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David W. McIlwain 

THE ROLE OF INHIBITOR OF APOPTOSIS (IAP) FAMILY MEMBER SURVIVIN 

IN PROSTATIC DISEASE 

Continual and recalcitrant inflammation is an extremely common condition 

in the human prostate and has been found to be associated with a number of 

prostatic diseases including prostate cancer and benign prostatic hyperplasia 

(BPH). While much has been described regarding prostate disease resulting from 

oxygen and nitrogen radicals during inflammation, proliferative mechanisms 

associated with repair and regeneration are less understood. The Inhibitor of 

Apoptosis (IAP) family member survivin has been found to be overexpressed 

during inflammation and associated with prostate cancer progression. 

Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a 

multifunctional protein that is essential in activating inflammatory transcription 

factors. Because APE1/Ref-1 is expressed and elevated in prostate cancer, we 

sought to characterize APE1/Ref-1 expression and activity in human prostate 

cancer cell lines and determine the effect of selective reduction-oxidation (redox) 

function inhibition on prostate cancer cells in vitro and in vivo. Due to the role of 

inflammatory transcriptional activators NFĸB and STAT3 in survivin protein 

expression, and APE1/Ref-1 redox activity regulating their transcriptional activity, 

we assessed selective inhibition of APE1/Ref-1’s redox function as a novel 
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method to halt prostate cancer cell growth and survival. Our study demonstrates 

that survivin and APE1/Ref-1 are significantly higher in human prostate cancer 

specimens compared to noncancerous controls and that APE1/Ref-1 redox-

specific inhibition with small molecule inhibitors APX3330 and APX2009 

decreases prostate cancer cell proliferation and induces cell cycle arrest. 

Inhibition of APE1/Ref-1 redox function significantly reduced NFĸB transcriptional 

activity, survivin mRNA and survivin protein levels. These data indicate that 

APE1/Ref-1 is a key regulator of survivin and a potentially viable target in 

prostate cancer. 

Tao Lu, Ph.D., Chair 
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Chapter 1 Introduction 

Prostate Anatomy  

The prostate is a male-specific small, walnut-sized gland that sits 

underneath the bladder and in front of the rectum. The prostate also surrounds 

the urethra, which is a narrow tube connected to the bladder that runs through 

the length of penis and carries both semen and urine out of the body. On top of 

the prostate resides the seminal vesicles which contain and secrete a significant 

portion of the ejaculate. The neurovascular bundle, a bundle of nerves and 

vessels, run alongside the prostate and are responsible for controlling erectile 

function. The prostate gland itself is surrounded by a layer of connective tissue 

called the prostatic capsule. 

The prostate is composed of three different zones: the peripheral, the 

transitional and the central (Figure 1). The peripheral zone is the area that is 

nearest to the rectum. It is the zone felt by doctors during a digital rectal 

examination (DRE) and where approximately 75% of prostate cancers are found 

[1]. By volume, the peripheral zone is the largest zone of the prostate. The 

transitional zone is in the middle of the prostate and resides between the other 

two zones. The urethra passes through the transitional zone and for most men 

under the age of 40 the transitional zone accounts for 20% of the prostate 
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volume. As men age, this region of the prostate can grow and cause urinary tract 

symptoms in a process called benign prostatic hyperplasia (BPH). [2] The central 

zone is in front of the transitional zone and is the farthest zone from the rectum. 
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Figure 1. Schematic of human prostate anatomy  
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The prostate is composed of three different zones: the peripheral, the transitional 

and the central. The peripheral zone is the largest zone by volume and is where 

the majority of prostate cancers occur. The central zone is in front of the 

transitional zone and is the farthest zone from the rectum. 
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Prostate Biology 

The prostate is important for reproduction supplying proteins and minerals 

necessary for sperm survival, transit and fertilization. [3] It is not however, 

essential for life. Zinc, citrate and fructose are made from the seminal vesicles 

and provide the sperm energy for the migration up the uterine tract. During 

ejaculation, smooth muscle surrounding the prostate contract and propel fluid 

and semen into the urethra while simultaneously closing off the bladder. The 

prostate also releases enzymes, like Prostate-specific antigen (PSA), which are 

necessary for liquefying the semen to allow the sperm to reach the egg. PSA is 

used as a biomarker for prostate cancer. [4]  

Prostate Histology  

The prostate is a set of tubulo-alveolar glands with luminal lining by 

epithelium and surrounded by a connective tissue stromal compartment. There 

are two histologically distinct layers in the epithelium with a secretory luminal 

layer made of up of tall columnar cells responsible for production of seminal fluid 

components and a basal layer composed of cuboidal epithelial cells which play a 

role in tissue replenishment (Figure 2). [5-7] Both layers are surrounded by a 

basement membrane consisting of extracellular matrix (ECM) which forms a 

divide between the epithelia and stroma. The stromal compartment is comprised 



 

6 

of a number of different cell types with the smooth muscle cell being the most 

abundant. These smooth muscle cells are derived from the mesenchyme of the 

embryonic urogenital sinus (UGS). [8] Fibroblasts, nerves, endothelial cells and 

vascular smooth muscle cells are also very abundant in the stroma of the adult 

prostate. [9] 
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Figure 2. Schematic of the human prostatic gland 

 

The prostate is a set of tubulo-alveolar glands with luminal lining by epithelium 

and surrounded by a connective tissue stromal compartment. The epithelium 

compartment is traditionally composed of three distinct cell types; the basal cell, 

the neuroendocrine cell and luminal cell type. The stromal compartment is 

comprised of a number of different cell types with the smooth muscle cell being 

the most abundant. 

 

  



 

8 

Traditionally, there are considered three different epithelial cell types in the 

prostate; luminal, basal and neuroendocrine (NE) cells. However, it has recently 

been shown that there is an additional heterogeneous subpopulation of cells 

called transit amplifying cells that migrate from the basal to the luminal layer. [10] 

These transit amplifying cells are of intermediate phenotype sharing 

characteristics of the early progenitor basal cells and the terminally differentiated 

secretory luminal cells. [11]  

NE cells are considered an androgen-independent and non-proliferating 

cell type. [12] The NE cells are scattered across the luminal and basal layers and 

the exact role of this cell type is not known. [13] NE cells are most commonly 

characterized by the expression of chromogranin A, serotonin, bombasin, 

vasoactive intestinal peptide (VIP), calcitonin and parathyroid hormone-related 

proteins (PTHrP). [14-24] Even though NE cell function has yet to be elucidated, 

it has been implicated in prostatic carcinogenesis. [25-26] 

Basal cells are believed to be the proliferative cell type of the epithelial 

compartment. [27-28] These cells are commonly characterized by the expression 

of cytokeratin (CK) 5 and 14 and the cell-surface marker CD44. Some other 

possible markers include CK10, 11, 15 and 17, p63, integrin α2, B-cell lymphoma 

2 (Bcl-2), P-cadherin, pp32, Glutathione S-transferase P (GST-π), tyrosine-
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protein kinase Met (c-MET), HGF (hepatocyte growth factor) Receptor and 

Receptor tyrosine-protein kinase erbB-2 (HER-2). [29-42]  

Luminal cells are considered androgen-dependent, requires androgen to 

live, and are most commonly characterized by the expression of CK8/18 and 

cluster of differentiation (CD) 57. [43-44] As the result of differentiation, luminal 

cells do not express Bcl-2 like the basal cell type. Also, the androgen receptor is 

expressed and mediates the production and secretion of androgen-dependent 

proteins like PSA. [45] Low levels of prostate surface membrane antigen (PSMA) 

and endothelin-1 (ET-1) have been detected in luminal cells. [46-47]  

The prostate stroma is comprised of a multitude of different cells including 

endothelial cells, immune cells, nerve cells and fibroblasts, also called 

myofibroblasts. These cells play an important role in the homeostasis of the 

prostate providing the right environment for cell proliferation, movement and 

differentiation. [48] The prostate stromal compartment also plays a critical role in 

signaling with the epithelial compartment and has been found to contribute to 

epithelial tumor progression. [49] 

Myofibroblasts, which make up smooth muscle, are the most abundant 

stromal cell type and play a critical role in tissue remodeling. These cells 

synthesize and express different extracellular matrix proteins like collagen, 
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tenascin, versican, laminin, smooth muscle actin (SMA), CD34 and fibronectin 

while simultaneously producing different proteases and growth factors needed for 

angiogenesis. [50] These smooth muscle cells are maintained by unipotent 

progenitor populations in the adult prostate. [51] Both of the prostatic tissue 

compartments expand in the presence of inflammation. 

Prostate Inflammation 

Prostate inflammation, also called prostatitis, is a common occurrence in 

the adult male population of the United States. [52] Dietary influences, 

environmental exposures, metabolic disorders and infectious agents [52-53] have 

all been tied to prostatic inflammation but the cause is most likely multi-factorial. 

Prostate inflammation has been extensively tied with the development and 

progression of both prostate cancer and BPH. [55-56] Inflammation causes 

imbalances of pro-inflammatory and anti-inflammatory cytokines, increased 

production of angiogenic and lymphangiogenic growth factors, and generation of 

reactive oxygen species (ROS) from infiltrating inflammatory cells. [57] All of 

which are considered potential initiators of prostatic neoplastic growth. Prostatitis 

is classified into four different groups; acute bacterial prostatitis, chronic bacterial 

prostatitis, inflammatory/non-inflammatory chronic pelvic pains syndrome 



 

11 

(previously known as chronic nonbacterial prostatitis) and asymptomatic 

inflammatory prostatitis (Table 1).  
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Table 1. National Institutes of Health (NIH) defined classification system for 

prostatitis.  

 

Prostatitis is classified into four different categories; acute bacterial prostatitis, 

chronic bacterial prostatitis, inflammatory/ non-inflammatory chronic pelvic pain 

syndrome and asymptomatic inflammatory prostatitis. 
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Acute bacterial prostatitis is caused by bacteria that travel up the urethra 

and into the prostate. [58] It is the least common form of prostatitis and its 

symptoms consist of high fever, chills, joint/muscle aches and fatigue. In addition 

to those symptoms, pain around the base of the penis and behind the scrotum, 

pain in the lower back, and the feeling of a full rectum may also occur. 

Fluoroquinolone antibiotics are the standard of care with ciprofloxacin, 

levofloxacin, and ofloxacin most often prescribed. 

Trimethoprim/sulfamethoxazole is also sometimes used for the treatment of 

acute bacterial prostatitis. [59]  

Chronic bacterial prostatitis is also caused by bacteria and is most 

commonly found in older men with other urological disorders. [60] Unlike acute 

bacterial prostatitis, its symptoms are mild and is considered a low grade 

infection that lasts for an extended amount of time. Symptoms include 

intermittent urges to urinate, frequent urination, painful urination, or nocturia. Low 

back pain, rectum pain, scrotum pain, and painful ejaculations can also occur. 

Antibiotics are also used for this form of prostatitis with treatment lengths ranging 

from 1 to 3 months. [61]  

Chronic pelvic pain syndrome (CPPS), also known as chronic nonbacterial 

prostatitis, is the most common form of prostatitis and its symptoms reflect those 
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of chronic bacterial prostatitis. [62] No bacteria is discovered making treatment 

hard. Antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs) and alpha-

adrenergic antagonists are used to ease the symptoms of CPPS. [63] It is 

hypothesized that this form of prostatitis is actually an overactive pain syndrome 

that connects the pelvic floor, bladder, prostate and rectum in an overactive 

neural network. [64] 

Asymptomatic inflammatory prostatitis has no symptoms and is usually 

diagnosed during tests for other medical problems. [65] Since there are no 

symptoms treatment is usually not needed. Prostatic inflammation is associated 

with the development of prostatic diseases including Benign Prostatic 

Hyperplasia and prostate cancer. 

Benign Prostatic Hyperplasia 

Benign prostatic hyperplasia (BPH) is a non-malignant condition where the 

epithelial and stromal compartments of the transitional zone, also the periurethral 

areas, enlarge to the point of causing unwanted urinary symptoms and occurs 

primarily in older men (Figure 3). The prostate gland continues to grow 

throughout life but it is not entirely known what causes this specific type of 

prostatic enlargement. Untreated, BPH can cause the blockage of urine flow out 

of the bladder ultimately leading to urinary tract and/or kidney problems. [66] In 
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the United States, BPH has a prevalence of 40% amongst men by 60 years of 

age and 90% of men by 80 years of age. [67] BPH symptoms, also known as 

lower urinary tract symptoms (LUTS), include increased urinary urgency, urinary 

frequency, weak urine stream and inability to empty the bladder. Urinary tract 

infection and hematuria are also possible symptoms. [68] Treatment of BPH 

usually involves alpha-adrenergic antagonists to relax bladder neck and prostate 

muscles and/or 5-alpha reductase inhibiters to shrink the prostate by preventing 

testosterone to dihydrotestosterone conversion which is known to cause prostatic 

growth. [69] Surgery, transurethral resection of the prostate (TURP), might also 

be recommended in severe cases. [70] 
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Figure 3. Benign Prostatic Hyperplasia 

 

Prostate with Benign Prostatic Hyperplasia (BPH) showing enlarged transitional 

zone narrowing the urethra. BPH is a non-malignant condition where the 

epithelial and stromal compartments of the transitional zone, also periurethral 

areas, enlarge to the point of causing unwanted urinary symptoms. This primarily 

occurs in older men. 
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There are no clear triggering events causing BPH; one plausible 

hypothesis is that both acute and chronic inflammation may lead to increased 

proliferation within the prostate through a variety of mechanisms. Oxidative 

stress is known to cause tissue damage and may lead to compensatory 

proliferation resulting in hyperplastic growth. [71] Unregulated pro-inflammatory 

chemokines and cytokines by chronic inflammatory infiltrates have also been 

proposed to contribute to uncontrolled cellular proliferation, specifically stromal 

cell proliferation. Chronically active T-cells and macrophages are associated with 

nodules found in BPH and are known to secrete interleukin (IL) -6, IL-8 and IL-

15. [72-74] Based on the available literature, BPH prevalence is most likely 

multifaceted with an unregulated immune system and systemic hormonal 

changes playing crucial roles. BPH is not a risk factor for prostate cancer even 

though inflammation is a risk factor for both BPH and prostate cancer. 

Prostate Cancer 

Prostate cancer is the uncontrolled malignant growth of cells within in the 

prostate and the most commonly cancer diagnosed in American men. Most 

prostate cancers are adenocarcinomas, meaning the cancer originates from the 

luminal gland cells of epithelial origin. Other classifications of prostate cancer are 

rare and include sarcomas, small cell carcinomas, neuroendocrine tumors and 
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transitional cell carcinomas. Majority of prostate cancers are indolent and slow 

growing but there are subclasses that can grow and spread quickly. [75] Behind 

lung and colorectal cancer, prostate cancer is the third leading cause of cancer-

related death in American men with 1 man in 39 dying from prostate cancer. [76] 

Prostate cancer is usually diagnosed using PSA blood tests, DRE and 

prostate biopsy. [77] Several newer tests are being implemented to determine 

prostate cancer risk and treatment including: the phi (combines results of total 

PSA, free PSA and its precursor proPSA), the 4Kscore test (combines results of 

total PSA, free PSA, intact PSA and human kallikrein 2), the progensa 

(investigates prostate cancer antigen 3 (PCA3) levels in urine after DRE), the 

ConfirmMDx (genetic test from prostate biopsy) and genetic tests that look for the 

abnormal gene fusion called TMPRSS2:ERG in urine prostate cells after DRE. 

[78] Determining the stage of prostate cancer plays a key role in establishing 

treatment options.  

The Gleason grading system is used by pathologists to determine the 

stage of prostate cancer. This system is based exclusively on the architectural 

pattern of prostatic glands within the tumor after biopsy and it evaluates the 

differentiation, normal gland architecture, of the tumor with the belief that a more 

differentiated tumor is less aggressive than an undifferentiated tumor. [79] A 



 

20 

Gleason grade 1 is considered well differentiated with a Gleason grad 5 

considered poorly differentiated. The Gleason score is the combined sum of the 

two most common architectural patterns (Gleason grades).  A high Gleason 

score means the cancer is poorly differentiated and more likely to metastasize 

(Figure 4).  
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Figure 4. Prostate cancer glandular structure  

 

Prostate cancer is the uncontrolled malignant growth of cells within the prostate 

(Right Panel). It is characterized by the increased ratio of epithelial cells to 

stromal cells compared to normal prostate tissue (Left Panel). Unorganized 

glandular structures are a hallmark of prostate cancer and these cancer cells 

invade through the gland basement membrane where they metastasize to lymph 

node and bone.  
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Treatment of prostate cancer depends on the stage of tumor. Those 

tumors that have a low Gleason score, monitoring the cancer through active 

surveillance or watchful waiting, PSA tests and biopsies, might be preferable to 

the possible side effects of treatment. [80] For those localized tumors with 

moderate risk of progression, radiation therapy is often used. Conformal radiation 

therapy, intensity modulated radiation therapy, proton bean radiation and 

brachytherapy are used to minimize damage to surrounding normal tissues. [81] 

Destroying the tumor using high-intensity focused ultrasound, highly focused 

ultrasonic beams, is also gaining popularity for these localized tumors. [82] For 

those moderate and high risk tumors that are still localized to the prostate, 

prostate surgery/removal is used to cure the cancer. [83] 

Metastatic prostate cancer or high risk prostate cancers in patients who 

cannot have surgery, hormone deprivation therapy and chemotherapy may be 

treatments of choice. Hormone deprivation therapy is used to reduce the levels of 

androgens and/or activity of the androgen receptor. There are a number of 

treatments aimed at lowering androgen levels or androgen receptor activity: 

orchiectomy (surgical castration), luteinizing hormone-releasing hormone (LNRH) 

agonists and antagonists (plays on hormonal feedback systems), Cytochrome 

P450 17A1 (CYP17) inhibitors (blocks production of androgens) and androgen 
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receptor inhibitors (blocks androgen receptor activity). [84-89] Side effects of 

these drugs include reduced sexual desire, erectile dysfunction, osteoporosis, 

decreased mental sharpness, loss of muscle mass, weight gain, fatigue and 

depression. [90] Once the cancer becomes resistant to androgen deprivation 

therapy, chemotherapy is used. Docetaxel and cabazitaxel have been shown to 

help men live longer with metastatic prostate cancer and now combinations with 

androgen deprivation therapy are being investigated. [91] Resistance to both of 

these treatments are unfortunately inevitable (Figure 5).   
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Figure 5. Current treatment landscape for prostate cancer 

 

(Red line) signifies PSA levels overtime and (Grey Dot) signifies treatment. 

When the cancer is localized to the prostate, surgery and radiation is most often 

used to cure the cancer. If surgery/radiation is not an option or if PSA levels 

continue to increase after treatment, androgen deprivation therapy (ADT) is then 

administered. This would include LNRH agonists and anti-androgens 

(Enzalutamide and Abiraterone). Once ADT fails to stop the growth/metastasis of 

the cancer immunotherapy (Sipuleucel-T) and chemotherapy (Docetaxel and 

Cabazitaxel) are used in conjunction with ADT. Denosumab and Zoledronic Acid 

are also used to treat bone problems in patients who have cancer.  
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The most-accepted risk factors for prostate cancer development are age, 

family history (genetics) and African American ancestry but there is an increased 

incidence of prostate cancer in those men who adopt a westernized lifestyle. [92] 

This suggests that environmental factors along with hereditary factors are playing 

a role in the development of prostate cancer. One such potential environmental 

factor is the induction of chronic inflammation through infections, dietary factors, 

hormonal changes and/or environmental chemical exposures. This inflammatory 

microenvironment created by the immunobiology of the prostate leads to the 

influx of chemokines and cytokines that potentially aid to unregulated cell growth.  

Prostate Cancer Signaling 

Interestingly, there is a relatively low rate of mutations in prostate cancer 

compared to other tumors of different origins and a high prevalence of non-

random copy number variations involving well-known oncogenes and tumor 

suppressors. [93-94] The most common genomic alterations in prostate cancer 

signaling pathways include the androgen receptor pathway, phosphoinositide 3-

kinase (PI3K) pathway, the loss of tumor suppressor Homeobox protein Nkx-

3.1(NKX3.1) and the pro-growth chromosomal rearrangement TMPRSS2:ERG. 

[95-98] This chromosomal rearrangement involving E26 transformation-specific 

transcription (ETS) factors under androgen receptor control is found in 60-70% of 
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prostate cancers. [99] Aside from these genomic alterations, multiple 

inflammatory signaling pathways have been identified as possible mediators 

between inflammation and carcinogenesis.  

The nuclear factor kappa B (NF-κB) signaling pathway has been 

associated with inflammation, autoimmune disorders and cancer. [100] The 

family consists of 5 members: p65 (also known as RelA), RelB, c-Rel, p100/p53 

and p105/p52 which form homo or heterodimers that function as transcriptional 

activators through binding consensus sites along DNA. The canonical NF-κB 

pathway is activated by a broad spectrum of stimuli like tumor necrosis factor α 

(TNF-α) and IL-1 and involves the phosphorylation of the inhibitory IκB proteins 

by the IκB kinase complex (IKK). This phosphorylation results in the 

ubiquitination and degradation of IκB by the proteasome, releasing NF-κB dimers 

to translocate to the nucleus and activate responsive target genes. Some of 

these target genes are involved in proliferation and apoptosis and have been 

shown to contribute to the development and progression of certain cancers 

including prostate cancer. [101-102] 

NF-κB inhibition has been shown to suppress prostate cancer in vivo and 

in vitro. [103] In prostate cancer cell lines PC-3 and DU145, NF-κB was found to 

be constitutively active and inhibition of NF-κB was found to inhibit cell growth 
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and induce cell death. [104-106] NF-κB activator TNF-α is highly expressed in 

prostate cancer along with its receptors TNFR1 and TNFR2 compared to 

noncancerous prostatic epithelium and the expression of TNF- α has been 

correlated with prostate cancer cell proliferation, metastasis and drug resistance. 

[107] High levels of TNF-α levels in human serum have also been associated 

with poor prognosis of prostate cancer patients. [108]  

The Janus Kinase (JAK)/signal transducer and activator of transcription 

(STAT) signaling pathway is an important cascade required for normal 

development and cell homeostasis. [109] It is recognized as an important 

membrane-to-nucleus cascade that can be activated by reactive oxygen species, 

cytokines and growth factors. The JAK/STAT pathway has been implicated in 

hematopoiesis, gland development, immune response and sexually dimorphic 

growth as well as in the development of both hematological and solid tumor 

malignancies. [110] Once signaling activation occurs and the specific inducer 

(like IL-6) binds to its respective receptor, the receptors undergo oligomerization 

leading to the phosphorylation of the JAK family of kinases, JAK 1-3. These 

activated JAK proteins act as docking sites for STAT monomers. The 

phosphorylation of the STATs allow for dimerization and the effective 

translocation to the nucleus and activation of STAT-dependent target genes.  
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STAT3, along with NF-ĸB, has been shown to be constitutively active in a 

number of cancers including prostate (Figure 6). [111] STAT3 gene targets are 

associated with cell cycle regulation and apoptosis and control various cellular 

events such as proliferation, differentiation and cell survival. [112] Upregulation of 

antiapoptotic proteins Bcl-2, Bcl-XL, survivin and Mcl-1 by STAT3 have been 

shown in prostate cancer and many other tumors. [113-114] The proangiogenic 

factor vascular endothelial growth factor, VEGF, has also been tied to STAT3 and 

been shown to be involved in in tumor invasion and migration. [115] Additionally, 

inhibition of the JAK/STAT pathway has been found to suppress prostate cancer 

growth and survival. [116] 
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Figure 6. NF-κB and STAT3 in cancer 

 

NF-κB and STAT3 are found to be activated in a number of cancers including 

prostate cancer but also play major roles in other cell types. These two signaling 

pathways work collaboratively to continue positive feed-forward signaling, 

including the signaling molecules shown in the diagram above, creating an 

inflammatory tumor microenvironment. Inflammatory chemokines and cytokines 

are secreted by local immune cells, cancer cells and stromal cells creating the 

perfect stimuli for cancer initiation, promotion, invasion and metastasis.  
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The PI3K/ serine/threonine-specific protein kinase (AKT) pathway is a 

signal transduction pathway that connects a multitude of membrane receptors to 

essential cellular functions such as cell survival and proliferation. [117-119] PI3K 

is divided into three major classes: class I (IA and IB) molecules that contain one 

catalytic and regulatory subunit and have the ability to bind to receptor tyrosine 

kinases (RTKs), G-protein coupled receptors and oncogenic proteins to 

transduce their signals, and class II and III molecules which contain a single 

catalytic subunit and bind to several receptors, such as RTKs or cytokine 

receptors. After PI3K activation, recruitment and activation of AKT occurs through 

phosphatidylinositol (4, 5) bisphosphate (PIP2) conversion into 

phosphatidylinositol (3, 4, 5) trisphosphate (PIP3). Activated AKT can 

phosphorylate and activate several other proteins like mechanistic target of 

rapamycin (mTOR), glycogen synthase kinase 3, and Forkhead box (FOXO) 

members. Ultimately, AKT’s actions regulates a large array of cellular processes 

related to cell survival and proliferation.  

PI3K/AKT pathway is hyper activated in the majority of solid tumors. 

PI3K/AKT/mTOR signaling is up-regulated in 30%–50% of prostate cancers and 

is most often due to the loss of Phosphatase and tensin homolog (PTEN) 

function and AKT hyper activation. [120] PTEN dephosphorylates PIP3 to PIP2 
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and negatively controls the PI3K/AKT pathway. PTEN has been found to be 

haploinsufficient in some prostate cancers and its genetic loss has been 

associated with prostate cancer progression and increased metastatic potential. 

[121] Therapeutics targeting the deregulation of the PI3K/AKT pathway have 

been developed and are currently being tested in prostate cancer.  

Mitogen activated protein kinases (MAPKs) comprise a family of kinases 

tied to the regulation of intracellular metabolism, gene expression, cell growth 

and differentiation and stress response mechanisms. [122-123] MAPKs are 

divided into three families: the extracellular-signal-regulated kinases (ERKs), the 

c-Jun N-terminal kinases (JNKs), and p38 MAPKs. A multitude of signals initiate 

MAPK signaling by the binding and activation RTKs and/or G-protein-coupled 

receptors (GPCRs). The activated RTKs interact with Ras, or other members of 

its superfamily, and through Mitogen-Activated Protein Kinase Kinase (MKK) 4 

and MKK7 kinases activate JNKs. Downstream targets of the MAPKs include 

activator protein 1 (AP-1) and p53 and these transcriptional activators mediate 

expression of target genes containing a TPA DNA response elements (TRE). The 

MAPK/ERK pathway has been shown to be activated in the later stages of 

prostate cancer often due to deregulated PI3K/AKT signaling or aberrant growth 

factor signaling. [124] Although members of the Ras family are rarely mutated in 



 

32 

prostate cancer, Ras is activated by epidermal growth factor (EGF), Insulin-like 

growth factor 1 (IGF-1), keratinocyte growth factor (KGF), and fibroblast growth 

factors (FGFs), which are often deregulated in prostate cancer. [125-126]  

These inflammatory signaling pathways have been shown to upregulate a 

family of proteins called the Inhibitors of Apoptosis. 

Inhibitors of Apoptosis (IAP) Protein Family 

Inhibitors of Apoptosis (IAP) deregulation is found in many types of human 

tumors and are associated with chemotherapy-resistance, disease progression 

and poor prognosis. [127] Consistent with the idea that different types of cancer 

cells are addicted to IAPs for cell survival, the inactivation of IAPs under tissue 

culture conditions results in the induction of apoptosis in most tumor cells. 

Furthermore, IAP inhibition does not seem to be harmful to normal differentiated 

cells. [128-130] IAPs were thought to function primarily by inhibiting cysteine 

proteases called caspases, which are involved in apoptosis. However, recently it 

has been that IAPs also influence a multitude of other cellular processes 

important for inflammation, immunity, cell migration and cell survival. [131] 

There are 8 different IAP family members in humans; Baculoviral IAP 

repeat-containing protein 1 (BIRC1), Baculoviral IAP repeat-containing protein 2 
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(c-IAP1), Baculoviral IAP repeat-containing protein 3 (c-IAP2), X-Linked Inhibitor 

of Apoptosis (XIAP), survivin (Birc5), Baculoviral IAP Repeat Containing protein 6 

(BIRC6), Melanoma inhibitor of apoptosis (ML-IAP) and IAP-like protein 2 (ILP2).  

All IAP family members contain 1-3 70 amino acid long Baculoviral IAP repeat 

(BIR) domains with a few members (c-IAP1, c-IAP2, XIAP and ML-IAP) 

containing a carboxy-terminal RING domain. [132] In addition to these two 

domains, IAP family members also contain several other domains that are most 

likely involved in protein-protein interactions. The BIR domain is thought to allow 

these proteins to bind caspases while the RING domain allows these proteins to 

act as an E3 ubiquitin ligase. The antiapoptotic function of IAP proteins appears 

to be highly dependent on these two domains. [133-135] 

There are classically considered two apoptosis (programmed cell death) 

signaling pathways: the extrinsic pathway of apoptosis and the intrinsic pathway 

of apoptosis. [136] The extrinsic pathway is usually initiated through the binding 

of a death ligand to its respective receptor on the cell surface causing receptor 

oligomerization. [137] Some of these death ligands include Fas ligand (FasL), 

TNFα, APO-3L/TWEAK, and APO-2L/TRAIL. The binding of these factors 

ultimately leads to the recruitment of specialized adaptor proteins and the 

activation of the caspase cascades. The extrinsic pathway primarily works 
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through activated caspase 8 that can directly cleave and activate caspase 3 or 

indirectly lead to mitochondrial perturbations via the cleavage of BID. BID 

stimulates mitochondrial outer membrane permeabilzation. Activated caspase 3 

is responsible for the proteolytic cleavage of the nuclear enzyme poly (ADP-

ribose) polymerase (PARP) among other key proteins. PARP cleavage facilitates 

cellular disassembly. The intrinsic pathway is usually mediated by the release of 

pro-apoptotic proteins cytochrome c and second mitochondria-derived activator 

of caspase (SMAC/DIABLO) from the mitochondrial intermembrane space. [138] 

Once released these proteins activate caspase 9 which subsequently directly 

cleaves and activates caspase 3. SMAC/DIABLO is known to bind several IAP 

family members including XIAP, c-IAP1 and c-IAP2 promoting caspase cleavage 

and apoptosis. [139]  

 It has recently been found that XIAP is the only IAP family member that 

directly binds and inhibits caspases; specifically caspase 3, caspase 7 and 

caspase 9. [141] The first and second BIR repeats are involved in the inhibition of 

caspase 3 and caspase 7 while the third repeat is responsible for caspase 9 

inhibition via the interaction of XIAP and the N termini of the processed caspase 

subunits. The other IAP family members are not considered potent caspase 

inhibitors but have an active E3 ubiquitin ligase activity. This ligase activity allows 
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IAP family members to regulate cell death modulator’s and effector’s protein 

stability contributing to cell survival. [142] Survivin is unique as an IAP family 

member in the fact it does not contain E3 ligase activity and is not a potent 

caspase inhibitor. Survivin is also associated with prostate cancer cell survival 

and proliferation. 

Survivin 

Survivin is encoded by the BIRC5 gene on chromosome 17q25 and is the 

smallest member of the IAP family. The BIRC5 gene encodes wild type survivin 

(4 exons, 142 amino acids) and five splice variants; ΔEX3 (deletion of exon 3, 

137 amino acids), 2B (additional exon, 165 amino acids), 3B (5 exons, 120 

amino acids), 2α (2 exons, 74 amino acids) and 3α (two exons, 78 amino acids). 

[143-144] All survivin isoforms contain a complete sequence identity with the N-

terminus region but vary sequence on the carboxyl end. Isoform localization and 

expression patterns vary widely compared to wild type survivin and have been 

shown to associate with prostate cancer activity and progression. [145] Overall, 

there is a consensus that ΔEx3 is anti-apoptotic and 2B is pro-apoptotic and that 

these isoforms may perform divergent functions in tumor progression and 

therapy response though much more research is need for the additional variants. 
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[146] Wild-type survivin is a dual functioning protein, playing both a role in cell 

death regulation (anti-apoptotic) and cell division (pro-mitotic) (Figure 7). 
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Figure 7. Survivin cellular roles in cancer 

 

Survivin has anti-apoptotic and pro-mitotic roles within in cancer cells. Survivin is 

instrumental in cell division controlling microtubule stability/chromosomal 

arrangement and has been shown to play a role in DNA repair, specifically non-

homologous recombination promoting cell growth and survival. Survivin also, in 

conjunction with other IAP members, prevents apoptosis and autophagy through 

caspase cleavage and autophagosome inhibition. 
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Survivin regulation at the transcriptional level has been found to be 

mediated by a number of factors associated with inflammatory and growth 

signaling. PI3K/AKT, MAPK, JNK and JAK/Stat3 have been shown to regulate 

survival and proliferation of normal and of tumor cells through IAP protein 

regulation.  Transcriptional regulation of survivin has been found to be mediated 

by Stat3 in some cancers. [147] Stat3 inhibitor, STATTIC, down-regulates survivin 

protein levels in human breast and ovarian cancer cells. [148] However, it has 

been reported that the specific protein 1 (Sp1) transcription factor, rather than 

Stat3, primarily regulates survivin promoter activity in esophageal cancer and 

gastric cancer; [149] thus suggesting the regulation mode of survivin appears to 

be highly cell-type specific. Survivin’s promoter contains two critical Sp1 sites and 

some reports suggest that p53-mediated transcriptional repression is another 

possible manner of regulation. [150] NF-ĸB has been shown to regulate survivin 

transcription in liver cancer and squamous cell carcinoma and the androgen 

receptor has been found to regulate survivin protein levels in prostate cancer. 

[151-152] 

Survivin has a relative short protein half-life at around 30 minutes, 

regulated by proteasomal degradation. [153] Phosphorylation of Threonine 34 on 

survivin by Cyclin-dependent kinase 1 (cdc2) is known to stabilize survivin 
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protein levels by slowing down the clearance of survivin through the proteasomal 

degradation. [154] In cervical carcinoma cell lines and ovarian cell lines, the 

combined treatment of Cyclin-dependent kinase inhibitor and paclitaxel down-

regulated survivin protein levels through the inhibition of Threonine 34 

phosphorylation and enhanced caspase-dependent apoptosis. [155-156] Heat 

shock protein 90, Hsp90, a chaperone protein, has also been reported to 

regulate survivin protein levels. [157] The disruption of survivin–Hsp90 interaction 

results in the proteasomal degradation of survivin, leading to mitotic defects and 

apoptosis. [158-159] 

The bifunctionality of survivin can be sorted by the individual subcellular 

compartments that survivin occupies and its secondary protein modifications. 

Survivin is localized in the cytoplasm, the mitochondria, the cytoskeleton and the 

nucleus with the distribution being cell type dependent. [160-162] Survivin has 

been shown to inhibit apoptosis induction with other IAP family members by 

preventing caspase activation in the cytoplasm and in mitochondria. In the 

nucleus, survivin is a part of a complex called the chromosomal passenger 

proteins. The chromosomal passenger protein complex is composed of the 

proteins Aurora-B kinase, inner centromere protein (INCENP), and Borealin. This 
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complex is necessary for regulating mitosis and chromosomal arrangement. 

[163] 

The subcellular location and specific protein functional properties are 

regulated by signal-dependent secondary modifications of the protein. Survivin is 

phosphorylated at threonine 117 by the Aurora-B kinase and this localizes 

survivin to chromosome arms and inner centromeres from prophase through 

metaphase. [164] It also localizes survivin to kinetochores in metaphase, 

distributes survivin to the midzone microtubules in anaphase and at telophase, 

localizes survivin exclusively to the midbody. [166] Phosphorylation at threonine 

34 is critical for survivin protein stability and its anti-apoptotic function. [165] 

Survivin is expressed during development, but is variable and sometimes 

undetectable in adult fully-differentiated tissues. The overexpression of survivin 

protein has been reported in almost all solid tumor human malignancies including 

prostate cancer, lung cancer, breast cancer, stomach cancer, esophageal cancer, 

liver cancer, and ovary cancer. Similar to its protein expression, survivin promoter 

(transcriptional) activity is largely null in normal cell types, but is increased in 

malignant cell lines. The specific up-regulation of survivin in cancer cells is further 

supported by the immunological responses detected against it. Cancer cells 

seem to utilize the protective character of survivin during cancer progression. 
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During colon cancer progression, the level of survivin protein was found to 

increase from adenoma with low-grade dysplasia (2.3%) to high-grade dysplasia 

(52.4%) to carcinoma in adenoma (63.3%). [166] Similar results has been found 

in the tumorigenesis of pancreatic ductal adenocarcinoma where no survivin 

protein level has been found in normal pancreatic ducts but only in low-grade 

pancreatic intraepithelial neoplasia to high-grade lesions and to the highest in 

pancreatic ductal adenocarcinoma tissues. [167] Survivin expression has been 

shown to induce a global transcriptional change in the tumor microenvironment 

that may promote tumor progression and has been implicated in angiogenesis. 

Survivin showed a cytoprotection effect, possibly through the PI3K pathways, in 

endothelial cells thought to be mediated by VEGF. Survivin inhibition led to not 

only decreased tumor cell growth, but also a reduction in tumor-derived blood 

vessels. [169] 

Targeting survivin with small molecules has proven difficult and none have 

made it to clinic. YM155, a survivin inhibitor, showed promise but failed in clinical 

trials due to toxicity. Because of this, finding alternative ways of inhibiting survivin 

is of great appeal. The signaling pathways involved in survivin mRNA and protein 

regulation are known targets of a protein called Apurinic/apyrimidinic 
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endonuclease 1/redox factor-1 (APE1/Ref-1) which has roles in DNA repair and 

transcription factor activation.  

APE1/Ref-1 

A number of human diseases, including cancer, result from oxidative 

damage caused by endogenous and exogenous drivers. The base excision 

repair (BER) pathway is the repair pathway that fixes the majority of DNA base 

damage in both the nucleus and mitochondria. [169] APE1/Ref-1, a 

multifunctional enzyme that is part of this BER pathway, has both a DNA repair 

activity and a role in the activation of many transcription factors. These two 

activities are encoded by the two termini regions of the APE1/Ref-1 protein: the 

N-terminal region redox function and the C-terminal DNA repair function (Figure 

8). [170-172] The DNA repair activity includes AP endonuclease activity, 3′ 

phosphodiesterase activity, 3′ phosphatase activity, and 3′–5′ exonuclease 

activity and is responsible for protein–protein interactions within the BER 

pathway. [173] 
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Figure 8. APE1/Ref-1 cellular roles in cancer 

 

APE1/Ref-1 is a bifunctional protein with roles in DNA repair and redox 

regulation. APE1/Ref-1 is part of the base excision repair pathway (BER) and is 

responsible for repairing Apurinic/apyrimidinic (AP) sites with its 5’ –

endonuclease and 3’ –phosphodiesterase activity. It is also responsible for 

regulating the activity of a number of transcription factors including NFĸB, STAT3, 

Hypoxia-inducible factor 1-alpha (HIF-1α) and AP-1. Together these two functions 

promote cell survival.  
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APE1/Ref-1 reductively activates transcription factors including c-Jun, AP-

1, NF-κB, p53 and Hypoxia-inducible factor 1-alpha HIF-1α, thereby stimulating 

their DNA-binding activity. [174] All of these transcription factors are involved in 

cellular processes such as survival, growth and inflammatory pathways. The 

mechanism by which APE1/Ref-1 reduces the cysteine residues within these 

transcription factors involves the exchange of a proton from one or two of the 

redox active cysteine residues in its N-terminus (Cys65, Cys93 or Cys99). [175] 

The subsequent oxidized form of APE1/Ref-1 is then reduced and returned to 

active state by thioredoxin, and oxidized thioredoxin is reduced by thioredoxin 

reductase. [176]  

In thiol-mediated redox reactions, one cysteine residue of the redox factor 

(in this case APE1/Ref-1) serves as the nucleophilic cysteine, which is 

responsible for attacking the disulfide bond in another protein and forming a 

mixed disulfide bond. This mixed disulfide bond is then resolved by the attack of 

the “resolving” cysteine residue within APE1/Ref-1 and results in the formation of 

a disulfide bond in the redox factor; the transcription factor is thereby reduced 

and APE1/Ref-1 is oxidized in this reaction. The reduction of a cysteine within the 

transcription factor DNA binding domain allows for easier covalent bond 

formation with DNA. It is hypothesized that the disulfide bond formation involving 
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Cysteines 65 and 93 occurs while APE1/Ref-1 is in an unfolded state as both 

cysteine residues are normally buried and not appropriately positioned to form a 

disulfide bond.  

APE1/Ref-1 is associated with the progression of various human diseases 

including cancer as observed in ovarian, gastro-esophageal, pancreatico-biliary, 

lung, prostate, cervical, colorectal, breast, hepatocellular, bladder, head and 

neck, gastric, and glial cancers. [177] A positive correlation has found between 

the redox activity of APE1/Ref-1 and tumor grade. [178] Various studies using 

APE1/Ref-1- siRNA in cancer cell lines have demonstrated that APE1/Ref-1 has 

a role in cancer development and progression. [179] In osteosarcoma, one study 

has found a significant association between APE1/Ref-1 overexpression and 

disease risk. Increased chemosensitivity after the use of APE1/Ref-1-siRNA was 

also shown in this study and many others. [180] 

The expression pattern and subcellular localization of APE1/Ref-1 differs 

among normal and diseased cell types. In non-diseased cells APE1/Ref-1 is 

primarily expressed in the nucleus rather than in the cytoplasm. [181] In 

response to oxidative stress, cytoplasmic expression is often observed and 

associated with cells exhibiting active metabolism. [182] Altered APE1/Ref-1 

cellular localization (mixed nuclear or cytoplasmic localization) has been 



 

46 

observed in many cancers. Nuclear APE1/Ref-1 expression has been observed 

in head and neck cancer, rhabdomyosarcomas, bladder, ovarian, gastro-

esophageal and pancreatico-biliary cancers. Cytoplasmic APE1/Ref-1 expression 

has been found in thyroid, prostate and hepatocellular cancers. A positive 

correlation between aggressive tumor grade and nuclear APE1/Ref-1 has been 

found in ovarian, gastro-esophageal and pancreatico-biliary. [183] Nuclear 

localization and expression was also found to be correlated with cancer 

differentiation pattern and lymph node status. [184] 

APE1/Ref-1 plays a role in apoptosis, angiogenesis and cell growth 

making it an attractive anti-cancer therapeutic target. It has been demonstrated 

that APX3330, also known as E3330, and APX3330 blocks only the redox 

function of APE1/Ref-1 and interferes with its ability to convert transcription 

factors from an oxidized to a reduced state, which affects their ability to bind to 

their target consensus sequences. [185] It is thought to do this through covalently 

modifying core cysteine residues within the redox domain of APE1/Ref-1 

preventing its interaction with other proteins. Interestingly, APX3330 has no effect 

on APE1/Ref-1 DNA-repair endonuclease activity making it specific to only the 

redox function.  
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In previous studies it has been shown that only two of the seven cysteine 

residues in the redox domain are solvent accessible suggesting APE/Ref-1 may 

become unfolded in the presence of APX3330. [186] Cysteine 65, which is 

typically buried and critical for the redox function of APE1/Ref-1, becomes 

exposed and reacts with N-Ethylmaleimide (NEM) in the presence of APX3330 

confirming the unfolding hypothesis. Furthermore, based on studies using liquid 

chromatography and tandem mass spectrometry, APX3330-mediated increase in 

disulfide bond formation of the critical APE1/Ref-1 cysteine residues Cysteine 65 

and Cysteine 93 has been suggested as the cause of the redox activity inhibition 

(Figure 9). 
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Figure 9. Mechanism of APE1/Ref-1 redox inhibition through APX3330 

 

Cysteine 65 of APE1/Ref-1 is necessary for the reduction of transcription factors. 

APE1/Ref-1 interacts with downstream transcription factors such as NF-κB, HIF-

1α and AP-1 converting them from oxidized to reduced forms, allowing them to 

bind to their target promoter sequences and switch on the transcription of genes. 

APX3330 binds and prevents Cysteine 65 from creating a disulfide bond with 

another thiol group in the accepting transcription factor thereby blocking the 

APE1/Ref-1’s ability to convert the oxidized transcription factor to a reduced 

transcription factor keeping the target gene transcription turned off. 
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Summary 

Chronic inflammation is a common factor in a number of prostatic 

diseases including prostate cancer and BPH. However, it is not known how 

specialized cells in the prostatic epithelium are programmed to avoid cell death in 

noxious inflammatory microenvironments and survive in order to repopulate the 

tissue to the point of disease. It is also not known if APE1/Ref-1 is a key regulator 

of prostate cell growth and cancer progression or upstream of pathways that 

regulate survival proteins. In this dissertation I investigated these questions. 
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Chapter 2 Material and Methods 

Methods 

Mouse prostate E. coli inflammation model 

E.coli strain 1677 was cultured in 25 ml Lysogeny Broth (LB) medium at 

37 ℃ overnight. The infected medium was then collected and centrifuged at 

1,500 G’s for 10 minutes. The bacteria pellet was then washed with sterile 1x 

Phosphate Buffered Saline (PBS) and was re-suspended in 10 ml sterile PBS. 

The absorbance, OD600, was measured to determine the concentration of E.coli 

and the E.coli suspension is lastly diluted to 1 X 106/ml (OD600=0.118) in sterile 

PBS. 

C57BL/6J wild type mice at 8-12 weeks were deprived from water for 2 

hours and then were anesthetized using isoflurane. E.coli strain 1677 solution (1 

X 106/ml in sterile PBS) is instilled through a sterile catheter into the prostate 

(100 µl/mice) at day 0, with PBS being used as the vehicle. Mice were sacrificed 

after instillation based on the experiment design. 5-bromo-2'-deoxyuridine (BrdU) 

is intraperitoneal (IP) injected into animal (10 mM, 200 µl/mouse) 2 hours before 

sacrifice to label all proliferating cells. Prostates were collected within 30 minutes 

after animal sacrifice for following experiments.  
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Tissue Microdissection 

Mouse prostate was collected within 30 minutes after the animal is 

sacrificed. The fat tissue around prostate was removed and the prostate was 

dissected to separate different prostatic lobes in cold sterile PBS with antibiotics. 

All lobes (including Anterior Prostate (AP), Dorsolateral Prostate (DLP), and 

Ventral Prostate (VP)) were collected separately for following experiments. 

Tissue fixation and embedding 

The DLP tissue for immunofluorescence was fixed in 10% formalin in PBS 

for overnight and then the tissue was washed with distilled (DI) water twice to 

remove excessive formalin. Then the tissue was dehydrated by incubating it in 

50% ethanol, 70% ethanol, 2 X 95% ethanol, and 2 X 100% ethanol, at 30 

minutes/step. The tissue was then treated with 100% xylene twice at 30 

minutes/step followed by two 50% xylene + 50% paraffin treatments also at 30 

minutes/step. The 50% xylene + 50% paraffin treatment was replaced with 100% 

paraffin and the tissue was incubated at 59°C in oven for 1 hour. Then the 

paraffin was refreshed and the tissue was incubating at 59°C overnight. The 

tissue was embedded in paraffin in the following day and was serially sectioned 

into 5µm slice for immunofluorescence (IF) or hematoxylin and eosin stain (H&E) 

staining.   
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Immunofluorescence staining  

Paraffin embedded slides were heated in oven at 59°C for 2 hours to melt 

and remove paraffin. The slides were washed with xylene 3 times at 5 minutes 

each followed by 2 times methanol wash at 5 minutes each. The slides were then 

washed with distilled water for 5 minutes. Tissues were then subjected to heat-

induced antigen retrieval in 10 mM citrate buffer (citrate buffer stock solution of 

monohydrate-free acid citric acid, sodium citrate dehydrate, pH 6.0) for 

10 minutes followed by a 10 minute cool down period. The tissue was circled with 

hydrophobic pen and washed with 1x PBS-Tween (PBST) for 3 times at 5 

minutes/step. Sections were blocked at room temperature with a bovine serum 

albumin (BSA)-serum mixture for 2 hours and incubated with primary antibody 

overnight at 4°C. The sections were then washed the following day with PBST for 

15 minutes to remove excessive primary antibody. The tissue was then treated 

with a fluorophore labelled secondary antibody at room temperature (RT) for 1 

hour. For nuclear staining, the tissue was treated with Hoechst 33342 in PBST at 

RT for 10 minutes followed by 2 PBS washes and 3 DI water washes, 5 minutes 

each. An aqua mounting medium was used on the slides and subsequently were 

kept in 4°C for short term and in -20°C in for long term storage.  
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ELISA (Enzyme-linked immunosorbent assay) 

Prostate tissues were harvested and homogenized from 8 week-old 

C57BL/6J WT mice 0–14 days after E. coli strain 1677 instillation. For the release 

experiments, tissues were equilibrated for 1 hour in aerated Krebs physiological 

salt solution, with buffer changes of 15 minutes and then 30 minutes. Krebs was 

collected after the experiment and frozen in -80°C as the “released fraction.” 

Additional tissues were harvested for the total tissue content, and these tissues 

were snap frozen in liquid nitrogen, placed in sterile PBS, and homogenized 

using sonification. Tissue slurries were centrifuged at 14,000 G for 10 minutes 

and the supernatant was collected as the total tissue content fraction. All 

collections were analyzed by ELISA. Absorbance readings for each concentration 

were normalized as a ratio to control non-inflamed prostates (PBS vehicle 

treated). 

TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) 

Prostate lobes (DLP) were fixed in 10% formalin overnight, processed and 

embedded in paraffin and serially sectioned at 5 μm with a microtome and 

rehydrated as previously mentioned. Tissue sections were incubated with 

Proteinase K working solution (10 μg/ml in 10 nM Tris/HCl, pH 7.4–8) at RT for 

15 minutes and then rinsed twice with PBS. 50 microliters of TUNEL reaction 
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mixture were added to each section and slides were placed in a humidified 

atmosphere for 60 minutes at 37°C in the dark. The slides were then rinsed three 

times with PBS and stained with Hoechst 33258 as previously described. Tissues 

were then washed and covered with an aqueous medium and glass coverslips. 

Samples were directly analyzed under a fluorescence microscope using an 

excitation wavelength in the range of 450–500 nm and detection in the range of 

515–565 nm (green). 

Immunoblotting (Protein quantification) 

After treatment, prostatic cells were washed with cold PBS and were lysed 

by adding 250-500 μl/well lysis buffer. The plate was kept at RT for 10-15 

minutes and the cells were then broken apart with a cell scraper. The cell lysate 

was placed into an Eppendorf tube and kept on ice for 30 minutes. The cell 

lysate was then placed in -80°C for storage or used for bicinchoninic acid assay 

(BCA assay). 

Serial dilutions of BSA standard solution (concentration: 0.125 mg/ml, 0.25 

mg/ml, 0.5 mg/ml, 1 mg/ml and 2 mg/ml) were prepared using BSA standard and 

lysis buffer for BCA assay. In 96 wells plate, 35 μl of standard solution or protein 

samples was added into each well, 2 replicates per sample. The BCA reagent A 

and B were mixed in a 1:50 ratio to make BCA reaction buffer. 70 μl BCA reaction 
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buffer was added into each well (combined with samples) in the 96 wells plate. 

The plate was incubated at 37°C for 30 minutes and absorbance at 540 nM was 

read on plate reader. The protein concentration was calculated using standard 

curve in excel.  

The protein samples were prepared using 2X laemmli loading buffer and 

lysis buffer. The protein concentration was adjusted to make the loading amount 

of protein the same between the samples. The samples were loaded on a 

precast 4%-20% gradient gel. The gel was ran under 115V for 1 hour. Bio-rad 

dual color precision ladder was used as protein marker on at least one side of the 

gel. 

The gel was washed with DI water for 5 minutes. The gel and the thick 

blotting paper was soaked in transfer buffer for 15 minutes to acclimate. The 

PVDF membrane was activated in methanol for 1-2 minutes and was placed in 

transfer buffer for 10-15 minutes. The gel was transferred at 10V, 400mA for 20-

30 minutes. The PVDF membrane was collected and blocked in milk/BSA 

blocking buffer for 2 hours at RT or overnight at -4°C. 

The primary antibody was diluted in milk/BSA blocking buffer or just BSA 

blocking buffer depending on the antibodies instructions. The membrane was 

incubated with primary antibody at -4°C overnight. The membrane the following 
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day was washed with PBST for 6 times 5 minutes each to wash off unbound 

primary antibody.  The secondary antibodies were diluted in the standard 

milk/BSA blocking buffer and the membrane was incubated with the secondary 

antibody at RT for 2 hours. The membrane was then washed with PBST for 4 

times at 5 minutes each followed by 2 PBS washes at 10 minutes each. The 

membrane was then developed using Thermo fisher Femto or Pico developing 

buffer and was exposed on X-ray film in dark room. The film was scanned onto a 

joint lab computer and analyzed using Adobe Photoshop software for 

quantification.  

After developing, the membrane was washed with PBST for 3 times to get 

rid of excess developing solution. The membrane was stripped using stripping 

buffer for 5-15 minutes and then washed with PBS 3 times at 5 minutes each. 

Then the membrane was blocked in blocking buffer again and placed in -4°C for 

storage.  

Cell culture 

Prostate cancer cell lines PC-3, LNCaP, C4-2 and noncancerous prostatic 

epithelial cell line E7 were cultured in complete growth medium at 37℃, 5% CO2 

condition. 0.05% trypsin was used to digest the cells and was neutralized with 
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new medium. Cells were passaged between 3-5 days depending on seeding and 

confluency. 

Cell proliferation assay 

Prostatic cell lines were seeded at concentrations previously determined 

in a 96-wells plate. Cells were treated with APE1/Ref-1 redox inhibitors APX3330 

and APX2009 for various time points and the treatment medium was refreshed 

every day with new drug. The cells were then fixed with methanol for 5 minutes in 

RT and were dried overnight for methylene blue assay. 

Methylene blue assay 

Prostate cells were seeded 1,000-5000 per well (cell line/experiment-

dependent) and treated with either APX3330, APX2009 or RN7-58 for 5 days. 

Media was then removed and cells were fixed with methanol for 10 minutes and 

stained with 100 µL of 0.05% of methylene blue (LC16920-1 diluted in 1X PBS) 

for 1 hour. The cells were then washed 3X with water and allowed to air dry 

overnight. 100 µL’s of 0.5N HCl was added to each well to dissolve the 

methylene blue stain and absorbance (@630nm) was measured via 

spectrophotometry (Figure 10). The percent viabilities, normalized to DMSO 
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control, were graphed and IC50 concentrations determined. DMSO control was 

not significantly different from untreated cells. 
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Figure 10. Methylene blue assay 

 

Standard curve showing absorbance with relative cell number. PC-3 and C4-2 

cells were seeded in increasing amounts in a 96 well plate, methanol fixed and 

stained with methylene blue. The stain was then dissolved with hydrochloric acid 

(HCl) and absorbance measured via spectrometry. 
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RT-PCR (Reverse transcription-polymerase chain reaction) 

RNA isolation was performed using RNeasy Mini Kit. 10 nanograms of 

total RNA was reverse transcribed using Superscript III One-Step RT-PCR 

System. Real-time PCR was performed using the TaqMan Gene Expression 

Assay BIRC5 and HPRT1 and Applied Biosystems 7500 Fast Real-Time PCR 

System. 

CoIP (Co-Immunoprecipitation) 

Samples were co-immunoprecipitated using the Pierce Co-IP kit. 

Additionally, the cells were washed twice with 1X PBS and the proteins were 

cross-linked using DTBP (5 mm, for 30 min on ice). DTBP was quenched by 

washing with cold inactivation buffer (100 mm Tris-HCl, pH 8, 150 mm NaCl) and 

1XPBS. Cells were then lysed and the lysates added to columns and after 

extensive washing, the bound proteins were eluted and prepared for immunoblot 

analysis. 

Luciferase assay 

C4-2 cells were co-transfected with constructs containing luciferase driven 

by NFĸB and a Renilla luciferase control reporter vector pRL-TK at a 20:1 ratio 

by using Effectene Transfection Reagent. After 16 hours, cells were treated with 
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increasing concentrations of APX2009 in serum free media for 24 hours. Firefly 

and Renilla luciferase activities were assessed by using the Dual Luciferase 

Reporter Assay System. Renilla luciferase activity was used for normalization 

and all transfection experiments were performed in triplicate and repeated 3 

times in independent experiments.  

Propidium Iodide (PI) cell cycle analysis 

PC-3 and C4-2 cells were treated with APX2009 (9 and 14 µM, 

respectively) for 48 hours. 500,000 cells were then aliquoted for cell cycle 

analysis and 0.1 mg/ml Propidium Iodide and 0.6% NP-40 PBS stain wash was 

added to the tubes. The cells were then centrifuged at 1900 rpms for 10 minutes 

with the brake on low and then decanted and blotted. RNAase and stain wash 

were added and cells incubated on ice for 30 minutes. Propidium Iodide intensity 

was measured via flow cytometry.  

siRNA transfection 

PC-3 and C4-2 cells were seeded into a 6 wells plate at a concentration of 

2 X 105 cells/well. 50 nM control siRNA or 50 nM APE1/Ref-1 siRNA were 

transfected using HiPerfect transfection reagent following the instruction manual. 



 

62 

Cells were cultured overnight and then were subjected to various experiments. 

Transfection efficiency was confirmed via immunoblot. 

In vivo subcutaneous tumor 

2 × 106 C4-2 cells were subcutaneously implanted in the hind flank of male 

athymic nude mice using a 100μl volume of 50:50 solution of Matrigel: RPMI 

medium. When tumor volumes reached 150 -200 mm3, the animals were treated 

with 25 mg/kg IP APX2009 or vehicle every 12 hours for 5 days. 5-bromo-2'-

deoxyuridine (BrdU) was injected into the animals 2 hours prior to sacrifice and 

tumor tissues were analyzed for survivin levels (IF and immunoblotting) and BrdU 

incorporation (IF).     

Materials 

Animal models 

C57BL/6J mice were obtained from Jackson Laboratories (Bar Harbor, 

ME) and the athymic nude mice were purchased from Charles River’s 

Laboratories (Wilmington, MA); Matrigel was form BD Biosciences (San Jose, 

CA); BrdU was purchased from Fisher Scientific (Hampton, NH). 
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ELISA (Enzyme-linked immunosorbent assay) 

The ELISA kits for the death ligands, IL-1’s and IL-6 were purchased from 

BioSource (Camarillo, CA). ELISA kits for sonic hedgehog (Shh), IGF’s, and 

transforming growth factor betas (TGFβ’s) were purchased from R&D Systems 

(Minneapolis, MN). 

TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) 

In situ Cell Death Detection Kit, Fluorescein was purchased from Roche 

(Branford, CT). Proteinase K was purchased from Sigma Aldrich (St. Louis, MO). 

Cell culture  

PC-3, C4-2, LNCaP and E7 cells were maintained in Travis Jerde’s lab. 

Cell culture medium, antibiotics, HEPES buffer, trypsin, and additives were from 

HyClone (Logan, Utah); flasks, culture dishes, and plates were from Corning 

(Tewksbury, MA) or BD Biosciences (San Jose, CA); Fetal Bovine serum was 

from Atlanta Biologics (Flowery Branch, GA). 

Immunoblotting 

4-20% gradient SDS-page precast gels and western apparatus obtained 

from Bio-rad (Hercules, CA). Peirce BCA buffer, chemiluminescent substrates 
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Femto and Pico, phosphatase and protease inhibitor, and Bovine Serum Albumin 

(BSA) were obtained from Fisher Scientific (Hampton, NH).   

Immunofluorescence 

The Normal Donkey Serum for blocking, the Hoechst 33342 for nuclear 

staining, and mounting medium were purchased from Fisher Scientific (Hampton, 

NH). 

Anti-survivin, Anti-Bcl-2, Anti-Bcl-XL, Anti-Mcl-1, Anti-GAPDH, Anti-Cyclin 

B1, Anti-Cdc2, Anti-Cleaved Caspase 3, Anti-Total Caspase 3, Anti-APE1 

antibodies were purchased from Cell Signaling Technology (Danvers, MA), Anti-

BrdU and Anti-p65 antibodies were from Novus Biologicals (Littleton, CO); Anti-β-

actin antibody was from Sigma Aldrich (St. Louis, MO); all the fluorescent 

labelled secondary antibodies were from Life Technologies (Carlsbad, CA); all 

the HRP-conjugated secondary antibodies were from Fisher Scientific (Hampton, 

NH). 

RT-PCR (Reverse transcription-polymerase chain reaction) 

RNeasy Mini Kit was purchased from Qiagen (Germantown, MD). 

Superscript III One-Step RT-PCR System was purchased from Thermo Fisher 

Scientific (Waltham, MA). The TaqMan Gene Expression Assays (BIRC5 
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(Hs04194392_s1) and HPRT1 (Hs02800695_m1) were purchase from Thermo 

Fisher Scientific (Waltham, MA). 

CoIP (Co-Immunoprecipitation) 

Pierce Co-IP kit and DTBP were purchased from Thermo Fisher Scientific 

(Waltham, MA).  

Luciferase assay 

pLuc-MCS with NFĸB responsive promoter were purchased from 

PathDetect cis-Reporting Systems Stratagene (La Jolla, Ca) and a Renilla 

luciferase control reporter vector pRL-TK were purchased from Promega 

Corporation (Madison, WI). Effectene Transfection Reagent was purchased 

Qiagen (Germantown, MD). Firefly and Renilla luciferase activities were 

assessed by using the Dual Luciferase Reporter Assay System which was 

purchased from Promega Corporation (Madison, WI).  

Propidium Iodide (PI) cell cycle analysis 

Propidium Iodide (PI) was purchased from Sigma Aldrich (St. Louis, MO). 

NP-40 was purchased from Thermo Fisher Scientific (Waltham, MA).  
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siRNA vectors and transfection reagent 

Survivin #1 and #2 siRNA were purchased from Cell Signaling Technology 

(Danvers, MA); Allstar Negative Scramble siRNA was purchased from Qiagen 

(Germantown, MD); APE1 #1 siRNA was given to us form Dr. Melissa Fishel and 

Prevalidated APE1/Ref-1 siRNA (siAPE1 #2) was purchased from Life 

Technologies (Carlsbad, CA) (#s1446). HiPerFect Transfection Reagent was 

purchased from Qiagen (Germantown, MD).  

Facilities 

Flow-Cytometry Sorter: BD Facs Aria; Fluorescent Microscope: Leica 

DMI6000B. RT-PCR: Applied Biosystems 7500 Fast Real-Time PCR System. 

Other materials 

All the chemical reagents and lab supplies were purchase from Fisher 

Scientific (Hampton, NH) or Sigma Aldrich (St. Louis, MO).   

Statistical analysis 

All statistical works were done using Microsoft Excel. The data were 

analyzed using student t-test, One-way ANOVA or Two-way ANOVA as 

appropriate. For each independent test, the result was calculated by the average 

of 3-6 replicates.  
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Chapter 3: Coordinated Induction of Cell Survival Signaling in the Inflamed 

Microenvironment of the Prostate 

Introduction 

Continual and recalcitrant inflammation is an extremely common condition 

in the human prostate and has been found to be associated with a number of 

prostatic diseases including prostate cancer and benign prostatic hyperplasia 

(BPH) [187-190]. Prostatic inflammation is characterized by the presence of 

inflammatory cells in the stroma, epithelium, and lumen of prostatic glands where 

the infiltrate is primarily lymphocytic with secondary accompanying macrophages 

juxtaposed to loci of reactive hyperplasia [187]. The origins of inflammation in the 

prostate remain a subject of debate and are most likely multi-factorial [191]. A 

role for a bacterial component in prostatic inflammation is controversial but is 

certainly plausible [192-195], and colonization by non-culturable organisms has 

been suggested by PCR assays of bacterial 16S ribosomal RNA in prostate 

biopsies as this has been associated with histological evidence of inflammation 

[196]. Numerous nonbacterial causes of inflammation have been investigated 

including viruses, environmental components, systemic hormones, and urinary 

reflux. Whatever the cause, inflammation in the prostate is of considerable 
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importance to urological research due to the prevalence and impacts of BPH and 

prostate cancer. 

While much has been described regarding prostate disease resulting from 

oxygen and nitrogen radicals during inflammation, proliferative mechanisms 

associated with repair and regeneration are less understood. Repair and 

regrowth are co-regulated processes characteristic of many cellular responses to 

trauma and in order for tissue recovery to proceed, inflammation must 

orchestrate precise series of events directing damaged cells to die, inducing 

proliferation of protected tissue progenitors to repopulate damaged tissue, and 

promoting differentiation of those expanded cells into proper cell subtypes [197]. 

Errors in these processes allow for expansion of damaged cells in an 

environment saturated in growth promoting factors leading to hyperplasia and 

desmoplasia [198]. While there is an extensive literature in prostate cancer cells 

regarding survival and cell death escape, mechanisms of how inflammation 

directs benign cells to avoid death and proliferate are poorly understood. 

In addition to the classically understood mechanisms by which cells 

survive noxious tissue conditions—inhibition of pro-apoptotic proteins, induction 

of pro-survival proteins, and the subsequent inactivation of caspases—

autophagy represents a process that can be associated with both the promotion 
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of apoptosis and the promotion of cell survival and proliferation. Autophagy 

consists of autophagosome formation and effective macromolecule degradation 

[199]. The mechanisms of autophagy are diverse and depend on the origin of the 

stimulus. Autophagy is implicated in a number of diseases including cancer [200]. 

The removal of damaged organelles or proteins can be advantageous for a cell 

and may act as an escape mechanism from cell death [201]. 

It is not known how specialized cells in the prostatic epithelium are 

programmed to avoid cell death mechanisms in the noxious condition of 

inflammation and survive in order to repopulate the tissue as part of the innate 

repair and recovery process. In this study, we characterize the immediate 

induction of cell death mechanisms in our mouse model of prostatic inflammation 

that has been shown to transition from acute to chronic phases of inflammation 

similar to human prostates. Cell death signaling induction is followed by a 

coordinated induction of survival mechanisms that begin in basal epithelial cells 

and expand to include all layers of the epithelium. We also found that autophagy 

is induced during the recovery phases of inflammation. Finally, we found that the 

most consistently induced of the survival proteins, survivin, is associated with 

inflammation in human prostate specimens, and that survivin expression is more 

tightly correlated with inflammation than with disease state of the prostate. 
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Inflammation Causes Tissue Damage and Hyperplasia in a Model of 

Prostatic Inflammation 

Mice instilled with uropathogenic E. coli 1677 exhibited widespread 

inflammation with varying degrees of hyperplasia and dysplasia consistent with 

previous papers on this model, and as has been previously published, the 

dorsolateral lobe of the prostate produced the most consistent and dynamic 

response to inflammation [192, 202]. Three days after instillation, WT animal 

epithelium develops distinct multilayers and display extensive inflammatory 

infiltrate (Figure 11). Previous reports from this model indicate that the 

inflammatory infiltrate in this model is primarily neutrophilic 1–2 days post 

induction, and lymphocytic 3–5 days after inflammation with accompanying 

macrophages [192, 202]. This phase mimics what is observed in human 

prostates with chronic inflammation [203-204]. Intense loci of inflammation are 

juxtaposed to epithelial hyperplasia and the prostatic glands juxtaposed to 

intense inflammation show tremendously increased epithelial cell proliferation 

and hyperplasia. Mice exhibiting 1–3 days of inflammation exhibit numerous 

damaged and apoptotic cells as evidenced by pyknotic nuclei and retracted 

cytoplasm (Figure 11). These data demonstrate that our model of prostatic 
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inflammation is associated with the damaging effects of inflammation and cellular 

damage. 
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Figure 11. Hematoxylin and Eosin staining of 3 day inflamed dorsolateral 

prostates in the mouse prostatic inflammation model 

 

A: (200×) Non-inflamed control prostate shows pseudostratified epithelium and 

very few apoptotic or autophagic cells. B: 200× Inflamed prostatic duct shows 

layering of epithelium characteristic of reactive hyperplasia during inflammation, 

but also shows numerous damaged and apoptotic cells as evidenced by pyknotic 

nuclei and retracted cytoplasm (arrows). C: 400× Image of damaged epithelial 

cells in hyperplastic epithelium in inflamed prostate. 
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Inflammation Causes Rapid Apoptotic Response 

To characterize inflammation-induced apoptosis, we assessed control and 

inflamed mouse prostates for expression of executioner caspase 3, 7, and 6 

cleavage via immunohistochemistry (Figure 12A and 12B). We found an 

increase in cells exhibiting activation (cleavage) of all three executioner caspases 

with caspase 3 being the most dramatic, peaking at day 2 with 1.3% of cells 

expressing cleaved caspase 3 (n = 6 mice). Cleaved caspase 3 positive cells 

were primarily found in select basal and luminal epithelial cells of prostatic glands 

and absent from the fibromuscular stroma. In addition, we assessed these 

tissues for later stage apoptosis by staining for nick-end labeling of fragmented 

DNA. To determine this, a terminal deoxynucleotidyl transferase dUTP nick-end 

labeling (TUNEL) was performed to measure percent of epithelial cells in later 

stage apoptosis as described in histologic sections of prostate tissue and positive 

cells were detected by fluorescent microscopy (Figure 12C). Few fluorescein-

positive cells were found in days 0 and 1 of infection but a significant increase in 

apoptotic cells was found in day 2 with subsequent decrease by day 4. The 

fluorescein positive cells, like the caspase 3 positive cells, were primarily found in 

the basal and luminal compartments of the prostatic glands. 
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Figure 12. Inflammation of the mouse prostate results in induced apoptotic 

signaling  

 

A: Fluorescent image (200×) of cleaved caspase 3 (green) in the epithelium 

(PanCK-red) of mouse prostates inflamed 3 days. B: Calculated data of epithelial 

cells for cleaved caspases 3, 7, and 6 from 6 mouse dorsal-lateral prostate lobes 

inflamed to the time points shown, expressed as percentage of cleaved caspase-

positive cells within the epithelial compartment. C: Fluorescent image (200×) of 

TUNEL-positive cells. D: Calculated data of epithelial cells for TUNEL from 6 

mouse dorsal-lateral prostate lobes inflamed to the time points shown, expressed 

as percentage of TUNEL-positive cells within the epithelial compartment. All data 

are expressed as mean ± s.e.m. *P < 0.05 versus PBS-instilled prostate; 

comparisons using analysis of variance (ANOVA), n = 6. 
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Inflammation Induces Death and Survival Factor Production and Release 

Inflammation induces coordinated and temporal expression and release of 

known cell death factors, subsequently followed by an induction of a panel of 

known cell survival-inducing factors. As measured by ELISA, bona fide cell 

death-inducing mediators TNFα, TWEAK, TRAIL, and FAS ligand are all induced 

rapidly and transiently upon induction of acute inflammation in the dorsolateral 

prostate, maximizing at 1–2 days after induction (Figure 13A). Subsequent to 

induction of death ligands, the production of known cell survival factors Shh, IGF-

1, IL-1α, IL-6, TGFβ1, and TGFβ2 are substantially induced in the second day of 

inflammation, and maximizes at day 3 ((Figure 13B), n = 6 mice)). IL-1α, IL-6, 

and TGFβ1 remained significantly induced for 5 days after inflammation 

induction. These data demonstrate that death factors coincide with the acute and 

neutrophilic phase of inflammation, and are coordinately followed by the 

induction of survival factors corresponding to the lymphocytic phase of 

inflammation. 
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Figure 13. Inflammation induces the expression and release of known cell death 

factors, followed by an induction of a panel of known cell survival-inducing factors  

 

A: Total tissue content of TNFα, TWEAK, TRAIL, and FAS ligand are all induced 

rapidly upon induction of inflammation in the dorsolateral prostate, maximizing at 

1–2 days after induction. B: Subsequently, the induction of known cell survival 

factors Shh, IGF-1, IL-1α, IL-6, TGFβ1, and TGFβ2 begins in the second day of 

inflammation, and maximizes at day 3. IL-1α, IL-6, and TGFβ1 remained induced 

for 5 days after inflammation induction. All peptides were assessed by ELISA of 

whole dorsolateral prostate lobes and calculated as picogram of peptide per 

gram of tissue. Data were then normalized as a ratio to control non-inflamed 

prostates at the given time point of induction, for presentation. All data are 

expressed as mean ± s.e.m. *P < 0.05 versus PBS-instilled prostate; comparisons 

using analysis of variance (ANOVA), n = 6. Asterisk-labeled time points are those 

that show significant inducibility of all death or survival factors. 
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Inflammation Induces Cell Survival Signaling Pathways in Response to 

Apoptotic Signals 

We assessed the induction of four previously identified survival signaling 

molecules, previously known to regulate cell survival in prostate cells: survivin, 

Bcl-2, Bcl-XL, and Mcl-1 (Figure 14). Our data indicate that inflammation induces 

the expression of survivin, Bcl-2 and Mcl-1, but had no effect on Bcl-XL 

expression (Not shown). The most prominently induced survival protein by 

inflammation was survivin, exhibiting an eight-fold induction at days 3 and 4 after 

inflammation relative to uninflamed control prostates ((Figure 14A and 14B); 

n = 6 mice)). Since survivin was the most dynamic and consistently induced 

survival factor in inflamed prostates, we sought to further characterize its 

induction. Survivin is rarely expressed in control prostates, being expressed in 

1% of epithelial cells, and primarily in select basal cells (Figure 14C-top). 

Immunofluorescence of survivin expression increased linearly by day throughout 

the first 5 days of inflammation (Figure 14D), and by 5 days 50% of the epithelial 

cells of inflamed prostates were positive for survivin (Figure 14D), image 

depicted in Figure 4C-bottom. The percentage of survivin-positive cells remained 

increased for 7 days of infection. These data indicate that survival proteins are 

induced during prostatic inflammation, corresponding to induced survival factor 
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signals and the lymphocytic phase of inflammation, and temporally following the 

neutrophilic death factor/apoptotic phase. 
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Figure 14. Inflammation induces three primary cell survival signaling pathways in 

mouse dorsolateral prostates, most prominently, survivin  

 

A: Immunoblot example of induction of survivin, Bcl-2, and Mcl-1 during the time 

course of inflammation in mouse prostates. B: Quantified data of relative 

expression of survivin protein levels during prostatic inflammation; data were 

calculated as ratio of pixel intensity of the given survival protein, relative to β-

actin, and expressed as ratio of expression to control prostates at the 

corresponding time of induction. Data are expressed as mean ± s.e.m. *P < 0.05 

versus PBS-instilled (control) prostate; comparisons using analysis of variance 

(ANOVA), n = 6. C: Immunofluorescence of survivin expression (green) in 5 day 

instilled control (top) and inflamed (bottom) dorsolateral prostates demonstrating 

epithelial cell (PanCK, red) expression in the nucleus during inflammation. D: 

Quantified cell counting of epithelial cells positive for survivin expression; data 

expressed are the percentage of epithelial cells expressing survivin in control and 

inflamed prostates at each time point of inflammation. All data are expressed as 
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mean ± s.e.m. *P < 0.05 versus PBS-instilled prostate; comparisons using 

analysis of variance (ANOVA), n = 6. 
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Inflammation Induces Autophagy: LC-3 Association with the 

Autophagosome 

As autophagy is a cell mechanism that can lead to either cell survival or 

cell death, we sought to characterize its induction in prostatic inflammation. 

Inflammation increases both the expression and vesicle association of the 

autophagy LC3 (Figure 15). LC3 is expressed in the cytosol of cells and, upon 

initiation of autophagy, LC3 associates with vesicular membranes to form the 

autophagosome. This causes LC3 to run faster on gels, so a lower running band 

in immunoblotting is indicative of autophagosome-associated LC3, and therefore 

autophagy induction. Immunoblotting of proteins from inflamed prostates 

demonstrates that autophagy is induced by inflammation in the prostate, 

maximizing at 3 days of inflammation ((Figure 15A and 15B); n = 6 mice)). 

Additionally, LC3 expression itself is also induced after three days of 

inflammation. To further characterize LC3 during prostatic inflammation, we 

assessed tissue localization by in immunofluorescence. Autophagosome-

associated LC3 is associated with a punctate appearance as the protein is 

concentrated around the vesicle (Figure 15C). We found that the number of 

prostatic epithelial cells exhibiting punctate LC3 increased from 4% of epithelial 

cells to 25% by the third day of inflammation (Figure 15D). Autophagic cells were 
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found throughout the epithelium, in both luminal and basal layers. These data 

demonstrate that autophagy is induced by acute prostatic inflammation, and 

maximizes during the lymphocytic phase. 
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Figure 15. Inflammation autophagy marker expression in mouse dorsolateral 

prostates  

 

A: Immunoblot example of induction of the autophagy marker LC3 at 

inflammation time points indicated; the higher running band (cyt) represents 

cytosolic LC3 while the lower running band (Aph) indicates LC3 associated in the 

autophagasome, and is indicative of autophagy induction. B: Quantified data of 

relative expression of all cytosolic and autophagasome-associated LC3; data 

were calculated as ratio of pixel intensity of the LC3 form, relative to β-actin, and 

expressed as ratio of expression to control prostates at the corresponding time of 

induction. Data are expressed as mean ± s.e.m. *P < 0.05 versus PBS-instilled 

(control) prostate; comparisons using analysis of variance (ANOVA), n = 6. C: 

Immunofluorescence of LC3 (green) localization in 3 day instilled control (top) 

and inflamed (bottom) dorsolateral prostates demonstrating the characteristic 

punctate LC3 Localization with the autophagasome of autophagic epithelial cells, 

a further indicator of autophagic cells (PanCK, red). D: Quantified cell counting of 

epithelial cells positive for punctate LC3 Localization; data expressed are the 
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percentage of epithelial cells expressing punctate LC3 in control and inflamed 

prostates at each time point of inflammation. All data are expressed as 

mean ± s.e.m. *P < 0.05 versus PBS-instilled prostate; comparisons using 

analysis of variance (ANOVA), n = 6. 
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Survivin Is Induced Juxtaposed to Inflammation in Human Prostate 

Specimens 

In our in vivo mouse model of prostatic inflammation, survivin is the most 

consistently induced survival factor in the prostate in response to inflammatory 

signals. Because of this, we sought to determine if it is induced by inflammation 

in human prostate specimens. To address inflammation and survival protein 

expression in human tissue, we co-stained for CD45+ (immune cells) and 

survivin in non-diseased (prostates removed from cystectomies), BPH specimens 

(via TURP), and prostate cancer specimens (removed via prostatectomy), 12 

tissues (from 12 separate patients) per group. As previously reported, survivin is 

induced in the majority of prostate cancer specimens, and is not expressed in the 

majority of non-diseased control prostates. However, our staining also 

demonstrated that regions of inflammation associated with survivin induction 

regardless of whether the region was found in non-diseased or diseased 

prostates (Figure 16A). We defined both inflamed and non-inflamed regions in 

all three prostatic conditions (non-diseased, BPH, and cancer) by the number of 

CD45-evident 20× fields. Based on our previously established mouse model 

inflammatory scoring, we set the criteria for inflammation to be greater than or 

equal to 30 CD45+ cells per 20× field, and non-inflamed regions were defined as 
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less than 10 CD45+ cells per field. Using this criteria, we quantified the number 

of survivin-positive cells in sections from inflamed and non-inflamed regions in 

non-diseased, BPH, and cancerous prostate specimens. We found that 

regardless of condition, inflamed fields were associated with 60–70% of epithelial 

cells positive for survivin, while non-inflamed non-diseased and BPH fields 

exhibited less than 10% of epithelial cells positive for survivin, and non-inflamed 

cancerous fields were associated with 24% positive cells (Figure 16B). While 

there was a threefold increase in survivin-positivity among prostate cancer 

specimens independent of inflammation, the primary difference between 

diseased and non-diseased prostates was the prevalence of inflammation 

(Figure 16C). In non-diseased prostates, severe inflammation represented on 

average 11% of sections, while in BPH and prostate cancer sections severe 

inflammation constituted 82% and 71% of the section, respectively. There was no 

difference in the severity of inflammation in the 20× views quantified in this study 

once they were determined to be in the “severe” (>30 CD45-positive leukocytes 

per field) category. Additionally, we observed no significant difference in survivin-

positivity between the transition zone and peripheral zone of non-diseased 

prostates. 
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Figure 16. Human prostate specimens demonstrate intense survivin staining 

juxtaposed to regions of inflammation  

 

A: Immunofluorescent images of non-inflamed or inflamed human prostates 

representing non-diseased controls (peripheral zone) taken from 

cystoprostatectomy cancer and BPH-free prostate specimens, BPH specimens 

(transition zone from TURP), or prostate cancer specimens, as indicated. 

Sections were stained for survivin (green) and CD45, a pan leukocyte marker 

(red) to identify regions of inflammation. Sections were deemed non-inflamed if 

they exhibited less than 10 Leukocytes per 20× field, and inflamed if they 

exhibited greater than 30 Leukocytes per field. B: Quantified cell counting of 

epithelial cells positive for survivin expression in human prostates; data 

expressed are the percentage of epithelial cells expressing survivin in non-

inflamed and inflamed prostates at each time point of inflammation—three 20× 

fields per prostate section were averaged for each data point, and all data are 

expressed as mean ± s.e.m. *P < 0.05 inflamed versus non-inflamed prostate; 

#P < 0.05 disease condition versus non-diseased control. Analysis of variance 
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(ANOVA), n = 12 human prostates. C: percent of sections from each human 

prostate group (non-diseased, BPH, and cancer) that exhibited 30 Leukocytes 

per 20× section. Three 20× fields per prostate section were averaged for each 

data point, and all data are expressed as mean ± s.e.m. #P < 0.05, disease 

condition versus non-diseased control. Analysis of variance (ANOVA), n = 12 

human prostates. 
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Discussion 

Inflammation is a common feature of prostate biology and is believed to be 

associated with the disease progression involved in both BPH and prostate 

cancer. Yet, inflammation is also a destructive process that involves a repair and 

recovery stage in which protected cells must survive the initial insults of 

inflammation, followed by their rapid proliferation as a means to repopulate the 

damaged tissue. The cell signaling mechanisms involved in coordinating these 

events is not understood, and little is known as to how the epithelium of tubular 

structures such as the prostate protects the specialized cells that are the 

keystones of epithelial repair and recovery. 

The data in the present study indicate that inflammation induces a profile 

of cell death and cell survival-inducing factors, coordinated such that death 

factors and induction of cell death cellular mechanisms occurs within the first 

48 hours after induction of inflammation, followed by a maximized expression of 

survival factors and signaling pathways. Inflammation causes visible death of the 

prostatic epithelium in the first 48 hours of inflammation as evidenced by H&E 

staining and confirmed by activation of caspases and nick-end labeling. 

Coordinate with this, there is a significant induction of cell death factors including 

TNFα, TWEAK, TRAIL, and FasL. Secondary to cell death, the acute 
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inflammation time course exhibits induction of known survival factors including 

growth factors, cytokines, and developmental morphogens that correspond to 

activation of survival pathways that include survivin, Mcl-1, and Bcl-2. We 

conclude from this that a population of epithelial cells resides in the prostatic 

epithelium that responds to inflammatory signals by inducing survival factors, and 

functions to repopulate the tissue during repair secondary to the damaging 

effects of inflammatory triggers. 

Additionally, autophagy mechanisms maximize during this survival phase 

and may represent an additional cell survival mechanism in prostatic epithelial 

cells. Autophagy is indicated by the formation of autophagosomes for cell protein 

digestion during stress. Cells in autophagy can either use the digested material 

for survival, or they can be entered into the apoptotic cascade if the stress time 

period endures. During the induction of autophagy, the normally cytosolic protein 

Light Chain 3 (LC3) associates and participates in the formation of the 

autophagosome. As such, the association of LC3 in a lipid fraction—that of a 

membrane—indicates the induction of autophagy. In our study, autophagosome-

associated LC3 was evident by two methods: the faster-running band at 14 KD in 

immunoblotting that indicates autophagosome association; secondly, the specific 

exhibition of LC3 into punctate formations indicating the presence of 



 

93 

autophagosomes. Our data demonstrate a substantial increase in the faster 

running band by immunoblotting, and in the number of epithelial cells exhibiting 

punctate LC3 containing autophagosomes. From this we conclude that 

inflammation induces autophagy in a subset of prostate epithelial cells in 

experimental models of prostatic inflammation. 

The mouse model used in this study is a model of acute inflammation that 

progresses to chronic inflammation. This is characterized by an early neutrophilic 

infiltrate that dominates in the first 2 days of induction, and progresses to a 

primarily lymphocytic and monocytic infiltrate in days 3–5. This later lymphocytic 

chronic stage of the inflammatory response has a cellular infiltrate and an 

expression profile consistent to what is observed in human chronically inflamed 

prostates. The time course of cellular infiltrate in this model exhibits remarkably 

little experimental variation error, demonstrating that the time course of the 

inflammatory response is highly reproducible and consistent. Further, 

inflammation in this model was accompanied by increased expression of several 

inflammatory mediators and gene products including IL-1 family members, IL-6, 

COX-2, IGF-1, and FGFs, commonly observed in chronic prostatic inflammation. 

Therefore it is not unexpected that an increase in survival protein expression 
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occurs during the chronic phase of this model, just as is observed in human 

chronically inflamed prostates. 

Survivin was the most consistent and substantially induced of the survival 

proteins in our mouse study, and we sought to validate its responsiveness to 

inflammation in human specimens. While the expression of survivin is well-known 

to be induced in both BPH and prostate cancer [205-207], this is the first report 

we are aware of in which survivin localization is characterized juxtaposed to 

inflammation. We found that survivin expression does localize to areas of severe 

inflammation, but what was striking is how this localization is largely disease-

independent. There was no difference in the number of survivin-positive cells in 

inflamed regions between BPH, cancer, and non-diseased regions; the primary 

discriminating factor between the pathological states is how widespread 

inflammation is in each state. Severe inflammation was present in over 80% of 

our BPH sections and over 70% of our prostate cancer specimens, but was only 

a feature in less than 15% of non-diseased sections. Inflammation was 

associated with reactive hyperplasia and stromal desmoplasia in all tissues 

where it was present, but there was no consistent formation of any pre-malignant 

epithelial lesions such as dysplasia in inflamed regions of non-diseased 

prostates. We propose that the previously published findings describing high 
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survivin localization in diseased prostates is in large part a factor of the increased 

inflammation in those specimens. It must be noted, however, that in those 

uncommon regions of prostate cancer that are not associated with inflammatory 

infiltrate, there is still an increased number of survivin-positive cells, independent 

of inflammation. Therefore we conclude that prostate cancer does have intrinsic 

survivin induction relative to benign epithelium, but this is still enhanced with 

inflammation. BPH specimens did not exhibit any increase, absent of 

inflammation. 

There is a clear association of BPH with inflammation, both in proliferating 

cells and in association with symptoms. The prevalence of inflammation in BPH 

specimens is repeatedly reported to be found in between 75% and 100% of 

specimens. A well-characterized study by Nickel et al. reported substantial 

prostatic inflammation in 100% of 80 men undergoing prostatectomy for 

treatment of BPH [208], and histological examination of prostates from 8224 men 

enrolled in the REDUCE trial revealed inflammation in 78% of specimens [209]. 

Critically, histologically verified inflammation is the most tightly correlated 

histological finding to prostate symptomology in men with BPH [210]. Similarly, 

strong evidence links inflammation to the development, growth, and survival of 

cancer in the prostate [187]. Histopathology studies of human prostatectomy 
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specimens identified lesions characterized by proliferating epithelial cells and 

activated inflammatory cells (proliferative inflammatory atrophy, PIA) in 

juxtaposition to areas of neoplasia. Sustained cell proliferation in the 

inflammatory environment rich in growth factors, activated stroma, and DNA-

damage-promoting agents, could potentiate, and/or promote neoplasia. 

Additionally, proliferative inflammatory atrophy (PIA) is characterized by 

proliferating epithelial cells and is found in association with prostatic intra-

epithelial neoplasia (PIN) and prostate cancer. These findings have prompted the 

hypothesis that chronic inflammation is involved in the genesis and/or 

progression of prostate cancer. 

Several aberrant molecular mechanisms in apoptosis pathways have been 

identified to result in prostate disease, and androgen axis modulators—a 

mainstay of our therapies against prostate cancer growth—rely heavily on 

induction of apoptotic mechanisms for their efficacy [211-214]. Multiple 

modifications to cell death and survival pathways have been discovered in 

prostate tumors, BPH, and prostate cell lines that may participate in either 

tumorigenesis, proliferation, or therapy resistance. Increased expression of the 

survival proteins survivin, Bcl-2, Bcl-xL, Bcl-ω, and Mcl-1 are associated with 

prostate cancer and BPH, and interestingly inhibiting their expression sensitizes 
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cells to cytotoxic therapies [215-216]. In addition, down-regulation or inhibition of 

these survival proteins results in increased chemosensitivity in prostate cell lines 

[217-219]. Finally, prostate cancer cells exhibit decreased death receptor 

expression and upregulated decoy death receptor expression, and this results in 

diminished apoptosis induction capacity [220-221]. Our present findings add to 

the understanding of the balance between pro-apoptotic and pro-survival 

signaling in prostate epithelial cells by demonstrating extrinsic control of both 

death factors and subsequent survival factor induction in a specialized cell 

population, by inflammation. 

Chapter 4: APE1/Ref-1 Redox-Specific Inhibition Decreases Survivin 

Protein Levels and Induces Cell Cycle Arrest in Prostate Cancer Cells 

Introduction 

Prostate cancer is one of the most common male malignancies and the 

third leading cause of cancer-related death of men in the United States. [222-

223] Small prostatic carcinomas exist in up to 29% of men in their thirties and 

64% of men in their sixties, with most of these carcinomas being indolent and/or 

cured by surgery or radiation. [224-226] However, some men develop an 

aggressive phenotype that metastasizes and becomes incurable once colonizing 

the bone. [227-228] These bone metastases produce osteoblastic lesions that 
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are associated with high morbidity and high mortality [229] and attempts at 

delaying this tumor progression with chemotherapeutic agents have only 

prolonged survival a few months. [230-231] In order to create more effective 

treatments where conventional therapeutics have failed, a better understanding 

of the aggressive phenotype of the disease is of utmost importance and a great 

unmet medical need.  

 It is now well-established that reduction-oxidation (redox) regulation of 

critical transcriptional activators plays an essential role in cell proliferation and 

survival in a number of different cancers, including prostate cancer. [232-234] 

Apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) is a 

multifunctional protein that participates in DNA repair and redox transcriptional 

regulation. [235-236] APE1/Ref-1 has been implicated in the development and 

progression of numerous cancer types, is conversely correlated to tumor 

radiation and chemotherapy sensitivity, and is overexpressed in prostate cancer. 

[237-241] APE1/Ref-1 redox regulation of transcriptional activators occurs 

through cysteine residues within the DNA binding or transactivation domain of the 

transcription factor and is essential for full activation of certain transcriptional 

activators including the oncogenic transcriptional activators AP-1, HIF-1α, NF-κB 

and STAT3. Treatment with small molecule inhibitors of the redox activity of 
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APE1/Ref-1, such as APX3330 has been shown to diminish the activity of these 

redox-regulated transcriptional activators. [242-244] Furthermore, the blockade of 

APE1/Ref-1’s redox activity has been shown to reduce growth-promoting, 

inflammatory and anti-apoptotic activities in cells. [245-246]  

 The ability of cancer cells to overcome apoptotic signals is crucial for 

tumor progression. Survivin is an Inhibitor of Apoptosis (IAP) family member, and 

it is overexpressed in prostate cancer. Survivin has been implicated in resistance 

to various chemotherapeutic and pro-apoptotic agents. [247-249] Survivin is 

classically known as an inhibitor of caspases due to its single BIR (Baculovirus 

IAP Repeat) domain, but recently survivin has been found to be crucial in cell 

cycle progression as a member of the chromosomal passenger complex. [250] 

Previously as described in Chapter 3, our lab has demonstrated that survivin is 

juxtaposed to inflammation in human prostate cancer specimens. [251] Attempts 

at directly targeting survivin have ultimately failed in clinic, therefore new 

approaches or therapeutics that in some way block the expression or function of 

survivin are needed.  

Accumulating evidence demonstrates that APE1/Ref-1 is a key regulator 

of cancer cell growth and survival signaling and is upstream of pathways that 

regulate survivin expression. [252] Here we report that inhibition of APE1/Ref-1 
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redox signaling activity decreases prostate cancer cell proliferation, decreases 

the transcriptional activity of NFĸB, and downregulates survivin expression in 

prostate cancer cells in vitro and in vivo. This is the first report to our knowledge 

that mechanistically demonstrates that APE1/Ref-1 redox-specific inhibitors are a 

viable therapeutic option for prostate cancer treatment 

APE1/Ref-1 and survivin are overexpressed in human prostate cancer 

To confirm that APE1/Ref-1 and survivin expression is altered in prostate 

cancer, we performed immunofluorescence using human non-diseased and 

cancerous prostate specimens (Figure 17A). We found that APE1/Ref-1 is 

overexpressed in prostate cancer compared to non-diseased control prostates 

and it co-localizes with survivin-expressing cells. Expression of both proteins was 

primarily found to be nuclear and localized in the epithelium. To verify if well-

characterized prostatic cell lines displayed the same pattern, PC-3, C4-2, LNCaP 

and non-cancerous E7 cell lysates were collected and immunoblotting performed 

evaluating APE1/Ref-1 and survivin protein levels (Figure 17B). 
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Figure 17. APE1/Ref-1 and survivin are overexpressed in human prostate 

cancer 

 

A: Hematoxylin and Eosin staining representing non-diseased (peripheral zone 

taken from cystoprostatectomy) and cancerous human prostate specimens. 

Scale bar = 100 µM. Immunofluorescent images of stained non-diseased and 

cancerous sections for APE1/Ref-1 (red) and survivin (green). Scale bar = 50 

µm. B: Immunoblot example of basal survivin and APE1/Ref-1 protein levels 

between the prostatic cell lines. Representative of three determinations with 

densitometry quantification, N=3. 
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APE1/Ref-1 redox inhibition decreases prostate cancer cell proliferation 

To determine if inhibition of APE1/Ref-1’s redox function affects cell 

proliferation, prostatic cell lines were treated with increasing concentrations of 

APE1/Ref-1 redox-specific inhibitors APX3330 and APX2009 for five days and 

cell number was measured via methylene blue assay (Figure 18A-D). RN7-58, 

an inactive analogue of the APX3330 and APX2009 chemical families, was used 

as a negative control. [253] APX3330 and APX2009, inhibited cell proliferation in 

a concentration-dependent manner. Growth IC25’s and IC50’s were determined 

and arranged in Table 2. APX2009 was found to be 5-10 fold more efficacious 

than parent compound APX3330 in inhibiting cell proliferation, while the inactive 

analogue RN7-58 had no effect on cell growth in these assays. 
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Figure 18. APE1/Ref-1 redox function specific inhibitors decrease cell number in 

a concentration dependent manner 

 

A: PC-3, B: C4-2, C: LNCaP and D: E7 cell lines were treated with increasing 

concentrations of redox-specific inhibitor APX3330, more potent analogue 

APX2009, and inactive analogue RN7-58 for 5 days (N=3). The cells were fixed 

and stained with methylene blue and measured via spectrophotometry. IC25 and 

IC50 were determined as the concentrations of drug at which there was a 25% 

and 50% reduction in absorbance compared to vehicle control (DMSO) and were 

used for subsequent experiments. 
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Table 2. Growth IC25 and IC50’s were determined for each cell line using the 3 

growth curves for APX2009 and APX3330 

 

Data is presented as mean ± s.e.m. 
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APE1/Ref-1 redox-specific inhibitors decrease survivin protein levels  

Survivin plays an important role in prostate cancer cell proliferation and 

survival. Since survivin is controlled by APE1/Ref-1-regulated transcription 

factors in other organ systems such as the pancreas and liver [254-255], we 

hypothesized that treatment with APE1/Ref-1 redox-specific inhibitors APX3330 

and APX2009 would decrease survivin protein levels at least partially explaining 

the reduction in proliferative capacity. Prostate cancer cells treated with the 

respective growth inhibitory IC50 drug concentrations of APX3330 and APX2009 

(as determined in Figure 18) exhibited a significant decrease in survivin protein 

expression within 48 hours compared to DMSO treated controls (Figure 19A-D). 

In contrast, prostate cancer cell total APE1/Ref-1 protein levels were not 

significantly altered with treatment.  
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Figure 19. Treatment with APX3330 and APX2009 decreases survivin protein 

levels 
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A-D: PC-3, C4-2, LNCaP and E7 cell lines were treated with vehicle (DMSO), 

IC25 and IC50 drug concentrations for 48 hours. Immunoblotting for survivin, 

APE1/Ref-1 and Actin as labeled. Representative of three determinations with 

densitometry quantification, N =3, *-denoting p<0.05 (DMSO vs. IC25 and IC50 

Drug Concentrations) within ANOVA. 
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APX2009 reduces survivin mRNA expression and perturbs NFB activity 

Based on the observation that inhibition of APE1/Ref-1 reduces survivin 

protein levels, we sought to determine the mechanism by which APE1/Ref-1 

regulates survivin expression, and ultimately, cell growth. We hypothesized that 

APE1/Ref-1’s redox control of transcription factors such as NFB would 

decrease survivin transcript levels. Based on the increased potency of APX2009 

over APX3330 in prostate cancer cells, we focused on the second generation 

compound, APX2009 for the remainder of our molecular studies. C4-2 cells were 

treated with vehicle or APX2009 IC50 (14 µM) for 12 hours.  RNA was collected 

and RT-qPCR was performed using a primer/probe set for survivin (BIRC5) and 

HPRT1 for the reference gene (Figure 20A) using the conditions suggested by 

the SuperScript III Platinum One-Step qRT-PCR System (Invitrogen). Survivin 

mRNA was significantly reduced upon treatment with the relative quantity (RQ) 

value of ˂0.5. Survivin has been shown in other cancers to be regulated by 

NFĸB, and NFĸB is regulated by APE1/Ref-1 redox signaling. [256-259] 

Therefore, we evaluated the ability of these two proteins to interact physically 

with each other. In Figure 20B, we demonstrate via co-immunoprecipitation that 

APE1/Ref-1 interacts with NFĸB subunit p65 when using an APE1/Ref-1 antibody 

and in reverse experiments using a p65 antibody. In addition, we assessed the 
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cellular localization of both NFĸB and APE1/Ref-1 upon treatment with APX2009 

(Figure 20C). p65 and APE1/Ref-1 were found to be co-localized in the nucleus 

however upon treatment with APX2009, p65 nuclear localization was diminished 

suggesting altered NFĸB protein trafficking. To determine if NFĸB signaling is 

regulated by APE1/Ref-1 redox activity, we transfected C4-2 cells with NFĸB-

driven luciferase constructs. Inhibition of APE1/Ref-1 redox activity with 

APX2009 resulted in a significant 2-fold decrease in NFĸB-driven luciferase 

activity (Figure 20D). Finally as a positive control, PCa cells were treated with 

increasing concentrations of NFĸB-selective inhibitor ammonium 

pyrrolidinedithiocarbamate (PDTC). Inhibition of NFĸB with PDTC also resulted in 

the reduction of survivin protein levels (Figure 20E) further confirming a role for 

NFĸB in regulating survivin. 
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Figure 20. APE1/Ref-1 redox inhibition decreases survivin protein levels via 

NFĸB  

 

A: C4-2 cell line was treated with DMSO or APX2009 (14 µM) for 12 hours. RNA 

was isolated and RT-PCR for survivin was performed with HPRT1 as the 

reference gene. B: Immunoblot validation of APE1/Ref-1 and p65 Co-

Immunoprecipitation (Co-IP) reactions. The input and IP were loaded for each 

reaction. Mock beads and generic IgG were used as negative controls. C: C4-2 

cell line was treated with DMSO or APX2009 for 48 hours and 

immunofluorescence was performed using antibodies for APE1/Ref-1 (Red) and 
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NFĸB subunit p65 (Green). Representative images were taken. Scale bar = 50 

µM. D: C4-2 cells were transfected with NFĸB–Luc construct and co-transfected 

with a Renilla vector, pRL-TK. After 16 hours, cells were treated with increasing 

concentrations of APX2009 for 24 hours, and Firefly and Renilla luciferase 

activities were assayed using Renilla luciferase activity for normalization. All 

transfection experiments were performed in triplicate and repeated 3 times in 

independent experiments. Data are expressed as Relative Luciferase Units 

(RLU) normalized to DMSO showing the mean ± SEM. N=3, *-denoting p<0.05 

within ANOVA. E: C4-2 cell line was treated with NFĸB-selective inhibitor PDTC 

(25, 50 and 100 µM) and APX2009 (14 µM) for 24 hours. Immunoblotting was 

performed with antibodies for survivin, p65, APE1/Ref-1 and Actin as labeled. 
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Treatment with APX2009 induces G1 cell arrest but not cell death 

To determine if inhibition of APE1/Ref-1 via APX2009 results in cell death 

due to loss of survival signaling, PC-3 and C4-2 cells were treated with either 

DMSO or previously-determined IC50 concentrations of APX2009 (9 µM in PC3 

and 14 µM in C4-2) for 48 hours (Figure 21A) and cell lysates were collected for 

immunoblotting (Figure 21B).  After APX2009 treatment, both PC-3 and C4-2 

cells displayed an altered, flattened cellular morphology. However, treatment with 

these compounds did not induce cell death as determined by both a lack of 

increased caspase 3 cleavage (Figure 21B) and TUNEL labeling (data not 

shown). Because no increase in apoptosis was detected and cell cycle proteins 

Cdc2 and Cyclin B1 were dramatically decreased by APE1/Ref-1 inhibition, cell 

cycle analysis was performed using Propidium Iodide (PI) staining. PC-3 and C4-

2 cells were treated with APX2009 (9 µM and 14 µM, respectively) for 48 hours, 

stained with PI, and analyzed by flow cytometry. We found that the percentage of 

cells in G1 significantly increased, p˂0.05 via Student’s t-test, from 58 to 68% 

and 63 to 74% in PC3 and C4-2 cells, respectively, indicating G1 arrest of 

prostate cancer cells in response to APE1/Ref-1 inhibition. These effects on the 

cell cycle progression are similar to other recent reports of APE1/Ref-1 redox 

inhibition in cancer. [260-261]  
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Figure 21. APE1/Ref-1 redox inhibition induces G1 cell arrest   

 

A: PC-3 and C4-2 cell lines were treated with DMSO or APX2009 (9 and 14 µM, 

respectively) for 48 hours. Representative images were taken at 20X 

Magnification. Scale bar = 50 µm. B: Immunoblotting was performed and 

membranes were probed with antibodies for Cleaved Caspase 3, Total Caspase, 

Cyclin B1, Cdc2, survivin and Actin as labeled. C: PC-3 and C4-2 cells were 

treated with DMSO or APX2009 (9 and 14 µM, respectively) for 48 hrs and then 

collected and stained with RNAse/PI wash. Flow Cytometry was then performed. 

N =3, *-denoting p<0.05 within Student’s t-Test. 
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APE1/Ref-1 redox inhibition decreases survivin protein levels and cell 

proliferation in vivo 

Based on the in vitro data, we expanded our studies of the role of 

APE1/Ref-1 redox activity in cell proliferation and survivin protein levels in vivo 

using C4-2 subcutaneous xenografts. Animals were treated with either APX2009 

(25 mg/kg bid) or Vehicle (PKT) for 5 days and then tumors were harvested. 

Total survivin protein via immunoblotting was significantly reduced (Figure 22A) 

when compared to control tumors. Survivin and APE1/Ref-1 localization via 

immunofluorescence remained nuclear with survivin co-localizing with the 

chromatin during mitosis (Figure 22B). Furthermore, BrdU incorporation was 

significantly reduced from 8.2% to 5.1% in the treatment group demonstrating 

that inhibition of APE1/Ref-1 redox activity reduces tumor cell proliferation 

(Figure 22C). Similar results were seen with APX3330 (data not shown). 
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Figure 22. In vivo treatment with APX2009 reduces survivin protein levels and 

BrdU incorporation in C4-2 xenograft tumors 

 

C4-2 xenograft tumors were treated with Vehicle (PKT) or APX2009 (25 mg/kg, 

IP bid) for 5 days (N=3). A: APE1/Ref-1 and survivin protein levels were 

measured using immunoblotting as labeled. B: Immunofluorescence was 

performed using APE1/Ref-1 (red) and survivin (green) specific antibodies on 

vehicle and APX2009 groups. Representative images were taken. White arrows 

are depicting survivin nuclear staining patterns. Scale bar = 50 µm. C: Mice were 

injected with BrdU 2 hours prior to sacrifice and tumors were collected and 
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stained for BrdU incorporation (red). Scale bar = 100 µm. ImageJ Nucleus 

Counter was used to quantify number of BrdU+ nuclei and total nuclei per image. 

N =3, *-denoting p<0.05 within Student’s t-Test. 
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Discussion 

Prostate cancer is one of the leading causes of cancer-related death in 

American men, and challenges remain in targeting key drivers of the aggressive 

phenotype despite recent advances in prostate cancer treatment. Androgen 

deprivation therapies and microtubule-targeting agents prolong survival but 

resistance to these therapeutics is inevitable. It is thought that this resistance is 

driven in part by aberrant survival signaling and the induction of survival proteins 

which allows for the cancer to evade cell death. [262-263] Survivin is a 

bifunctional protein that has been shown to be overexpressed in a number of 

different cancers including prostate cancer. Survivin has anti-apoptotic and pro-

proliferative functions in cancer cells. Inhibition of survivin is a logical therapeutic 

strategy, however directly targeting survivin has been difficult. In this study, we 

took a novel approach to survivin targeting; we provide evidence that targeting 

the redox-signaling regulator APE1/Ref-1 with small molecule inhibitors 

effectively suppresses survivin protein levels and inhibits cell proliferation.  

APE1/Ref-1 is a multifunctional protein that was initially discovered as an 

enzyme in the base excision repair (BER) pathway, but has emerged as a redox-

signaling regulator of a number of transcription factors known to be involved in 

cancer, namely NFĸB, AP-1, and HIF1, STAT3. [264] These transcription 
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factors have been shown to be important in the initiation and progression of 

prostate cancer, as well as other cancers. [265-267] In this way, inhibiting the 

redox activity of APE1/Ref-1 effectively targets multiple different pathways at 

once and may therefore represent an advantageous therapeutic strategy.  

The data presented in our studies further support the rationale for 

APE1/Ref-1 as a viable target in prostate cancer. Our results indicate that 

APE1/Ref-1 and survivin are overexpressed in primary and metastatic tumors as 

previously reported by Kelley et al [268]. APE1/Ref-1 was found to be primarily 

nuclear localized but cytoplasmic staining was also present in the tumors. Similar 

to other cancer cell lines, we found that APE1/Ref-1 siRNA knockdown 

decreased cell proliferation and survivin protein levels (Figure 23). Additionally, 

we demonstrate that inhibition of APE1/Ref-1 redox activity halts prostate cancer 

cell growth and induces G1 cell arrest in prostate cancer, consistent with recent 

reports in other cancers. APE1/Ref-1 is crucial in moving cells from G1 to S, and 

redox inhibition induces key cyclin-dependent kinase inhibitors (CDKi’s) like p21 

and p27. [269-270] This is a translationally relevant finding, as the first-

generation APE1/Ref-1 small molecule inhibitor APX3330 used in this study is 

now approved for phase 1 clinical trials [Investigational New Drug (IND) 

application number 125360]. APX3330, and the second generation molecule 
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APX2009, is known to bind to APE1/Ref-1 in the redox active region of the 

protein, cause unfolding of the APE1/Ref-1 protein and block the redox active 

cysteine 65 from functioning thus effectively inhibiting its transcriptional 

regulatory activity of growth signaling pathways. [271-275] APX3330 has been 

shown to decrease cell proliferation in other cancers including pancreatic and 

ovarian, and here we show it has similar affects in prostate cancer.  
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Figure 23. APE1/Ref-1 siRNA knockdown decreases cell proliferation and 

surviving protein levels 

 

A: PC-3 and C4-2 cell lines were transfected with 50 nM APE1/Ref-1 siRNA 

(verified >70% knockdown by immunoblotting) and growth was compared to 

scrambled siRNA-transfected cells. B: Representative pictures of fixed and 

methylene blue stained C4-2/PC-3 scrambled siRNA (Scr), survivin siRNA #1 

(siAPE1 #1) and #2 (siAPE1 #2). C: Immunoblotting was performed using 

antibodies for APE1/Ref-1, survivin and Actin as labeled. N =3, *-denoting p<0.05 

within Paired Student’s t-Test (Scr vs siAPE#1), #- denoting p<0.05 within Paired 

Student’s t-Test (Scr vs siAPE#2). 
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Survivin is known to be differentially regulated in various tissues and in 

response to external stimuli. [276] Survivin is transcriptionally regulated by a 

number of transcriptional activators including STAT3 and NFĸB. NFĸB-driven 

survivin protein expression was interrogated here due to our observation that 

APE1/Ref-1 inhibition is effective in PC-3 cells despite their lacking the gene 

coding for STAT3. All four cell lines express functional NFĸB signaling. [277] We 

provide evidence that survivin is transcriptionally regulated by NFĸB. Upon 

APE1/Ref-1 redox inhibition, survivin mRNA levels are reduced and IP 

experiments demonstrate a strong interaction between APE1/Ref-1 and NFĸB 

subunit p65. Following modulation of APE1/Ref-1 signaling with APX2009, NFĸB 

signaling was decreased as assessed by NFĸB-driven luciferase activity. In 

addition to this decrease in NFĸB activity, we also demonstrated that p65 nuclear 

localization was disrupted upon APE1/Ref-1 redox inhibition. [278] This could 

occur due to diminished paracrine signaling factors such as, IL-6 or IL-8, which 

activate NFĸB. It is also possible that APE1/Ref-1 inhibition disrupts APE1/Ref-

1/p65 nuclear trafficking due to altered protein conformation. Treatment with 

NFĸB inhibitor PDTC, which has also been shown to disrupt p65 translocation, 

was found to decrease survivin protein levels in a concentration-dependent 

manner, further supporting NFĸB role in survivin transcription. [279] Additional 

experiments are needed to identify the underlining mechanism of the disrupted 
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p65 translocation. Nevertheless, our data do not preclude that multiple 

transcription factors could be contributing to survivin protein levels, and future 

studies will be directed at carefully assessing the role of each potential 

transcriptional activator in APE1/Ref-1-mediated prostate cancer cell growth and 

survivin expression.  

In summary, our data indicate that APE1/Ref-1’s redox function plays a 

role in regulating the proliferative capacity of prostate cancer cells by perturbation 

of NFĸB transcriptional activity and survivin protein levels in human prostate 

cancer cell lines and in vivo in tumors (Figure 24). Survivin plays an important 

role in prostate cancer survival, progression and therapeutic resistance.  Thus, 

inhibition of APE1/Ref-1’s redox function in combination with the current 

therapeutics like docetaxel or cabazitaxel may prove to be novel treatment 

strategy in advanced prostate cancer. 
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Figure 24. Model showing how cytokine/growth factor signaling induces survivin 

protein expression and at what points where APX2009/APX3330 disrupts this. 
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Chapter 5: Docetaxel-Resistant Prostate Cancer 

Introduction 

Metastatic castrate-resistant prostate cancer treatment has been 

historically difficult with very few successes over the years. Docetaxel, a member 

of the taxanes drug class, was the first chemotherapeutic therapy with survival 

benefits for men with metastatic castrate-resistant prostate cancer. [280] 

Unfortunately, half of all patients do not respond to docetaxel innately and all 

patients eventually develop resistance at some point. [281] That said, docetaxel 

is still an effective therapy and continues to be used in treatment plans to this 

day. Overcoming taxane-resistance remains of paramount of importance with 

more research needed to understand the mechanisms of resistance and to 

develop new therapeutic strategies of treating metastatic castrate-resistant 

prostate cancer. APE1/Ref-1 redox inhibition is an unexplored treatment option 

for taxane-resistance mechanisms with potential of curbing metastatic prostate 

cancer progression. 

One well described mechanism of resistance is the upregulation of drug 

efflux transporters and loss of docetaxel accumulation within the cell. [282] Drug 

efflux transporters are intermembrane proteins belonging to the adenosine 

triphosphate binding cassette (ABC) family of transporters. The most famous of 
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these transporters is known as P-glycoprotein (P-gp) which is encoded by the 

mdr1/ABCB1 gene. [283] Expression of P-gp is weak in normal prostatic tissue 

but is increased in prostate cancer with regards to tumor stage and grade. [284] 

It was found to also be expressed by primary prostate cancer cell cultures of 

those with taxane-resistance [285]. Genetic variation within the mdr1/ABCB1 has 

also been shown to correlate to clinical outcome in patients with metastatic 

prostate cancer receiving docetaxel [286]. Recently, it has been shown that 

APE1/Ref-1 is instrumental in protein recruitment to mdr1 gene promoter and 

depletion of APE1/Ref-1 results in the decreased expression of P-gp. [287] 

Apoptosis is a conserved process that plays an essential role in 

development and tissue homeostasis. Apoptotic defects have long since been 

tied to therapy resistance and this is also the case in prostate cancer with the 

upregulation of anti-apoptotic proteins as another well described mechanism of 

taxane-resistance. [288]  Emerging evidence suggests the Bcl-2 and IAP 

families play an essential role in preventing apoptosis caused by 

chemotherapeutics and intrinsic/extrinsic factors. [289] 

The Bcl-2 family proteins are divided into three groups based on their 

apoptotic action and how many Bcl-2 Homology (BH) domains they possess. 

Anti-apoptotic Bcl-2 family proteins like Bcl-2, Bcl-xL and Mcl-1 display 4 of these 
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BH domains and are known to be regulated by the NFĸB pathway. [290] These 

Bcl-2 family proteins have critical roles in autophagy, calcium handling and 

mitochondrial dynamics/energetics and when dysregulated can contribute to 

disease.  

The IAP family of proteins all contain one to three BIR domains and these 

BIR domains allow the proteins to bind caspases effectively inhibiting apoptosis. 

c-IAP1, c-IAP2 and XIAP can directly bind to activated caspase-3, caspase-7 and 

caspase-9. These proteins also have an E3 ligase activity by which they can 

ubiquitinate caspases. Survivin only has one BIR domain and has been found to 

be overexpressed in metastatic castrate-resistant prostate cancer and correlated 

to taxane-resistance. [291] It is a unique member meaning not only is it anti-

apoptotic but is also pro-mitotic participating as a member of the chromosomal 

messenger complex and its microtubule-binding abilities. [292-293] Recently, it 

has also been shown to participate in cytokinesis but it does lack the ability to 

ubiquitinate other proteins. The IAP family is also known to be directly regulated 

by the NFĸB pathway. [294] 

 Our preliminary experiments have shown APE1/Ref-1 is necessary for 

full transcriptional activation of NFĸB. We hypothesize that APE1/Ref-1 redox 

function promotes cell survival and taxane-resistance in prostate cancer via 
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increased expression of survival proteins. This is the first time to our knowledge 

that the mechanism of APE1/Ref-1’s redox function in prostate cancer cell 

survival during drug-resistance will be studied. 

Docetaxel-resistant metastatic castrate-resistant prostate cancer cell line 

generation 

To determine if APE1/Ref-1 redox activity mediates taxane-resistance two 

docetaxel-resistant cell lines were generated; DocR PC-3 and DocR C4-2. This 

was done by sequential dosing of increasing concentrations of docetaxel over a 

period of a year with DocR PC-3 being maintained at 10 ng/mL and DocR C4-2 

being maintained 5 ng/mL. Both docetaxel-resistant cell lines portrayed altered 

cellular morphology compared to the parental cell lines which may be due to a 

difference in cellular adhesion (Figure 25). 
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Figure 25. Docetaxel-Resistance induces altered cellular morphology  

 

Images of Parental (Par) PC-3 and C4-2 (TOP) and Docetaxel-Resistant (DocR) 

PC-3 and C4-2 (Bottom). Two docetaxel-resistant cell lines were generated 

using sequential dosing of increasing concentrations of docetaxel; DocR PC-3 

and DocR C4-2. DocR PC-3 is maintained at 10 ng/mL docetaxel and DocR C4-2 

is maintained 5 ng/mL docetaxel. Both docetaxel-resistant cell lines portrayed 

altered cellular morphology compared to the parental cell lines (Black Arrows). 

  



 

130 

Docetaxel-resistant C4-2 and PC-3 cell lines are less sensitive to docetaxel 

than parental cell lines 

To confirm the sensitivity of docetaxel-resistant cell lines to the parental 

cell lines, a docetaxel concentration response curve was performed for 72 hours. 

Both DocR C4-2 and DocR PC-3 were less sensitive to docetaxel than the 

parental cell lines with docetaxel IC50’s around 20 ng/mL and 30 ng/mL, 

respectively. (Figure 26). Parental C4-2 and PC-3 IC50’s were around 2 ng/mL 

and 10 ng/mL, respectively. 
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Figure 26. Parental PC-3 and C4-2 cell lines are more sensitive to docetaxel-

induced cell growth inhibition 

 

A: Both parental and docetaxel-resistant PC-3 (Top) and C4-2 (Bottom) cell 

lines were treated with increasing concentrations of docetaxel for 72 hours. The 

cells were methanol fixed and stained with methylene blue and absorbance was 

measured via spectrometry (N=3).  
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APE1/Ref-1 redox inhibition decreases cell proliferation in parental and 

docetaxel-resistant cell lines 

To determine relative sensitivity to APE1/Ref-1 redox inhibition, a 72 hour 

APX3330 concentration response curve was performed on all 4 lines. Both DocR 

C4-2 and DocR PC-3 were more sensitive to APX3330 inhibition than compared 

to the parental cell lines. The IC50’s were then determined and those 

concentrations used in the subsequent experiments (Figure 27). 

  



 

133 

 

Figure 27. Docetaxel-resistant PC-3 and C4-2 cell lines are more sensitive to 

APX3330-induced cell arrest 

 

A: Both parental and docetaxel-resistant PC-3 (Top) and C4-2 (Bottom) cell 

lines were treated with increasing concentrations of APX3330 for 72 hours. The 

cells were methanol fixed and stained with methylene blue and absorbance was 

measured via spectrometry (N=3). 
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Combinational treatment with APX3330 and docetaxel does not induce 

synergy 

To determine if APX3330 could re-sensitize the docetaxel-resistant cell 

lines back to parental docetaxel concentrations, a combination experiment with 

the respective IC25’s and IC50’s of docetaxel and APX3330 was performed 

(Figure 28). DocR C4-2 cells were pretreated with 40 or 60 µM APX3330 or 10 

or 30 ng/mL of docetaxel for 24 hours. A concentration response curve was then 

performed using increasing concentrations of APX3330 (Top) or docetaxel 

(Bottom). Combination treatment did overall decrease the proliferation of DocR 

C4-2 but failed to induce synergy. 
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Figure 28. Combinational treatment with APX3330 and docetaxel does not 

induce synergy 

 

A: Docetaxel-resistant C4-2 cells were pretreated with either 10 ng/mL or 30 

ng/mL docetaxel for 24 hours and then increasing concentrations of APX3330 for 

72 hrs. Cells were then fixed and stained with methylene blue and absorbance 

was measured via spectrometry (N=2). B: Docetaxel-resistant C4-2 cells were 

pretreated with wither 40 µM or 60 µM APX3330 for 24 hours and then increasing 
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concentrations of docetaxel for 72 hours. Cells were then fixed and stained with 

methylene blue and absorbance was measured via spectrometry (N=2). 
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Combinational treatment with APE1 siRNA and docetaxel does not induce 

synergy 

Recently it has been shown that a pro-longed mitotic phase induces DNA 

damage. To determine if the DNA repair function of APE1/Ref-1 contributes to 

taxane-resistance APE1/Ref-1 knockdown (50 nM siRNA) was performed and 

after 48 hrs a concentration response curve with docetaxel was performed. The 

cells were fixed after 72 hours. Knockdown of APE1/Ref-1 decreased basal cell 

proliferation but did not induce synergy reflecting what we saw with the redox 

inhibitor (Figure 29). Mutant APE1/Ref-1 C65A will be used in future 

experiments.  
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Figure 29. Combinational treatment with APE1 siRNA and docetaxel does not 

induce synergy 

 

A: Parental (Top) and docetaxel-resistant (Bottom) C4-2 cells were either 

transfected with 50 nM siAPE1 or 50 nM scrambled siRNA and then treated with 

increasing concentrations of docetaxel for 72 hours. Cells were then fixed and 

stained with methylene blue and absorbance was measured via spectrometry 

(N=1). 
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Docetaxel-Resistance does not increase basal survival protein levels 

To characterize the molecular mechanisms of resistance cell lysates were 

collected from the four cell lines and a western blot was performed to measure 

survival protein levels (Figure 30). No difference was detected in Bcl-2, Bcl-xL 

and Mcl-1 protein levels. Survivin protein levels were decreased in the resistant 

cell lines compared to the parental cells. Interestingly, APE1/Ref-1 was reduced 

in the DocR PC-3 cell line. 
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Figure 30. Docetaxel-Resistance does not increase basal survival protein levels 

 

A: Parental and docetaxel-resistant PC-3 and C4-2 cell lysates were collected 

and immunoblotting was performed. The membrane was probed for p-p65, total 

p65, Bcl-xL, Bcl-2, surviving, Mcl-1, APE1/Ref-1 and actin as labeled (N=2). 

Survival protein levels were not found to basally increase in the docetaxel-

resistant cell lines and APE1/Ref-1 protein levels were found to be decreased in 

the docetaxel-resistant PC-3 cell line. 
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Treatment with docetaxel decreases APE1/Ref-1 levels in docetaxel-

resistant PC-3 

The reduction in APE1/Ref-1 protein levels were detected 24 hours after 

the maintenance dose of concentration was administered. To confirm if 

APE1/Ref-1 protein levels would return after the initial decrease, DocR PC-3 

were treated with maintenance concentrations of docetaxel for 24 and 48 hours 

and cell lysates were collected for western blot (Figure 31). APE1/Ref-1 protein 

levels were found rebounding after 48 hours suggesting that docetaxel was 

transiently altering intracellular APE1/Ref-1 protein levels. 
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Figure 31. Treatment with docetaxel decreases APE1/Ref-1 levels in docetaxel-

resistant PC-3 

 

A: Docetaxel-resistant PC-3 and C4-2 cells were treated with maintenance doses 

of docetaxel (10 ng/mL and 5 ng/mL docetaxel, respectively) and parental cell 

lines were treated with DMSO. Cell lysates were collected at 24 and 48 hrs and 

an immunoblot was performed. The membrane was probed with antibodies for 

APE1/Ref-1 and actin as labeled (N=1). B: Densitometry was performed and a 

quantified graph showing the ratio of APE1/Ref-1 to actin for both time points.  
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Treatment with docetaxel causes an increase in extracellular APE1/Ref-1 

Recently APE1/Ref-1 has been classified as a non-classically secreted 

protein. To determine if APE1/Ref-1 is secreted and if this secretion is regulated 

by docetaxel, DocR PC-3 and DocR C4-2 cells were dosed with 15 ng/mL 

Docetaxel for 0, 3, 6, 12 and 24 hrs. The supernatant and the cell lysates were 

collected at the respective time points for western blot. DocR PC-3 cells were 

cultured in media that did not contain docetaxel for 5 days prior to this treatment 

in order to allow intracellular APE1/Ref-1 levels to return to basal. DocR PC-3 

and DocR C4-2 cells were both found to secrete APE1/Ref-1 into the 

extracellular space (Figure 32). Interestingly, it was found that in the DocR PC-3 

cells there was a clear time-dependent decrease in APE1/Ref-1 protein levels in 

the cell lysates and time-dependent increase in the supernatant. This suggests 

that it is possible for APE1/Ref-1 to be released into the extracellular 

compartment and that docetaxel may induce that secretion.  
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Figure 32. Treatment with docetaxel causes an increase in extracellular 

APE1/Ref-1 

 

A: Docetaxel-Resistant PC-3 (Left) and C4-2 (Right) cells were cultured without 

docetaxel for 5 days prior to experiment. The cells were then treated with 15 

ng/mL docetaxel and the supernatant and cell lysates were collected at 0, 3, 6, 

12 and 24 hours. The proteins were concentrated out of the supernatant using -

20 ºC acetone and immunoblot was performed. The membranes were probed 

with antibodies for APE1/Ref-1 and Actin as labeled (N=1). 
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Discussion 

There is no effective therapy to treat metastatic castrate-resistant prostate 

cancer with taxanes only extending patient life a few months. Taxane resistance 

is found innately in 50% of patients and those who respond ultimately develop 

acquired resistance. Multiple mechanisms including unfavorable tumor 

microenvironment, drug efflux transporters, and alterations in microtubule 

structure/function and apoptotic defects have been shown to contribute to taxane 

resistance. APE1/Ref-1 is known to regulate inflammatory processes, drug efflux 

transporter protein levels and survival protein levels in cancer. The data 

presented in this study investigates APE1/Ref-1 redox inhibition as a possible 

therapeutic option in docetaxel-resistant prostate cancer. 

To test this two docetaxel-resistant prostate cancer cell lines were 

generated; DocR PC-3 and DocR C4-2. These two specific cell lines were 

chosen because they are both considered castrate-resistant cell lines and C4-2 

cells have the androgen receptor while PC-3 cells do not. The DocR C4-2 cells 

were remarkably more sensitive to docetaxel than the DocR PC-3 cells and it 

was necessary to start dosing them in the picomolar concentration. It has been 

shown that prostate cancer cells with a functional p53, like C4-2 cells, are more 
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sensitive to docetaxel than those with mutant or null p53 expression, like PC-3 

cells. [295]  

Relative IC50’s of docetaxel and APX3330 for all docetaxel-resistant cell 

lines were determined for future combination experiments. It was found that the 

docetaxel-resistant cell lines were less sensitive to docetaxel than the parental 

cell lines which was expected. Interestingly, the docetaxel-resistant cells lines 

were more sensitive to APE1/Ref-1 redox inhibition than the parental cell lines. 

This could be due to increased signaling pathways regulated by redox signaling, 

DNA damage induced by taxanes or altered cellular adhesion. In the combination 

experiments, an initial decrease in cell number by the pretreatment with 

APX3330 or docetaxel occurred as expected but when combined the drugs did 

not induce synergy and the curves converged at the higher doses. This was 

contrary to what was hypothesized. This may be due to the cell phase at which 

these cells are entering cell arrest. It is known that docetaxel does not affect non- 

or slow-growing cells and arrests cancer cells in G2/M. APE1/Ref-1 redox 

inhibition causes G1 arrest and this could explain why the two drugs are not 

complimenting each other in vitro as both actions occur in different phases. 

Recently, it has been shown in endothelial and immune cells that 

APE1/Ref-1 is non-classically secreted into the microenvironment. [296] We 
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found that APE1/Ref-1 protein expression was lower in DocR PC-3 cells after 

maintenance docetaxel treatment. This lead to the hypothesis that APE1/Ref-1 

was being released into the extracellular space upon treatment with docetaxel. 

This was found to be true in DocR PC-3 and C4-2 cells. The function of 

extracellular APE1/Ref-1 has not been fully elucidated but appears to be 

associated with its redox domain. In endothelial cells, extracellular APE1/Ref-1 

was found to reduce the TNFα receptor altering its signaling pathway. [297] 

Something of this affect could be happening within our system. 
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Chapter 6: Conclusions and Future Directions 

Conclusions 

Inflammation is a natural process that protects the body against infection 

and promotes wound healing. Without an active immune system, the body 

succumbs to injuries and disease which is often described in 

immunocompromised individuals. However, in some cases the immune system 

triggers an overactive inflammatory response causing damage to its own tissues. 

It is not known entirely how cells survive and sometimes thrive in this noxious 

inflammatory environment. The data in Chapter 3, Coordinated Induction of Cell 

Survival Signaling in the Inflamed Microenvironment of the Prostate, indicate that 

inflammation induces a profile of cell death and cell survival-inducing factors, 

coordinated such that death factors (TNFα, TWEAK, TRAIL, and FasL) and 

induction of cell death cellular mechanisms (caspase cleavage and DNA 

fragmentation) occurs first, followed by expression of survival factors (IL-1 family 

members, IL-6, COX-2, IGF-1, and FGFs ) and survival signaling pathways 

(survival proteins). 

 These survival signaling pathways correspond to the activation and 

upregulation of survival proteins from the IAP and Bcl-2 families like survivin, Mcl-

1, and Bcl-2. We concluded from this study that a population of epithelial cells 
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residing in the prostatic epithelium respond to inflammatory signals by inducing 

survival proteins like survivin, and repopulates the tissue after the initial cell 

death cascade. This is significant because survivin is rarely expressed in normal 

differentiated tissue but is often expressed in diseases like cancer. This was also 

the first report in which survivin localization was characterized juxtaposed to 

inflammation. We found that survivin expression localizes to areas of severe 

inflammation and that the localization is largely disease-independent. 80% of our 

BPH sections and over 70% of our prostate cancer specimens displayed severe 

inflammation but only less than 15% of non-diseased sections did. We found that 

the inflammation was also associated with reactive hyperplasia and stromal 

desmoplasia and that most likely high survivin expression in diseased prostates 

was caused by increased inflammation in those specimens.  

Uncontrolled cell proliferation in an inflammatory environment rich in 

growth factors and activated stroma could potentiate and/or promote neoplasia. 

Increased expression of the survival proteins survivin, Bcl-2, Bcl-xL and Mcl-1 are 

associated with prostate cancer and inhibiting their expression sensitizes cells to 

cytotoxic treatments. In addition, down-regulation or inhibition of these survival 

proteins results in increased chemosensitivity in prostate cancer cell lines. These 
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findings have prompted the hypothesis that chronic inflammation is involved in 

the genesis and/or progression of prostate cancer. 

The immune cell make up of this E. coli induced inflammation matches 

that of human infectious inflammation with early neutrophilic infiltrate that 

dominates in the first 2 days of induction, and progresses to a primarily 

lymphocytic and monocytic infiltrate in days 3–5. Further, inflammation in this 

model showed increased expression of several inflammatory mediators including 

IL-1β, IL-6, COX-2, IGF-1, and FGFs, commonly observed in chronic prostatic 

inflammation. This data lead us to Chapter 4, APE1/Ref-1 Redox-Specific 

Inhibition Decreases Survivin Protein Levels and Induces Cell Cycle Arrest in 

Prostate Cancer Cells. APE1/Ref-1 regulates a number of transcription factors 

activated by these inflammatory mediators. 

In this study we investigated APE1/Ref-1’s role in regulating survivin 

protein levels in prostate cancer cells. Inflammatory signaling is notorious in 

cancer and prostate cancer cells are known to express IL-8 and IL-6 

autocrine/paracrine signaling mimicking inflammatory signaling from the 

microenvironment. Not surprisingly, we found that both survivin and APE1/Ref-1 

were overexpressed in primary and metastatic prostate tumors as previously 

reported in other publications. This upregulation was also found to be true in our 
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prostatic cell lines. Survivin and APE1/Ref-1 are known to be upregulated in 

response to inflammatory signaling. 

Survivin is transcriptionally regulated by a number of transcriptional 

activators including Sp1 as well as STAT3 and NFĸB, which are regulated by 

APE1/Ref-1. We investigated NFĸB-driven survivin protein expression due to our 

observation that APE1/Ref-1 inhibition is effective in PC-3 cells despite their 

lacking the gene coding for STAT3. All four cell lines express functional NFĸB 

signaling though it should be noted that survivin has been shown to be regulated 

by other APE1/Ref-1 regulated transcription factors like AP-1, HIF1α and p53. 

Similar to other cancer cell lines, we found that APE1/Ref-1 siRNA knockdown 

decreased cell proliferation and survivin protein levels. Also treatment with redox 

specific inhibitors APX3330 and APX2009 decreased cell proliferation, survivin 

mRNA and survivin protein levels. Additionally, we demonstrated that redox 

inhibition of APE1/Ref-1 redox activity induces G1 cell arrest in prostate cancer, 

consistent with recent reports of APE1/Ref-1 inhibition in other cancers. 

APE1/Ref-1 is crucial in moving cells from G1 to S, and redox inhibition induces 

key cyclin-dependent kinase inhibitors (CDKi’s) like p21 and p27 and both of this 

CDKi’s have been shown to downregulate survivin.   
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Survivin plays an important role in prostate cancer survival, progression 

and therapeutic resistance.  Thus, inhibition of APE1/Ref-1’s redox function in a 

viable therapeutic strategy to shutting down inflammatory signaling and reducing 

survivin protein levels. 

Multiple mechanisms including unfavorable tumor microenvironment, drug 

efflux transporters, and alterations in microtubule structure/function and apoptotic 

defects have been shown to contribute to taxane resistance. Taxane resistance is 

found innately in 50% of metastatic castrate-resistant prostate cancer patients 

and those who respond ultimately develop acquired resistance. APE1/Ref-1 is 

known to regulate inflammatory processes, drug efflux transporter protein levels 

and survival protein levels in cancer. This led us to investigate APE1/Ref-1 redox 

inhibition as a possible therapeutic option for docetaxel-resistance in prostate 

cancer in Chapter 5. 

We generated two docetaxel-resistant prostate cancer cell lines to address 

this question; DocR PC-3 and DocR C4-2. These two specific cell lines are 

considered castrate-resistant, meaning they do not need androgens to survive, 

and they differentially express the androgen receptor (AR); C4-2 cells have the 

AR while PC-3 cells do not. The DocR C4-2 cells were remarkably more sensitive 

to docetaxel than the DocR PC-3 cells. This was most likely due to having an 
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intact p53 as it has been shown that prostate cancer cells with a functional p53, 

like C4-2 cells, are more sensitive to docetaxel than those with mutant or null p53 

expression, like PC-3 cells.  

We found that the docetaxel-resistant cell lines were less sensitive to 

docetaxel than the parental cell lines as expected. Interestingly, the docetaxel-

resistant cells lines were more sensitive to APE1/Ref-1 redox inhibition than the 

parental cell lines. This could be due to increased signaling pathways regulated 

by redox signaling (increased inflammatory signaling), DNA damage induced by 

taxanes (due to a prolonged mitotic phase) or altered cellular adhesion (FAK 

kinase phosphorylation). [298] In the APX3330 and docetaxel combination 

experiments, we observed an initial decrease in cell number by APX3330 or 

docetaxel pretreatment was but when combined the two drugs did not induce 

synergy and the curves converged at higher doses. This was contrary to what 

was hypothesized. This may be due to the cell phase at which these cells are 

entering cell arrest. It is known that docetaxel does not affect non- or slow-

growing cells and primarily arrests cancer cells in G2/M. [299] We have shown 

that APE1/Ref-1 redox inhibition causes G1 arrest and this could explain why the 

two drugs are not complimenting each other in vitro as both actions occur in 

different phases. It could also be the length of the experiment as we only did 72 
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hours and if these cells are entering autophagy than we need a longer 

experimental window to visualize the differences in cell viability.  

Interesting we found that APE1/Ref-1 protein levels decreased with 

treatment of docetaxel in DocR PC-3 cells. It has recently been shown in 

endothelial and immune cells that APE1/Ref-1 is non-classically secreted into the 

microenvironment. This lead to the hypothesis that APE1/Ref-1 was being 

released into the extracellular space upon treatment with docetaxel (cell stress). 

This was found to be true in both docetaxel-resistant cell lines. The function of 

extracellular APE1/Ref-1 has not been fully elucidated but appears to be 

associated with its redox domain. Extracellular APE1/Ref-1 may be playing a role 

in receptor-mediated signaling which is important in a number of different 

conditions. This discovery is novel in the prostate field and more research is 

needed to determine if the extracellular is just a biomarker or something with 

fundamental activity for prostate cancer survival.  

Together, these three chapters intimately tie inflammation with survivin 

with APE1/Ref-1 being a master regulator of the survival signaling necessary for 

survivin transcription in prostate cancer.  

Future Directions 
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APE1/Ref-1 mediating Androgen Receptor activity 

APE1/Ref-1 is known to redox regulate a number of inflammatory 

transcription factors but its role in regulating steroid receptors has yet to be fully 

elucidated. Recently it has been shown that APE1/Ref-1 and the Estrogen 

Receptor Alpha (ERα) interact and that APE1/Ref-1 enhances ERα binding to 

estrogen-response elements (ERE). [300] Furthermore, the authors showed that 

treatment with APX3330 decreased ERα enrichment of ERE’s in PR and pS2 

genes suggesting that ER activity is regulated by redox signaling. Since all 

nuclear steroid receptors share significant homology, I hypothesis that APE1/Ref-

1 directly interacts with the AR and redox regulates its activity on androgen-

response elements (ARE). This is especially significant in metastatic prostate 

cancer since castrate-resistance is ultimately inevitable. 

To determine if the AR and APE1/Ref-1 are co-expressed in prostate 

cancer, first I would perform immunofluorescence on cancerous and non-

cancerous human prostate specimens. Once I confirmed that, I would collect cell 

lysate from AR+ prostatic cell lines, LNCaP, C4-2 and E7, which we culture in our 

lab and run an immunoblot to see if the pattern matches the human prostate 

specimen data. A prostatic cell line that is AR- , like PC-3 or DU145, could be 

used as a negative control. Furthermore, to verify interaction between the AR and 
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APE1/Ref-1 I would perform co-immunoprecipitation after treatment with either 

ethanol or 1 nM DHT. DHT is being used to activate the AR and induce nuclear 

translocation. Cellular fractionation could also be used to verify AR nuclear 

translocation and APE1/Ref-1 localization in response to DHT. I would expect 

that the AR would be immunoprecipitated with APE1/Ref-1 and APE1/Ref-1 

immunoprecipitated with the AR under the presence of DHT. 

If APE1/Ref-1 immunoprecipitates with the AR, I would then investigate 

the functional consequences of this interaction on AR-mediated transcription. 

First I would knockdown APE1/Ref-1 with siRNA and treat with Ethanol or DHT 

and then via western blot measure AR-mediated proteins PSA and NKX3.1. PSA 

and NKX3.1 are under androgen-dependent transcription in prostatic luminal 

epithelial cells. If I see a decrease in PSA and NKX3.1 protein levels under 

APE1/Ref-1 knockdown, I would repeat this experiment and run RT-PCR. To 

measure steady state mRNA. If PSA and NKX3.1 relative gene expression is 

altered, this would suggest that APE1/Ref-1 is regulating AR activity. 

 The ability of APE1/Ref-1 to interact with the AR and influence AR-

mediated transcription suggests that APE1/Ref-1 might associate with regulatory 

regions of androgen-responsive genes to influence transcription. To determine 

this, I would perform ChIP using the AREs in the PSA and NKX3.1 genes in the 
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presence and absence of DHT. I would hypothesize that with increasing 

concentrations of DHT and time, the APE1/Ref-1/ AR complex’s association with 

the ARE’s would increase though it is not necessary for APE1/Ref-1 to be part of 

the transcriptional complex and still regulate the AR’s ability to bind DNA. I would 

validate this using gel mobility shift assay to show that APE1/Ref-1 influences 

receptor-DNA complex formation. I would hypothesize that as increasing 

amounts of purified APE1/Ref-1 were added to, the ability of the purified AR to 

bind to ARE-containing oligos increased in a concentration-dependent manner 

and that the addition of AR or APE1/Ref-1 antibodies would produce a supershift.  

Given that decreased Ape1/Ref-1 expression altered expression of 

androgen-responsive genes and that Ape1/Ref-1 was able to increase AR-ARE 

DNA complex formation, I would next investigate whether inhibiting the DNA 

repair or redox activity of Ape1/Ref-1 might affect endogenous androgen-

responsive gene expression. First, I would repeat past experiments and instead 

of knocking down APE1/Ref-1 I would treat with increasing concentrations of 

APX3330 and measure PSA and NKX3.1 relative gene expression and protein 

levels. I would then do another gel mobility shift assay to measure whether 

APE1/Ref-1 redox activity regulates AR-ARE complex formation. For these 

experiments, I would utilize increasing amounts of APX3330 and the redox dead 
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APE1/Ref-1 mutant C65A to further support AR redox regulation. Finally, I would 

then repeat the previous ChIP experiments with APX3330 to investigate if 

APE1/Ref-1 redox inhibition decreases APE1/Ref-1 and AR enrichment of ARE’s 

in prostatic cell lines.   

This would show that AR transcriptional activity is regulated by APE1/Ref-

1’s redox activity (Figure 33). This would be novel and of high significance. 

Future studies could incorporate enzalutamide/abiraterone resistance and 

possible new therapeutic strategies for metastatic prostate cancer. 
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Figure 33. APE1/Ref-1 mediating Androgen Receptor activity 

 

The androgen receptor (AR) can be activated two ways; ligand-mediated and 

kinase-mediated. The canonical AR signaling pathway involves the ligand 

dihydrotestosterone (DHT) binding to an AR monomer causing it to dimerize with 

another AR monomer and then translocating to the nucleus. The non-canonical 

AR signaling pathway involves the transactivation of an AR monomer by a kinase 

(AKT or MAPK) resulting in the dimerization and nuclear translocation of the 

receptor. APE1/Ref-1 could potentially redox regulate the AR in the cytoplasm or 

nucleus and also function as a cofactor in the nucleus.  
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Taxane-resistance mechanisms 

Taxane-resistance occurs in all metastatic castrate resistant prostate 

cancer patients overtime. The mechanisms for taxane-resistance are most likely 

multifaceted with multiple different pathways contributing. Some possible 

mechanisms include induction of survival proteins (IAP and Bcl-2 family of 

proteins), drug efflux/intake transporters (ATP-binding cassette transporters 

(ABC’s) and Solute carrier transporters (SLC’s), metabolic shifts (aerobic 

glycolysis to oxidative phosphorylation) and exosome/oncosome/microvesicle 

secretion. ABC transporters, like p-glycoprotein (P-gp), are upregulated in 

response to docetaxel and play a role in docetaxel’s extrusion from the cell. 

Despite this, directly targeting these transporters have yet to yield any successful 

therapeutics. Recently it has been shown that the downregulation of certain 

intake transporters, specifically SLCO1B3, may contribute to docetaxel-

resistance. [301] I hypothesize that the upregulation of ABC transporters and the 

downregulation of SLC transporters are needed for taxane-resistance. 

To determine if P-gp is upregulated and SLCO1B3 is downregulated in 

response to docetaxel resistance I would first collect cell lysate from both the 

parental and docetaxel-resistant PC-3/C4-2 cell lines and measure protein 

expression via immunoblotting. If there was a difference in parental and 
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docetaxel-resistant cell levels of these two proteins I would then do a 

concentration response curve with docetaxel to determine if this difference is 

transient or permanent and what time peak levels occurs. I would also couple this 

with RT-PCR to see if the changes in protein levels are in result to altered 

transcription or protein stability. 

If P-gp and SLCO1B3 are altered at both the transcript and protein levels 

with respect to docetaxel-resistance, I would then proceed to modify the levels of 

the endogenous proteins and perform a concentration response curve to 

investigate changes to the docetaxel IC50. I would use siRNA to knock down P-

gp and I would overexpress SLCO1B3 using a transient plasmid. I would 

hypothesis that alone P-gp siRNA knockdown or SLCO1B3 overexpression 

would decrease the docetaxel IC50 and this effect would be enhanced when the 

two methods were combined. I would also measure the cellular efflux and uptake 

of docetaxel using a [14C] labeled-docetaxel to further validate the change of 

intracellular docetaxel concentration.  

The ability of P-gp knockdown and/or SLCO1B3 overexpression to alter 

intracellular docetaxel concentrations suggests that dual targeting these proteins 

is a logical therapeutic strategy. To validate this in vivo, I would infect the 

docetaxel-resistant cells with an inducible SLCO1B3 construct and P-gp siRNA 
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and then xenotransplant these cells into a nude mouse prostate. I would then 

treat these animals with docetaxel and the inducible construct drug and at the 

end of 6 weeks measure tumor size and local invasion. I would hypothesize that 

in those animals where SLCO1B3 is overexpressed and P-gp is downregulated 

the tumors would experience significant cell growth inhibition compared to those 

with single protein and no protein alterations. 

This would show that P-gp and SLCO1B3 are potential targets in taxane-

resistant prostate cancer (Figure 34). This would be novel and of high 

significance and future studies could incorporate inhibitors/gene therapy as 

potential therapeutic strategies. Other cancers that use taxanes as the standard 

of care, like breast cancer, could benefit from this discovery.  

  



 

163 

 

 

Figure 34. Taxane-resistance mechanisms  

 

ABC transporters, like p-glycoprotein (P-gp), are upregulated in response to 

docetaxel and play a role in docetaxel’s extrusion from the cell. Recently it has 

been shown that the downregulation of certain intake transporters, specifically 

SLCO1B3, prevents the accumulation of docetaxel within the cell. The less 

docetaxel within the cell equals less microtubule disruption. Together, these two 

transporters may be responsible for acquired and innate docetaxel-resistance. 
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Extracellular APE1/Ref-1 

APE1/Ref-1 has recently been identified as a non-classically secreted 

protein and has yet to be identified as secreted by the prostatic cells. Secreted 

APE1/Ref-1 has been found in the serum and urine in patients with bladder 

cancer and serum APE1/Ref-1 autoantibodies have been found in patients with 

lung cancer suggesting its use as a possible biomarker. [302-303] Underlining 

mechanisms of APE1/Ref-1 secretion are just now being discovered and 

APE1/Ref-1’s extracellular roles have yet to be elucidated. Treatment with 

histone deactylase inhibitor trichostatin A has been found to cause the nuclear to 

cytoplasmic translocation of APE1/Ref-1 and extracellular release in HEK293 

cells without changing cell viability. Interestingly, the authors found that mutating 

lysine 6 and 7 to arginines prevented secretion suggesting protein acetylation 

might be necessary for excretion. APE1/Ref-1 is acetylated in most cancers. 

[304] In endothelial cells, secreted APE1/Ref-1 has found to be anti-inflammatory 

and alter TNFα receptor activity but in immune cells the addition of extracellular 

APE1/Ref-1 appears to be pro-inflammatory altering IL-6 signaling. [305] I 

hypothesis that APE1/Ref-1 is secreted by prostate cancer and that extracellular 

APE1/Ref-1 contributes to docetaxel resistance through activating 

autocrine/paracrine or immune cell-inflammatory signaling (Figure 35). It would 
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be necessary to obtain serum and urine from prostate cancer patients to verify 

that APE1/Ref-1 can be extracellularly located. 

To investigate whether APE1/Ref-1 is secreted and if its secretion is 

induced by docetaxel, which is a form of cell stress, I would treat parental and 

docetaxel-resistant cells with their respective docetaxel IC50’s and then collect 

the supernatant and cell lysates at various time points. I would precipitate out the 

supernatant proteins using the cold acetone method and measure the levels of 

APE1/Ref-1 via immunoblotting. Once I found the optimal time where APE1/Ref-

1 secretion is at its highest I would then treat the cells with increasing 

concentrations of docetaxel to see if the secretion is both time and concentration 

dependent. Taken together this should demonstrate that APE1/Ref-1 secretion is 

stimulated by docetaxel. The exact amount of secretion would be measured via 

ELISA. 

Recently it has been shown that purified recombinant APE1/Ref-1 

increased IL-6 production and secretion in monocytic cell line THP-1. I 

hypothesize that docetaxel-induced APE1/Ref-1 secretion increases IL-6 in the 

surrounding microenvironment causing an IL-6-dependent inflammatory 

response. To determine this I would treat parental and docetaxel-resistant 

prostate cancer cells with recombinant APE1/Ref-1 and look at IL-6 transcription 
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(RT-PCR) and IL-6 secretion (ELISA). Next I would treat prostate cancer cells 

with docetaxel to see if the IL-6 pathway is activated and if neutralizing 

APE1/Ref-1 with an antibody would perturb that activation. If the IL-6 pathway is 

disrupted, I would move onto a 3-D culture and repeat the previous experiments 

to see if the results hold up. 3-D culture allows for the co-culturing of different cell 

lines and it has been shown in previous work by Dr. Melissa Fishel that the IL-6 

signaling is hyper activated in this system. It is possible that this secreted 

APE1/Ref-1 is meant for other cell types in the tumor microenvironment. Co-

culturing with cancer-associated fibroblasts or an immortalized immune cell line 

could help answer that question.  

IL-6 has long been implicated in the initiation and progression of prostate 

cancer. Knowing the mechanism of how IL-6 is upregulated is of paramount 

importance in the search of new therapeutic targets in drug-resistant prostate 

cancer. If extracellular APE1/Ref-1 is implicated in the activation of the IL-6 

pathway potential neutralizing antibodies for both proteins could be used to shut 

down that inflammatory response.  
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Figure 35. Extracellular APE1/Ref-1 in prostate cancer 

 

APE1/Ref-1 is a non-classically secreted protein. Secreted APE1/Ref-1 has been 

found in the serum in patients with bladder cancer and serum APE1/Ref-1 

autoantibodies have been found in patients with lung cancer. Underlying 

mechanisms of APE1/Ref-1 secretion are unknown but could be the result of 

oncosomal packaging or direct release into the extracellular space. The function 

of extracellular APE1/Ref-1 is also not known but could play a role in the 

inflammatory tumor microenvironment.  
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