(Bi x By) = > {P(K =k)> P(Tyj-1 € B, Th; € Bo| K = k)}
j=1

Define the Ly-metrics d; and dy as

d(Ar, Ay) = {/|A1 |dm<>}l/2,
aher) ={ [ [ It >>—<A2<u>—A2<v>>|2du2<u,v>}l/2.

To establish the asymptotic properties of the estimators, we need the following regularity

conditions.

C1.

C2.

C3.

C4.

C5.

C6.

C7.

The maximum spacing of the knots, A = max;i1<j<m,+1+1|5i — si—1] = O(n™") with
my, = O(n¥) for 0 < v < 0.5. There exists a constant M > 0 such that A/6 < M

uniformly in n, where 0 = ming1<i<m, +i+1 |5i — Si—1|-

The true mean function Ag is a nondecreasing function over [0, 7] with A(0) = 0, with

a bounded rth derivative in [0, 7] for > 1, and A{(t) > ag for some ag € (0, 00).
There exists a positive integer Ky such that P(K < Kj)=1.
For some positive constant kg, Elexp{koN(7)}] < oc.

PN {Tk; € [r0,7]}) = 1 with 70 > 0, Ag(70) > 0, and Ag(7) < M, for some constant

My > 0.
w1(m0) > 0, and for all 7o < 7 < 7o < 7, p1((m1,72)) > 0.

There exists a positive constant sy such that P(min;<j<x{Tx; — Tk j-1} > So) = L.
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C8. py is absolutely continuous with respect to Lebesgue measure, with derivative ;.
C9. ps is absolutely continuous with respect to Lebesgue measure, with derivative jis.
C10. If with probability 1, h(Tk ;) =0,j =1,..., K for some h, then h = 0.

Conditions C1-C5 and C7 are required by Lu, Zhang and Huang (2007); condition C6 is
required by Balakrishnan and Zhao (2009). Conditions C8 and C9 are similar to C11 in

Wellner and Zhang (2007). Condition C10 is needed for identifiability of the model.
Theorem 3.1 Suppose C1-C6 and C10 hold, and let
H, = {g(): 197V (s) — g" V()| < cols — t| for all 7y < s,t < T},
where gV s the (r — 1)th derivative function of g, and cq is a constant.
(i) If C8 holds, then for h € H,,
Vit [ (Ra2(0) = Aafe)}dh(®) 4 N(0.02,), (31)
where 012;3 is given at (S2.4) of Supplementary Materials.
(i1) If C7 and C9 hold, then for h € H,,
Vit [ {(Ra(®) = Aa(®)}dh(t) >4 N(0.0°), (3.2

where o? is given at (52.7) of Supplementary Materials.

Corollary 3.1 Suppose the conditions in Theorem 3.1 hold.

(1)
vn / h(t)wdm(t) —4 N(0,0?), (3.3)

9
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where h € H,., and

K

N(Txs) = Mo(Tiey) |
> h(Ties) TS (3.)

ol =F

j=1

(i)

b {An(w) = An(v)} = {Ao(u) — Ao(v)} o
Vit [ () = n(w)} e wY o ()
—q N(0,02), (3.5)
where h € H,., and
02=F ZAh(TK,j)AN (TZXO?Tij;O(TK’j) : (3.6)

REMARK 3. These results can be used to construct new tests for the problem of multi-

sample nonparametric comparison of counting processes with panel count data.

REMARK 4. We can show that under some regularity conditions, (3.1)-(3.6) hold for the

two nonparametric likelihood-based estimators proposed by Wellner and Zhang (2000).

4 Nonparametric Two-sample Tests

Consider a longitudinal study with some recurrent event and n independent subjects from
two groups, n; in the [th group with n;+ns = n. Let N;(t) denote the counting process arising
from subject ¢ and A;(¢) denote the mean function of the counting process corresponding to
group [, [ = 1,2. Here, the problem of interest is to test the null hypothesis Hy : Ai(t) =
As(t). Suppose subject ¢ is observed only at distinct time points 0 < Tk, ; < --- < Tk, k,

and that no information is available about N;(t) between them.

10
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Let Af * and A; denote the spline pseudo-likelihood and spline likelihood estimators of
A; based on samples from all the subjects in the Ith group. Let Ay(t) denote the common
mean function of the N;(t)’s under Hy, and let A?® and Ay be the spline pseudo-likelihood
and spline likelihood estimators of Ay based on the pooled data. Clearly, u(t) and ps(u,v)

can be consistently estimated by

n K;
1 K
[l = — <
() = 253 rme, <),
=1 j=1
1 n Ki
/12(% U) = E [(Tszjfl < UﬁTKi,j < u)v
i=1 j=1

respectively.

To test the hypothesis Hy, Zhang (2006) and Balakrishnan and Zhao (2009) proposed to

use the two statistics

Uy = /i /O Wt gt (6) = A () Vs (1),

vn

n K;—1
1 Z A
Upz = —= [ Wi (T, ) Momie (T, 5)

i=1

" AN ie(Tx, 1) _ AN (T, 5)
ANomie(Tr; j+1)  ANomie(Tk, ;)

. (AAZmle(TKi,j-i-l) N AA2,mle(TKi,j)> }

AA/A\O,mle (TKi,j+1) A/A\O,mle (TKi,j)
+Wo(Tk, k, )]\O,mle (Tk, k)

i AA1 e (Tx, k) (4 ANy ie(Ti, )
AAO,mle(TKi,Ki) AAO,mle<TKi,Ki) 7

where W, (t) is a bounded weight process, /A\l,mple and /A\l,mle denote the maximum pseudo-

likelihood and maximum likelihood estimators of A; based on samples from all the subjects
in the [th group, and AO,mle denotes the maximum likelihood estimator of Ay based on the

11
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pooled data. We propose the two test statistics

AP(H) — AR()
[\gs(t) d:ul(t)

vr = va [

n K ~ A~
1 ’ AP (Ty, ;) — A2 (Tx.;)
— . hpS T w 1 zJ 2 5] ,
Vi 2 2 M) )

i=1 j=1

{A(u) — Ay ()} = {As(u) — Ay(0)}
U, = n hp(w) — hy (v - = dfig(u, v
\/_/{ ( ) ( )} {Ao(u)—Ao(v)} M( )

n K; N A

1 - AN (Tk, ;) — AN (Tk, ;)

- — Ahy(Tx, ; b ),
ﬁZZ{ (Tris)} AN )

i=1 j=1

where hP5(t) and h,(t) are bounded weight processes. For the propose of comparison, we
consider three choices of the weight processes h2*(t) and hy(t): hP5(t) = AL*(t) ) (t) and
ha(t) = Ag)WF (1), where WO () = 1, WP(t) = 1, I(t < Tk, x,), and WP () =
1- w2 = Yon, I(t > Tk, k,). Other choices of weight processes can be made. For
example, if we take hy, (t) = {Ag(t)}2, the structure of UP* is similar to Uy, while the structure
of U,, is much simpler than that of Ugy.

Theorem 4.1 Suppose the conditions of Theorem 8.1 hold. Suppose that h,(t)’s are

bounded weight processes and that there ezists a bounded function h(t) such that h € H,, and

1/2

[t woan®] = o),
0
If ny/n — p asn — oo, where 0 < p < 1, then, under Hy : Ay = Ay = Ay,

(i) UP* has an asymptotic normal distribution N(0,02,), where

11
2 _ (1 2
Ups_(p+1—p)al

with o3 as given as (3.4);

12
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(ii) U, has an asymptotic normal distribution N(0,0?), where

11
2 - 2
7 _(p+1—p>02

with o3 as given as (3.6);

(iii) If

max F
1<i<n

z: {7 (T, 5) — h(TKi,j)}Ql — 0,

Jj=1

then o2, o2 can be consistently estimated by

n K; A &
1 ; Ni(Tx. ;) — AP (Ti.)
2 E E 1 5] 0 5]
= — h?’L T . g ~ Y
T i1 L=1 ic) AY (T, 5)
1 <n [ & AN;(Tx, ;) — AAo(Tk, ;) i
o VAN (T, 5) — Aho(Tk, 5 :
o5 = - ;:1 ]E:l Ahy,(Tk, ;) AAO(TKi’j) , respectively.

REMARK 5. For the asymptotic normality of the proposed test statistics, we do not need
the condition that ho A;' is a bounded Lipschitz function as required by Zhang (2006) and

Balakrishnan and Zhao (2009).

REMARK 6. We can show that, under some regularity conditions, (i)-(iii) hold if the
spline pseudo-likelihood and spline likelihood estimators in the expression of U?* and U, are
replaced with the nonparametric maximum pseudo-likelihood and nonparametric maximum

likelihood estimators proposed by Wellner and Zhang (2000), respectively.

5 Simulation Study

We conducted a simulation study to investigate the finite-sample properties of the proposed

test statistics and to make comparisons with those of the tests presented by Zhang (2006)

13
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and Balakrishnan and Zhao (2009). We let 7% = U?*/6,, and T' = U,,/&, where

1/2
. noon\ .
{2
ny N2
and UP*, U,, and 67 be as given in Section 4. By Theorem 4.1, the null hypothesis can
be tested by T?° and T, which have asymptotic standard normal distributions. For the
generation of panel count data, denoted by {k;,t;;,n;j,7 = 1,...,k;,i = 1,...,n}, we first
generated the number of observation times k; from the uniform distribution U{1,...,10},
and then, given k;, we took the observation times ¢;;’s to be the order statistics of a random
sample of size k; drawn from U{1,...,12}. To generate the n;;’s, we assumed that, given
a nonnegative random variable 7;, N;(t) is a Poisson process with mean function A;(t|y;) =
E(N;(t)|v:). Let S; denote the set of indices for subjects in group /, I = 1, 2. For comparison,

we considered cases representing two patterns of the mean functions:
CASE 1. A(t]y;) = st for i € Sy, Ai(t) = it exp(f) for i € Ss.
CASE 2. Az(th/z) = ")/lt fori e Sl, Al(t) = ’)/i\/ﬁt for ¢ € 52.

As shown in Figures 1-2 of Balakrishnan and Zhao (2009), the two mean functions do
not overlap in Case 1 and they cross over in Case 2.

For each case, we took v; = 1 and ~; ~ Gamma(2,1/2) corresponding to Poisson and
mixed Poisson processes, respectively. For each setting, we took n; = 30,n, = 50 and
ny = 50,n5 = 70. We considered the weight processes Y’ (t) = Ao(t) 7(/‘)(75), j=1,2,3 with

1
wht) =1, W@ = EZ I(t < tg,), and

i=1

14
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n

1
WT(L3) (t) - ﬁ Z I(t > tki,ki)7

=1

and Al (t) = {Ao(t)}?, denoting the corresponding tests by T} with LY (j =1,2,3,4) and
Tpz; with W, ( = 1,2,3). Here, the nonparametric maximum likelihood estimators Al,mlea
/A\O,mle were computed by using the modified iterative convex minorant algorithm in Wellner
and Zhang (2000); the spline likelihood estimators A; and Ay were computed by using the
algorithm in Lu, Zhang and Huang (2007). The results reported here are based on 1000
Monte Carlo replications using R software.

Tables 1 and 2 present the estimated sizes and powers of the proposed test statistics
T;’s and Tpz;’s (Balakrishnan and Zhao (2009)) at significance level a = 0.05 for different
values of § and the different weight processes based on the simulated data for the two cases
with 7, = 1 and 7; ~ Gamma(2, 1/2), respectively. The two parts of each table include the
comparison of T; and Tgy; with the sample sizes ny = 30,np = 50 and n; = 50,ny = 70
in Cases 1 and 2, respectively. To see what happens when the difference between n; and
ng becomes large, we also considered the sample sizes n; = 50,ny = 100. The simulation
results shown in the tables suggest that the tests based on the spline likelihood estimators
have similar sizes and powers to those of the tests based on the nonparametric maximum
likelihood estimators.

The new test procedure is easy to implement and performs well for all the situations
considered. However, for Case 2 with n; = 30 and n, = 50, we note that the estimated
powers of test Tpz;’s display “NA” often when running the simulation program. In this
case, we chose to report the simulation results when the estimated powers of test Tpz;’s

were available. It is surprising that the proposed test T} with the simplest structure has

15
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Table 1: Estimated size and power of the tests for Poisson processes

p T Ty T3 T, Tezn Tpza Tpzs
ny = 30,ny = 50

0.0 0.063 0.049 0.054 0.054 0.053 0.051 0.062

0.1 0.321 0.189 0.147 0.255 0.324 0.184 0.159

0.2 0.859 0.578 0.396 0.750 0.857 0.568 0.408

0.3 0.990 0.903 0.713 0.966 0.989 0.901 0.712
ny = 90,ne = 70

0.0 0.055 0.051 0.057 0.047 0.059 0.054 0.057

0.1 0.445 0.278 0.184 0.360 0.447 0.268 0.187

0.2 0948 0.736 0.555 0.898 0.948 0.730 0.555

0.3 1.000 0.979 0.858 1.000 1.000 0.976 0.853
ny = 50,ne = 100

0.0 0.041 0.044 0.053 0.043 0.043 0.045 0.055

0.1 0.448 0.277 0.164 0.351 0.443 0.279 0.174

0.2 0961 0.776 0.579 0.923 0.961 0.771 0.583

0.3 1.000 0.991 0.926 1.000 1.000 0.990 0.926
np = 30,ny = 50

3 1.000 0.580 1.000 1.000 1.000 0.593 1.000

5 0997 0.081 1.000 1.000 0.997 0.082 1.000

8§ 0483 0.543 0.995 0.998 0.483 0.544 0.991
ny = 50,ny = 70

3 1.000 0.823 1.000 1.000 1.000 0.932 1.000

5 1.000 0.073 1.000 1.000 1.000 0.076 1.000

§ 0.619 0.714 1.000 1.000 0.619 0.713 1.000
ny = 50,no = 100

3 1.000 0.760 1.000 1.000 1.000 0.761 1.000

5 1.000 0.083 1.000 1.000 1.000 0.085 1.000

8§ 0.699 0.822 1.000 1.000 0.701 0.820 1.000

16
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Table 2: Estimated size and power of the tests for mixed Poisson processes

g T 1 Ty Ty Tsz1 Tpz2 Thzs
ny = 30,n2 = 50

0.0 0.059 0.051 0.061 0.058 0.061 0.048 0.062

0.1 0.187 0.126 0.091 0.157 0.187 0.123 0.098

0.2 0.568 0.378 0.286 0.492 0.564 0.381 0.286

0.3 0.869 0.637 0.560 0.785 0.871 0.638 0.549
ny = 50,ny = 70

0.0 0.050 0.049 0.054 0.061 0.049 0.0563 0.054

0.1 0.267 0.185 0.134 0.218 0.270 0.189 0.133

0.2 0.751 0.498 0.387 0.659 0.750 0.500 0.391

0.3 0.968 0.827 0.737 0.942 0.968 0.828 0.738
ny = 50,ny = 100

0.0 0.043 0.041 0.053 0.055 0.043 0.041 0.059

0.1 0.264 0.158 0.150 0.226 0.263 0.157 0.152

0.2 0.747 0.501 0.425 0.675 0.746 0.508 0.433

0.3 0989 0.868 0.756 0.963 0.989 0.865 0.762
ny = 30,n2 = 50

3 1.000 0.509 1.000 1.000 1.000 0.527 1.000

5 0951 0.076 1.000 1.000 0.951 0.077 1.000

8§ 0317 0.384 0.998 0.973 0.315 0.375 0.997
ny = 50,ny = 70

3 1.000 0.747 1.000 1.000 1.000 0.750 1.000

5 0994 0.065 1.000 1.000 0.995 0.065 1.000

8 0.429 0.485 1.000 0.996 0.428 0.479 1.000
ny = 50,ne = 100

3 1.000 0.677 1.000 1.000 1.000 0.681 1.000

5 0996 0.078 1.000 1.000 0.996 0.078 1.000

8 0456 0.631 1.000 1.000 0.455 0.624 1.000
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Figure 1: Simulation study. Normal quantile plot for T (n = 30 and ny = 50).

similar size and power to Tgz; with a complicated structure when the simulated values of
Tpz1 are available. The new test T, has similar power to 77 and Tz in Case 1 and to T3
and Tgzz in Case 2. We conclude that Ty, with a simple structure, is always powerful for
the two cases considered, and thus robust.

To evaluate the asymptotic normality of Theorem 4.1, we constructed the quantile plots
of the test statistics against the standard normal. Figures 1 and 2 present such plots for T}
and they reveal that the asymptotic normality is justified for the given finite sample sizes.

Similar plots were obtained for test statistics 77, T, and T3 and other situations as well.

6 An Application

We applied the proposed tests to a set of panel count data arising from a skin cancer chemo-

prevention trial conducted by the University of Wisconsin Comprehensive Cancer Center
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Normal Q—Q Plot

Sample Quantiles
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Figure 2: Simulation study. Normal quantile plot for T (n; = 50 and ny = 70).

in Madison, Wisconsin. It was a double-blinded and placebo-controlled randomized phase
IIT clinical trial. The primary objective of this trial was to evaluate the effectiveness of
0.5g/m2/day PO difluoromethylornithine (DFMO) in reducing new skin cancers in a pop-
ulation of the patients with a history of non-melanoma skin cancers: basal cell carcinoma
and squamous cell carcinoma. The study consisted of 290 patients who were randomized to
two groups: DFMO group (143) or the placebo group (147). The observed data included a
sequence of observation times in days and the numbers of occurrences of both basal cell car-
cinoma and squamous cell carcinoma between the observation times for patients in different
treatment groups (see Table 9.3 of Sun and Zhao (2013)). Sun and Zhao (2013) analyzed
these data and found that the overall DFMO treatment seemed to have some mild effects
in reducing the recurrence rates of basal cell carcinoma and quamous cell carcinoma. In

addition, they presented a graphical comparison of the two groups and concluded that the
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DFMO treatment seemed to have some effects in reducing the recurrence rate of basal cell
carcinoma but not to have any effect on the recurrence rate of squamous cell carcinoma. For
this reason, we focused on comparing two treatment groups in terms of the recurrence rates
of basal cell carcinoma.

To test the difference between the two groups, we treated the DFMO group as group

1 and the placebo group as group 2. Let N;(t) represent the number of the occurrences
of basal cell carcinoma up to time ¢ for patient 7, i = 1,...,290. Let A;(#) denote the
expected occurrences of basel cell carcinoma up to time ¢ for group I. The goal is to test
Hy : Ai(t) = Ay(t) = Ag(t). The spline likelihood estimates A; and Ay of A; and A, based
on samples from all the patients in the /-th group and the pooled data are shown in Figure
3. We applied the test procedure of Section 4 to this problem and obtained 77 = —2.2285,
Ty = —0.9245, Ty = —2.0245, and Ty = —2.1940 where 7}’s are as defined in Section 5,
giving p-values of 0.0258, 0.3552, 0.0429, and 0.0282 based on the standard normal. The
test results from T}, T3 and T} suggest that the incidence rates of basal cell carcinoma were
significantly reduced by the DFMO treatment, while test T fails to reject Hy. This can be
easily understood by looking at the behavior of the estimates. From Figure 3, the difference
of mean functions at later times dominate the difference at earlier times so that the test with

W could not detect the difference between two groups.

7 Concluding Remarks

For semiparametric models, Wellner and Zhang (2007) developed a general theorem for

deriving the asymptotic normality of semiparametric M-estimators of regression parameters.

20



Statistica Sinica: Preprint
do0i:10.5705/s5.202014.0021

[Te)
2
—— DFMO
----- Placebo
~~~~~~~~~ Pooled
|
o o
£ S 4
<
=
L
<
38
(<5
= Lo
2
o
2

T T T T
o 500 1000 1500

Time (Days)

Figure 3: The estimated mean functions for the skin cancer study.

We can establish similar theory. For example, we have the following results about the
asymptotic normality of estimators in the semiparametric model considered by Wellner and
Zhang (2007) and Lu, Zhang and Huang (2009). Suppose that for each subject, given a
d-dimensional vector of covariates Z;, V;(t) is a non-homogeneous Poisson process with the
mean function A;(t|7Z;) = Ao(t) exp{Z!5}, where Ag is an unknown baseline mean function
and  is a d-dimensional vector of unknown regression parameters.

Let 7 = (75, AP*) and 6, = (B,,A,) be the semiparametric pseudo-likelihood and
likelihood estimators of Lu, Zhang, and Huang (2009). Let B, denote the collection of Borel
sets in R?, and B and Bio,-] as defined in Section 3. Let F' be the cumulative distribution

function of Z. We considered measures v; and v, as follows: for B, By, By € By, and
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Bs € Bd,

00 k
n(Bx Bs)= | Y P(K=klZ=2)) P(Ti; € BIK =k, Z = 2)dF(z),
j=1

Bs p—1

VQ(Bl X Bz X Bg)

k
XY P(Tyjo1 € Bi, Tk € Bo| K =k, Z = z)} dF(2).
j=1

Take H, = {(hy, hs) : hy € R ||hy]| <1, hy € H,, ho(0) = 0} . Under some regularity con-

ditions,

(i) For (hy,hy) € H,, W/m(B2 — Bo) + v [{AZ(t) — Ao(t)}dha(t) is asymptotically

normal.
(it) For (hy, hy) € H,, Wy/n(Bn—B0)++/n [{Mn(t)—Ao(t)}dhy(t) is asymptotically normal.

(iii) (Asymptotic Normality of B7%) \/n(B25—Bo) =4 N(0,3,s), where X,, = (AP$)~1 BPs((APs)~1)Y

with

K B (Ze%7|K, Ticy) |
- Vb7 ) g —
APS — F ZAO(TKJ)GO {Z E (eP?|K, Tk ;) 7

J=1

B”® = E

> {N(TK,J') - AO(TK,j>€ﬁ()Z}

j=1j'=1

. {N (Tky) — AO(TK,J")G%Z}
E (ZePo? | K Ty
X {Z _ ( € | ) Kv]) }

E (e%?|K, Tk ;)

, !
y {Z _ B2 Tiey) ” ,

K (eﬁ(l}Z'K? TK»J")
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and (Asymptotic Normality of Functional of A?) for h € H,,
Vit [ (Rae(e) = Aofe))e

h(t) / Tpsy—1 ' 7 S ,
X {F(t) — () E (zeﬂ Zh(TK,J)> } du (t, 2)

j=1

—d N(Oa 6%)7

where

>=FK

K
ZZ'ZA0<TK,j>eﬁez] |

j=1

K

> {N(Tk,j) - AO(TKJ)‘?%Z}

J=1

" {% ~ () E (ZG%Z 2 h(Ticy) ) }

=1

~2_
oy = FE

2

(iv) (Asymptotic Normality of Bn) VB, — Bo) —aq N(0,%), where ¥ = (A)~'B((4)~1))

with

E(ZeP? | K, Tk j-1, Tk ;) -
E (656Z|K, TK,j—hTKJ) 7

X AN(TKJ/) — AAo(TKJ/)Bﬁéz}

y {Z B (ZeP?| K, Ty j—1, T ;) }
A

E (6562|K, Tk j—1, TK,j)

X{ B E(ZeﬁazyK,TK,j,1,TK,j,)}']

E (656Z|K, TKJ/—la TK,j’)
and (Asymptotic Normality of Functional of An) for h € H,,

Vit [ {(Ra) = (o)) = (Aalt)  Aofs) } ¥
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Bt =0() g ( ez |
X {m —2TTFE (Zeﬁ ZAh(TKJ)> } dvy(s,t, 2)

j=1
—q N(0,53),
where

'=~F

K
4 Z AAO(TK,]')GB{’Z] ;

j=1

K
Z{AN Tk ;) AAO(TK,j)e%Z}

Jj=1
AR(Ti ;) K .
K,j -1 ByZ
X ————22 — JT7 K | Zeo E Ah(Ty o )
{AA()(TK’J') ( & >> H

il

Here, the obtained asymptotic distributions for Bﬁs and Bn are the same as those in The-
orem 3.3 of Wellner and Zhang (2007) and Theorem 3 of Lu, Zhang, and Huang (2009). The
new results about the baseline mean function can be used to conduct statistical hypothesis

tests. The proofs of the above conclusions are available from the authors.

Supplementary Materials

The supplementary materials include proofs of theorems.
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