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Abstract: In semiparametric and nonparametric statistical inference, the asymptotic nor-

mality of estimators has been widely established when they are
√
n-consistent. In many

applications, nonparametric estimators are not able to achieve this rate. We have a result

on the asymptotic normality of nonparametric M -estimators that can be used if the rate

of convergence of an estimator is n−1/2 or slower. We apply this to study the asymptotic

distribution of sieve estimators of functionals of a mean function from a counting process,

and develop nonparametric tests for the problem of treatment comparison with panel count

data. The test statistics are constructed with spline likelihood estimators instead of non-

parametric likelihood estimators. The new tests have a more general and simpler structure

and are easy to implement. Simulation studies show that the proposed tests perform well

even for small sample sizes. We find that a new test is always powerful for all the situations

considered and is thus robust. For illustration, a data analysis example is provided.
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1 Introduction

Weak convergence theory and empirical theory (van der Vaart and Wellner (1996)) have been

widely used to study the asymptotic properties of estimators in semiparametric and nonpara-

metric models. When the convergence rate of estimators is n−1/2, the asymptotic distribution

of the estimators can be derived by using the weak convergence theorem on Z-estimators

(van der Vaart and Wellner (1996, page 310)). For example, Zeng, Lin, and Yin (2005) and

Zeng and Lin (2006, 2007) obtained the desired asymptotic normality of the estimators for

the proportional odds model and the semiparametric transformation models by verifying the

conditions of Theorem 3.3.1 of van der Vaart and Wellner (1996). When the convergence

rate is slower than n−1/2, for example, the convergence rates of nonparametric maximum

likelihood estimators of cumulative distribution functions based on interval-censored data

are n−1/3 (Groeneboom and Wellner (1992)), this theorem is no longer applicable. For such

situations, it is difficult to derive the asymptotic distribution of nonparametric estimators.

Zhang (2006) and Balakrishnan and Zhao (2009) investigated the asymptotic normality of

functionals of the nonparametric maximum pseudo-likelihood and likelihood estimators for

panel count data. We have a general theorem dealing with the asymptotic normality of non-

parametric M -estimators and we apply this to panel count models as illustrative examples.

For the nonparametric inference of panel count data, several estimation and testing meth-

ods have been developed. Sun and Kalbfeisch (1995), Wellner and Zhang (2000), Lu, Zhang,

and Huang (2007), and Hu, Lagakos, and Lockhart (2009a, b) studied the nonparametric

estimation of the mean function of the underlying counting process with panel count data by

using isotonic regression techniques, the likelihood approach, the spline likelihood approach,
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the estimating equation approach, and the generalized least squares method, respectively;

Thall and Lachin (1988), Sun and Fang (2003), Zhang (2006), and Balakrishnan and Zhao

(2009) presented some nonparametric tests for nonparametric comparison of mean function

of counting process with panel count data. For a comprehensive review about the analysis

of panel count data, see Sun and Zhao (2013).

Lu, Zhang, and Huang (2007, 2009) showed that the spline likelihood estimators have

a convergence rate slower than n−1/2 but faster than n−1/3, and are more efficient both

statistically and computationally than the nonparametric maximum likelihood estimators in

simulations. In this paper, we explore asymptotic normality of functionals of spline likelihood

estimators of mean functions, and propose some new nonparametric tests based on them to

compare with existing tests for the nonparametric comparison of counting processes with

panel count data.

The remainder of the article is organized as follows. In Section 2, we present a general

theorem regarding the asymptotic normality of nonparametric M -estimators. In Section 3,

we briefly review the nonparametric spline-based likelihood estimators for panel count data

and establish the asymptotic normality of their functionals. Section 4 presents two classes of

nonparametric test statistics for comparing two treatment groups with respect to their mean

functions. The asymptotic normality of the proposed test statistics are established. Section

5 reports some simulation results to assess the finite-sample properties of the proposed

test procedure and to compare them with the tests based on the nonparametric likelihood

estimators. A data analysis example is provided in Section 6. Section 7 contains some

concluding remarks. The proofs of theorems are given in the Supplementary Materials

available at the Statistica Sinica journal website.
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2 Asymptotic Distributional Theory of Nonparametric

M-Estimators

Suppose X = (X1, . . . , Xn) is a random sample taken from the distribution of X, and

ln(Λ;X) =
∑n

i=1m(Λ;Xi) is an objective function based on X, where Λ is an unknown

function in the class F . Let Fn be the sieve parameter space satisfying

Fn ⊆ Fn+1 ⊆ · · · ⊆ F , forn ≥ 1.

Assume that Λ̂n is the estimator of Λ0 that maximizes ln(Λ;X) with respect to Fn.

Suppose Λη is a parametric path in F through Λ, Λη ∈ F and Λη|η=0 = Λ. Let H = {h :

h = ∂Λη
∂η
|η=0} and l∞(H) be the space of bounded functionals on H under the supermum

norm ||f ||∞ = suph∈H |f(h)|. For h ∈ H, we define a sequence of maps Gn of a neighborhood

of Λ0, denoted by U , in the parameter space for Λ into l∞(H) by

Gn(Λ)[h] = n−1 ∂

∂η
ln(Λη;X)|η=0

= n−1

n∑
i=1

∂

∂η
m(Λη;Xi)|η=0

≡ Pnψ(Λ;X)[h],

and take G(Λ)[h] = Pψ(Λ;X)[h], where P and Pn denote the probability measure and

empirical measure with Pf =
∫
fdP and Pnf = n−1

∑n
i=1 f(Xi), respectively.

To establish the asymptotic normality, we need the following conditions.

A1.
√
n(Gn −G)(Λ̂n)[h]−

√
n(Gn −G)(Λ0)[h] = op(1).

A2. G(Λ0)[h] = 0 and Gn(Λ̂n)[h] = op(n
−1/2).
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A3.
√
n(Gn −G)(Λ0)[h] converges in distribution to a tight Gaussian process on l∞(Hr).

A4. G(Λ)[h] is Fréchet-differentiable at Λ0 with a continuous derivative ĠΛ0 [h].

A5. G(Λ̂n)[h]−G(Λ0)[h]− ĠΛ0(Λ̂n − Λ0)[h] = op(n
−1/2).

Theorem 2.1 If A1-A5 hold, then for any h ∈ H,

−
√
nĠΛ0(Λ̂n − Λ0)[h] =

√
n(Gn −G)(Λ0)[h] + op(1).

Remark 1. The above theorem does not require the Λ̂n be
√
n-consistent, while the

conditions stated in Theorem 3.3.1 of van der Vaart and Wellner (1996) imply that the

estimator has the usual convergence rate n−1/2.

Remark 2. Assumptions A2-A4 are the analytical conditions given in Theorem 3.3.1

of van der Vaart and Wellner (1996). Assumptions A1 and A5 require the remainder in a

Taylor expansion be negligible; they are weaker than those required by van der Vaart and

Wellner (1996).

The theorem can be widely used to establish the asymptotic normality of nonparametric

estimators no matter whether the rate of convergence is n−1/2, or is slower. We focus on

counting process models with panel count data to illustrate applications of the theorem.
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3 Asymptotic Normality of Functionals of Nonpara-

metric Spline-based Likelihood Estimators for Panel

Count Data

3.1 Nonparametric Spline-based Likelihood Estimation

Consider a recurrent event study that consists of n independent subjects and let Ni(t) denote

the number of occurrences of the recurrent event of interest before or at time t for subject i.

For subject i, suppose that Ni(·) is observed only at finite time points TKi,1 < · · · < TKi,Ki ≤

τ , where Ki denotes the potential number of observation times, i = 1, . . . , n, and τ is the

length of the study.

In the following, we assume that (Ki;TKi,1, ..., TKi,Ki) are independent of the counting pro-

cessesNi’s. Let X = (K,T,N), where T = (TK,1, ..., TK,K) and N = (N(TK,1), . . . , N(TK,K)).

Then {Xi = (Ki,Ti,Ni), i = 1, ..., n} is a random sample of size n from the distribution of

X, where Ti = (TKi,1, ..., TKi,Ki) and Ni = (Ni(TKi,1), . . . , Ni(TKi,Ki)).

Suppose that for each subject, Ni(t) is a non-homogeneous Poisson process with the mean

function Λ(t). The log pseudo-likelihood and the log-likelihood functions for Λ are

lpsn (Λ) =
n∑
i=1

Ki∑
j=1

[Ni(TKi,j) log {Λ(TKi,j)} − Λ(TKi,j)] ,

ln(Λ) =
n∑
i=1

Ki∑
j=1

[∆Ni(TKi,j) log {∆Λ(TKi,j)} −∆Λ(TKi,j)] ,

after omitting the parts independent of Λ, where TKi,0 = 0, ∆Λ(TKi,j) = Λ(TKi,j) −
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Λ(TKi,j−1), and ∆Ni(TKi,j) = Ni(TKi,j)−Ni(TKi,j−1).

For estimation of the smooth function Λ0(t), we use B-spline function approximation (Lu,

Zhang, and Huang (2007)). Let T = {si, i = 1, . . . ,mn + 2l}, with

τ0 = s1 = · · · = sl < sl+1 < · · · < smn+l < smn+l+1 = · · · = smn+2l = τ,

be a sequence of knots that partition [τ0, τ ] into mn + 1 subintervals Ii = [sl+i, sl+i+1], for

i = 0, 1, . . . ,mn. Let Φn be the class of polynomial splines of order l ≥ 1 with the knot

sequence T . Then Φn can be linearly spanned by the normalized B-spline basis functions

{Bi, i = 1, . . . , αqn} with qn = mn + l (Schumaker (1981)). Define a subclass of Φn,

Ψn =

{
qn∑
i=1

αiBi : 0 ≤ α1 ≤ · · · ≤ αqn

}
.

Following Lu, Zhang and Huang (2007), the estimators Λ̂ps
n and Λ̂n are the values that

maximize lpsn (Λ) and ln(Λ) with respect to Λ ∈ Ψn, respectively.

We denote the spline pseudo-likelihood and spline likelihood estimators of Λ by Λ̂ps
n =∑qn

i=1 α̂
ps
inBi and Λ̂n =

∑qn
i=1 α̂inBi.

3.2 Asymptotic Normality

Let B denote the collection of Borel sets in R, and let B[0,τ ] = {B∩ [0, τ ] : B ∈ B}. Following

Wellner and Zhang (2000), define measures µ1 and µ2 as follows: for B,B1, B2 ∈ B[0,τ ],

µ1(B) =
∞∑
k=1

P (K = k)
k∑
j=1

P (Tk,j ∈ B|K = k)

= E

{
K∑
j=1

I(TK,j ∈ B)

}
,
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µ2(B1 ×B2) =
∞∑
k=1

{P (K = k)
k∑
j=1

P (Tk,j−1 ∈ B1, Tk,j ∈ B2|K = k)}

= E

{
K∑
j=1

I(TK,j−1 ∈ B1, TK,j ∈ B2)

}
.

Define the L2-metrics d1 and d2 as

d1(Λ1,Λ2) =

{∫
|Λ1(t)− Λ2(t)|2dµ1(t)

}1/2

,

d2(Λ1,Λ2) =

{∫ ∫
|(Λ1(u)− Λ1(v))− (Λ2(u)− Λ2(v))|2dµ2(u, v)

}1/2

.

To establish the asymptotic properties of the estimators, we need the following regularity

conditions.

C1. The maximum spacing of the knots, ∆ ≡ maxl+1≤i≤mn+l+1 |si − si−1| = O(n−v) with

mn = O(nv) for 0 < v < 0.5. There exists a constant M > 0 such that ∆/δ ≤ M

uniformly in n, where δ ≡ minl+1≤i≤mn+l+1 |si − si−1|.

C2. The true mean function Λ0 is a nondecreasing function over [0, τ ] with Λ(0) = 0, with

a bounded rth derivative in [0, τ ] for r ≥ 1, and Λ′0(t) ≥ a0 for some a0 ∈ (0,∞).

C3. There exists a positive integer K0 such that P (K ≤ K0)=1.

C4. For some positive constant k0, E[exp{k0N(τ)}] <∞.

C5. P (∩Kj=1{TK,j ∈ [τ0, τ ]}) = 1 with τ0 > 0, Λ0(τ0) > 0, and Λ0(τ) ≤M0 for some constant

M0 > 0.

C6. µ1(τ0) > 0, and for all τ0 < τ1 < τ2 < τ , µ1((τ1, τ2)) > 0.

C7. There exists a positive constant s0 such that P (min1≤j≤K{TK,j − TK,j−1} ≥ s0) = 1.
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C8. µ1 is absolutely continuous with respect to Lebesgue measure, with derivative µ̇1.

C9. µ2 is absolutely continuous with respect to Lebesgue measure, with derivative µ̇2.

C10. If with probability 1, h(TK,j) = 0, j = 1, . . . , K for some h, then h = 0.

Conditions C1-C5 and C7 are required by Lu, Zhang and Huang (2007); condition C6 is

required by Balakrishnan and Zhao (2009). Conditions C8 and C9 are similar to C11 in

Wellner and Zhang (2007). Condition C10 is needed for identifiability of the model.

Theorem 3.1 Suppose C1-C6 and C10 hold, and let

Hr =
{
g(·) : |g(r−1)(s)− g(r−1)(t)| ≤ c0|s− t| for all τ0 ≤ s, t ≤ τ

}
.

where g(r−1) is the (r − 1)th derivative function of g, and c0 is a constant.

(i) If C8 holds, then for h ∈ Hr,

√
n

∫
{Λ̂ps

n (t)− Λ0(t)}dh(t)→d N(0, σ2
ps), (3.1)

where σ2
ps is given at (S2.4) of Supplementary Materials.

(ii) If C7 and C9 hold, then for h ∈ Hr,

√
n

∫
{Λ̂n(t)− Λ0(t)}dh(t)→d N(0, σ2), (3.2)

where σ2 is given at (S2.7) of Supplementary Materials.

Corollary 3.1 Suppose the conditions in Theorem 3.1 hold.

(i)

√
n

∫
h(t)

Λ̂ps
n (t)− Λ0(t)

Λ0(t)
dµ1(t)→d N(0, σ2

1), (3.3)
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where h ∈ Hr, and

σ2
1 = E

[
K∑
j=1

h(TK,j)
N(TK,j)− Λ0(TK,j)

Λ0(TK,j)

]2

. (3.4)

(ii)

√
n

∫
{h(u)− h(v)}{Λ̂n(u)− Λ̂n(v)} − {Λ0(u)− Λ0(v)}

{Λ0(u)− Λ0(v)}
dµ2(u, v)

→d N(0, σ2
2), (3.5)

where h ∈ Hr, and

σ2
2 = E

[
K∑
j=1

∆h(TK,j)
∆N(TK,j)−∆Λ0(TK,j)

∆Λ0(TK,j)

]2

. (3.6)

Remark 3. These results can be used to construct new tests for the problem of multi-

sample nonparametric comparison of counting processes with panel count data.

Remark 4. We can show that under some regularity conditions, (3.1)-(3.6) hold for the

two nonparametric likelihood-based estimators proposed by Wellner and Zhang (2000).

4 Nonparametric Two-sample Tests

Consider a longitudinal study with some recurrent event and n independent subjects from

two groups, nl in the lth group with n1+n2 = n. LetNi(t) denote the counting process arising

from subject i and Λl(t) denote the mean function of the counting process corresponding to

group l, l = 1, 2. Here, the problem of interest is to test the null hypothesis H0 : Λ1(t) =

Λ2(t). Suppose subject i is observed only at distinct time points 0 < TKi,1 < · · · < TKi,Ki

and that no information is available about Ni(t) between them.
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Let Λ̂ps
l and Λ̂l denote the spline pseudo-likelihood and spline likelihood estimators of

Λl based on samples from all the subjects in the lth group. Let Λ0(t) denote the common

mean function of the Ni(t)’s under H0, and let Λ̂ps
0 and Λ̂0 be the spline pseudo-likelihood

and spline likelihood estimators of Λ0 based on the pooled data. Clearly, µ1(t) and µ2(u, v)

can be consistently estimated by

µ̂1(t) =
1

n

n∑
i=1

Ki∑
j=1

I(TKi,j ≤ t),

µ̂2(u, v) =
1

n

n∑
i=1

Ki∑
j=1

I(TKi,j−1 ≤ v, TKi,j ≤ u),

respectively.

To test the hypothesis H0, Zhang (2006) and Balakrishnan and Zhao (2009) proposed to

use the two statistics

UZ =
√
n

∫ τ

0

Wn(t){Λ̂1,mple(t)− Λ̂2,mple(t)}dµ̂1(t),

UBZ =
1√
n

n∑
i=1

[
Ki−1∑
j=1

Wn(TKi,j)Λ̂0,mle(TKi,j)

×

{(
∆Λ̂1,mle(TKi,j+1)

∆Λ̂0,mle(TKi,j+1)
− ∆Λ̂1,mle(TKi,j)

∆Λ̂0,mle(TKi,j)

)

−

(
∆Λ̂2,mle(TKi,j+1)

∆Λ̂0,mle(TKi,j+1)
− ∆Λ̂2,mle(TKi,j)

∆Λ̂0,mle(TKi,j)

)}
+Wn(TKi,Ki)Λ̂0,mle(TKi,Ki)

×

{(
1− ∆Λ̂1,mle(TKi,Ki)

∆Λ̂0,mle(TKi,Ki)

)
−

(
1− ∆Λ̂2,mle(TKi,Ki)

∆Λ̂0,mle(TKi,Ki)

)}]
,

where Wn(t) is a bounded weight process, Λ̂l,mple and Λ̂l,mle denote the maximum pseudo-

likelihood and maximum likelihood estimators of Λl based on samples from all the subjects

in the lth group, and Λ̂0,mle denotes the maximum likelihood estimator of Λ0 based on the
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pooled data. We propose the two test statistics

Ups
n =

√
n

∫
hpsn (t)

Λ̂ps
1 (t)− Λ̂ps

2 (t)

Λ̂ps
0 (t)

dµ̂1(t)

=
1√
n

n∑
i=1

Ki∑
j=1

hpsn (TKi,j)
Λ̂ps

1 (TKi,j)− Λ̂ps
2 (TKi,j)

Λ̂ps
0 (TKi,j)

,

Un =
√
n

∫
{hn(u)− hn(v)}{Λ̂1(u)− Λ̂1(v)} − {Λ̂2(u)− Λ̂2(v)}

{Λ̂0(u)− Λ̂0(v)}
dµ̂2(u, v)

=
1√
n

n∑
i=1

Ki∑
j=1

{∆hn(TKi,j)}
∆Λ̂1(TKi,j)−∆Λ̂2(TKi,j)

∆Λ̂0(TKi,j)
,

where hpsn (t) and hn(t) are bounded weight processes. For the propose of comparison, we

consider three choices of the weight processes hpsn (t) and hn(t): hpsn (t) = Λ̂ps
0 (t)W

(k)
n (t) and

hn(t) = Λ̂0(t)W
(k)
n (t), where W (1)(t) = 1, W

(2)
n (t) =

∑n
i=1 I(t ≤ TKi,Ki), and W

(3)
n (t) =

1 − W
(2)
n (t) =

∑n
i=1 I(t > TKi,Ki). Other choices of weight processes can be made. For

example, if we take hn(t) = {Λ̂0(t)}2, the structure of Ups
n is similar to UZ , while the structure

of Un is much simpler than that of UBZ .

Theorem 4.1 Suppose the conditions of Theorem 3.1 hold. Suppose that hn(t)’s are

bounded weight processes and that there exists a bounded function h(t) such that h ∈ Hr, and[∫ τ

0

{hn(t) − h(t)}2 dµ1(t)

]1/2

= op(n
− 1

2(1+2r) ) .

If n1/n → p as n→∞, where 0 < p < 1, then, under H0 : Λ1 = Λ2 = Λ0,

(i) Ups
n has an asymptotic normal distribution N(0, σ2

ps), where

σ2
ps =

(
1

p
+

1

1− p

)
σ2

1

with σ2
1 as given as (3.4);
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(ii) Un has an asymptotic normal distribution N(0, σ2), where

σ2 =

(
1

p
+

1

1− p

)
σ2

2

with σ2
2 as given as (3.6);

(iii) If

max
1≤i≤n

E

[
Ki∑
j=1

{hn(TKi,j)− h(TKi,j)}
2

]
−→ 0,

then σ2
1, σ

2
2 can be consistently estimated by

σ̂2
1 =

1

n

n∑
i=1

[
Ki∑
j=1

hn(TKi,j)
Ni(TKi,j)− Λ̂ps

0 (TKi,j)

Λ̂ps
0 (TKi,j)

]2

,

σ̂2
2 =

1

n

n∑
i=1

[
Ki∑
j=1

∆hn(TKi,j)
∆Ni(TKi,j)−∆Λ̂0(TKi,j)

∆Λ̂0(TKi,j)

]2

, respectively.

Remark 5. For the asymptotic normality of the proposed test statistics, we do not need

the condition that h ◦Λ−1
0 is a bounded Lipschitz function as required by Zhang (2006) and

Balakrishnan and Zhao (2009).

Remark 6. We can show that, under some regularity conditions, (i)-(iii) hold if the

spline pseudo-likelihood and spline likelihood estimators in the expression of Ups
n and Un are

replaced with the nonparametric maximum pseudo-likelihood and nonparametric maximum

likelihood estimators proposed by Wellner and Zhang (2000), respectively.

5 Simulation Study

We conducted a simulation study to investigate the finite-sample properties of the proposed

test statistics and to make comparisons with those of the tests presented by Zhang (2006)
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and Balakrishnan and Zhao (2009). We let T ps = Ups
n /σ̂ps and T = Un/σ̂, where

σ̂ps =

{(
n

n1

+
n

n2

)
σ̂2

1

}1/2

,

σ̂ =

{(
n

n1

+
n

n2

)
σ̂2

2

}1/2

,

and Ups
n , Un, and σ̂2

l be as given in Section 4. By Theorem 4.1, the null hypothesis can

be tested by T ps and T , which have asymptotic standard normal distributions. For the

generation of panel count data, denoted by {ki, tij, nij, j = 1, . . . , ki, i = 1, . . . , n}, we first

generated the number of observation times ki from the uniform distribution U{1, . . . , 10},

and then, given ki, we took the observation times tij’s to be the order statistics of a random

sample of size ki drawn from U{1, . . . , 12}. To generate the nij’s, we assumed that, given

a nonnegative random variable γi, Ni(t) is a Poisson process with mean function Λi(t|γi) =

E(Ni(t)|γi). Let Sl denote the set of indices for subjects in group l, l = 1, 2. For comparison,

we considered cases representing two patterns of the mean functions:

Case 1. Λi(t|γi) = γit for i ∈ S1, Λi(t) = γit exp(β) for i ∈ S2.

Case 2. Λi(t|γi) = γit for i ∈ S1, Λi(t) = γi
√
βt for i ∈ S2.

As shown in Figures 1-2 of Balakrishnan and Zhao (2009), the two mean functions do

not overlap in Case 1 and they cross over in Case 2.

For each case, we took γi = 1 and γi ∼ Gamma(2, 1/2) corresponding to Poisson and

mixed Poisson processes, respectively. For each setting, we took n1 = 30, n2 = 50 and

n1 = 50, n2 = 70. We considered the weight processes h
(j)
n (t) = Λ̂0(t)W

(j)
n (t), j = 1, 2, 3,with

W (1)
n (t) = 1, W (2)

n (t) =
1

n

n∑
i=1

I(t ≤ tki,ki), and
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W (3)
n (t) =

1

n

n∑
i=1

I(t > tki,ki),

and h
(4)
n (t) = {Λ̂0(t)}2, denoting the corresponding tests by Tj with h

(j)
n (j = 1, 2, 3, 4) and

TBZj with W
(j)
n (j = 1, 2, 3). Here, the nonparametric maximum likelihood estimators Λ̂l,mle,

Λ̂0,mle were computed by using the modified iterative convex minorant algorithm in Wellner

and Zhang (2000); the spline likelihood estimators Λ̂l and Λ̂0 were computed by using the

algorithm in Lu, Zhang and Huang (2007). The results reported here are based on 1000

Monte Carlo replications using R software.

Tables 1 and 2 present the estimated sizes and powers of the proposed test statistics

Tj’s and TBZj’s (Balakrishnan and Zhao (2009)) at significance level α = 0.05 for different

values of β and the different weight processes based on the simulated data for the two cases

with γi = 1 and γi ∼ Gamma(2, 1/2), respectively. The two parts of each table include the

comparison of Tj and TBZj with the sample sizes n1 = 30, n2 = 50 and n1 = 50, n2 = 70

in Cases 1 and 2, respectively. To see what happens when the difference between n1 and

n2 becomes large, we also considered the sample sizes n1 = 50, n2 = 100. The simulation

results shown in the tables suggest that the tests based on the spline likelihood estimators

have similar sizes and powers to those of the tests based on the nonparametric maximum

likelihood estimators.

The new test procedure is easy to implement and performs well for all the situations

considered. However, for Case 2 with n1 = 30 and n2 = 50, we note that the estimated

powers of test TBZj’s display “NA” often when running the simulation program. In this

case, we chose to report the simulation results when the estimated powers of test TBZj’s

were available. It is surprising that the proposed test T1 with the simplest structure has
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Table 1: Estimated size and power of the tests for Poisson processes

β T1 T2 T3 T4 TBZ1 TBZ2 TBZ3

n1 = 30, n2 = 50

0.0 0.053 0.049 0.054 0.054 0.053 0.051 0.062

0.1 0.321 0.189 0.147 0.255 0.324 0.184 0.159

0.2 0.859 0.578 0.396 0.750 0.857 0.568 0.408

0.3 0.990 0.903 0.713 0.966 0.989 0.901 0.712

n1 = 50, n2 = 70

0.0 0.055 0.051 0.057 0.047 0.059 0.054 0.057

0.1 0.445 0.278 0.184 0.360 0.447 0.268 0.187

0.2 0.948 0.736 0.555 0.898 0.948 0.730 0.555

0.3 1.000 0.979 0.858 1.000 1.000 0.976 0.853

n1 = 50, n2 = 100

0.0 0.041 0.044 0.053 0.043 0.043 0.045 0.055

0.1 0.448 0.277 0.164 0.351 0.443 0.279 0.174

0.2 0.961 0.776 0.579 0.923 0.961 0.771 0.583

0.3 1.000 0.991 0.926 1.000 1.000 0.990 0.926

n1 = 30, n2 = 50

3 1.000 0.580 1.000 1.000 1.000 0.593 1.000

5 0.997 0.081 1.000 1.000 0.997 0.082 1.000

8 0.483 0.543 0.995 0.998 0.483 0.544 0.991

n1 = 50, n2 = 70

3 1.000 0.823 1.000 1.000 1.000 0.932 1.000

5 1.000 0.073 1.000 1.000 1.000 0.076 1.000

8 0.619 0.714 1.000 1.000 0.619 0.713 1.000

n1 = 50, n2 = 100

3 1.000 0.760 1.000 1.000 1.000 0.761 1.000

5 1.000 0.083 1.000 1.000 1.000 0.085 1.000

8 0.699 0.822 1.000 1.000 0.701 0.820 1.000
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Table 2: Estimated size and power of the tests for mixed Poisson processes

β T1 T2 T3 T4 TBZ1 TBZ2 TBZ3

n1 = 30, n2 = 50

0.0 0.059 0.051 0.061 0.058 0.061 0.048 0.062

0.1 0.187 0.126 0.091 0.157 0.187 0.123 0.098

0.2 0.568 0.378 0.286 0.492 0.564 0.381 0.286

0.3 0.869 0.637 0.560 0.785 0.871 0.638 0.549

n1 = 50, n2 = 70

0.0 0.050 0.049 0.054 0.061 0.049 0.053 0.054

0.1 0.267 0.185 0.134 0.218 0.270 0.189 0.133

0.2 0.751 0.498 0.387 0.659 0.750 0.500 0.391

0.3 0.968 0.827 0.737 0.942 0.968 0.828 0.738

n1 = 50, n2 = 100

0.0 0.043 0.041 0.053 0.055 0.043 0.041 0.059

0.1 0.264 0.158 0.150 0.226 0.263 0.157 0.152

0.2 0.747 0.501 0.425 0.675 0.746 0.508 0.433

0.3 0.989 0.868 0.756 0.963 0.989 0.865 0.762

n1 = 30, n2 = 50

3 1.000 0.509 1.000 1.000 1.000 0.527 1.000

5 0.951 0.076 1.000 1.000 0.951 0.077 1.000

8 0.317 0.384 0.998 0.973 0.315 0.375 0.997

n1 = 50, n2 = 70

3 1.000 0.747 1.000 1.000 1.000 0.750 1.000

5 0.994 0.065 1.000 1.000 0.995 0.065 1.000

8 0.429 0.485 1.000 0.996 0.428 0.479 1.000

n1 = 50, n2 = 100

3 1.000 0.677 1.000 1.000 1.000 0.681 1.000

5 0.996 0.078 1.000 1.000 0.996 0.078 1.000

8 0.456 0.631 1.000 1.000 0.455 0.624 1.000
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Figure 1: Simulation study. Normal quantile plot for T4 (n = 30 and n2 = 50).

similar size and power to TBZ1 with a complicated structure when the simulated values of

TBZ1 are available. The new test T4 has similar power to T1 and TBZ1 in Case 1 and to T3

and TBZ3 in Case 2. We conclude that T4, with a simple structure, is always powerful for

the two cases considered, and thus robust.

To evaluate the asymptotic normality of Theorem 4.1, we constructed the quantile plots

of the test statistics against the standard normal. Figures 1 and 2 present such plots for T4

and they reveal that the asymptotic normality is justified for the given finite sample sizes.

Similar plots were obtained for test statistics T1, T2, and T3 and other situations as well.

6 An Application

We applied the proposed tests to a set of panel count data arising from a skin cancer chemo-

prevention trial conducted by the University of Wisconsin Comprehensive Cancer Center
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Figure 2: Simulation study. Normal quantile plot for T4 (n1 = 50 and n2 = 70).

in Madison, Wisconsin. It was a double-blinded and placebo-controlled randomized phase

III clinical trial. The primary objective of this trial was to evaluate the effectiveness of

0.5g/m2/day PO difluoromethylornithine (DFMO) in reducing new skin cancers in a pop-

ulation of the patients with a history of non-melanoma skin cancers: basal cell carcinoma

and squamous cell carcinoma. The study consisted of 290 patients who were randomized to

two groups: DFMO group (143) or the placebo group (147). The observed data included a

sequence of observation times in days and the numbers of occurrences of both basal cell car-

cinoma and squamous cell carcinoma between the observation times for patients in different

treatment groups (see Table 9.3 of Sun and Zhao (2013)). Sun and Zhao (2013) analyzed

these data and found that the overall DFMO treatment seemed to have some mild effects

in reducing the recurrence rates of basal cell carcinoma and quamous cell carcinoma. In

addition, they presented a graphical comparison of the two groups and concluded that the
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DFMO treatment seemed to have some effects in reducing the recurrence rate of basal cell

carcinoma but not to have any effect on the recurrence rate of squamous cell carcinoma. For

this reason, we focused on comparing two treatment groups in terms of the recurrence rates

of basal cell carcinoma.

To test the difference between the two groups, we treated the DFMO group as group

1 and the placebo group as group 2. Let Ni(t) represent the number of the occurrences

of basal cell carcinoma up to time t for patient i, i = 1, . . . , 290. Let Λl(t) denote the

expected occurrences of basel cell carcinoma up to time t for group l. The goal is to test

H0 : Λ1(t) = Λ2(t) = Λ0(t). The spline likelihood estimates Λ̂l and Λ̂0 of Λl and Λ0 based

on samples from all the patients in the l-th group and the pooled data are shown in Figure

3. We applied the test procedure of Section 4 to this problem and obtained T1 = −2.2285,

T2 = −0.9245, T3 = −2.0245, and T4 = −2.1940 where Tj’s are as defined in Section 5,

giving p-values of 0.0258, 0.3552, 0.0429, and 0.0282 based on the standard normal. The

test results from T1, T3 and T4 suggest that the incidence rates of basal cell carcinoma were

significantly reduced by the DFMO treatment, while test T2 fails to reject H0. This can be

easily understood by looking at the behavior of the estimates. From Figure 3, the difference

of mean functions at later times dominate the difference at earlier times so that the test with

W
(2)
n could not detect the difference between two groups.

7 Concluding Remarks

For semiparametric models, Wellner and Zhang (2007) developed a general theorem for

deriving the asymptotic normality of semiparametric M -estimators of regression parameters.

20

Statistica Sinica: Preprint 
doi:10.5705/ss.202014.0021



0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

Time (Days)

M
ea

n 
Fu

nc
tio

n

DFMO
Placebo
Pooled

Figure 3: The estimated mean functions for the skin cancer study.

We can establish similar theory. For example, we have the following results about the

asymptotic normality of estimators in the semiparametric model considered by Wellner and

Zhang (2007) and Lu, Zhang and Huang (2009). Suppose that for each subject, given a

d-dimensional vector of covariates Zi, Ni(t) is a non-homogeneous Poisson process with the

mean function Λi(t|Zi) = Λ0(t) exp{Z ′iβ}, where Λ0 is an unknown baseline mean function

and β is a d-dimensional vector of unknown regression parameters.

Let θ̂psn = (β̂psn , Λ̂
ps
n ) and θ̂n = (β̂n, Λ̂n) be the semiparametric pseudo-likelihood and

likelihood estimators of Lu, Zhang, and Huang (2009). Let Bd denote the collection of Borel

sets in Rd, and B and B[0,τ ] as defined in Section 3. Let F be the cumulative distribution

function of Z. We considered measures ν1 and ν2 as follows: for B,B1, B2 ∈ B[0,τ ], and
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B3 ∈ Bd,

ν1(B ×B3) =

∫
B3

∞∑
k=1

P (K = k|Z = z)
k∑
j=1

P (Tk,j ∈ B|K = k, Z = z)dF (z),

ν2(B1 ×B2 ×B3)

=

∫
B3

∞∑
k=1

{P (K = k|Z = z)

×
k∑
j=1

P (Tk,j−1 ∈ B1, Tk,j ∈ B2|K = k, Z = z)

}
dF (z).

Take H̃r =
{

(h1, h2) : h1 ∈ Rd, ||h1|| ≤ 1, h2 ∈ Hr, h2(0) = 0
}
. Under some regularity con-

ditions,

(i) For (h1, h2) ∈ H̃r, h′1
√
n(β̂psn − β0) +

√
n
∫
{Λ̂ps

n (t) − Λ0(t)}dh2(t) is asymptotically

normal.

(ii) For (h1, h2) ∈ H̃r, h
′
1

√
n(β̂n−β0)+

√
n
∫
{Λ̂n(t)−Λ0(t)}dh2(t) is asymptotically normal.

(iii) (Asymptotic Normality of β̂psn )
√
n(β̂psn −β0)→d N(0,Σps), where Σps = (Aps)−1Bps((Aps)−1))′

with

Aps = E

 K∑
j=1

Λ0(TK,j)e
β′
0Z

{
Z −

E
(
Zeβ

′
0Z |K,TK,j

)
E
(
eβ

′
0Z |K,TK,j

) }⊗2
 ,

Bps = E

[
K∑
j=1

K∑
j′=1

{
N(TK,j)− Λ0(TK,j)e

β′
0Z
}

×
{
N(TK,j′)− Λ0(TK,j′)e

β′
0Z
}

×

{
Z −

E
(
Zeβ

′
0Z |K,TK,j

)
E
(
eβ

′
0Z |K,TK,j

) }

×

{
Z −

E
(
Zeβ

′
0Z |K,TK,j′

)
E
(
eβ

′
0Z |K,TK,j′

) }′] ,
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and (Asymptotic Normality of Functional of Λ̂ps
n ) for h ∈ Hr,

√
n

∫
{Λ̂ps

n (t)− Λ0(t)}eβ′
0z

×

{
h(t)

Λ0(t)
− z′ (Γps)−1E

(
Zeβ

′
0Z

K∑
j=1

h(TK,j)

)}
dν1(t, z)

→d N(0, σ̃2
1),

where

Γps = E

[
ZZ ′

K∑
j=1

Λ0(TK,j)e
β′
0Z

]
,

σ̃2
1 = E

[
K∑
j=1

{
N(TK,j)− Λ0(TK,j)e

β′
0Z
}

×

{
h(TK,j)

Λ0(TK,j)
− Z ′ (Γps)−1E

(
Zeβ

′
0Z

K∑
j′=1

h(TK,j′)

)}]2

.

(iv) (Asymptotic Normality of β̂n)
√
n(β̂n − β0) →d N(0,Σ), where Σ = (A)−1B((A)−1))′

with

A = E

 K∑
j=1

∆Λ0(TK,j)e
β′
0Z

{
Z −

E
(
Zeβ

′
0Z |K,TK,j−1, TK,j

)
E
(
eβ

′
0Z |K,TK,j−1, TK,j

) }⊗2
 ,

B = E

[
K∑
j=1

K∑
j′=1

{
∆N(TK,j)−∆Λ0(TK,j)e

β′
0Z
}

×
{

∆N(TK,j′)−∆Λ0(TK,j′)e
β′
0Z
}

×

{
Z −

E
(
Zeβ

′
0Z |K,TK,j−1, TK,j

)
E
(
eβ

′
0Z |K,TK,j−1, TK,j

) }

×

{
Z −

E
(
Zeβ

′
0Z |K,TK,j′−1, TK,j′

)
E
(
eβ

′
0Z |K,TK,j′−1, TK,j′

) }′]

and (Asymptotic Normality of Functional of Λ̂n) for h ∈ Hr,

√
n

∫ {(
Λ̂n(t)− Λ̂n(s)

)
− (Λ0(t)− Λ0(s))

}
eβ

′
0z
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×

{
h(t)− h(s)

Λ0(t)− Λ0(s)
− z′Γ−1E

(
Zeβ

′
0Z

K∑
j=1

∆h(TK,j)

)}
dν2(s, t, z)

→d N(0, σ̃2
2),

where

Γ = E

[
ZZ ′

K∑
j=1

∆Λ0(TK,j)e
β′
0Z

]
,

σ̃2
2 = E

[
K∑
j=1

{
∆N(TK,j)−∆Λ0(TK,j)e

β′
0Z
}

×

{
∆h(TK,j)

∆Λ0(TK,j)
− Z ′Γ−1E

(
Zeβ

′
0Z

K∑
j′=1

∆h(TK,j′)

)}]2

.

Here, the obtained asymptotic distributions for β̂psn and β̂n are the same as those in The-

orem 3.3 of Wellner and Zhang (2007) and Theorem 3 of Lu, Zhang, and Huang (2009). The

new results about the baseline mean function can be used to conduct statistical hypothesis

tests. The proofs of the above conclusions are available from the authors.

Supplementary Materials

The supplementary materials include proofs of theorems.
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