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Abstract 

Twin studies indicate that latent genetic factors overlap across comorbid psychiatric disorders. 

In this study, we used a novel approach to elucidate shared genetic factors across psychiatric 

outcomes by clustering single nucleotide polymorphisms based on their genome-wide 

association patterns. We applied latent profile analysis (LPA) to p-values resulting from 

genome-wide association studies across three phenotypes: symptom counts of alcohol 

dependence (AD), antisocial personality disorder (ASP), and major depression (MD), using the 

European-American case-control Genome-Wide Association Study (GWAS) subsample of the 

Collaborative Study on the Genetics of Alcoholism (N=1399). In the 3-class model, classes 

were characterized by overall low associations (85.6% of SNPs), relatively stronger 

association only with MD (6.8%), and stronger associations with AD and ASP but not with MD 

(7.6%), respectively. These results parallel the genetic factor structure identified in twin 

studies. The findings suggest that applying LPA to association results across multiple 

disorders may be a promising approach to identify the specific genetic etiologies underlying 

shared genetic variance.   

Key words: comorbidity; psychiatric disorder; genetic etiology; latent profile analysis; GWAS 
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Introduction 

 Twin studies of the genetic architecture of comorbid psychiatric disorders suggest 

considerable genetic overlap across psychiatric conditions. Analyses of the covariance 

structure of comorbid psychiatric disorders have suggested a hierarchical factor structure 

(Krueger, 1999; Krueger, McGue, & Iacono, 2001; Krueger & Markon, 2006), with two primary 

factors comprising internalizing and externalizing disorders. Internalizing disorders encompass 

major depression, dysthymia, generalized anxiety disorder, phobias, and panic disorder, and 

externalizing disorders encompass alcohol dependence, drug dependence, conduct disorder, 

and antisocial personality disorder (Krueger, 1999). Behavioral genetic studies using twin data 

indicate that genetic factors largely account for shared variation within internalizing and 

externalizing disorders, respectively (Kendler, Prescott, Myers, & Neale, 2003; Kendler et al., 

2011; Krueger et al., 2002). In an effort to take into account the shared genetic epidemiology of 

internalizing or externalizing disorders, investigators have sometimes created composite 

internalizing or externalizing phenotypes for use in genetic analyses (Benke et al., 2014; 

Derringer et al., 2015; Dick et al., 2008; McGue et al., 2013).  Genome-wide association 

studies (GWAS) results of individual psychiatric outcomes have also been used to examine 

genetic relationships between multiple disorders. Such methods include the polygenic score 

approach (Purcell et al., 2009), restricted maximum likelihood methods (Yang et al., 2010; 

Yang et al., 2011), and cross-trait linkage disequilibrium (LD) score regression (Bulik-Sullivan 

et al., 2015a; Bulik-Sullivan et al., 2015b).   

 In this study, we used GWAS summary statistics to elucidate shared genetic etiology 

across psychiatric outcomes by classifying single nucleotide polymorphisms (SNPs) based on 

their genome-wide association patterns. Specifically, we applied latent profile analysis (LPA) 
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(Gibson, 1959; Lazarsfeld & Henry, 1968) to p-values of associations between SNPs and three 

psychiatric phenotypes:  symptom counts of alcohol dependence (AD), antisocial personality 

disorder (ASP), and major depression (MD), to identify clusters of SNPs with homogeneous 

association patterns. We hypothesized that the pattern of associations with these phenotypes 

would not be random, but rather, that there would be a subset of SNPs with relatively stronger 

associations with the two externalizing disorders (AD and ASP) but not with MD, an 

internalizing disorder. Thus, as a proof of principle, we applied LPA to the association patterns 

across AD, ASP, and MD, to test whether it would result in identifying clusters of SNPs 

corresponding to the patterns predicted based on twin findings.  

Method 

Participants and measures  

 The case-control GWAS subsample was selected from the Collaborative Study on the 

Genetics of Alcoholism (COGA) as previously described (Edenberg et al., 2010). COGA 

recruited families with alcohol dependent probands diagnosed as alcohol dependent by both 

the Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised (DSM-III-R) 

(American Psychiatric Association, 1987) and Feighner criteria (Feighner et al., 1972) from 

inpatient and outpatient alcohol treatment centers across study sites, and families from 

community controls. A poly-diagnostic instrument, the Semi-Structured Assessment for the 

Genetics of Alcoholism (SSAGA) (Bucholz et al., 1994; Hesselbrock et al., 1999) was 

administered to participants. Written consents were obtained from all participants, and the 

institutional review boards of all participating sites approved the study. Cases were selected 

from families with alcohol dependent probands that had a lifetime AD diagnosis using DSM-IV 

(American Psychiatric Association, 2000) criteria. Controls were selected from both 
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community-ascertained families and families with alcohol dependent probands, but could not 

share a common known ancestor with a case subject. Controls were required to have 

previously consumed alcohol, but not to have a diagnosis of alcohol dependence, abuse, or 

harmful use by any of the diagnostic systems included in SSAGA (Feighner, DSM-III-R, DSM-

IV, and ICD-10). In addition, the controls could not have DSM-III-R or DSM-IV diagnoses of 

abuse or dependence for other substances (cocaine, marijuana, opioids, sedatives, or 

stimulants) to avoid potential genetic risk factors shared with alcohol abuse and dependence. 

Only the European-American subsample (N=1399, 46.6% female) was used, to reduce 

population stratification. Genotyping was performed by the Center for Inherited Disease 

Research using the Illumina Infinium II assay protocol (Gunderson et al., 2006) with 

hybridization to Illumina HumanHap1M Bead-Chips (Illumina, San Diego, CA). Detailed 

information on genotyping can be found in Edenberg et al. (2010); data are available at dbGaP 

(phs000092.v1.p1). Symptom counts of AD, ASP, and MD were used as phenotypes for 

GWAS, and sex was used as a covariate. GWAS p-values of association between 989,949 

SNPs and each of the three phenotypes were computed using PLINK version 1.07 (Purcell et 

al., 2007).  

Statistical analysis 

 We applied LPA to the -log10(p-values) from GWAS of AD, ASP, and MD symptom 

counts.  LPA is a categorical latent variable model that is commonly used to identify groups of 

individuals, referred to as "classes", based on the patterns of responses on multiple observed 

variables, referred to as "class indicators". In this study, however, we used LPA to identify 

classes of SNPs, instead of individuals. Thus, unlike the common setting of LPA, in which data 

are arranged by individuals, the data for our analyses were arranged by SNPs. Thus, the data 
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consisted of four columns – a SNP ID and three columns of class indicators, which in our case 

are -log10(p-values) corresponding to AD, ASP, and MD, with n rows, where n is the number of 

SNPs included in the analysis. The profile of each SNP (the pattern of association strengths 

with the three phenotypes, indexed by their -log10 of GWAS p-values) was used as class 

indicators in LPA.  

 Although other statistics from association results, such as regression coefficient beta, t 

statistics (beta divided by the standard error), and raw p-values, can index association 

strengths between SNPs and the phenotypes could be used as class indicators, we concluded 

that they are less or equivalently appropriate as class indicators compared to -log10(p). Raw p-

values may not be appropriate because they may result in classes overly driven by SNPs with 

lower association strengths, where p-values are more distinguishable than p-values of higher 

association strengths.  Given that the direction of effect of each SNP is determined by an 

arbitrary decision on the reference allele, and because we designed the analysis to classify 

SNPs based on their patterns of association strengths, signs of raw beta coefficients may 

introduce an unnecessary dimension into classification. Absolute values of beta coefficients 

still may not correctly represent the association strengths without taking into account their 

standard errors. Absolute values of beta coefficients divided by their standard errors, absolute 

values of t statistics, may better represent association strengths than raw beta. However, we 

expect that using absolute values of t statistics would be equivalent to using log10(p). 

 In our analyses, we utilized three primary sets of parameters to interpret the results of 

LPA. First, the estimated means of the –log10(p) of the three phenotypes were used to 

characterize and interpret the response profile of each class. For example, if SNPs in a given 

class have relatively larger means for AD and ASP than for MD, this class can be interpreted 
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as being associated with the two externalizing phenotypes. Second, LPA estimates each 

SNP's probability of belonging to each of the estimated classes. For each SNP, these 

probabilities sum to one, and the class with the highest probability was referred to as the "most 

likely class." Third, LPA computes class proportions, which are, in our case, the proportions of 

SNPs classified into each class, based on the estimated parameters. In addition, the quality of 

classification was measured by entropy. Entropy ranges from 0 to 1, where values 

approaching 1 indicate clear separation between classes (Celeux & Soromenho, 1996). We 

used Mplus version 7.1 (Muthén & Muthén, 1998-2012), with maximum likelihood estimator 

with robust standard errors (MLR), to estimate the parameters of LPA. 

 We fit LPAs with 2 to 10 classes and examined classifications of SNPs across LPAs 

with different number of classes, based on most likely class memberships. The purposes of 

these analyses were to: (1) determine the optimal number of classes of SNPs and (2) examine 

whether classifications of SNPs follow the pattern predicted by twin studies. Assuming that 

SNPs corresponding to internalizing and externalizing genetic factors exist, we expected that 

SNPs in a class associated with both AD and ASP would be divided into individual classes of 

AD and ASP, respectively, as the number of classes increases. In contrast, we hypothesized 

that SNPs associated with MD would initially form their own class and would not overlap with 

SNPs in classes for AD and/or ASP by increasing the number of classes.  To guide the 

selection of the optimal number of classes, we used both information criteria and the bootstrap 

likelihood ratio test (BLRT) (McLachlan & Peel, 2004). The Akaike information criterion (AIC) 

(Akaike, 1987) and Bayesian information criterion (BIC) (Schwarz, 1978) penalize the 

complexity of models (i.e. the number of parameters estimated), and lower values are 

preferred because they represent a balance between model fit and parsimony. The BLRT tests 
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the difference of log likelihoods between models with k and k-1 class(es), and insignificant p-

values indicate that a model with k classes fits no better than a model with k-1 classes. 

 Results of the LPA models were compared to the results from subsets of the data and 

alternative methods to examine how consistent LPA results are. First, we fit LPA models with 

an increasing number of classes to a pruned subset of SNPs. Because SNPs in high linkage 

disequilibrium (LD) are correlated, they may distort the classification of SNPs by causing 

classes of correlated SNPs driven by LD structure. To exclude this possibility, we created a 

subset of SNPs by pruning SNPs with r2>0.1 and fit LPA models to this pruned subset of 

SNPs. Pruning was done in PLINK software version 1.07 (Purcell et al., 2007). Second, we 

applied k-means clustering to the GWAS –log10(p-values). Unlike LPA, k-means clustering is 

a non-parametric clustering method that does not have within-class normality assumption. K-

means clustering with varying k were applied to examine how the number of clusters and class 

profiles from non-parametric model compare to the LPA results. K-means clustering depends 

more on the choice of the distance metrics and their scales than LPA does (Magidson & 

Vermunt, 2002)). For our analysis, we used –log10(p), the class indicator used in LPA, as the 

distance metric for k-means clustering, because our goal was to examine whether the results 

from different methods using the same indicators converge. We used the Hpclus and Fastclus 

procedures in SAS/STATTM software version 9.4 (SAS Institute, Cary NC) for k-means 

clustering. Lastly, we fit the LPA models with different number of classes to randomly split-half 

subsets of our sample to confirm if the results from the full set of SNPs replicate in split-half 

samples. For the split-half samples, we created two subsets of randomly split-half samples 

with equal sizes, without replacement. We then ran separate GWASs in each sample and used 

resulting p-values in LPAs. 
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Results 

 Table 1 summarizes fit indices and entropy values resulting from the LPA of 2- to 9-

class models using full set of SNPs. The best log likelihood was not replicated in the 10-class 

model indicating that the model is unstable, and the result from 10-class model was not 

presented. The optimal number of classes was not obvious based on information criteria and 

the BLRT. Both AIC and BIC continued to decrease throughout the 2- to 9-class models, and 

all BLRTs resulted in significant p-values.. Given that the optimal number classes was not 

clear in terms of information criteria and BLRT, in the following sections we focus our 

interpretation on the 2- to 4-class models based on our expectations from twin findings. The 

classes were well separated in all models, as evidenced by values of entropy ranging 

between .888 and .920. 

 Response profiles of classes identified in 2- to 4-class models are summarized in Table 

2 and in Figure 1. In the 2-class model, the first class (labeled as the Null) included 90.35% of 

SNPs, and its response profile was characterized by weak associations, indexed by the low 

means of class indicators, which are -log10(p), for all three phenotypes, indicating that SNPs in 

this class were not associated with any of included phenotypes. The second class included 

9.7% of SNPs and was labeled as the Signal class because its response profile was 

characterized by relatively stronger overall associations, indexed by higher means of class 

indicators compared to the Null class. In the 3-class model, the three classes were labeled as 

the Null, AD+ASP, and MD classes, respectively based on their response profiles. The Null 

class was the largest (85.57% of SNPs) and had a profile characterized by relatively low 

means of class indicators for all three phenotypes. The AD+ASP class consisted of 7.63% of 

SNPs, and its response profile indicated higher means for AD and ASP, indicating relatively 
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stronger associations with AD and ASP. The MD class, comprised 6.8% of SNPs, was 

characterized by a higher mean for MD compared to means for AD and ASP. Finally, in the 4-

class model, classes were labeled as the Null, AD, ASP, and MD classes, respectively. The 

majority (80.9%) of SNPs were included in the Null class. The AD class comprised 8.5% of 

SNPs and was characterized by a relatively higher mean for AD only. The ASP class included 

4.9% of SNPs, and its profile indicated a higher mean for ASP only. The MD class consisted of 

5.68% of SNPs and was characterized by a higher mean for MD only.  

 Patterns of classification, based on most likely class memberships, across LPAs with 2 

to 4 classes are summarized in Table 3. Largely the same groups of SNPs were classified into 

the Null class across the 2- to 4-class models. Of the SNPs classified into the Signal class in 

the 2-class model, most (93.7%) were classified into the AD+ASP class (79.4%) or MD class 

(14.3%) in the 3-class model.  A majority (89.1%) of SNPs in the 3-class AD+ASP class were 

classified into the AD (24.1%) or ASP (65.1%) classes in the 4-class model. 83.4% of the 

SNPs classified into the MD class of the 3-class model remained in the MD class of the 4-class 

model. 

 Results from LPA models applied to a subset of SNPs pruned at r2=.1 were very close 

to the results from the full set of SNPs. Table 4 summarizes the results of 2- to 4-class models 

using the pruned subset of SNPs. Class profiles and proportions from 2- to 4-class models 

from pruned set of SNPs were close to corresponding classes from the full set of SNPs and 

were labeled accordingly in the Table 4. The results of k-means clustering applied to both the 

full and pruned subset of SNPs summarized in Table 5 and 6. Although k-means clustering 

provides less guidance on the number of classes (Magidson & Vermunt, 2002), we used the 

aligned box criterion (ABC) (reference) to guide determining the number of clusters. ABC 
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compares within-cluster sum of squares to those from simulated null distributions from varying 

number of clusters, and the largest difference indicates the optimal number of clusters. In our 

analysis, ABC peaked at 2 and 3 clusters from full and pruned (r2=.1) sets of SNPs, 

respectively. Profiles of clusters from 3-means model were similar to 3-class LPA (Table 5). 

Clusters correspond to the Null, MD, and AD+ASP classes from 3-class LPA were identified, 

although the Null cluster was much smaller making other classes larger in 3-means result, 

compared to 3-class LPA result. Importantly, cross-tabulating cluster memberships across 2- 

to 4-means models showed consistent results as in LPA. In Table 6, the majority of SNPs in 

the Null class of 2-means model stays in the Null cluster of 3-means model, while SNPs in the 

Signal cluster were mostly split into either AD+ASP or MD cluster resulted from 3-means 

model. AD+ASP class was further split into ASP or AD clusters of 4-means model, and SNPs 

in MD cluster mostly remained in the MD cluster of 4-means model. Results of LPA from split-

half samples were consistent with each other and with the result from overall sample. In both 

halves, classes with profiles and proportions similar to those of full set of SNPs were identified. 

Detailed results of split-half samples are provided in Tables S1 and S2 in the supplementary 

material. 

Discussion 

 This study examined the patterns of clustering of SNP association results by applying 

LPA to genome-wide association results across AD, ASP, and MD. Conditional on considering 

models consistent with expectations from twin studies regarding the number of classes, the 

results indicated that the classifications of SNPs based on their patterns of associations 

broadly reflected externalizing and internalizing genetic factors (Kendler, Prescott, Myers, & 

Neale, 2003; Kendler et al., 2011; Krueger et al., 2002). Especially in the 3-class model, SNPs 
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classified into the AD+ASP class, which was characterized by stronger associations with two 

externalizing phenotypes (AD and ASP) but not with MD, an internalizing phenotype, may 

represent a cluster of SNPs that affect externalizing disorders broadly. Thus, this cluster of 

SNPs may represent part of the molecular genetic basis for the shared latent genetic factor 

observed in twin studies. The MD class, which was distinguished from the AD+ASP class by 

relatively stronger association with MD only, more likely represents a cluster of SNPs that may 

reflect the internalizing genetic factor.  

 The pattern of SNPs classified into varying numbers of classes further supported the 

existence of clusters of SNPs corresponding to externalizing and internalizing genetic factors, 

especially between 3- and 4-class models. The AD+ASP class in the 3-class model split into 

AD or ASP classes in the 4-class model. However, almost no overlap (0.3% of SNPs) was 

observed between the AD+ASP class from the 3-class model, and the MD class identified in 

the 4-class model. SNPs in the MD class from the 3-class model mostly (83.4%) remained in 

the MD class in the 4-class model. This pattern of classification broadly reflects the hierarchical 

factor structure identified from factor analyses (Krueger, 1999; Krueger, McGue, & Iacono, 

2001; Krueger & Markon, 2006) and twin studies (Kendler, Prescott, Myers, & Neale, 2003; 

Kendler et al., 2011; Krueger et al., 2002). These findings suggest that the application of LPA 

to SNP association results across multiple disorders may be a promising approach to identify 

clusters of SNPs that are associated with related phenotypes. While the cross-tabulations of 

class memberships between 2- to 4-class models matched our expectation, some instability of 

class memberships were observed between LPA models with different number of classes. For 

example, 5.7-6.6% of SNPs in the Null class were classified into non-null classes, and 6.3-

10.5% of SNPs in non-null classes were classified into the Null class with increasing number of 
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classes. Because Table 3 is based on the most likely memberships, SNPs with unstable 

memberships are likely to be in the edge of the given class where it overlap with other classes. 

Decreasing entropy values with increasing number of classes in Table 1 may indicate that the 

overlap between classes increases as the number of classes increase. 

Limitations and Future Directions 

 An assumption of LPA, within-class normality, may not be met in our data. We 

examined the univariate distributions of class indicators within each class based on most likely 

class memberships, and they largely deviated from normality. Applying mixture models to true 

non-normally distributed indicators may result in the identification of spurious classes without 

meaningful interpretation (Bauer & Curran, 2003; Lubke & Neale, 2006). In addition, if the true 

distribution of the Null class is the uniform distribution across the range of class indicators, LPA 

with conditional normality assumption would result in underestimation of the Null classes by 

forcing the identification of classes with high and low mean profiles. However, it should also be 

noted that statistically distinguishing between single-class non-normal and multi-class normal 

data may not be possible (Bauer & Curran, 2003; Muthén 2003). To check whether relaxing 

the normality assumption results in a different number of classes, we tried to fit LPA models 

with skewed t-distribution. However, estimating this model was extremely slow, likely due to 

the large number of SNPs, and the model never converged. On the other hand, clusters from 

k-means clustering, which does not assume conditional normality, had comparable profiles and 

proportions to LPA results. Although the sphericity assumption of k-means, which assumes the 

same within-cluster variance, may also not be appropriate for our indicator variables, the 

consistency of results from methods that require different sets of assumptions may indicate 

that classes identified in LPA are robust to the violations of assumptions. As pointed in Muthén 
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(2003), the interpretation of classes identified from latent categorical variable models is rather 

a substantive question, and incorporating substantive knowledge is an important step to 

validate identified classes. Consistency of classes identified in our study with the expectation 

based on twin studies provides a theoretical support in interpreting identified classes. Further 

investigation of identified classes utilizing auxiliary information, such as predicting class 

membership by covariates or using class memberships to predict distal outcomes, would be 

important step to validate classification results.  

 The local independence assumption of LPA requires class indicators to be uncorrelated 

within each class. However, some indicators are moderately correlated within the classes 

identified in our analysis. We examined the within-class correlations between indicators based 

on most-likely class memberships from the 3-class model. The correlations between indicators 

in overall sample, ranged between .148 and .302, were reduced within each class, ranging 

between .009 and .219. However, some correlations, such as between AD and ASP (.219) in 

the MD class and between MD and ASP (.197) in the AD+ASP class, for example, remained 

substantial. This pattern of within-class correlation may indicate an extra source of correlations 

between the p-values other than the classes. LD structure may not likely be the cause because 

within-class correlations with the pruned (r2=.1) set of SNPs showed similar patterns of within-

class correlations to full set of SNPs. To incorporate common variance within classes, we fit 

the 3-class model with within-class residual covariance between indicators allowed. The result 

indicated no noticeable change in class proportions and profiles. Estimated residual 

correlations were substantial especially between AD and ASP in the Null and MD classes, .205 

and .223, respectively, and between MD and ASP, in the MD and AD+ASP classes, .177 

and .181, respectively. Although our analysis indicated an unexplained source of correlations 
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between indicators, the stability of results with or without residual covariance may indicate that 

the classes we identified are stable regardless of local independence assumption. 

 Further investigation on different indicators for LPA might be able to refine the 

classification of SNPs. We used -log10(p) as an index of association strength and used them 

as class indicator for LPA among other possible class indicators for the reasons described in 

the methods section. In a post hoc analyses, we fit the same LPA models to alternative class 

indicators: raw p-values, absolute values of beta coefficients, and absolute values of t-

statistics. Beta coefficients were also standardized to make interpretation of resulting classes 

more straightforward, given that linear transformations of class indicators do not affect the 

estimation of classes (Magidson & Vermunt, 2002). The results of 3-class LPA using beta, raw 

p-values and t statistics are provided in the supplementary material (Table S3). As expected, 

only LPA results using t statistics as indicators showed consistent patterns of classifications to 

the results from using -log10(p). Although -log10(p) may be more appropriate for LPA than 

alternatives considered, searching for class indicators that can better represent association 

strengths and distinguish between SNPs would be an important step to elaborate our initial 

results.  

 Expanding and refining phenotypes would further elaborate the results of current study. 

Specifically, MD was the only internalizing disorder included in this study. Although a class for 

MD contains a set of SNPs distinctive from the AD+ASP class, the MD class alone may not 

fully represent internalizing disorders. Identification of a class of SNPs for multiple internalizing 

disorders, such as anxiety disorder or phobia in addition to MD, would confirm the cluster of 

SNPs corresponding to the internalizing genetic factor. In addition, twin studies have indicated 

that the externalizing and internalizing genetic factors may not be completely exclusive in 
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influencing each disorder. Externalizing and internalizing genetic factors may be correlated 

(Kendler et al., 2011b), or cross loadings may exist for a single disorder from both internalizing 

and externalizing genetic factors (Kendler et al., 2003). Moreover, it is possible that subtypes 

of a disorder may have different genetic factors as indicated by, for example, studies on 

internalizing subtypes of AD (Edwards et al., 2014; McCarty et al., 2012; Needham, 2007). 

However, these possibilities were not considered in this study.  

 Although the results of analysis have supported a conclusion based on twin studies, the 

pattern of clustering SNPs correspond to hierarchical genetic factors, the results would need to 

be backed by simulations and replications using independent samples to be fully validated. We 

focused our interpretation on 2- and 4-class models based on twin findings, but the optimal 

number of classes was not clear based upon commonly accepted criteria. Determining the 

optimal number of classes depends not only on the underlying mechanism being continuous or 

categorical, but also on adequacy of assumptions, parameter specifications, and 

characteristics of data, such as sample size and the scales of responses (Lubke & Miller, 

2008; Lubke & Neale, 2006). Further simulations with varying genetic architecture would be 

needed to validate the clusters of SNPs correspond to the structure of comorbid phenotypes 

observed in our study. In addition, while previous studies on genetic architecture of comorbid 

psychiatric disorders are based on general population samples (Kendler, et al., 2003; Kendler 

et al., 2011; Krueger et al., 2002), our sample was ascertained based on AD diagnosis and 

ancestry information (Edenberg et al., 2010). The next step to confirm the similarity of genetic 

architecture between different populations would be to replicate the results in independent 

epidemiological samples.   
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  Classifying SNPs based on their association patterns also lends itself to several 

additional possible follow-up analyses.  Examining the function of the clusters of SNPs 

associated with multiple outcomes may be informative as to shared underlying pathways that 

contribute to their etiologies.  For example, gene set enrichment analysis (GSEA) (Zhang, 

Chang, Guo, & Wang, 2014; Zhang, Cui, Chang, Zhang, & Wang, 2010) could be conducted to 

test whether certain genetic pathways are overrepresented in the clusters of SNPs identified in 

the LPA. Clusters of SNPs identified may also be used to construct polygene scores for use in 

other analyses or datasets that aim to characterize developmental changes associated with 

genetic effects and/or gene-environment interaction (Salvatore, Aliev, Bucholz et al., 2014; 

Salvatore, Aliev, Edwards et al., 2014).   

 

Conclusion 

 This study presents a novel way to utilize GWAS results from multiple disorders to 

better understand genetic variation shared across comorbid disorders. Classifying SNPs based 

on their patterns of associations with multiple disorders may enable investigators to identify 

clusters of genes that impact clusters of behavioral outcomes. Our results suggested that large 

numbers of genetic variants are collectively associated with multiple disorders, and 

classification based on association patterns may provide a useful tool to investigate these 

relationships. 
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Table 1. Model fit summary and entropy values from 2- to 9-class models. 

Number of 
classes  

Number of 
parameters 

Log 
likelihood AIC BIC 

VLM- 
LRT Entropy 

2 10 -1445427.453 2890875 2890993 <.001 0.920 

3 14 -1337989.919 2676008 2676173 <.001 0.921 

4 18 -1262112.296 2524261 2524473 <.001 0.912 

5 22 -1210300.289 2420645 2420904 0.333 0.901 

6 26 -1171070.191 2342192 2342499 0.333 0.895 

7 30 -1140480.727  2281021 2281376 <.001 0.894 

8 34 -1118906.299 2237881 2238282 <.001 0.888 

9 38 -1098595.506 2197267 2197716 <.001 0.894 
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Table 2. Response profiles of classes from 2- to 4-class models. 

2-class Null Signal   
Class proportions 90.35% 9.65%   

 Means of -log10(p) (SE)  
AD 0.378 (<.001) 0.867(.003)   

ASP 0.336 (.001) 1.407(.004)   
MD 0.409 (<.001) 0.711(.003)   

     
3-class Null MD AD+ASP  

Class proportions 85.57% 6.80% 7.63%  

 Means of -log10(p) (SE)  
AD 0.372 (<.001) 0.588 (.003) 0.873 (.004)  

ASP 0.338 (.001) 0.541 (.003) 1.490 (.004)  
MD 0.341 (.001) 1.531 (.005) 0.550 (.003)  

     
4-class Null MD AD ASP 

Class proportions 80.90% 5.68% 8.50% 4.93% 

 Means of -log10(p) (SE)  
AD 0.309 (<.001) 0.524 (.003) 1.273 (.003) 0.759 (.005) 

ASP 0.339 (.001) 0.540 (.003) 0.607 (.003) 1.689 (.007) 
MD 0.344 (.001) 1.592 (.005) 0.464 (.002) 0.604 (.004) 
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Table 3. The cross-tabulation of class memberships between 2-, 3-, and 4-class models. 

Between 2- and 3-class models  
   3-class   

2-class  AD+ASP MD Null  
Null Count 0 50922 848055  

 
% within  

2-class Null 0.00% 5.70% 94.30% 
 

Signal Count 72249 13029 5694  

 
% within  

2-class Signal 79.40% 14.30% 6.30% 
 

Between 3- and 4-class models 
   4-class   

3-class  ASP AD MD Null 

AD+ASP Count 47018 17440 208 7583 

 
% within  

3-class AD+ASP 65.10% 24.10% 0.30% 10.50% 

MD Count 373 5744 53338 4496 

 
% within  

3-class MD 0.60% 9.00% 83.40% 7.00% 

Null Count 0 56060 58 797631 

 
% within  

3-class Null 0.00% 6.60% 0.00% 93.40% 
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Table 4. Response profiles and proportions of classes from 2- to 4-class models using SNPs 

pruned at r2=.1. 

2-class Null Signal   
Proportions 90.15% 9.85%   

 Means of -log10(p) (SE)  
AD 0.371 (0.001) 0.829 (0.008)   
ASP 0.334 (0.001) 1.396 (0.009)   
MD 0.420 (0.001) 0.684 (0.007)   

     
3-class Null MD AD+ASP  
Proportions 85.55% 6.30% 8.14%  

 Means of -log10(p) (SE)  
AD 0.365 (0.001) 0.569 (0.008) 0.840 (0.009)  
ASP 0.335 (0.001) 0.525 (0.008) 1.460 (0.010)  
MD 0.357 (0.002) 1.508 (0.014) 0.556 (0.006)  

     
4-class Null MD AD ASP 

Proportions 80.74% 5.21% 8.64% 5.41% 

 Means of -log10(p) (SE)  
AD 0.301 (0.001) 0.503 (0.009) 1.226 (0.007) 0.762 (0.014) 
ASP 0.338 (0.002) 0.530 (0.009) 0.577 (0.008) 1.633 (0.016) 
MD 0.360 (0.002) 1.570 (0.016) 0.467 (0.005) 0.605 (0.010) 
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Table 5. Mean (variance) profiles from 3-means clusterings with full and pruned sets of SNPs. 

Full set    
Cluster Null MD AD+ASP 

Proportions 67.35% 15.41% 17.24% 
AD 0.301 (0.067) 0.451 (0.140) 0.887 (0.247) 
ASP 0.279 (0.051) 0.419 (0.120) 1.087 (0.283) 
MD 0.266 (0.040) 1.187 (0.195) 0.443 (0.130) 

    
Pruned set*    
Cluster Null MD AD+ASP 

Proportions 66.08% 17.20% 16.73% 
AD 0.304 (0.068) 0.426 (0.125) 0.851 (0.239) 
ASP 0.280 (0.050) 0.391 (0.100) 1.114 (0.260) 
MD 0.268 (0.038) 1.115 (0.174) 0.461 (0.134) 

    
* SNPs were pruned at r2=.1. 
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Table 6. Cross tabulations of cluster memberships from 2- to 3-means clusterings. 

  3-means    
2-means  AD+ASP MD Null  

Null Count 19168 74697 664291  

 

% within 
2-cluster Null 

2.53% 9.85% 87.62%  

Signal Count 151473 77834 2486  

 
% within  
2-cluster Signal 65.35% 33.58% 1.07%  

      

  4-means    
3-means  ASP AD MD Null 

AD+ASP Count 99560 67603 946 2532 

 
% within  
3-cluster AD+ASP 58.34% 39.62% 0.55% 1.48% 

MD Count 3511 11101 135760 2159 

 
% within  
3-cluster MDl 2.30% 7.28% 89.00% 1.42% 

Null Count 2702 74724 36 589315 

 
% within  
3-cluster Null 0.41% 11.21% 0.01% 88.38% 
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Figure 1. Mean profiles of 2- to 4-class LPA models. 

 

 

 

 

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

AD ASP MD

-lo
g 1

0(p
)

2-class

Null Signal

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

AD ASP MD

-lo
g 1

0(p
)

3-class

Null AD-ASP MD

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

AD ASP MD

-lo
g 1

0(p
)

4-class

Null AD ASP MD


