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Abstract  

Nearly 20% of patients who have undergone total knee arthroplasty (TKA) report 

persistent poor knee function.  This study explores the idea that, despite similar knee joint 

biomechanics, the neuro-motor synergies may be different between high-functional and low-

functional TKA patients. We hypothesized that (1) high-functional TKA recruit a more complex 

neuro-motor synergy pattern compared to low-functional TKA and (2) high-functional TKA 

patients demonstrate more stride-to-stride variability (flexibility) in their synergies.  

Gait and electromyography (EMG) data were collected during level walking for three groups of 

participants: (i) high-functional TKA patients (n=13); (ii) low-functional TKA patients (n=13) 

and (iii) non-operative controls (n=18). Synergies were extracted from EMG data using non-

negative matrix factorization. Analysis of variance and Spearman correlation analyses were used 

to investigate between-group differences in gait and neuro-motor synergies.  

Results showed that synergy patterns were different among the three groups.  Control 

subjects used 5-6 independent neural commands to execute a gait cycle. High functional TKA 

patients used 4-5 independent neural commands while low-functional TKA patients relied on 

only 2-3 independent neural commands to execute a gait cycle. Furthermore, stride-to-stride 

variability of muscles’ response to the neural commands was reduced up to 15% in low-

functional TKAs compared to the other two groups.  
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1. Introduction 

Nearly one in five patients who has undergone total knee arthroplasty (TKA) is not satisfied 

with the outcome [Bourne et al , 2009; Dunbaret al, 2013] due to the persistent poor knee 

function following surgery [Van Onsem et al, 2016; Noble et al, 2006; Baker et al, 2013]. As the 

annual volume of primary TKAs performed in the United States is anticipated to exceed 3 

million by the year 2030, with hospital costs exceeding 2 billion dollars [Kurtz et al, 2007; 

Lavernia et al, 2006], the number of dissatisfied patients will rise accordingly. These trends 

combined with an increase in life expectancy, as well as the desire to maintain a more active 

lifestyle in patients who are now undergoing TKA at a younger age [Goh et al, 2016; McCalden 

et al, 2013], warrants further research to identify the underlying reasons of sub-optimal knee 

function postoperatively. 

Currently, the etiology of sub-optimal knee function is largely unknown but since total knee 

arthroplasty relies on the surrounding soft tissue for mechanical stability, lax ligaments [Aunan et 

al, 2015; Nakano et al, 2016; Kuster et al, 2004] and/or weak muscles [Stevens-Lapsley et al. 

2010; Mizner et al., 2005; LaStayo et al, 2009], have been suggested as possible etiologies. 

During surgery, ligaments such as the anterior-cruciate ligament (ACL) or posterior-cruciate 

ligament (PCL) are resected while the medial and lateral collateral ligaments (MCL and LCL) 

are manipulated to balance the knee joint. Muscle integrity is disturbed due to surgical cuts and 

the utilization of instruments such as a tourniquet which leads to acute peri-articular muscle 

weakness. While the joint’s mechanical environment is clearly disturbed after TKA, this may not 

be the only reason for sub-optimal knee function, and even patients with appropriate ligament 

balance and muscle strength can present with poor knee function. Oftentimes, the function deficit 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on September 29, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.



  

5 
 

still persists after adequate rehabilitation and muscle strengthening programs [Bily et al., 2016; 

Moffet et al., 2004]. 

One idea that has been scarcely explored is that of neuro-motor deficits, since neuro-

mechanical receptors are sacrificed (due to the loss of the ACL and sometimes PCL). This loss 

and injury to the joint capsule cause a disruption of typical neural pathways between the central 

nervous system (CNS) and lower extremity muscles. Absence of sub-task specific afferent 

pathways likely increases the reliance of the CNS on the remaining non-specific pathways 

leading to changes in the neuro-motor synergies; i.e., the neural commands of the CNS to recruit 

muscles and the muscle responses to these neural commands. The new neuro-motor synergy may 

lead to undesirable co-contraction of antagonistic muscles, and poor kinematic control of the 

joint.  Such impaired motor control patterns may not immediately manifest themselves as 

abnormal biomechanics due to muscle redundancy, but will change the knee joint’s ability to 

react to perturbations during activities of daily living. 

 We hypothesized that (1) high-functional TKA patients recruit a more complex neuro-

motor synergy pattern compared to low-functional TKA and (2) high-functional TKA patients 

demonstrate more stride-to-stride variability (flexibility) in their synergies.   

2. Subjects and Methods  

2.1. Subjects  

Patients with a history of primary, unilateral TKA who participated in a previous motion 

analysis study [Ngai et al, 2009] and agreed to be included in the Institutional Review Board 

(IRB)-approved data repository of the Rush Motion Analysis laboratory were reviewed. Only 

patients with available gait data, electromyography (EMG) measurements and knee functional 
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questionnaires were considered for inclusion in the study. Inclusion criteria were restricted to 

TKA patients implanted with a cruciate retaining design (MG II and NexGen, Zimmer Inc., 

Warsaw, IN), and patients who performed the gait test at a minimum twelve months after their 

TKA. In addition, the following exclusion criteria were listed: (1) any other lower extremity joint 

replacements, (2) pain at the day of the test, (3) insufficient range of motion as defined by a 

maximum knee flexion angle < 110 deg. and/or a flexion contracture > 10 deg., (4) a significant 

valgus-varus or anterior-posterior laxity as determined during physical examination, (5) an 

incomplete questionnaire, and (6) incomplete or corrupted EMG data. 

Thirty TKA patients in the database fulfilled the inclusion criteria. Four patients were 

excluded (two subjects due to incomplete questionnaires and two due to a missing EMG channel) 

leaving 26 for analysis. For every TKA patient a total knee joint functional questionnaire 

(originally designed by Weiss et al. (2002) which is now part of the Knee Society Score [Noble 

et al, 2012]) was available. This included the clinical symptoms and function of the knee joint. 

The knee functional score (KFS), which ranges from 0 to 10, was calculated for each patient. 

TKA patients were then split in half forming two groups with a higher and a lower KFS score: 

Thirteen patients had KFS > 5.5 and were classified as the high-functional TKA group (8F/5M; 

age: 62.0±5.1(year); BMI: 30.9±8.7 (kg/m
2
), weight: 89.4± 15.2 (kg)). The remaining 13 TKA 

subjects with KFS < 5.5 were classified as the low-functional TKA group (8F/5M; age: 61.1±8.4 

(year); BMI: 29.8±5.4 (kg/m
2
), weight: 88.8±16.5 (kg)).  KFS equal to 5.5 was chosen as the 

midpoint of KFS scale (0 to 10) and also based on our previous study demonstrating that 90% of 

patients with KFS >5.5 have stable knees which is an important factor in knee joint functionality 

[Ardestani et al, 2017]. To form a control group, we selected gait and EMG data from a database 

of unimpaired subjects who had no habitual pain and no history of fracture or surgery in the 
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lower limbs, and whose age was within two standard deviations of the mean age of the TKA 

group. The control group consisted of 18 unimpaired subjects (10F/8M; age: 54.6±6.3 (year), 

BMI=25.8±7.6 (kg/m
2
), weight: 70.1±17.3 (kg)), with a comparable distribution of males and 

females.  

2.2. Gait and EMG Analysis  

Details of the gait data collection and gait analyses can be found in the study by Ngai et 

al (2009). In brief, participants were gait tested with reflective markers mounted on their thigh 

and shank using the point cluster technique (PCT) [Andriacchi et al, 1998]. Marker trajectories 

were tracked using a four-camera optoelectronic system at the rate of 120 frames/sec (Qualisys, 

Gothenburg, Sweden). Ground reaction forces (GRFs) were also recorded using a multi-

component force plate (Bertec, Columbus, OH). Three successful trials, in which the operated 

limb of TKA patients (and the dominant limb of healthy controls) was properly placed on the 

force plate, were collected at the participant’s self-selected normal speed. 3D external moments 

and intersegmental forces were calculated from 3D GRF data and marker trajectories using 

inverse dynamics (CFTC, Chicago, USA) [Andriacchi et al, 1985]. Simultaneous to marker 

trajectory and GRF data collection, surface electromyography (sEMG) signals were collected at 

a sampling rate of 1200 Hz, using a TeleMyo transmitter and receiver (Noraxon USA Inc, 

Scottsdale, AZ). EMG signals were collected from six lower limb muscles including vastus 

medialis (VM), rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), 

semimembranosus/semitendinosus (SS) and medial gastrocnemius (MG). Details of EMG data 

collection have been presented in [Lundberg et al, 2016]. After data collection, sEMG signals 

were further processed in the Noraxon software as follows: the vertical ground reaction force 

component with a threshold of 20 (N) and the vertical heel marker trajectory waveforms were 
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used to detect consecutive heel strikes on EMG recordings. EMG recordings were marked and 

segmented per the corresponding vertical heel marker trajectory of the subject such that at least 

five full gait cycles were extracted from the EMG recordings of each participant. The sEMG 

signals were then band-pass filtered with a finite impulse response filter (Lancosh type 79-point 

window filtering, band-pass range from 20 to 450 Hz), rectified, and smoothed using root mean 

square calculations over a 50-ms window. Knowledge of EMG waveform characteristics was 

used to visually inspect all the extracted gait cycles. Movement artifacts, low signal-to-noise 

ratio or a missing EMG channel led to rejection of some of these extracted gait cycles for some 

of the participants. Subsequently, EMG data corresponding to five gait cycles were considered 

for each participant. Muscle activities were amplitude-normalized to the corresponding average 

of their peak values across all the five gait cycles. All gait data and EMG signals were 

temporally normalized to 100 samples per gait cycle (from heel strike (0%) to the following heel 

strike of the same leg (100%)) using spline technique (MATLAB R2012a, The Mathworks, Inc, 

Natick, MA).  The magnitudes of joint moments were further normalized to body weight and 

height (%BW×HT).   

2.3. Muscle Synergy Analysis  

 Using Non-negative Matrix factorization (NNMF), a mathematical algorithm in 

multivariate analysis, muscle synergies were extracted from normalized EMG envelops [Ting et 

al, 2010]. All the recorded EMG signals were organized in a matrix and imported into the NNMF 

algorithm to be factorized in two matrices, namely the underlying neural command (C) and the 

response of muscles to the neural commands (W). The quality of this factorization was then 

evaluated if the product of neural commands and muscle responses (W×C) would reconstruct the 

experimental EMG signals such that EMG(experimental) ≈ W×C. For each gait cycle, the NNMF 
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factorization was repeated six times, each time with a different number of neural commands 

ranging from one (i.e., assuming that all muscles were activated simultaneously through a single 

neural command) to six, the maximum number of muscles available for study. Once the number 

of neural commands was assumed for each factorization process, the corresponding muscle 

response (W) was calculated in an optimization routine such that the error between the 

reconstructed EMG signals (W×C) and the experimentally measured EMG data was minimized. 

Since five gait cycles were extracted per subject and NNMF was iterated six times for each gait 

cycle, a total of 30 separate pairs of W and C were generated for each participant.  The Intra-

class Correlation Coefficient (ICC) amongst the W matrices was calculated for each participant 

and the average of those W matrices with ICC>0.7 was chosen to represent the participant’s most 

representative neuromuscular strategy during level walking [Chvatal et al, 2012]. 

Neuro-motor strategies (W and C) were then compared between the high and low 

functional patient groups as well as the control group: (1) Complexity of neuro-motor strategies 

was defined as the smallest number of independently-timed neural commands (C) necessary to 

reconstruct the experimental EMG signals with at least 90% accuracy;  (2) The extent to which 

muscles were activated in response to a neural command was obtained from the magnitude of 

matrix W;  (3) stride-to-stride variability of the neuro-motor strategies was obtained by studying 

stride-to-stride differences in muscle responses as obtained from matrix W.  

2.4. Statistical analysis 

Statistical analyses included one-way analysis of variance (ANOVA) and Spearman 

correlation analysis. ANOVA and Spearman correlation analyses were performed using 

Statistical Package for the Social Sciences (SPSS), version 22 (IBM, Chicago, IL). One-way 

ANOVA was used to compare age, weight, BMI, KFS, the number of neural commands, the 
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extent of muscles’ response to the neural commands and the level of stride-to-stride variability 

among the groups.  Spearman correlation analysis was used to determine whether the neural 

commands, associated with various sub-phases of gait cycle, were interdependent. Normality of 

the data was checked with the Shapiro-Wilk test. Homogeneity of variances was verified using 

Levene’s test. The significance level was chosen as p = 0.05. 

3. Results: 

Comparing the high-functional TKA group versus the low-functional TKA group, there were 

no age (p=1.00, CI=[-6.45 to 7.50]), weight (p=1.00, CI=[-21.14 to 22.02]) or BMI (p=1.00, 

CI=[-6.79 to 8.94]) differences between these two groups (Table 1). Comparing the low-

functional TKA group versus control group, they tended to be older (p=0.06 CI=[-13.03 to 

0.14]), and heavier (p=0.08, CI=[-39.15  to 1.62]). This trend became significant for the high-

functional TKA patients regarding age (p=0.02, CI=[0.70 to13.24] ) and weight (p=0.05, CI=[-

0.20 to 38.62]). BMI was not different between high- and low-functional TKA groups (p= 1.00, 

CI=[-6.79 to 8.94]), between control and high-functional TKA group (p=0.25, CI=[-2.05 to 

12.15]) or between control and low-functional TKA group (p=0.54,  CI=[-11.27 to 3.31] . Per 

design, the high-functional TKA group had higher KFS scores ranging from 5.7 to 8.4 compared 

with the low-functional counterpart, which ranged from 3.4 to 5.2. All three groups (2 TKA and 

control) were comparable in terms of knee biomechanics. More specifically, there were no 

significant differences in the sagittal knee joint kinematics and three-dimensional knee joint 

moments between low- and high-functional TKA patients. Since knee joint biomechanics is not 

the main focus of this study, detailed comparisons and descriptions are presented in the 

Appendix.  

 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on September 29, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.



  

11 
 

 

3.1. Number of neural commands  

 Low-functional TKA group used fewer numbers of neural commands to execute a gait cycle 

compared with the other two groups. Decoupling the EMG signals resulted in 5-6 neural 

commands for the control group, 4-5 neural commands for the high-functional TKA group, and 

only 2-3 neural commands for the low-functional TKA group (Figure 1). To facilitate between-

group comparison, EMG signals were decoupled to 4 neural commands for all individuals. The 

resultant 4 neural commands (C1-C4) were mostly independent in non-operative controls (Table 

2) and high functional TKA group, as determined using Spearman’s correlation. Most inter-

dependencies, however, were found in the low-functional TKA group. Independent neural 

commands facilitated independent execution of major sub-phases of gait in non-operative 

controls (Figure 2.a) and high-functional TKA patients (Figure 2.b):  Neural command ‘C1’ 

activated the extensor muscles (vastus medialis and vastus lateralis) at early stance, ‘C2’ 

activated the medial gastrocnemius at mid-stance; ‘C3’ activated the rectus femoris at terminal 

stance; and ’C4’ activated the hamstrings from terminal swing through early stance. 

Interestingly, in low functional TKA patients, early and terminal stance phase neural commands 

(C1 and C2) were inter-dependent causing simultaneous activation of the vastus medialis, vastus 

lateralis and rectus femoris (Figure 2.c). Furthermore, mid-stance and early swing neural 

commands (C3 and C4) were inter-dependent in the low-functional TKA cohort causing 

simultaneous activation of the medial gastrocnemius and rectus femoris.  

3.2. Muscle response to the neural commands  

The levels of muscle response to the neural commands were slightly different among the 

groups. Two distinct patterns of muscle response were observed in high- and low-functional 
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TKA patients (Figure 3) in response to the neural command ‘C1’ (Table 3), command ‘C2’ 

(Table 4), command ‘C3’ (Table 5) and command ‘C4’ ( Table 6): In high-functional TKA 

patients, semimembranosus/semitendinosus muscles’ response to ‘C1’, hamstring and quadriceps 

muscles’ response to ‘C2’, biceps femoris and medial gastrocnemius muscle response to ‘C3’, 

and  quadriceps muscle response to ‘C4’ were reduced compared with control subjects. Contrary, 

vastus lateralis muscle response to ‘C1’, medial gastrocnemius muscle response to ‘C2’ and 

rectus femoris muscle response to ‘C3’ was increased.  Low functional TKA patients 

demonstrated a different pattern of muscle response to the neural commands. In low-functional 

TKA patients, the biceps femoris and semimembranosus/semitendinosus muscles’ response to 

‘C1’, biceps femoris muscle response to ‘C2’, and vastus lateralis muscle response to ‘C4’ were 

reduced compared with control subjects.  

3.3. Stride-to-stride variability in muscle response  

Except for the medialis gastrocnemius, the largest stride-to-stride variability was found in high-

functional TKA patients when compared with the low functional TKA and normal control 

groups (Figure 4). Compared to the low-functional TKA group, in high-functional TKA group, 

the stride-to-stride variability of vastus medialis, vastus lateralis, biceps femoris and 

semimembranosus/semitendinosus responses to the corresponding neural commands were 

increased by up to 30%, 40%, 20% and 25% respectively. However these differences did not 

reach statistical significance. In high-functional TKA group, the stride-to-stride variability of 

medial gastrocnemius response to the neural commands was decreased by up to 50% compared 

to the control group (p=0.00, CI=[-0.24 to -0.05]) and by up to 45% compared to the low-

functional TKA group (p=0.02, CI=[-0.21 to -0.01]) (Table 7) .  
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4. Discussion  

Twenty percent of TKA patients complain about persistent poor knee function following 

surgery. The etiology is largely unknown. Although lax ligaments and/or weak muscles, have 

been suggested as possible reasons but recent studies demonstrated that patients with appropriate 

ligament balance and sufficient muscle strength may also experience sub-optimal knee function.  

Therefore, we investigated whether the neuro-motor synergies (i.e., the number of neural 

commands and the muscles’ response to the neural commands) were different between low-and 

high-functional TKA patients and compared to the non-operative controls. The investigation 

brought the following to light: (1) despite similar knee joint kinematics and kinetics, low-

functional subjects rely on fewer independent (task-specific) neural commands to execute gait; 

(2) the extent to which muscles responded to the neural commands was different between high 

and low-functional TKA; (3) high-functional TKA patients demonstrate more variability in their 

muscle response to the neural commands compared with the low functional TKA and normal 

control groups. 

In knee joint arthroplasty, the sacrifice of ligaments (and thus neuro-mechanical receptors), 

likely reduces the number of sub-task specific pathways between the central nervous system and 

muscles leaving fewer possible neural commands to activate various groups of muscles 

independently. Increased reliance on inter-dependent neural commands, observed in low-

functional TKA, may cause interference between weight acceptance of the index leg and weight 

transition to the contralateral limb and/or between weight transition at terminal stance and toe 

clearance at early swing which may explain the higher prevalence of instability complaints in 

low functional TKA patients compared to the high-functional TKA group.  
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In addition, the sacrifice of ligaments not only reduces the task-specific pathways but may 

also affect the combination of the rhythmic, voluntary and reactive neural commands. Human 

gait is executed as a result of parallel neural commands from different sources. The basic rhythm 

of walking is driven by the neural commands from the spinal cord [Rossignol et al, 2008]. 

Voluntary changes in the gait are driven by the neural commands from the cortical pathway 

[Drew et al, 2008] while reactive response to unexpected perturbation is driven by the neural 

command from the brainstem [Macpherson et al, 1999]. Highly constrained neuro-motor 

synergies, observed in low-functional TKA group, may imply absence or lack of reactive neural 

commands to adjust for subtle unexpected perturbations which typically arise during walking 

(e.g., change in the ground stiffness, height or etc). Less stride-to-stride variability equates to less 

variation in the distribution of load within the joint. This could lead to areas which are 

consistently under- and over-loaded. Highly constrained neuro-motor synergies may explain the 

higher prevalence of implant failure reported in low functional TKAs.  

The traditional belief is that EMG signals are the main agent where abnormalities or 

deficiencies are reflected and therefore previous studies typically focused on muscle activation or 

co-activation between agonistic and antagonistic muscles [Wilquin et al, 2015; Davidson et al, 

2013]. However, EMG signals are the product of neural commands administrated by the CNS.  

Considering that our body has a redundant number of muscles to execute a movement [Aoi et al, 

2016; Valero-Cuevas et al, 2015], and muscles are apt to compensate for each other, thus 

masking abnormal activities in other muscles [Ardestani et al, 2016; Thompson et al, 2013; 

Goldberg et al, 2007], we believe that impaired neuro-motor synergies, caused by either surgery 

or osteoarthritis disease, may not immediately manifest themselves as abnormal EMG patterns. 

Hence, studying the structure of neural commands generated by the CNS and sets of muscles that 
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are activated synchronously in response to these neural commands are necessary to reveal factors 

contributing to sub-optimal knee joint function. If impaired neural strategies of the CNS are 

proven to play a role in sub-optimal knee function, rehabilitation processes may attempt to re-

educate the afferent pathways between the CNS and muscles. 

This study had several limitations. First, this was a retrospective study conducted based on a 

previously-collected EMG data at a single time point. This study cannot provide answers 

whether abnormal neuro-motor synergies are formed preoperatively (i.e. during the course of 

osteoarthritic disease) or as a consequence of the surgical intervention. As it is known that the 

vibratory perception threshold at the metatarsophalangeal joint is associated the 

Kellgren/Lawrence severity of osteoarthritis disease at the knee joint [Shakoor et al, 2012], it is 

very likely that the osteoarthritis disease process harm pathways that could transmit neural 

commands.  

 Second, our study population was fairly small (13 TKA patients in each group) and all TKA 

patients wore cruciate-retaining implants from a single manufacturer. Future studies should 

enroll a larger population of TKA patients, and compare the neuro-motor synergies among TKA 

patients with different knee designs. Third, the study was limited to six available muscles with 

EMG data.  The number and the choice of muscles impact the results of non-negative matrix 

factorization, although the number of calculated independent command signals for the healthy 

control population was similar to what has been reported in the literature [Clark et al, 2012]. 

Nevertheless, future EMG studies should include additional lower extremity muscles (e.g. 

gluteus maximus, gluteus medius, and tibialis anterior muscles) to obtain a more complete 

picture.  
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Conclusion: 

In summary, neuro-motor synergy may play an important role in knee function and 

rehabilitation after TKA. In particular, the number of neural commands and the stride-to-stride 

variability of muscles’ responses to these neural commands seemed to be reduced in low-

functional patients. Future clinical studies may look into possibilities whether this course can be 

reversed through appropriate training programs.   
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Appendix  

Spatial parameter mapping (SPM), was conducted using SPM software package (MATLAB 

2012b) SPM test, a recently-developed statistical test facilitating waveform comparisons [Pataky 

et al, 2013]. Low-functional TKA group tend to had lower maximum knee flexion during stance 

and swing phases accompanied with a lower magnitude of knee flexion moment, knee adduction 

moment and lower knee internal rotation moment at early stance (Figure A.1). Despite, none of 

these subtle differences reached the statistical significance as t continuum remains below the 

significance threshold (Figure A.2). High-functional TKA group demonstrated more similarity to 
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the control group except a trend of higher knee adduction moment and higher knee external 

rotation moment during mid-stance. Nevertheless these differences did not reach the statistical 

significance (Figure A.2).  
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Figure A.1 Comparison of knee joint biomechanics including (A) knee flexion angle (KFA), (B) knee 

flexion/extension moment (KMX), (C) knee abduction/adduction moment (KMY), and  (D) knee 
internal/external rotation moment(KMZ) 

 
 
 
 
 
 
 
 
 

 
 A 
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 D 

 
 

 
 

Figure A.2. SPM (t), i.e. t-statistic values over the entire gait cycle. Dashed red lines represent the critical 
t-statistic value. No significant differences were found in terms of (A) knee flexion/extension angle; (B) 

knee flexion/extension moment ; (C) knee abduction/adduction moment and (D) knee internal/external; 

rotation moment. HF= high-functional TKA subjects; LF = low-functional TKA subjects, C= healthy 
control subjects 
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Figure Legends 

 
 

Figure 1 Percentage of variance of EMG signals, explained by neural commands (i.e., the accuracy of the 

reconstructed EMG), was increased with the number of neural commands. Note that more neural 
commands were required to reconstruct the EMG signals of high-functional TKA and control subjects 

compared to low-functional TKA group. One neural command could explain approximately 70% of the 

variance of EMG signals in low-functional TKA group whilst one neural command could explain only 
20-40% of the variance of EMG signals in high-functional TKA and control groups. 

 

Figure 2. Four neural commands (C1 to C4) calculated from the EMG signals for a representative subject 

of  (A) control, (B) high-functional TKA and (C) low-functional TKA. The X axis represents the 
percentage of gait cycle (0% for heel strike and 100% for the following heel strike of  the same leg). The 

Y axis represent the amplitude of the neural command. Please note that neural commands were calculated 

based on EMG signals with the normalized magnitude between 0 to 1.  
 

Figure 3 Muscle responses to (A) the neural command C1 at early stance, (B) the neural command C2 at 

mid-stance, (C) the neural command C3 at early swing, and (D) the neural command C4 at terminal 
stance. The black bars represent the average of muscle activations in each group. The narrow stems 

represent subject-by-subject muscle activations. 

 

 
Figure 4 Stride-to-stride variability for high-functional TKA  (HF group) and low-functional TKA (LF 

group) versus nonoperative controls. 

 

 

 

  

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on September 29, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.



  

27 
 

 

 

 

 
 

 

 
 

                                                       A 
 

 C1 

 C2  C3 
 C4 

A
m

p
li

tu
d

e
 o

f 
n

e
u

ra
l 

c
o

m
m

a
n

d
 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on September 29, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.



  

28 
 

 
 

                                                        B 
 

 
 

                                                       C  
 

                                                                                                      
 
 

 

 
 A 

 

 C4 

 C1 

 C2  C3  C4 

A
m

p
li

tu
d

e
 o

f 
n

e
u

ra
l 

c
o

m
m

a
n

d
 

 C1 

A
m

p
li

tu
d

e
 o

f 
n

e
u

ra
l 

c
o

m
m

a
n

d
 

 C2 

 C3 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on September 29, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.



  

29 
 

 
 B 
 

 
 C 
 

 
 D 

 

 

Downloaded for Anonymous User (n/a) at Indiana University - Ruth Lilly Medical Library from ClinicalKey.com by Elsevier on September 29, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.



  

30 
 

 

 

Table 1- Demographic data and time in situ for the groups of subjects in this study.  

Dependent Variable 
Mean 

Difference 
(I-J) 

Std. Error p 

95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Age (year) High functional TKA Low functional TKA  0.52 2.78 1.00 -6.45 7.50 

 High functional TKA Control 6.96 2.50 0.02 0.70 13.24 

 Control Low functional TKA -6.44 2.63 0.06 -13.03 0.14 

Weight (kg) High functional TKA Low functional TKA 0.44 8.62 1.00 -21.14 22.02 

 High functional TKA Control 19.21 7.75 0.05 -0.20 38.62 

 Control Low functional TKA -18.76 8.14 0.08 -39.15 1.62 

BMI (kg/m^2) High functional TKA Low functional TKA 1.07 3.14 1.00 -6.79 8.94 

 High functional TKA Control 5.05 2.83 0.25 -2.05 12.15 

 Control Low functional TKA -3.98 2.91 0.54 -11.27 3.31 

 

 

 

                                                                                          

Group  
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Table 2. Inter-dependency among neural commands for control group, high functional TKA and 
low-functional TKA groups. Highlighted data demonstrate significant interdependency between 

the two neural commands. Please note that the Spearman’s rho values in this table are the 
average of the corresponding Spearman rho values of all the subjects in each group. 

 

 

 

 

 

  Spearman's rho (Sig.) 

  C1 C2 C3 C4  
Normal C1 1.00 (0.000)     

C2 -.099 (0.16) 1.00 (0.000)    
C3 .12 (0.101) -0.13 (0.05) 1.00 (0.00)   
C4 .17 (0.000) -.049 (0.34) -.097(0.17) 1.00 (0.00)  

       

       
       

High-
functional 

TKA 

C1 1.0 (0.00)     
C2 -.09 (0.176) 1.0 (0.00)    
C3 -.17 (0.051) -.05 (0.48) 1.0 (0.00)   
C4 -.21 (0.015) .12 (0.11) -.12 (0.062) 1.0 (0.00)  

       

       
       

Low-
functional 

TKA 

C1 1.00(0.00)     
C2 0.11 (0.35) 1.0(0.00)    
C3 -.44(0.00) -.39(0.00) 1.0(0.00)   
C4 -.27(0.03) -.28(0.01) .10 (0.51) 1.0(0.00)  

       

Table 3 Between-group comparison of muscle response (W) at early stance phase of gait corresponding to the neural 
command C1 

 

Muscle Group I Group j 

Mean 
Difference 

 (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Vastus Medialis 
HF* LF** .07 .07 .96 -.11 .25 
HF C*** .14 .06 .11 -.02 .31 

 LF C .07 .06 .87 -.09 .24 

Rectus Femoris 
HF LF .02 .06 1.0 -.13 .19 
HF C .00 .06 1.0 -.15 .15 

 LF C -.02 .06 1.0 -.18 .12 

Vastus Lateralis 
HF LF .35

*
 .07 .00 .16 .54 

HF C .27 .07 .00 .09 .45 
 LF C -.08 .07 .75 -.26 .09 

Biceps Femoris 

HF LF .05 .05 .97 -.09 .20 

HF C -.10 .05 .18 -.24 .03 
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*HF: High-functional TKA group 
**LF: Low-functional TKA group 
***C: Nonoperative control group 

 

 

*HF: High-functional TKA group 
**LF: Low-functional TKA group 
***C: Nonoperative control group 

 

 

 

 LF C -.16 .05 .01 -.30 -.02 

semimembranosus/s
emitendinosus 

HF LF -.03 .07 1.0 -.21 .14 
HF C -.21 .06 .00 -.38 -.05 

 LF C -.18 .06 .02 -.34 -.01 

Medial 
Gastrocnemius 

HF LF -.11 .06 .36 -.28 .06 
HF C -.06 .06 .99 -.22 .09 

 LF C .04 .06 1.0 -.11 .20 

Table 4 Between-group comparison of  muscle response  (W) at midstance phase of gait corresponding to the neural 
command C2 

Muscle Group I Group J 
Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Vastus Medialis 
HF LF -.12 .05 .084 -.25 .011 
HF C -.17 .04 .002 -.30 -.055 

 LF C -.05 .04 .739 -.18 .064 

Rectus Femoris 
HF LF -.03 .05 1.000 -.17 .104 
HF C -.14 .05 .026 -.27 -.014 

 LF C -.10 .05 .138 -.24 .023 

Vastus Lateralis 
HF LF -.08 .06 .569 -.24 .07 
HF C -.18 .05 .008 -.33 -.040 

 LF C -.10 .05 .268 -.25 .04 

Biceps Femoris 
HF LF .032 .07 1.000 -.15 .21 
HF C -.17 .069 .051 -.34 .00 

 LF C -.20 .069 .015 -.378 -.0319 

Semimembranosus 
/semitendinosus 

HF LF -.072 .069 .905 -.24 .100 
HF C -.219 .064 .004 -.38 -.058 

 LF C -.14 .06 .084 -.307 .013 

Medial 
Gastrocnemius 

HF LF .029 .0466 1.000 -.086 .145 
HF C .285 .0433 .000 .177 .393 

 LF C .256 .043 .000 .147 .364 

Table 5 Between-group comparison of  muscle response  (W) at terminal stance-early swing phase of gait 
corresponding to the neural command C3 

Muscle (I) group (J) group 
Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Vastus Medialis HF LF -.00 .066 1.0 -.168 .161 
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*HF: High-functional TKA group 
**LF: Low-functional TKA group 
***C: Nonoperative control group 

 

 

Table 6 Between-group comparison of muscle response (W) at terminal swing of gait corresponding to the neural 
command C4 

Muscle (I) group (J) group 
Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Vastus Medialis HF LF -.040 .0495 1.000 -.164 .0827 
HF C -.127 .04599 .025 -.242 -.0130 
LF C -.086 .0459 .198 -.201 .027 

Rectus Femoris 
HF LF -.113 .0597 .191 -.263 .035 
HF C -.133 .055 .062 -.271 .005 

 LF C -.019 .0554 1.000 -.157 .119 

Vastus Lateralis 
HF LF .0422 .05958 1.000 -.1062 .191 
HF C -.163 .05529 .015 -.30172 -.025 

 LF C -.2062
*
 .0552 .002 -.3442 -.068 

Biceps Femoris 
HF LF .0062 .09672 1.000 -.23514 .247 
HF C .1080 .0897 .707 -.1160 .332 

 LF C .1017 .089753 .791 -.1222 .325 

Semimembranosus 
/semitendinosus 

HF LF .1243 .0716 .270 -.054398 .303 
HF C .0820 .066 .671 -.08377 .247 

 LF C -.0422 .06644 1.000 -.2081 .123 

Medial 
Gastrocnemius 

HF LF -.0765 .055 .523 -.21486 .0617 
HF C -.0916 .05141 .246 -.2199 .0367 

 LF C -.0150 .0514 1.000 -.14338 .1132 

*HF: High-functional TKA group 
**LF: Low-functional TKA group 
***C: Nonoperative control group 

 

 

 HF C .00 .061 1.0 -.151 .155 
LF C .00 .061 1.0 -.147 .158 

Rectus Femoris 
HF LF .059 .071 1.0 -.118 .237 
HF C .104 .066 .36 -.060 .270 

 LF C .045 .066 1.0 -.119 .210 

Vastus Lateralis 
HF LF -.217 .081 .03 -.420 -.0142 
HF C -.044 .075 1.0 -.233 .143 

 LF C .172 .075 .08 -.0159 .361 

Biceps Femoris 
HF LF -.076 .090 1.0 -.302 .149 
HF C -.190 .083 .08 -.400 .018 

 LF C -.114 .083 .54 -.323 .095 

Semimembranosus 
/semitendinosus 

HF LF .093 .075 .66 -.0949 .282 
HF C -.085 .070 .69 -.260 .090 

 LF C -.179 .070 .044 -.354 -.003 

Medial 
Gastrocnemius 

HF LF .044 .045 1.0 -.0685 .156 
HF C -.10 .041 .05 -.208 .000 

 LF C -.14 .041 .003 -.2524 -.0433 
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Table 7 Between-group comparison of stride-to-stride variability in muscle response to the 
neural commands 

 

 

 

 

 

 

  

 

 

 

 

*HF: High-functional TKA group 
**LF: Low-functional TKA group 
***C: Nonoperative control group 

 

 

 

          Muscle                  group I        group J 

Mean  
Difference  

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Vastus Medialis HF* LF** 0.08 0.08 0.97 -0.13 0.30 
HF C*** 0.08 0.08 1.00 -0.13 0.28 
C LF 0.01 0.08 1.00 -0.19 0.21 

Rectus Femoris HF LF 0.00 0.06 1.00 -0.15 0.15 

HF C 0.03 0.06 1.00 -0.12 0.17 

C LF -0.03 0.06 1.00 -0.17 0.12 

Vastus Lateralis HF LF 0.06 0.05 0.68 -0.06 0.18 
HF C 0.09 0.04 0.15 -0.02 0.20 
C LF -0.03 0.04 1.00 -0.14 0.08 

Biceps Femoris HF LF 0.05 0.05 0.94 -0.07 0.17 

HF C 0.06 0.05 0.73 -0.06 0.17 

C LF 0.00 0.05 1.00 -0.12 0.11 

Semimembranosus 
/semitendinosus 

HF LF 0.03 0.05 1.00 -0.09 0.15 
HF C 0.06 0.05 0.53 -0.05 0.18 
C LF -0.03 0.05 1.00 -0.15 0.08 

Medial 
Gastrocnemius 

HF LF -.111 0.04 0.02 -0.21 -0.01 
HF C -.141 0.04 0.00 -0.24 -0.05 
C LF 0.03 0.04 1.00 -0.07 0.12 
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