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Summary

In many scientific and engineering applications, covariates are naturally grouped. When the group 

structures are available among covariates, people are usually interested in identifying both 

important groups and important variables within the selected groups. Among existing successful 

group variable selection methods, some methods fail to conduct the within group selection. Some 

methods are able to conduct both group and within group selection, but the corresponding 

objective functions are non-convex. Such a non-convexity may require extra numerical effort. In 

this article, we propose a novel Log-Exp-Sum(LES) penalty for group variable selection. The LES 

penalty is strictly convex. It can identify important groups as well as select important variables 

within the group. We develop an efficient group-level coordinate descent algorithm to fit the 

model. We also derive non-asymptotic error bounds and asymptotic group selection consistency 

for our method in the high-dimensional setting where the number of covariates can be much larger 

than the sample size. Numerical results demonstrate the good performance of our method in both 

variable selection and prediction. We applied the proposed method to an American Cancer Society 

breast cancer survivor dataset. The findings are clinically meaningful and may help design 

intervention programs to improve the qualify of life for breast cancer survivors.
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1. Introduction

Breast cancer is the most common cancer in women younger than 45 years of age and is the 

leading cause of death among females in the United States. However, the survival rate for 

these young women with breast cancer has continuously improved over the past two 

decades, primarily because of improved therapies. With this long-term survival, it is 

important to study the quality of life that may be hampered by this traumatic event and by 

the long-term side effects from related cancer therapies.

This article is motivated by analyzing a dataset from a study funded by the American Cancer 

Society (ACS), a large quality of life study of breast cancer survivors diagnosed at a young 

age. The study included 505 breast cancer survivors (BCS) who were aged 18–45 years old 

at diagnosis and were surveyed 3–8 years after standard treatments. The study collected 

many covariates and quality of life outcomes. One outcome that is of particular interest is 

overall well being (OWB). It is captured by Campbell’s index of well being which is 

measured from seven questionnaire items (Campbell, Converse, and Rodgers, 1976). 

Studying the OWB status after an adversity is of great interest in an increasing body of 

research to comprehensively understand the consequences of a traumatic event, for example, 

cancer at a young age.

In the present analysis, the covariates include demographic variables and social or behavior 

construct scores. The constructs are divided into eight non-overlapping groups: personality, 

physical health, psychological health, spiritual health, active coping, passive coping, social 

support, and self-efficacy. The constructs in each group are designed to measure the same 

aspect of the social or behavioral status of a breast cancer survivor from different angles. In 

our analysis, we are interested in identifying both important groups and important individual 

constructs within the selected groups that are related to OWB. These discoveries may help 

design interventions targeted at these young breast cancer survivors from the perspective of a 

cancer control program. In statistics, this is a group variable selection problem.

Variable selection via penalized likelihood estimation has been an active research area in the 

past decade. When there is no group structure, many methods have been proposed and their 

properties have been thoroughly studied, for example, see LASSO (Tibshirani, 1996), SCAD 

(Fan and Li, 2001), Elastic-Net (Zou and Hastie, 2005), SICA (Lv and Fan, 2009), MCP 

(Zhang, 2010), truncated L1 (Shen, Pan, and Zhu, in press), SELO (Dicker, Huang, and Lin, 

in press) and references therein. However, when there are grouping structures among 

covariates, these methods still make selection based on the strength of individual covariates 

rather than the strength of the group, and may have inadequate performance. A proper 

integration of the grouping information into the analysis is hence desired, and that may help 

boost the signal-to-noise ratio.

Several methods have addressed the group variable selection problem in literature. Yuan and 

Lin (2006) proposed a group LASSO penalty; Zhao, Rocha, and Yu (2006) proposed a CAP 

family of group variable selection penalties. These two methods can effectively remove 

unimportant groups, but a possible limitation is that they select variables in an “all-in-all-

out” fashion, that is, when one variable in a group is selected, all other variables in the same 
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group are also selected. In our analysis of the ACS dataset, however, we want to keep the 

flexibility of selecting variables within a group. For example, when a group of constructs is 

related to OWB, it does not necessarily mean all the individual constructs in this group are 

related to OWB. We may want to not only remove unimportant groups effectively, but also 

identify important individual constructs within important groups as well. To achieve the 

goal, Huang et al. (2009) and Zhou and Zhu (2010) independently proposed a group bridge 

penalty and a hierarchical LASSO penalty, respectively. These two penalties can do the 

selection at both group level and within group level. However, one possible drawback of the 

two methods is that their penalty functions are no longer convex. This non-convexity may 

cause numerical problems in practical computation, especially when the numbers of groups 

and covariates are large.

In this article, we propose a new Log-Exp-Sum penalty for group variable selection. This 

new penalty is convex, and it can perform variable selection at both group level and within-

group level. We propose an effective algorithm to fit the model. The theoretical properties of 

our proposed method are thoroughly studied. We establish both the finite sample error 

bounds and asymptotic group selection consistency of our LES estimator. The proposed 

method is applied to the ACS breast cancer survivor dataset.

2. Method

2.1. Preparation

We consider the usual regression setup: we have training data, (xi, yi), i = 1, …, n, where xi 

and yi are a p-length vector of covariates and response for the ith subject, respectively. We 

assume the total of p covariates can be divided into K groups. Let the kth group have pk 

variables, and we use xi,(k) = (xi,k1, …, xi,kpk)T to denote the pk covariates in the kth group 

for the ith subject. In most of the article, we assume Σk pk = p, that is, there are no overlap 

between groups. This is also the situation in ACS breast cancer survivor data. We will 

discuss the situation that groups are overlapped in Section 6.

To model the association between response and covariates, we consider linear regression:

(1)

where  are error terms and βkj’s are regression coefficients. We denote βk 

= (βk1, …, βkpk)′ to be the vector of regression coefficients for covariates in the kth group. 

Without loss of generality, we assume the response is centered to have zero mean and each 

covariate is standardized to have zero mean and unit standard deviation, so the intercept term 

can be removed from the above regression model.

For the purpose of variable selection, we consider the penalized ordinary least square (OLS) 

estimation:
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(2)

where J(β) is a sparsity-induced penalty function and λ is a non-negative tuning parameter.

Yuan and Lin (2006) proposed the following group LASSO penalty which is to penalize the 

L2-norm of the coefficients within each group:

(3)

Zhao et al. (2006) proposed penalizing the L∞-norm of βk:

(4)

We can see that both L2-norm and L∞-norm are singular when the whole vector βk is zero. 

Therefore, some estimated coefficient vector β̂k will be exactly zero and hence the 

corresponding kth group will be removed from the fitted model. Once a component of βk is 

non-zero, however, the two norm functions are no longer singular and hence cannot conduct 

the within group variable selection.

Huang et al. (2009) proposed the following group bridge penalty:

(5)

where 0 < γ < 1 is another tuning parameter.

Zhou and Zhu (2010) independently proposed a hierarchical LASSO penalty. This penalty 

decomposes βkj = γkθkj and considers

(6)

When the groups are not overlapped, the hierarchical LASSO penalty is equivalent to the 

group bridge penalty with γ = 0.5. We can see that these two penalties are singular at both 

βk = 0 and βkj = 0 and hence is able to conduct both group selection and within group 

selection, however, the two objective functions are not convex.
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Simon et al. (2012) proposed the sparse group LASSO penalty:

(7)

where 0 < s < 1 is another tuning parameter. We can see that, by mixing the LASSO penalty 

and group LASSO penalty, the sparse group LASSO penalty is convex and is able to conduct 

both group and within group selection.

2.2. Log-Exp-Sum Penalty

Our Log-Exp-Sum (LES) penalty is motivated by modifying the group LASSO penalty to 

conduct both group and within-group selection. Note that the group LASSO penalty is a 

member of a penalty function family:  by 

taking f(x) = x2. Our LES penalty is another member of this family by taking f (x) = exp(x). 

To be specific, we propose the following LES penalty:

(8)

where α > 0 is a tuning parameters and wk’s are pre-specified weights to adjust for different 

group sizes, for example, taking wk = pk/p. The LES penalty is strictly convex, which can be 

straightforwardly verified by calculating its second derivative. Similar to other group 

variable selection penalties, the LES penalty utilizes the group structure and is able to 

perform group selection. Meanwhile, the LES penalty is also singular at any βkj = 0 point, 

and hence is able to conduct the within group selection as well.

There is a connection between the LES penalty and the LASSO penalty. For any design 

matrix X and an arbitrary grouping structure (pk ≥ 1), the LASSO penalty can be viewed as a 

limiting case of the LES penalty. To be specific, we have the following proposition.

Proposition 1—Given the data, for any positive number γ, consider the LASSO estimator 

and LES estimator as follows:

Then we have:
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The proof of Proposition 1 is given in Web Appendix A.

Our LES penalty has a property that the estimated coefficients of highly correlated variables 

within the same group are enforced to be similar to each other. As a consequence of this, 

when applied to the ACS Breast Cancer Survivor dataset, since the construct scores within 

the same group can be highly correlated, our LES penalty tends to select or remove the 

highly correlated constructs within a group together. To be specific, we have the following 

proposition.

Proposition 2—Letβ̂be the penalized OLS estimation with the LES penalty. If β̂kiβ̂kj > 0, 
then we have:

where constant 

is the sample correlation between Xki and Xkj.

The proof of Proposition 2 is given in Web Appendix B.

2.3. Algorithm

We need to solve the following optimization problem:

(9)

We propose applying the coordinate descent algorithm (Friedman et al., 2007; Wu and 

Lange, 2008) at the group level. The key idea is to find the minimizer of the original high-

dimensional optimization problem (9) by solving a sequence of low-dimensional 

optimization problems, each of which only involves the parameters in one group. See Web 

Appendix C for the details of the algorithm.

Since our objective function is convex and the LES penalty is separable at the group level, 

by results in Tseng (2001), our algorithm is guaranteed to converge to the global minimizer. 

Note that, if we apply the coordinate descent algorithm at the individual coefficient level, the 

algorithm is not guaranteed to converge.

2.4. Tuning Parameter Selection

Tuning parameter selection is an important issue in penalized estimation. One often proceeds 

by finding estimators which correspond to a range of tuning parameter values. The preferred 

estimator is then identified as the one in which the tuning parameter optimizes some 

criterion, such as cross validation (CV), generalized cross validation (GCV) (Craven and 
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Wahba, 1979), AIC (Akaike, 1973), or BIC (Schwarz, 1978). It is known that CV, GCV and 

AIC-based methods favor the model with good prediction performance, while BIC-based 

method tends to identify the correct model (Yang, 2005). To implement GCV, AIC and BIC, 

one needs to estimate the degrees of freedom (df) of an estimated model. For our LES 

penalty, the estimate of df does not have an analytic form even when the design matrix is 

orthonormal. Therefore, we propose using the randomized trace method (Girard, 1987, 

1989; Hutchinson, 1989) to estimate df numerically. See Web Appendix D for more details 

and discussions of this method.

3. Theoretical Results

In this section, we present the theoretical properties of our LES estimator. We are interested 

in the situation when the number of covariates is much larger than the number of 

observations, that is, p ≫ n. Throughout the whole section, we consider the following LES 

penalized OLS estimation:

(10)

3.1. Non-Asymptotic Error Bounds

In this section, we extend the argument in Bickel, Ritov, and Tsybakov (2009) to establish 

finite-sample bounds for our LES estimator. We make the following Restricted Eigenvalue 

assumption with group structure (REgroup), which is similar to the Restricted Eigenvalue 

(RE) assumption in Bickel et al. (2009).

REgroup assumption—Assume group structure is pre-specified and p covariates can be 

divided into K groups with pk covariates in each group. For a positive integer s and any Δ ∈ 
ℝp, the following condition holds:

where G is a subset of {1, …, K}, and |G| is the cardinality of set G. Δk ∈ ℝpk is a subvector 

of Δ for the kth group, that is, Δk = (Δk1, …, Δkpk)T. We denote ||·||2 and ||·||1 to be Euclidean 

norm and L1-norm, respectively.

Theorem 1: Consider linear regression model (1). Letβ*be the vector of true regression 
coefficients. Assume the random error terms ε1, …, εn are i.i.d. from the normal distribution 
with mean zero and variance σ2. Suppose the diagonal elements of matrix XTX/n are equal 
to 1. Let G(β) be the set of indices of groups that contain at least one nonzero element for a 
vector β, that is, G(β) = { k | ∃ j, 1 ≤ j ≤ pk, s.t : βkj ≠ 0; 1 ≤ k ≤ K}. Assume the REgroup 
assumption holds with κ = κ(s) > 0, where s = |G(β*)|. Let A be a real number bigger than 
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 and . Let two tuning parameters satisfy λα = γ. Denote β̂ to be the 
solution to optimization problem (10). Then with probability at least 1 − p1−A2/8, the 
following inequalities hold:

(11)

(12)

The proof and some discussions of Theorem 3 are given in Web Appendix E.

3.2. Group Selection Consistency

Let  be the event that there exists a solution β̂ to optimization problem (10) such that ||β̂k||∞ 
> 0 for all k ∈ G(β*) and ||βk̂||∞ = 0 for all k ∉ G(β*), where β* is the vector of true 

regression coefficients for model (1) and G(β*) is the set of indices of groups that contain at 

least one nonzero element for a vector β*. We would like to show the group selection 

consistency as the following:

(13)

Theorem 2: Consider linear regression model (1), under the assumptions (C1)–(C4), the 

sparsity property (13) holds for our LES estimator.

The assumptions (C1)–(C4) and the proof follow the spirit in Nardi and Rinaldo (2008). The 

details are presented in Web Appendix F.

4. Simulation Studies

In this section, we perform simulation studies to evaluate the finite sample performance of 

the LES method, and compare the results with several existing methods, including LASSO, 

group LASSO (gLASSO), group bridge (gBrdige) and sparse group LASSO (sgLASSO). 

We consider four examples. All examples are based on the linear regression model: 

, i = 1, …, n, where . We chose σ to control the signal-to-

noise ratio to be 3. The details of the settings are described as follows.

Example 1 (‘‘All-In-All-Out)—There are K = 5 groups and p = 25 variables in total, with 

5 variables in each group. We generated xi ~ N(0, I). The true β* was specified as:
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Example 2 (‘‘Not-All-In-All-Out)—There are K = 5 groups and p = 25 variables in total, 

with 5 variables in each group. We generated xi ~ N(0,Σ), where Σ was a block diagonal 

matrix given by diag(P, P, Q, Q,Q). Here P, Q were both 5 × 5 square matrices. Pij = 1 if i = 

j; Pij = 0.7 if 1 ≤ i, j ≤ 3 or 4 ≤ i, j ≤ 5; Pij = 0.1 if otherwise. Qij = 1 if i = j; Qij = 0.7 if i ≠ j. 
The true β* was specified as:

Example 3 (mixture)—There are K = 5 groups and p = 25 variables in total, with 5 

variables in each group. We generated xi ~ N(0,Σ), where Σ was the same as in simulation 

setting 2. The true β* was specified as:

Example 4 (mixture)—There are K = 6 groups and p = 50 variables in total. For group 1, 

2, 4, and 5, each contains 10 variables; for group 3 and 6, each contains 5 variables. We 

generated xi ~ N(0, Φ), where Φ is a block diagonal matrix given by diag(Σ, Σ), Σ here was 

the same as in simulation setting 2 and 3. The true β* was specified as:

For each setup, the sample size is n = 100. We repeated simulations 1000 times. The LES 

was fitted using the algorithm described in Section 2.3. The LASSO was fitted using the R 

package “glmnet.” The group LASSO was fitted using the R package “grplasso.” The group 

bridge was fitted using the R package “grpreg.” The sparse group LASSO was fitted using 

the R package “SGL.”

To select the tuning parameters in each of the five methods, we consider two approaches. 

The first approach is based on data validation. To be specific, in each simulation, besides the 

training data, we also independently generated a set of tuning data with the same distribution 

and with a same sample size as the training data. Then for each tuning parameter, we fitted 

the model on the training data and used the fitted model to predict the response on the tuning 

set and calculated the corresponding mean square error (prediction error). The model with 

the smallest tuning error was selected.

Our second approach for tuning parameter selection is based on BIC, which is defined to be:
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where df is the degrees of freedom of an estimated model. This format of BIC is based on 

the profile likelihood to get rid of σ2, the variance of the errors. It is used in Wang, Li, and 

Tsai (2007) and was shown to have a good performance. For the LES method, the df was 

estimated using the randomized trace method described in Section 2.4. For the LASSO 

method, the df was estimated by the number of non-zero estimated coefficients (Zou and 

Hastie, 2005). For the group LASSO method, the df was estimated as suggested in Yuan and 

Lin (2006). For the group bridge method, the df was estimated as suggested in Huang et al. 

(2009). For the sparse group LASSO method, the corresponding articles did not consider 

estimation of df, and we used the number of non-zero estimated coefficients as the estimator 

for its df.

To evaluate the variable selection performance of methods, we consider sensitivity (Sens) 

and specificity (Spec), which are defined as:

For both sensitivity and specificity, higher value means a better variable selection 

performance. Following Associate Editor’s suggestion, for each of five methods considered 

in our simulation, we further obtain the sensitivities and specificities of models along its full 

solution paths of (by fitting models with many tuning parameter values), create the ROC 

curve with respect to these sensitivities and specificity, and calculate the corresponding area 

under curve (AUC). For all five methods, it is possible that several models have the same 

specificity but different sensitivity. When this happens, we use the highest sensitivity to 

construct the ROC curve, representing the best variable selection performance of the 

method.

To evaluate the prediction performance of methods, following Tibshirani (1996), we 

consider the model error (ME) which is defined as:

where β̂ is the estimated coefficient vector, β* is the true coefficient vector, and Σ is the 

covariance matrix of the design matrix X. We would like to acknowledge that the model 

error is closely related to the predictive mean square error proposed in Wahba (1985) and 

Leng, Lin, and Wahba (2006). We also calculate the bias of estimator defined as Bias = ||β̂ − 

β*||2.

The simulation results are summarized in Table 1.
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In Example 1, the group bridge method has the lowest model error as well as the highest 

specificity. This is not surprising, because Example 1 is a relatively simple “All-In- All-Out” 

case, that is, all covariates in a group are either all important or all unimportant. Under this 

situation, the non-convex group bridge penalty has an advantage over other methods in terms 

of removing unimportant groups. Although slightly worse than the group bridge method, the 

LES method outperformed the other three methods in terms of model error. Note that, 

because of the diagonal covariance matrix of X in this example, the bias is exactly the same 

as the model error. All five methods had identical AUC values.

In Example 2, the LES method produced the smallest model error when the tuning set 

approach was used, and produced the smallest bias when the BIC tuning was used. No 

method dominated in specificity. All five methods had almost identical sensitivities. Except 

group LASSO, the other four methods had almost identical AUC values as well.

In Example 3, the LES method produced the smallest model errors no matter which tuning 

criterion was used. It has the smallest bias when BIC tuning was used as well. The group 

LASSO method had the highest sensitivity, but its specificity was very low. This means that 

the group LASSO method tended to include a large amount of variables in the model. The 

LES method had the highest AUC value among five methods.

Example 4 is similar to Example 3, but has more covariates and more complex group 

structure. The conclusion about comparisons is similar to that in Example 3. One difference 

is that, both the LES method and the sparse group LASSO method had the highest AUC 

values among five methods.

5. American Cancer Society Breast Cancer Survivor Data Analysis

In this section, we analyze the data from ACS breast cancer study which was conducted at 

the Indiana University School of Nursing. The participants of the study were survivors of the 

breast cancer aged 18–45 years old at diagnosis and were surveyed between 3 and 8 years 

from completion of chemotherapy, surgery, with or without radiation therapy. The purpose 

of the present analysis is to find out what factors in the psychological, social and behavior 

domains are important for the OWB of these survivors. Identification of these factors and 

establishment of their association with OWB may help develop intervention programs to 

improve the quality of life of breast cancer survivors.

The variables included in our current analysis are 54 social and behavior construct scores 

and three demographic variables. The 54 scores are divided into eight non-overlapping 

groups: personality, physical health, psychological health, spiritual health, active coping, 

passive coping, social support and self-efficacy. Each group contains up to 15 different 

scores. The three demographic variables are: “age at diagnosis” (Agediag), “years of 

education” (Yrseduc), and “How many months were you in initial treatment for breast 

cancer” (Bcmths). We treated each demographic variable as an individual group. There are 6 

subjects with missing values in either covariates or response, and we removed them from our 

analysis. In summary, we have 499 subjects and 57 covariates in 11 groups in our analysis.
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We applied five methods in the data analysis: LASSO, group LASSO, group bridge sparse 

group LASSO and our LES method. We randomly split the whole dataset into a training set 

with sample size n = 332 and a test set with sample size n = 167 (the ratio of two sample 

sizes is about 2:1). We fitted models on the training set, using two tuning strategies: one 

used 10-fold CV, the other used BIC. The BIC tuning procedure for all of the five methods is 

the same as what we described in the simulation studies. We then evaluated the prediction 

performances on the test set. We repeated the whole procedure beginning with a new random 

split 100 times.

The upper part of Table 2 summarizes, over 100 replications, the average number of selected 

groups, the average number of selected individual variables, and the average mean square 

errors (MSE) on the test sets, for the five methods. We can see that, for all five methods, the 

models selected by the 10-fold CV tuning had smaller MSEs (better prediction performance) 

than the models selected by the BIC tuning. As the cost of this gain in prediction 

performance, the models selected by 10-fold CV tuning included more groups and more 

individual variables than the models selected by BIC tuning. We can also see that, our LES 

methods had the smallest MSE among five methods no matter which tuning strategy was 

used.

The lower part of Table 2 summarizes the selection frequency of each group across 100 

replicates. A group is considered to be selected if at least one variable within the group is 

selected. Since there are some theoretical works showing that BIC tuning tends to identify 

the true model (Wang et al., 2007), we focus on the selection results with BIC tuning. We 

can see that the psychological health group is always selected by all of five methods. For our 

LES methods, three other groups have very high selection frequency: spiritual health (91 out 

of 100), active coping (89 out of 100), and self-efficacy (99 out of 100). These three groups 

are considered to be importantly associated with OWB in literature. Spirituality is a resource 

regularly used by patients with cancer coping with diagnosis and treatment (Gall et al., 

2005). Purnell and Andersen (2009) reported that spiritual well-being was significantly 

associated with quality of life and traumatic stress after controlling for disease and 

demographic variables. Self-efficacy is the measure of one’s own ability to complete tasks 

and reach goals, which is considered by psychologists to be important for one to build a 

happy and productive life (Parle, Maguire, and Heaven, 1997). Rottmann et al. (2010) 

assessed the effect of self-efficacy and reported a strong positive correlation between self-

efficacy and quality of life and between self-efficacy and mood. They also suggested that 

self-efficacy is a valuable target of rehabilitation programs. Coping refers to “cognitive and 

behavioral efforts made to master, tolerate, or reduce external and internal demands and 

conflicts” (Folkman and Lazarus, 1980). The coping strategies are usually categorized into 

two aspects: active coping and passive coping (Carrico et al., 2006). Active coping efforts 

are aimed at facing a problem directly and determining possible viable solutions to reduce 

the effect of a given stressor. Meanwhile, passive coping refers to behaviors that seek to 

escape the source of distress without confronting it (Folkman and Lazarus, 1985). Setting 

aside the nature of individual patients or specific external conditions, there have been 

consistent findings that the use of active coping strategies produce more favorable outcomes 

compared to passive coping strategies, such as less pain as well as depression, and better 

quality of life (Holmes and Stevenson, 1990). Another interesting observation is that, 
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compared to other methods, our LES method identified much more frequently the 

importance of Social Support (including communication with health care team both at 

diagnosis and at follow up, and support from health care providers). There seems to be more 

awareness for the importance of this construct both scientifically and publicly. In the New 

York Times Science Section of 10-Feb-2014, Dr. Arnold S. Relman, a prominent Medical 

Professor, Writer and Editor, discussed his experience as a hospital patient, where he found 

out how very important his interactions with nurses were.

In addition, the within group selection results from our LES method provide insights about 

which aspects/items within selected constructs are most important (The details of within 

group selection results of five methods are given in Web Appendix G). For example, positive 

reframing/thinking and religious coping are two most frequently picked items from the 

Active coping group. Other items such as emotional support, planning, acceptance are not 

frequently picked. When designing interventions to boost Active coping for patients, focus 

may be directed towards positive reframing and religious coping.

6. Conclusion and Discussion

In this article, we propose a new convex Log-Exp-Sum penalty for group variable selection. 

The new method keeps the advantage of group LASSO in terms of effectively removing 

unimportant groups, and at the same time enjoys the flexibility of removing unimportant 

variables within identified important groups. We have developed an effective group-level 

coordinate descent algorithm to fit the model. The theoretical properties of our proposed 

method have been thoroughly studied. We have established non-asymptotic error bounds and 

asymptotic group selection consistency for our proposed method, in which the number of 

variables is allowed to be much larger than the sample size. Numerical results indicate that 

the proposed method works well in both prediction and variable selection. We also applied 

our method to the American Cancer Society breast cancer survivor dataset. The analysis 

results are clinically meaningful and have potential impact on interventions to improve the 

quality of life of breast cancer survivors.

In practice, it is possible for a variable to be a member of several groups. Our LES penalty 

can be modified for variable selection when the groups have overlaps. The details are 

presented in Web Appendix H.

7. Supplementary Materials

Web Appendices A–H referenced in Sections 2, 3, 5, 6, and MATLAB code for the LES 

method are available at the Biometrics website on Wiley Online Library.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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