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Wataru Yamamoto 

 

ENDOPLASMIC RETICULUM CALCIUM DINAMICS AND INSULIN SECRETION IN 

PANCREATIC β CELLS  

 

Under normal conditions, ER Ca2+ levels are estimated to be at least three orders 

of magnitude higher than intracellular Ca2+. This steep Ca2+ concentration gradient is 

maintained by the balance of Ca2+ uptake into the ER via the sarco-endoplasmic 

reticulum Ca2+ ATPase (SERCA) pump and ER Ca2+ release through Ryanodine 

receptors (RyR) and Inositol 1,4,5-triphosphate (IP3) receptors (IP3R).  Emerging data 

suggest that alterations in β cell ER Ca2+ levels lead to diminished insulin secretion and 

reduced β cell survival in both type 1 and type 2 diabetes.  However, the mechanisms 

leading to β cell ER Ca2+ loss remain incompletely understood, and a specific role for 

either RyR or IP3R dysfunction in diabetes has been largely untested.  To this end, we 

applied intracellular and ER-Ca2+ imaging techniques in INS-1 β cells and isolated 

mouse and human islets to define whether RyR or IP3R activity were altered under 

diabetogenic conditions.  Results revealed preferential alterations in RyR function in 

response to ER stress, while pro-inflammatory cytokine stress primarily impacted IP3R 

activity. Consistent with this, pharmacological inhibition of RyR and IP3Rs prevented ER 

Ca2+ loss under ER and pro-inflammatory stress, respectively.  However, RyR inhibition 

was unique in its ability to prevent β cell death, delayed initiation of the unfolded protein 

response (UPR), and dysfunctional glucose-induced Ca2+ oscillations in tunicamycin-

treated INS-1 β cells and islets from Akita mice.  Monitoring at the single cell level 

revealed that ER stress acutely increased intracellular Ca2+ transients and this was 

dependent on both ER Ca2+ leak from the RyR and plasma membrane depolarization, 

suggesting ER Ca2+ dynamics regulate cellular excitability. Collectively, our findings 
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suggest that ER-stress induced RyR dysfunction regulates β cell ER Ca2+ dynamics, 

propagation of the UPR, insulin secretion, and cell survival.  These data indicate that 

RyR-mediated loss of ER Ca2+ and β cell hyperexcitability may be early pathogenic 

events in diabetes. 

 

Carmella Evans-Molina, M.D., Ph.D, Chair 
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Chapter 1. Introduction 

1.1 Diabetes Mellitus and Pancreatic β Cells 

Diabetes Mellitus is an important public health concern that affects the health and 

prosperity of individuals throughout the world.  According to data from the International 

Diabetes Federation, 415 million adults aged 20-79 were affected by diabetes in 2015, 

whereas another 318 million adults had impaired glucose tolerance with an associated 

increased risk of developing diabetes (1). Moreover, the number of adults with diabetes 

is expected to increase to approximately 642 million in 2040, accounting for nearly 1 in 

10 individuals. Annually, diabetes is estimated to cause over 5 million deaths, and the 

financial burden of this disease is enormous. It is estimated that diabetes accounts for 5 

– 20% of the total health care expenditures of an individual country. In the US, 29.3 

million adults had diabetes in 2015, and diabetes-related expenditures were estimated at 

320 millions US dollars. To reverse these trends, improvements are needed in the 

prevention, diagnosis, management, and treatment of diabetes. Given the close 

association between obesity and Type 2 diabetes, continued efforts focused on lifestyle 

and improvements in nutrition are required.  To stem the tide of Type 1 diabetes, an 

improved understanding of disease triggers and the identification of agents that both 

prevent immune activation and improve the health of the β cell will be needed.   

The research in this thesis will explore the mechanisms underlying failure of 

pancreatic β cells in diabetes with an emphasis on dysregulated calcium storage in the 

endoplasmic reticulum, an intracellular organelle that is crucial for insulin biosynthesis by 

the pancreatic β cell and normal control of blood glucose. 
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1.1.1 The main forms of Diabetes: Type 1 and Type 2 Diabetes Mellitus 

The hallmark of diabetes mellitus is an elevated blood glucose level 

(hyperglycemia) that occurs secondary to either a complete or relative deficiency of 

insulin secretion and/or insulin action. Insulin is a hormone produced solely by the 

pancreatic β cells that activates glucose transport into cells via glucose transporters, 

where it is utilized as a source of energy. In the case of insulin deficiency or impaired 

insulin action, peripheral tissues cannot efficiently take up glucose. The resulting 

hyperglycemia damages a number of tissues, resulting in diabetic macrovascular 

complications (i.e heart disease and stroke) and several microvascular complications, 

including, kidney failure, retinopathy, and neuropathy.  

Diabetes is a heterogenous disease, rarely caused by single gene mutations (2) 

and is typically caused by a diverse input of many modest influences dictated by 

environment, lifestyle, aging, and genetics. The two main subtypes of diabetes are 

phenotypically categorized as Type 1 and Type 2 diabetes mellitus (3,4). Type 1 

diabetes (T1DM) is an autoimmune disease characterized by auto-immune mediated β 

cell destruction and a nearly complete absence of insulin production. T1DM accounts for 

5 – 10% of all cases of diabetes. To regulate blood glucose and decrease diabetes-

associated complications, persons with T1DM must administer multiple daily injections of 

exogenous insulin or wear an insulin pump that delivers continuous insulin infusions 

subcutaneously (5).  

T1DM is characterized by β cell destruction that is mediated by islet infiltrating 

autoreactive immune cells (6).  The mechanism of T1DM is not fully understood.  

However, it is generally accepted that insufficient T regulatory cells (Treg) suppression 

of effector T cells (Teff) that target the β cells is an early pathogenic event in T1DM (7).   

More recently it has been appreciated that β cell failure also contributes to T1DM 

pathogenesis (8).  Clinically, T1DM is typically first detected by the onset of severe 
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hyperglycemia that may also be accompanied by ketoacidosis.  A hallmark of T1DM is 

the presence of circulating autoantibodies against key autoantigens including insulin, 

islet antigen 2 (IA2), glutamic acid decarboxylase (GAD), and zinc transporter 8 (ZnT8).  

Individuals at risk of developing T1DM are identified by the presence of these 

autoantibodies at a time prior to the onset of clinically significant hyperglycemia (9).  

What triggers the autoimmune attack against the β cells in T1DM remains 

unclear. However, T1DM is thought to arise in genetically susceptible individuals in 

response to an environmental or viral triggering event that initiates the autoimmune 

response. A family history of T1DM plays an important role in determining risk.  For first-

degree relatives, the risk of T1DM is estimated to be approximately 3 – 8%, depending 

on whether an individual’s mother, father, or a sibling has T1DM (10,11). In addition, 

human leukocyte antigen serotype HLA-DR3-DQ2 and HLA-DR4-DQ8 class II 

haplotypes are known to be robustly associated with T1DM, and 90% of children with 

T1DM have one or both of these haplotypes (12,13). Other than the HLA Class II locus, 

other genetic variants have been associated with T1DM risk.  These include differences 

in the variable number of tandem repeat regions in the insulin gene (14) and 

polymorphisms in the CTLA-4 gene that negatively regulate immune responses (15), 

variants in protein tyrosine phosphatase, non-receptor type 22, PTPN22, encoding the 

lymphoid protein tyrosine phosphatase that negatively regulates the T-cell receptor (16), 

and IL2RA that forms the IL-2 receptor complex with CD25 expressed on activated T-

cells and on regulatory T-cells (Tregs) (17). 

The pathogenesis of T1DM begins with the interactions of the innate and 

adaptive immune system with β cells. Initially, islet resident antigen presenting cells 

(APCs) such as macrophages and dendritic cells receive and process islet antigens. As 

a consequence, APCs migrate to pancreatic lymph nodes (15). Within the lymph nodes, 

islet antigens are presented to and activate naïve circulating autoreactive T cells.  This 
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causes T cell activation and initiates immune cell infiltration into the islet (18).  Increased 

levels of pro-inflammatory and toxic cytokines and chemokines are released from 

resident APCs, infiltrating T cells, and the β cells themselves, causing additional immune 

cell recruitment into the islet (19).  These cytokines indirectly cause β cell death, while 

further β cell death occurs through direct interactions between CD8+ T cells and the β 

cell (20,21).  

Currently a number of prevention efforts are being tested in individuals who 

already have established autoimmunity and autoantibody positivity.  Prevention efforts 

are also being tested in birth cohorts identified on the basis of genetic risk, who are then 

followed longitudinally to identify both environmental contributors as well as patterns of 

immune activation before and after antibody seroconversion (5). Studies include the 

Environmental Determinants of Diabetes in the Young (TEDDY) (22), Baby Diabetes 

(BABYDIAB) (23), Diabetes Prediction and Prevention Project (DIPP) (24), and the 

double-blind, placebo-controlled, dose-escalation, phase 1/2 clinical pilot study (Pre-

POINT studies) (25). 

A number of recent studies have also tested immunomodulatory therapies to 

either prevent T1DM. These include efforts focused on restoration of tolerance (26,27), T 

cell or B cell inhibition (28), Treg induction (29), suppression of innate immunity and 

inflammation (4,30), immune system reset (31), and islet transplantation (32). Trials 

have tested antigen-specific therapies to induce immune tolerance (33), monoclonal 

antibodies (28,34,35) and fusion proteins (36,37) that target specific immune cells, and 

strategies to alter the effector T cell (Teff)/Treg balance. Overall, each treatment has 

limited duration of effect, and no single therapy has stopped the autoimmune attack on β 

cells.  

Given these disappointing outcomes, there has been a recent emphasis on 

testing a combination of therapies at T1D onset. (6).  Additionally, there is an emphasis 
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on testing prevention efforts in individuals who already have established autoimmunity 

and autoantibody positivity, but lack clinical hyperglycemia.  Prevention efforts are also 

being tested in birth cohorts identified on the basis of genetic risk, who are then followed 

longitudinally to identify both environmental contributors as well as patterns of immune 

activation before and after antibody seroconversion (5).  

 

Type 2 diabetes (T2DM) is the most common form of diabetes and accounts for 

90 – 95% of all diabetes cases. Similar to T1DM, the exact cause of this disease is still 

unknown but risk factors include obesity, poor nutrition, physical inactivity, smoking, (38) 

and a variety of genetic factors (3,38). Classically, T2DM begins with peripheral insulin 

resistance, in which glucose uptake and the metabolic effects of insulin are decreased in 

all tissues in body (39). In the setting of obesity, insulin resistance, and high fat diet lead 

to increased release of free fatty acids from the adipose tissue, which further exacerbate 

glucose uptake into muscle.  A second key contributing factor is increased 

gluconeogenesis at the level of the liver that also worsens hyperglycemia (40).   

Initially, β cells are able to overcome insulin resistance through increased insulin 

production and secretion. However, as T2DM progresses, β cell dysfunction ensues and 

insulin secretion from the β cells begins to diminish (41). In addition to gluco-lipotoxicity 

as a primary cause of β cell failure (42), emerging areas of research have focused on 

pathways leading to pro-inflammatory stress or ER stress (43), and oxidative stress in 

the β cells (44). Recently, dedifferentiation, which is defined as loss of expression of key 

β cell specific genes has been proposed as a cause of T2DM (45,46). 

Genome-wide association studies (GWAS) have identified a number of risk 

variants associated with T2DM risk. Susceptibility loci identified to date have primarily 

been linked to the regulation of β cell function (38).  For example, polymorphisms have 

been identified in the KCNJ11 gene that encodes the potassium inwardly rectifying 
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channel subfamily J, member 11 (38,45-47). In addition, variants in TCF7L2 have been 

identified. This gene encodes the ubiquitous transcription factor 7-like 2 (48), a mediator 

of Wnt signaling (49) and inhibitor of insulin secretion (50)  Polymorphisms have also 

been identified in the IRS1 gene that encodes insulin receptor substrate 1.  IRS1 plays a 

role in β cell health and function as wells as peripheral insulin signaling (51). Islets from 

IRS1 knock-out mice and IRS1 deficient β cells exhibited decreased in insulin content 

and reduced glucose stimulated insulin secretion (52). Variants in MTNR1B gene, which 

encodes the melatonin receptor 1B, is thought to increase the risk of T2DM by inducing 

impaired early insulin secretion (53).  

Polymorphisms have also been identified in genes with more pleiotropic 

metabolic effects. The PPARG2 gene encodes peroxisome proliferator-activated 

receptor gamma (PPAR-γ) 2, which is a member of the nuclear hormone receptor 

subfamily.   PPAR-γ is thought to regulate insulin action, but has also been shown to be 

expressed in the β cell.  Agonists of PPAR-γ improve insulin sensitivity and have been 

associated with improved β cell function.  Our lab has previously shown that PPAR-γ 

regulates transcription of the ER Ca2+ transporter Sarco-endoplasmic reticulum Ca2+ 

ATPase (SERCA) 2 level in the β cell, leading to improved β cell Ca2+ signaling and ER 

Ca2+ storage (54), which will be discussed later.  Additional risk variants have been 

identified in the IGF2BP2 gene that encodes the insulin-like growth factor two binding 

protein 2 and regulates translation of the insulin-like growth factor 2 (IGF2), and the fat 

mass and obesity-associated gene, FTO, which is associated with obesity and weight 

gain (55). 

1.1.2 Therapy for Type 1 and Type 2 Diabetes Mellitus 

The treatment of T2DM is complicated and often requires multiple agents to 

achieve glycemic control. Treatment is typically initiated with an oral agent, and the first 

line agent for most newly diagnosed individuals with T2DM is the biguanide metformin 
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(56). The precise molecular mechanisms of metformin action are not fully understood.  

However, this drug is thought to primarily lower blood glucose levels by reducing hepatic 

glucose output through reduced gluconeogenesis. The use of metformin has also been 

associated with increased insulin induced glucose uptake and increased glycogenesis in 

skeletal muscle (57). Metformin has been shown to regulate the expression of genes 

related to hepatic gluconeogenesis through activation of AMP-activated protein kinase 

(AMPK) (58,59). Additionally, recent data have shown that metformin inhibits 

mitochondrial glycerophosphate dehydrogenase (GPDH) to alter the hepatocellular 

redox state, which result in reduced gluconeogenesis (60). Other advantages using 

metformin include reduced cardiovascular events, decreased mortality (61,62), and 

lower risk of hypoglycemia using this drug (63). 

Other commonly utilized oral agents include sulfonylureas, which close the ATP-

sensitive potassium channel of the pancreatic β cells to stimulate insulin secretion (64). 

However, the effect of sulfonylureas depends on the presence of enough functional β 

cells to increase insulin secretion, and diabetes progression is typically associated with 

failure to respond to sulfonylureas. Adverse effects of these medications include an 

increased risk of hypoglycemia (65) and weight gain. The risk of hypoglycemia is higher 

for older persons with impaired renal and hepatic function (66). 

 Incretins are a group of hormones that decrease blood glucose levels by 

promoting insulin secretion. Incretin-based therapies have been introduced in recent 

years. The incretin hormones include glucagon-like peptide-1 (GLP-1), primarily arise 

from the intestinal enteroendocrine L cells (67), and glucose-dependent insulinotropic 

polypeptide (GIP), which are released in response to a meal, leading to increased insulin 

secretion. Incretin secretion is dramatically diminished in T2DM (68,69). In T2DM, 

administration of spraphysiological amounts of GLP-1 can lead to enhanced glucose-

stimulated insulin secretion, whereas administration of GIP does not induce insulin 
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secretion regardless of the concentration utilized (70). Therefore, GLP-1 is 

therapeutically more favored than GIP, and inhibitors of dipeptideyl peptidase-4 (DPP-4), 

the enzyme that degrades GLP-1, have been developed for clinical use (71,72). 

Plasma levels of GLP-1 are relatively low compared to other hormones, and 

GLP-1 has a very short half-life due to DPP4 activity. GLP-1 is metabolized within 1 

minute around the L cells (73,74), which generated considerable controversy as to the 

source of GLP-1 that acts on distant organs such as the pancreatic β cells. Recently, an 

updated model was proposed whereby GLP-1 derived from the L cells activates neurons 

to regulate insulin secretion, and GLP-1 derived from islet α cells serves as paracrine 

factor to induce insulin secretion in β cells (75).  

As described, GLP-1 has a short half-life due to DPP-4 activity, so the effects of 

GLP-1 by subcutaneous injections were very short-lasting (76). That led to the 

development of inhibitors of DPP-4, or stable DPP-4 resistant GLP-1 analogs (77). 

Exendin 4, isolated from Heloderma suspectum, is a peptide that has 50% sequence 

homology to GLP-1. This peptide was found to be resistant to DPP-4 activity and is 

eliminated only by glomerular filtration by the kidney (78), thereby increasing the plasma 

half-life of Exendin 4 to as long as 30 minutes (79). 

Other orally active agents include α-glucosidase inhibitors, which inhibit 

breakdown and digestion of carbohydrates in the intestine, and thiazolidinediones (TZD), 

which activate PPARs, including PPAR gamma.  These agents are less widely utilized 

and their clinical effects are summarized in Table 1. A large percentage of individuals 

with T2DM will eventually fail oral agents and incretin-based therapies and require 

insulin injections as β cell failure ensues (3). 

A recent option to treat diabetes in morbidly obese patients is bariatric surgery, 

which either reduces the size of stomach to decrease food intake or re-routes the small 

intestine to cause malabsorption (80). Clinical studies show that blood glucose is often 
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normalized within a week of surgery, even prior to significant weight loss.  At present, 

the exact mechanisms of improved glycemia in the short-term are not well understood 

but it is hypothesized that surgery leads to either increased release of GLP-1, alterations 

in gut microbiota, and the anticipated metabolic effects of acute and severe caloric 

restriction peri-operatively (3). 
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Table 1. Drug Treatment for Type 2 Diabetes 

Class Name Drug Name Target Action  

α-glucosidase 
inhibitors (AGIs) 

Acarbose 
Miglitol 
Voglibose 

α-glucosidase Carbohydrate 
absorptionê 

No weight gain 

 

Biguanides Metformin AMPK Blood glucoseê (60,61) 

  GPDH  Insulin actioné  

  (Still debated) Hepatic outputê  

   Cardiac riskê  

   Hypoglycemia Riskê  

   No weight gain  

GLP-1 Analog Exenatide GLP-1R Insulin secretioné (81) 

 Liraglutide  Glucagon secretionê  

   Satietyé  

   Hypoglycemia Riskê  

   No weight gain  

Sulfonylurea Glyburide 
Glipizide 
Gliclazide 
Glimepiride  

KATP channels Insulin secretioné 

Weight é 

(65) 

Thiazolidinedion
e 

Troglitazone  PPAR-γ Insulin actioné  (82) 

(TZDs) Roziglitazone  Hypoglycemia Riskê  

 Pioglitazone  Weight é  

   Glycemic controlé  

Insulin Lispro Direct target Blood glucoseê  

 Aspart  Weight é  

 Glulisine    
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1.1.3 Pancreatic islet β cells, and other cell types 

The endocrine pancreas consists of the islets of Langerhans that make up about 

~5% of the total pancreatic mass. The endocrine islets were named for the German 

physician Paul Langerhans, who discovered the cells that secrete insulin.  Islets consist 

of aggregates of ~1000 different cells.  The insulin producing β cells make up ~75% of 

cells found in the islet.  Additional cell types found in the islet include α cells, δ cells, PP 

cells and ε cells. The α cells consist of ~20% of total islet cells (83), and secrete 

glucagon. Glucagon is described as a counter-regulatory hormone to the effects of 

insulin and acts to raise blood glucose levels.  Glucagon promotes gluconeogenesis in 

the liver and induces fatty acid oxidation and ketogenesis in the liver. The δ cells consist 

of less than 10% of islet cells (83), and these cells secrete somatostatin. Somatostatin 

receptors are expressed on both α and β cells, and the somatostatin receptor 2 (SSTR2) 

is the functionally dominant form of the receptor in humans and mice (84). The SSTR2 is 

a Gi-coupled G protein coupled-receptor (GPCR) that inhibits adenylyl cyclase activity 

and cyclic AMP (cAMP) generation. Activation of SSTR induces hyperpolarization of 

cells and thus suppression of glucagon and insulin secretion (84). In response to 

elevated blood glucose levels, insulin and somatostatin levels rise.  Both insulin and 

somatostatin act on α cells to lower cAMP production and suppress glucagon secretion 

(85). Precisely how exactly these cells communicate in vivo remain to be completely 

understood.  

Other endocrine cells in islet include the polypeptide-producing PP cells and 

ghrelin-producing ε cells, which consist of less than 5% and 1% of islet cells, 

respectively (83). The function of these cells is less understood in terms of regulation of 

β cell function. Ghrelin is known to inhibit insulin secretion (86) and also has activity as a 

“hunger hormone” by acting on hypothalamus (87).  
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The development and differentiation of the endocrine cell in the islet has been 

extensively studied using a variety of knockout mouse models. Neurogenin-3 (Ngn3) 

serves as the key marker for the endocrine pancreatic progenitor cell and is first 

expressed in the pancreatic buds around E9.5 in the mouse.  Ngn3 expression is crucial 

for commitment to the endocrine cell lineage (88). Lineage-tracing studies have shown 

that Ngn3 positive cells serve as the precursor for all five endocrine cell subtypes (89). 

During this differentiation process, Ngn3 coordinates with the pancreatic and duodenal 

homeobox 1 (Pdx-1) transcription factor in a time specific manner (90). Additional 

research is needed to define the differentiation pathway to establish β cells from stem 

cells, elucidate transcriptional micro RNA and epigenetic factors that regulate β cell 

differentiation, establish signature of β cell “specific” gene expression, and delineate 

pathological changes in these areas that are causative or associated with diabetes.    

  

 

1.1.4 Mechanisms of insulin secretion 

A striking feature of the pancreatic β cell is its ability to monitor blood glucose on 

a minute to minute basis and to precisely match ambient glucose levels with regulated 

levels of insulin secretion to maintain euglycemia in the range of 3.9 – 5.5 mM.  To 

accomplish this task, the β cell relies on several unique pathways to monitor blood 

glucose concentrations and regulate insulin release (Fig. 1) (91). Glucose transporters 

(Glut), mitochondrial ATP synthesis, closure of ATP-sensitive K+ channels (KATP 

channels), Ca2+ influx from plasma membrane channels are all involved in this process 

and any disruption of any of these steps will lead to impaired insulin secretion. 

 β cells are electrically excitable, and they possess a variety of channels that 

modulate membrane potential (Vm) and Ca2+ influx. In response to an increase in 

plasma glucose, glucose first enters the β cell through Glut transporters.  Glucose 
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metabolism in the mitochondria leads to an increase in the ATP/ADP ratio (92). The 

main regulators of β cell electrical activity are the KATP channels. Under low glucose 

conditions, KATP channels are open to induce a K+ outward current to maintain plasma 

membrane hyperpolarization at ~ -70mV (91). In β cells at rest, the constitutive 

hyperpolarizing K+ efflux and the constitutive unknown background-depolarizing current 

are balanced to achieve the resting membrane potential. Under high glucose 

concentrations, an increase in the ATP/ADP ratio leads to KATP channel closure. The 

reduced hyperpolarizing current by the closure of KATP channels will be exceeded by 

background-depolarizing current to depolarize cells. The mechanism that induces this 

background-depolarizing current and whether that current is modulated by glucose per 

se are not well understood. It has been speculated that forward operation of the 

Na+/Ca2+ exchanger (93), Cl- efflux, or Na+ (94) or Ca2+ influx (95) through unknown 

channels are involved in this background-depolarizing current. This depolarization 

activates voltage-dependent Ca2+ channels (VDCCs), and the resulting Ca2+ influx 

triggers exocytosis of insulin vesicles and insulin secretion. Action potentials generated 

by this process are primarily result from Ca2+ influx in mice.  However, a Na+ current is 

also involved in human and rat β cells. 
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Figure 1. Molecular mechanisms of insulin secretion in the pancreatic β cells. 

(1) Glucose uptake occurs through the Glut glucose transporters, and glucose is 

metabolized to produce adenosine triphosphate (ATP). (2) The increase in ATP will 

close ATP-sensitive K+ channels (KATP) to trigger depolarization. (3) VDCCs open and 

Ca2+ influx occurs. (4) Ca2+ induces exocytosis of insulin vesicles.  The colored circles 

indicate glucose (pink), ATP (orange), K+ (purple), Ca+ (green), and insulin (blue). 
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1.1.5 ER stress and various stresses are present in diabetes 

During the evolution of both Type 1 and 2 diabetes, β cells are exposed to 

multiple stressors, including elevated levels of pro-inflammatory cytokines, glucose, and 

free fatty acids, hypoxia, and misfolded protein accumulation, leading to activation of a 

number cell intrinsic stress pathways such as oxidative and ER stress, and maladaptive 

changes in autophagy (96). These multiple stressors activate the stress pathways and 

contribute to β cell dysfunction and death and may contribute to β cell de-differentiation 

(97,98).  

Pancreatic β cells possess a highly developed endoplasmic reticulum in order to 

meet the high demands of insulin protein synthesis and secretion.  As a result, β cells 

are particularly susceptible to endoplasmic reticulum stress, which has been a focus of 

my thesis studies.  Specifically, my studies have investigated novel pathways that lead 

to dysregulation of ER Ca2+ homeostasis and how loss of ER Ca2+ leads to ER stress.   

The endoplasmic reticulum (ER) is an organelle found in all eukaryotic cells. The 

structure of ER is a continuous membranous network surrounding a series of sacs 

known as cisternae. The ER is divided into a ribosome-rich “rough” ER and a ribosome-

free “smooth” ER (99). Rough ER is abundant in cells that secrete large amount of 

proteins including insulin-producing pancreatic β cells (100). The ER membrane 

constitutes more than half of the total cellular membrane structure and it functions as the 

site of (a) synthesis, folding, modification and transport of proteins; (b) quality control for 

newly synthesized proteins; and (c) Ca2+ storage that plays a role both in the 

maintenance of normal ER functions and as a source of released Ca2+ that serves a 

cellular second messenger to regulate a variety of signaling pathways (101). Under 

normal conditions, Ca2+- dependent chaperone proteins assist in the folding of proteins.   

These folded proteins are transported to the Golgi apparatus for further maturation.  

Proteins that are improperly folded or “misfolded” are removed by a quality control 
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system called ER-associated degradation (ERAD) (102). ERAD involves protein 

ubiquitination that promotes retro-translocation from the ER to the cytosol, where 

misfolded proteins undergo proteasome-induced degradation. On the contrary to the 

effect favor to help the ER functions, once the demand of the protein synthesis 

surpasses the ER capacity of protein folding and quality control, misfolded proteins can 

accumulate within the ER lumen, leading to ER stress.  Accumulation of misfolded 

proteins triggers an adaptive cascade aimed at restoring normal ER function, which is 

referred to as the unfolded-protein response (UPR) (103,104). This adaptive response 

induces downregulation of overall protein translation, while chaperone proteins and 

ERAD-associated proteins are preferentially translated (103,105). If the UPR’s adaptive 

response cannot restore normal ER function, prolonged activation of UPR will eventually 

initiate cellular apoptosis (106). ER stress can impact a variety of different cell types and 

contributes to a number of disease pathologies, including cardiac and 

neurodegenerative diseases as well as diabetes.  

The molecular mechanisms of the UPR have been well studied (Fig. 2). There 

are three main branches of this signaling pathway and the initiation of each branch is 

regulated by three different ER stress sensors located on ER membrane.  These include 

the inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and PKR-

like ER kinase (PERK). Upon binding of unfolded proteins to these three sensor proteins, 

the dissociation of Bip protein from the sensor proteins occurs. Although the exact 

mechanisms of how Bip protein attaches and dissociate from each sensor is s unknown 

(107), this is thought to initiate the unfolded proteins response, UPR. In addition, the 

direct interaction of misfolded proteins with the luminal portion of IRE1 has also been 

shown to activate the UPR (108). Following Bip dissociation, IRE1 undergoes 

oligomerization and autophosphorylation, initiating this branch of the UPR. IRE1 has 
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dual functions as endoribonulease and kinase. To reduce the overall protein load, IRE1 

degrades a large number of mRNAs (109), while X-box binding protein 1 (XBP1) mRNA 

is spliced by IRE1, allowing translation of XBP1 protein. XBP1 is a transcription factor 

that increases the expression of genes related to both UPR and ERAD (110). Included in 

these targets are chaperone proteins, which play a central role in the folding of client 

proteins in the ER, ATF6 that is the second of these ER stress sensors with which 

activation of this branch is initiated by translocation of ATF6 to the Golgi apparatus 

under ER stress conditions. ATF6 is subsequently cleaved to give rise to a cytosolic 

fragment known as p50 that forms either a homodimer or heterodimer with XBP1 to 

promote transcription of additional UPR effectors including ATF6 itself (105,111). Finally, 

the PERK branch of the UPR is thought to be initiated BiP dissociation, followed by the 

oligomerization and autophosphorylation of PERK. Phosphorylated PERK 

phosphorylates eukaryotic initiation factor eIF2α to inhibit activity of this translation factor. 

This results in a global translational block to prevent further accumulation of misfolded 

protein. However, selective translations of transcription factor, such as transcription 

factor 4 (ATF4), will be taken place.  ATF4 expression is repressed in the unstressed 

state, but the phosphorylation of eIF2 under ER stress will initiate the translation of ATF4 

(112).  

In contrast to this adaptive effect, prolonged activation of the UPR results in 

apoptosis. Key transcriptional regulators in this pathway, ATF4, ATF6, and XBP1, also 

initiate transcription of genes encoding proapoptotic proteins, such as C/EBP 

homologous protein (CHOP). The function of CHOP is to decrease expression of the 

anti-apoptotic protein Bcl-2 and activate the pro-apoptic factor Bcl-2-interacting mediator 

of cell death (Bim) (113,114). Similarly, phosphorylated IRE1 can activate the apoptotic 

pathway via activation of c-Jun N-terminal kinase (JNK), which leads to inactivation of 
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anti-apoptotic Bcl-2 and activation of pro-apoptotic Bim (115). As a consequence of Bcl-

2 inhibition, the pro-apoptotic proteins Bax and Bak undergo oligomerization that 

permeabilizes the outer mitochondrial membrane, resulting in Ca2+ overload in the 

mitochondria. Cytochrome C is subsequently released from mitochondria, leading the 

initiation of caspase-mediated cell death pathways.  
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Figure 2. Unfolded protein response and ER Ca2+ 

Under ER stress conditions, ER Ca2+ homeostasis is disrupted and Ca2+ -dependent 

chaperone proteins cannot meet the excess demand for protein folding leading to the 

accumulation of unfolded proteins. As a result, dissociation of chaperone protein Bip 

from the ER stress sensor proteins PERK, ATF6, and IRE1 occur. This triggers the 

activation of unfolded protein response (UPR). Prolonged activation of the UPR 

eventually causes apoptosis.  

 . 

 

  

Calreticulin/ 
Calnexin 

ERAD 

To Golgi 

eIF2α 

ATF4 

CHOP 

XBP1 

Clvd 
Casp3 

Apoptosis 

PERK ATF6 IRE1 
PERK ATF6 IRE1 

ER 

Cytosol 

![Ca2+]ER !

Bip 



 
20 

1.2 ER Ca2+ dynamics and diseases  

A focus of my thesis work has been on the identification of pathways that 

maintain ER Ca2+ levels.  Cells possess a variety of systems and safeguards to maintain 

distinct Ca2+ stores and concentration gradients that are crucial for cellular function and 

survival.  Specifically, a distinct Ca2+ gradient exists between the membranes of the 

extracellular space, cytosol, and intracellular organelles. These gradients allow cells to 

maintain organelle function, while also contributing to spatiotemporal calcium signaling.  

Disruption of gradients can contribute to disease pathophysiology.  In the pancreatic β 

cell, disruption of these gradients leads to impaired insulin production and secretion as 

well as apoptosis.  Under resting conditions, intracellular Ca2+ is maintained at a level at 

least four orders of magnitude lower than extracellular Ca2+. In addition, free ER Ca2+ is 

maintained at approximately two orders of magnitude higher than the intracellular Ca2+ 

(116), while mitochondrial Ca2+ levels are comparable to that of intracellular Ca2+ 

(117,118). The rank order of Ca2+ concentration in each compartment at rest is 

summarized as: Extracellular Ca2+ (~2 mM)> ER Ca2+ (~100 µM) > Mitochondria Ca2+ 

(~200 nM) ≥ Intracellular Ca2+ (~100 nM).   

Meticulous coordination of ion transporters including channels on the plasma 

and organelle membranes establish these Ca2+ gradients. On the β cell plasma 

membrane, the Na+/Ca2+ exchanger (NCX) and the plasma membrane Ca2+ ATPase 

(PMCA) transfer excess intracellular Ca2+ into the extracellular space to maintain low 

cytosolic calcium levels.   Among the many cellular organelles, the ER is the largest  

Ca2+ store. As is the case for NCX and PMCA, the Sarco/endoplasmic reticulum Ca2+ 

ATPase (SERCA) also works to eliminate excess intracellular Ca2+ by pumping calcium 

into the ER. This process is regulated by SERCA, PMCA, and NCX and is called Ca2+ 

clearance. The process of calcium clearance is particularly important following a β cell 

secretory burst.  Mathematical modeling based on the experiments performed in 
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dispersed mouse β cells suggests 50-64% of intracellular Ca2+ transients induced by 

KCl, which causes depolarization, are removed by the SERCA pump (119). After that, 

21-30% of the excess Ca2+ will be cleared by NCX when intracellular Ca2+ is high ~>1 

µM, and  21-27% of Ca2+ will be removed by PMCA when intracellular Ca2+ is low at 

around ~0.5 µM (119). Other factors such as the mitochondrial calcium uniporter (MCU) 

and the gap junction channels, connexin 36 (Cx36), are anticipated to play a role, but 

have been less well studied (91).   

Like the PMCA pump, the SERCA pump uses ATP to transport Ca2+ against the 

steep calcium concentration gradient between the cytosol and ER. In contrast to 

SERCA, inositol 1,4,5-trisphosphate and ryanodine receptors (IP3R and RyR) are Ca2+ 

releasing channels that passively release Ca2+ from the ER lumen into the cytosol. 

Another important organelle for cellular Ca2+ homeostasis is the mitochondria, which has 

been less characterized in β cells, but may function as a transient Ca2+ buffer. The MCU 

and leucine- zipper EF-hand-containing transmembrane protein 1 (LETM1) are localized 

to the mitochondrial inner membrane and drive Ca2+ uptake into mitochondria (120).  In 

contrast, Na+/K+/Ca2+-exchange protein 6 (NCLX) is the transporter that releases Ca2+ 

from mitochondria into the cytosol (96,121). 

 

1.2.1 The role of the SERCA in health and disease  

ER Ca2+ levels represent the balance of calcium uptake via the SERCA pump 

and calcium release via the RyR and the IP3R. SERCA is an active transporter that 

senses and pumps excess intracellular Ca2+ into the ER. Since this process is also ATP 

dependent, SERCA functions as a metabolic sensor (122,123).  

SERCA protein is encoded by three distinct genes:  ATP2A1, ATP2A2, ATP2A3 

(SERCA1, SERCA2 and SERCA3 respectively). There is a high level of conservation 

among the different isoforms, with more than 75% structural homology observed 



 
22 

between the isoforms (124). Each gene encodes 2-6 alternatively spliced transcripts. 

SERCA1 is expressed exclusively in fast-twitch skeletal muscle. SERCA2 splice variants 

are expressed in a tissue-specific manner. SERCA2a is expressed mainly in cardiac and 

slow-twitch skeletal muscle, whereas SERCA2b is ubiquitously expressed. SERCA3 is 

expressed only in particular tissues including β cells and is usually co-expressed with 

SERCA2b (125).  

Acquired SERCA deficiencies have been implicated in a variety of diseases. 

Darier-White disease is an inherited skin disease that arises as a result of SERCA2 

haploinsufficiency and is characterized by the loss of keratinocyte adhesion, which is 

termed acantholysis, occurring as a result of disruption of ER Ca2+ levels in the 

keratinocytes (126,127). Persons with Darier-White disease also have higher rates of 

epilepsy and depression (126,128). Whether these individuals are more suspectible to 

metabolic disease has not been tested. SERCA2a expression and Ca2+ affinity are 

decreased in heart failure (129) and have been associated with cardiac myopathies 

(130). Moreover, cardiac function was improved by overexpression of SERCA2a in a rat 

model of heart failure (131,132).  In addition, the Ca2+ affinity of SERCA2 was increased 

by suppression of the phosphorylated form of the membrane-localized inhibitory protein, 

phospholamban in a hamster model of heart failure (133). Also, ablation of 

phospholamban in cardiomyopathic mice (134) has been shown to improve contractility 

in heart failure (135). Therefore, improving SERCA function may represent a potential 

therapeutic strategy for a variety of diseases. 

The dominant form of SERCA in the pancreatic β-cells is SERCA2b (54). The 

structural difference between SERCA2a and SERCA2b is limited to the COOH-terminal 

(C-terminal) of each protein.  SERCA2b contains a unique 49-amino acid C-terminal 

extension that creates an 11th transmembrane α-helix in this protein with the C-terminus 
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tail projecting into the lumen of the ER. This structural difference grants this isoform the 

highest affinity to Ca2+ (2b>2a>3) and the lower ATPase turnover rate (3>2a>2b) (136).  

Accumulating evidence suggests that altered SERCA expression and activity 

contributes to the pathophysiology of diabetes, leading to both impaired insulin secretion 

and β cell death (137-139). The contribution of SERCA to Ca2+ clearance following 

glucose exposure has been experimentally assessed using dispersed mouse islet β 

cells. Chen et al. demonstrated that about two-thirds of the depolarization-induced Ca2+ 

influx was removed by SERCA (119). This suggests that SERCA can indirectly regulate 

insulin secretion by controlling intracellular Ca2+. Moreover, SERCA may play a 

significant role in the amplitude and the downward phase of the glucose-induced Ca2+ 

oscillations (GICOs) that additionally regulate insulin secretion. Functional studies of 

SERCA have been enabled due by the SERCA inhibitor, thapsigargin (TG). Inhibition of 

SERCA leaves only Ca2+ releasing channels, RyR and IP3R functional, which results in 

the depletion of ER Ca2+ across the concentration gradient. Prolonged TG treatment 

leads to ER stress and apoptosis (140), again emphasizing that ER Ca2+ is required for 

cell survival and function. 

 

1.2.2 The role of the Ryanodine Receptor in health and disease 

Whereas SERCA functions to pump Ca2+ into ER to maintain ER Ca2+ levels, ER 

Ca2+ releasing channels, IP3R and RyR, are both expressed in the β-cell (141-143) and 

coordinately function to maintain ER Ca2+ homeostasis and ER function. For instance, 

excess ER Ca2+ is released by IP3R and RyR to maintain Ca2+ balance and 

homeostasis. In addition, acute release from these channels also contributes to a variety 

of intracellular signaling pathways.  Mammalian RyR has three different isoforms.  RyR1 

is mainly expressed in skeletal muscles and is localized in junctional terminals between 

the plasma membrane and sarcoplasmic reticulum (SR), while RyR2 is predominantly 



 
24 

expressed in cardiac muscles.  RyR3 was found to be ubiquitously expressed (144-146). 

Functional RyRs consist of homotetramers (147). RyRs are also expressed in other 

nonmamalian vertebrates such as birds and fish with the isoforms RyRa and RyRb 

(148). Furthermore, RyR expression has been found in other metazoans, including C. 

elegans and Drosophila melanogaster (149,150). 

RyRs are associated with many different human diseases, with the majority of 

diseases arising as a result of alterations in channel gating properties (147). Diseases 

caused by mutations in the RyR1 gene include malignant hyperthermia, leading to 

increased sensitivity to inhalation anesthetics that can lead to sustained muscle 

contraction (151). RyR1 mutations may also lead to exertional rhabdomyolysis, 

characterized by the breakdown of striated muscles in response to heat or exercise 

(152); central core disease, which is a mild congenital myopathy characterized by 

hypotonia and muscle weakness of the upper legs and hips (153); and multiminicore 

disease that is autosomal recessive myopathy with degeneration of muscle fibers 

causing weak limb muscles (154).  

Diseases caused by mutations in the RyR2 include catecholaminergic 

polymorphic ventricular tachycardia (CPVT), which is characterized by stress- or 

exercise-induced ventricular tachycardia that can lead to sudden death (155). Calstabin1 

and 2 (also called FKBP12 and FKBP12.6) are expressed in most tissues and function 

to bind and stabilize the RyR1 and RyR2 in the closed state (156-159). Mutation of the 

V2461 in RyR1 abolished calstabin1 binding (160).  Inhibition or loss of calstabin1 

binding greatly increased the open probability and open duration for the channel 

(161,162) Calstabin1 displacement in skeletal muscle alters EC coupling between RyR1 

and Cav1.1 (163), whereas loss of calstabin1 in cardiac muscle results in 

cardiomyopathy as well as developmental congenital heart defects (164). 
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In vitro and animal studies have shown that the CPVT associated mutation in 

RyR2 results in Ca2+ leak through the receptor by lowering affinity for FKBP12.6, also 

known as calstabin2 (165) or by increasing sensitivity to β-adrenergic receptors to 

induce prolonged Ca2+ transients (166). In CPVT, protein kinase A (PKA) and 

Ca2+/calmodulin dependent protein kinase II (CaMKII) phosphorylation of RyR2 has 

been also been documented to change RyR2 function (167,168).  Thus, in persons with 

CPVT, β-adrenergic stress and exercise induced PKA phosphorylation along with a 

leaky RyR2 are thought to contribute to arrhythmias. Mutations in RyR2 are also 

responsible for arrhythmogenic right ventricular dysplasia type 2 (ARDV2), which is an 

autosomal dominant disease characterized by degeneration of myocardium, leading to 

ventricular arrhythmias and sudden death (169). The mutation associated with ARDV2 

also leads to dysfunction in RyR2 via Ca2+ leak from myocardial SR (170).  In contrast to 

RyR1 and RyR2, RyR3 is the isoform that has been least studied. One study suggested 

that upregulation of RyR3 in cortical neurons may play a protective role in Alzheimer’s 

disease (171). 

 The RyRs exhibit approximately 65% sequence homology, but each RyR isoform 

has different modes of regulation. RyRs form a macromolecular complex with a variety 

of proteins including L-type voltage dependent channels, Cav1.1/Cav1.2, PKA, 

Calstabin1 and 2, CaM, CaMKII and calsequestrin. Therefore, receptor function can be 

modulated by proteins within these larger complexes. The regulation of these complexes 

have been extensively studied in electrical – contraction (EC) coupling, which is 

regulated by Ca2+ release from SR in skeletal and cardiac muscles. In skeletal muscle, 

multiple regions of Cav1.1 and RyR1 physically interact to regulate EC coupling (172-

174). Due to this physical interaction rather than Ca2+ induced activation, EC coupling in 

skeletal muscle is prolonged even in the absence of extracellular Ca2+ (175,176). In 

contrast, RyR2 in cardiac muscle is activated by Ca2+ influx through Cav1.2, and this 
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mode of RyR2-mediated ER Ca2+ release is called Ca2+ induced Ca2+ release (CICR) 

(177). Ca2+ influx through Cav1.2 does not directly induce muscle contraction, but much 

larger Ca2+ release from RyR2 by CICR mediates muscle contraction (178).  

Single channel studies have shown that RyRs exhibit biphasic activation by Ca2+. 

Low intracellular Ca2+ concentrations (<0.01-20µM) can activate RyRs, whereas higher 

intracellular Ca2+ concentration (~100 µM – 10 mM) can inhibit RyRs (179). In addition to 

the activation from the cytosolic side, single channel recordings have shown that Ca2+ 

can activate RyR from ER luminal side in response to increased ER Ca2+ (180,181). This 

is referred to as store overload induced Ca2+ release (SOICR). Structural studies 

indicate that highly electronegative luminal loop domains are responsible for RyR 

activation in SOICR (182). Spontaneous SOICR in cardiac cells are capable of inducing 

Ca2+ waves and delayed after depolarizations resulting in ventricular tachyarrhythmias 

(183). This is caused by the abnormal RyR2 activation due to RyR2 mutations 

associated with CPVT, which lowered the threshold of the SOICR (22 23).  

  Ca2+ may also regulate RyR function through calmodulin (CaM), which is a 

ubiquitously expressed Ca2+ binding protein. CaM contains four EF-hand Ca2+ binding 

sites.  CaM is known to bind to each RyR monomer (184) and also plays a role in 

regulating Cav1.1 and Cav1.2 (185-187). Studies have shown that CaM is capable of 

suppressing RyR2 function by elevating the threshold of intracellular Ca2+ for RyR2 

activation in cardiac muscle (188). Decreased CaM binding affinity for RyR2 was 

observed in the mouse model of CPVT that has a RyR2 R2474S mutation, resulting in 

lethal arrhythmias (189). 

 Post-translational modification of RyRs also regulate their activity.  RyRs possess 

multiple phosphorylation sites in the cytoplasmic domains including sites for 

phosphorylation by PKA, CaMKII and cGMP-dependent kinase (PKG) (190-193). During 

the “fight or flight” stress response, the sympathetic nervous system (SNS) is activated 
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resulting in increased calcium transients and faster muscle contractions (194). This 

pathway involves β adrenergic receptor and PKA activation leading to RyR 

phosphorylation and altered gating properties (167,195). In addition 

hyperphosphorylation of RyR2 serine residues at the calstabin 2 binding site and 

concomitant dissociation of calstabins and resulting RyR2-mediated Ca2+ leak are 

suggested to play a role in both heart failure and during severe stress (168). CaMKII 

dependent phosphorylation of RyR2 is also suggested to enhance SR Ca2+ leak and 

decrease of SR Ca2+ load in heart failure (196).  

In addition, alterations in redox state of RyRs can both activate (197,198) or 

inhibit channels (199). Cysteines in RyR1 and RyR2 are covalently bound by NO (S-

nitrosylation) (200), and high level of ROS/RNS can irreversibly modify RyR function 

(201). For example, S-nitrosylation of Cys3635 in RyR1 has been found to reverse the 

CaM mediated inhibition leading to channel activation (202), which can facilitate muscle 

contraction (203). S-nitrosylation of Cys3635 in RyR1 has also been observed in 

muscular dystrophy leading to elevated SR Ca2+ leak (204). On the contrary, RyR2 

cannot S-nitrosylated by NO, and RyR2 has to go through S-nitrosoglutathione, 

endogenous NO carriers and donors, to undergo S-nitrosylation (205). In addition to 

Ca2+, Mg2+ and ATP also regulate RyRs. Mg2+ is suggested to reduce the open 

probability of RyR by competing with Ca2+ for the Ca2+ activation site (206,207). ATP 

may also activate RyRs in absence of Ca2+, but will have a maximum effect in the 

presence of Ca2+ (206,208). 

 While the association of abnormal RyR function has been well-described in heart 

disease, how RyRs function and dysfunction affects the pancreatic β cell and the 

development of diabetes is not well understood. Since only Cav1.2 and Cav1.3 are 

detected in rodent and human β cells (209), depolarization induced RyR activation 

mediated by Cav1.1 does not exist in β cells. Rather, CICR mediated by Cav1.2 and 
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RyR2 is thought to be the major form of RyR regulation in the β cell. Santulli et al. 

reported the metabolic phenotype of mice with RyR2 mutation in R2474S and N2386I 

and, humans with CPVT mutation in RyR2.  Collectively, these mutations induced 

dysregulated ER Ca2+ release through RyRs and led to impaired insulin secretion (210). 

This group found that these mutations caused dissociation of calstabin2 from RyR2, and 

thus pharmacologically stabilizing interactions between calstabin2 and RyR2 by S107. 

S107 functioned to enhance binding of calstabin2 to RyR2, and therefore partially 

rescued the ER Ca2+ release through RyR and abnormal insulin secretion (210). 

Furthermore, it was found that Dantrolene, which is an inhibitor of RyR1 and RyR3, 

reduced cell death under TG-induced ER stress in Min6 β cells (211). Similarly, Lu et al. 

reported that treating with Dantrolene protected from apoptosis induced by TG using 

INS-1 cells where the WFS1 gene was knocked down (212). However, these studies 

were performed by inducing ER Ca2+ loss through SERCA inhibition, and they provide 

limited insight into how physiological stressors may change RyR function and ER Ca 

dyanamics. Thus, a goal of my project has been to study β cell RyR function in the 

context of pro-inflammatory stress and ER stress.   

 

1.2.3 The role of the IP3R in health and disease 

 Inositol 1,4,5-triphosphate receptors (IP3R) are expressed in most eukaryotes 

and play an important role in regulating ER calcium release. In contrast to RyRs, 

functional IP3Rs consist of tetramers assembled by either identical subunits or by 

mixture of the three subtypes IP3R1, IP3R2 and IP3R3 and each subtype has many 

splice variants (213-215) . IP3R are activated by IP3, which is produced by the Gαq G-

protein coupled receptor (GPCR) pathway and acts to stimulate Ca2+ release from the 

major IP3-sensitive Ca2+ stores, including the nucleus, ER (216), Golgi, and likely the 

secretory vesicles.  (217-219).  In response to various endogenous ligands, Gαq subunit 
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activates phospholipase C (PLC) to catalyze hydrolysis of phosphatidylinositol 4,5-

bisphosphate (PIP2) to produce IP3 and diacyl glycerol (220). IP3 interacts with α- and β- 

domains of IP3R, pulling the two domains closer (221). IP3Rs play a central role in the 

propagation of Ca2+ waves, which is regenerative increased intracellular Ca2+. The 

increased intracellular Ca2+ is sensed by RyR or IP3R to induce ER Ca2+ release called 

Ca2+-induced Ca2+ release (CICR) (222). The Ca2+ wave can propagate throughout the 

entire cell or even between cells to induce various biological effects. This was first 

observed during fertilization, which was found to occur through an IP3R dependent 

process (223). IP3 can hierarchically induce different forms of IP3R activation, ranging 

from activation of a single IP3R, to activation of a cluster of several IP3Rs, and finally to 

activation of all cellular IP3R to induce a Ca2+ wave (224,225). Activation of IP3Rs 

requires both IP3R and intracellular Ca2+ (226,227).  However, whether each subunit of 

IP3R tetramer requires the occupancy of an IP3 molecule is still not known. In parallel to 

RyRs, the effects of Ca2+ are biphasic.  Modest increases in intracellular Ca2+ (~µM) 

enhance IP3 responses, whereas higher intracellular Ca2+ (µM-mM) can inhibit the IP3R 

response (226,228). Experiments performed using purified IP3Rs reconstructed in a lipid 

bilayer have confirmed the activation of IP3R by Ca2+, but not its inhibition (229,230).  

These results suggest that proteins might be responsible for inhibition mediated by high 

Ca2+ levels, rather than direct Ca2+ binding to the IP3R (231). CaM has been suggested 

to be such a protein responsible for this effect based on the presence of CaM binding 

domains in the IP3R.  However, this as yet to be proven (232). Other IP3R regulators 

include intracellular ATP (233) and cyclic AMP (cAMP), which is an intermediate product 

of Gαs-GPCR pathway.  Cyclic AMP can regulate IP3R through multiple mechanisms.  

First, cAMP induces production of IP3 through EPAC-mediated activation of PLC and IP3 

production (232,234). In addition, all three IP3R subtypes are phosphorylated by PKA, 

which is in turn activated by cAMP.  Thus, cAMP-mediated phosphorylation potentiates 
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IP3-induced Ca2+ release by IP3R1 and IP3R2 (235). Finally, high cAMP concentrations 

induce a direct interaction between cAMP and IP3Rs to sensitize their activities (236).  

Structurally speaking, very little is known about how Ca2+ regulates IP3R. Unlike 

the RyR, there are no EF Ca2+-binding motifs within IP3R.  However, there are clusters of 

negatively charged residues that could serve as Ca2+ binding sites (237). A study that 

mutates the Glu2100 residue to a aspartic acid or glutamine reduced the Ca2+ sensitivity 

of the IP3R by 5 – 10 fold, suggesting might serve as the site of IP3R regulation by Ca2+ 

(238,239). Two studies have suggested that an increased ER Ca2+ load increased the 

sensitivity of IP3R to IP3 (240,241). Thus, regulation of the IP3R by luminal ER Ca2+ 

regulation is possible, but has yet to be definitively proven. A high-affinity Ca2+-binding 

site exists within the luminal loop of the transmembrane domain 5 and 6 contains 

conserved acidic residues that could mediate luminal Ca2+ regulation (242).  

While altered IP3R function has been suggested in a variety of diseases, 

including cardiac and neurodegenerative diseases, overall this topic has been less 

studied than RyR dysfunction. The expression level of IP3Rs have been shown to be 

increased in cardiac hypertrophy, atrial fibrillation and hypertension (243-245). Among 

the three subtypes, IP3R1 is the dominant form in brain (214), and impaired IP3R1 

function has been associated with Huntington’s disease (246) and Alzheimer’s disease 

(247).  Mutations in the gene encoding IP3R1 leads to spinocerebellar ataxia, a disorder 

characterized by progressive loss of muscle coordination (248,249). Compared to 

studies investigating RyR dysfunction, even fewer number of studies have linked IP3R 

dysfunction to diabetes pathophysiology.  So far, it has been shown that TG induced cell 

death was partially protected by inhibiting IP3Rs in the Min6 β cell line (211).  Further 

investigation will be necessary to fully define a role for the IP3R in diabetes 

pathophysiology. 

 



 
31 

1.2.4. ER Ca2+ dynamics and cellular excitability 

As with other secretory cells, pancreatic β cells are electrically excitable and 

capable of firing action potentials. Action potentials exist in both metazoan and plant 

cells, and they serve as a means to facilitate rapid communication between cells or 

tissues.  In this regard, action potentials are used in β cells within islets to achieve rapid 

and synchronous insulin secretion, thus minimizing the time gap between glucose 

sensing and integrated insulin secretion at a whole-islet level (250).  

Action potentials in β cells are generated mostly via Ca2+ influx through the 

activation of voltage-gated Ca2+ channels (47). Unlike mouse β cells, Na+ current also 

contributes to action potentials in human β cells (47,251). The pattern of action potential 

firing can increase the toxi Hyperexcitation is described as a state of excess action 

potential generation and has been shown to contribute to neurological disorders such as 

Alzheimer’s disease (252,253), Parkinson’s disease (254), epilepsy (255), and 

neuropathic pain (256). Hyperexcitation is also known to be toxic to cells and is referred 

to by the term “excitotoxicity”. In neurons, cells undergo excitotoxicity due to 

overstimulation by excitatory amino acids, such as glutamate, resulting in excessive 

depolarization and action potential generation leading to cell death (257). In this process, 

glutamate receptors and Ca2+ channels induce Ca2+ overload, which triggers 

mitochondrial production of reactive oxygen species and induction of apoptosis 

(257,258). Another mechanism that induce neural excitotoxicity is hypoglycemia, 

because glucose is required for cells to take up a glutamate in the brain (259). In 

addition to neuronal diseases, hyperexcitability of cells may also contribute to cardiac 

arrhythmias (260,261). 

Limited studies have been performed to investigate the relationship between β 

cell hyperexcitability and diabetes. In this regard, studies have investigated the 

relationship between sulfonylureas, which block KATP channels to induce β depolarization 
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and hyperexcitability. Clinical studies have suggested that sulfonylureas may hasten β 

cell failure (262), but the mechanisms underlying loss of insulin secretion by 

sulfonylureas remains poorly understood and is controversial.  However, a leading 

hypothesis is that chronic hyperexcitation of β cells (263) eventually causes excitotoxic 

response, leading to loss of β cell function (264-266) and eventual cell death (267) and. 

Chronic glucotoxicity has been similarly implicated.  In fact, in the presence of high 

glucose for extended periods, glucose-stimulated insulin secretion was impaired and 

islet insulin content was depleted in rat and human islets (268-270). This was prevented 

by co-treatment with the KATP channel opener diazoxide, as opening of KATP channel 

resulted in hyperpolarization, which inhibits Ca2+ influx from Cav (271-273). Furthermore, 

gain-of-function mutation of KATP channels, which increases excitability of β cells, caused 

high insulin secretion independent of blood glucose level and caused congenital 

hyperinsulinism of infancy (274). The loss-of-function mutation of KATP channels, which 

decreases excitability of β cells, caused neonatal diabetes mellitus (275). Therefore, 

KATP channels plays a critical roles of the excitability of β cells in health and disease. The 

exact molecular mechanisms for excitotoxicity, including the channels responsible for 

this phenomenon are yet to be found.  

 

1.2.5. Ca2+ oscillation and ER Ca2+ dynamics 

In response to elevated blood glucose levels, β-cells begin to oscillate 

intracellular Ca2+ levels synchronously in waves that propagate throughout the entire 

islet, with a frequency ranging from one per second to minutes (250). This phenomenon 

is referred to as glucose-induced Ca2+ oscillations (GICOs) and result from 

synchronous oscillation of Vm leading to Ca2+ influx through voltage-gated Ca2+ channels 

(250,276). The synchrony of oscillations among all islet β-cells are due to gap junction 

channels, which are composed of connexin 36 (Cx36) and mediate diffusion of ions and 
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small molecules between neighboring β cells (277). Cx36 has high affinity for K+, and K+ 

influx from KATP channels is uniformly diffused throughout β cells establishing a uniform 

Vm that is a key basis for synchronous Ca2+ oscillation (278). Ca2+ triggers insulin 

exocytosis, GICOs are coupled with the rhythms of pulsatile insulin secretion. Therefore, 

studying the mechanisms of Ca2+ oscillation in health and in diabetes has clinical 

significance. The pulsatile insulin secretion in humans is crucial for maintaining normal 

glycemic control (279). Loss of oscillations are observed in diabetes, and disruptions in 

the normal patterns of oscillatory insulin secretion is thought to contribute to insulin 

secretion secondary to desensitization of receptors in peripheral tissues (280,281). 

Despite this background knowledge, the exact mechanisms of how GICOs occur and 

how loss of GICOs occurs under diabetic stress have not been fully established. Since it 

is known that ER Ca2+ dynamics modulates Vm and action potential firing, dysfunction of 

ER Ca2+ dynamics may contribute to impaired GICOs and altered insulin secretion in 

diabetes. 
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Chapter 2. Results 

2.1 ER stress and pro-inflammatory cytokine stress caused ER Ca2+ loss and 

disruption of glucose-induced Ca2+ oscillations.  

The pathophysiology of type 1 and type 2 diabetes involves both β cell ER stress 

and pro-inflammatory cytokine-induced β cell dysfunction. To define how these stress 

paradigms influenced the ER Ca2+ store, we treated with compounds and factors that 

induce ER stress and pro-inflammatory cytokine stress. INS-1 β cells were treated with 

300 nM Tunicamycin (TM) or 5 ng/ml Interleukin 1β combined with 25 mM high glucose 

(IL-1β + HG) in time-course experiments, and Ca2+ imaging was performed according to 

the schematic shown in Figure 3A.  Results revealed a time-dependent loss of ER Ca2+ 

with TM (Fig. 3B-C) and IL-1β + HG (Fig. 3D-E), where significant reductions in ER Ca2+ 

were observed within 6 hrs and further reductions were observed throughout the 24 hr 

exposure period. We next studied the effect of TM and IL-1β + HG on glucose-induced 

Ca2+ oscillations (GICOs) in islets from 8 wk old C57BL6/J mice. Under control 

conditions, regular intracellular Ca2+ oscillations were observed in response to glucose 

stimulation (Fig. 3F).  In contrast, both chemically induced ER stress and pro-

inflammatory cytokine stress abolished normal patterns of GICOs in mouse islets (Fig. 

3G).  To compare these findings in analogous mouse models, islets were isolated from 

6-8-wk old Akita mice, which harbor a spontaneous mutation in one allele of the INS2 

gene, resulting in impaired proinsulin folding and severe ER stress (282,283).  To 

recapitulate pro-inflammatory cytokine stress, islets were isolated from 9-12-wk old 

hyperglycemic db/db mice.  The strain has a mutated form of the leptin receptor resulting 

in hyperglycemia, obesity, and elevated systemic levels of pro-inflammatory cytokines 

(283,284).  Similar to results observed with ex vivo TM and IL-1β+HG treatment, GICOs 

were significantly impaired in islets isolated from Akita and db/db mice (Fig. 3H). Taken 

together, these data indicate that ER and pro-inflammatory stress are sufficient to disrupt 
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ER Ca2+ storage as well as GICOs in pancreatic β cells. 
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Figure 3. ER stress and pro-inflammatory cytokine-induced stress led to ER Ca2+ 

loss and disruption of glucose-induced Ca2+ oscillations  

Experiments were conducted using INS-1 cells (A-E) and mouse islets (F-G). (A) To 

estimate ER calcium storage, Calcium 6 was used to measure intracellular Ca2+ levels 

before and after application of 10 µM thapsigargin (TG), a potent inhibitor of SERCA 

pump activity.  (B) Representative traces for TG-induced Ca2+ release following 

treatment with 300 µM TM for indicated times. (C) TM-treatment led to a time-dependent 

reduction in ER Ca2+ levels; n = at least 7 replicates for each timepoint. (D) 

Representative traces for TG-induced Ca2+ release following treatment with 300 µM IL-
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1β + 25 mM glucose (ILHG) for indicated times. (E) ILHG-treatment led to a time-

dependent reduction in ER Ca2+ levels; n = at least 3 replicates for each time point. (F) 

Representative trace of changes in Fura2 intensity in islets from 8-12 week old wild-type 

C57BL6/J mice.  Islets were incubated in 5 mM glucose (G5) and then stimulated with 

G15 to induce GICOs; n = 3 biological replicates.  (G) Representative traces of GICOs in 

C57BL6/J islets under control conditions (Ctr) or following treatment with either 5 ng/ml 

IL-1β+25mM glucose for 24 hours (ILHG) or 10 µM TM for 48 hrs (TM); n = at least three 

biological replicates for each condition.  (H) Representative GICO traces in islets from 9-

12 week old db/db mice or 6-7 wk old Akita mice overlaid with GICOs of islets from 

C57BL6/J (Ctr) mice; n = at least three biological replicates for each genotype.  For (C) 

and (E); ***p ≤ 0.001 compared to Time 0.    
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2.2 RyR and IP3R function are differentially altered in response to ER and 

cytokine-induced stress 

Whereas previous studies have implicated β cell SERCA2 dysfunction in 

diabetes, a role for either RyR and IP3R dysfunction remains incompletely characterized 

(285). To define whether RyR and IP3R activity were altered in models of ER stress and 

pro-inflammatory stress, TM and IL-1β+HG-treated INS-1 β cells were loaded with the 

low-affinity Ca2+ indicator Mag-Fluo-4 AM, followed by membrane permeabilization with 

saponin.  As shown in Figure 2A, Mag-Fluo-4 AM was efficiently cleared from the 

cytosol, but remained sequestered within the ER, as indicated by overlap with RFP-

calnexin (Fig. 2A). Next, ATP was added to achieve steady state ER Ca2+ levels via 

SERCA activation.  Caffeine and IP3 were added to activate RyRs and IP3Rs, 

respectively, and dose-response curves were generated (Fig. 4B).  Interestingly, this 

analysis revealed that TM-induced ER stress primarily altered RyR responses (Fig. 4C), 

while IP3R function was minimally impacted by TM treatment (Fig 4D). In the short-term, 

TM increased the maximal RyR response, while reductions in RyR activity were 

observed with chronic TM treatment (Fig. 4C).  In contrast to TM treatment, RyR activity 

remained largely unaffected by IL-1β + HG  (Fig. 5A). Longer-term IL-1β + HG treatment 

reduced the EC50 of the IP3R response to agonist (Fig. 5B). Together, these results 

suggest that ER stress preferentially impacted RyR function, while chronic pro-

inflammatory stress preferentially impaired the IP3R response to agonist. 
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Figure 4. RyR function was preferentially altered by TM-induced ER stress 

(A) INS-1 cells were loaded with the low affinity Ca2+ indicator Mag-Fluo-4 AM (Green).  

Following plasma membrane permeabilization, Mag-Fluo-4 AM was retained in the ER 

as demonstrated by co-localization with calnexin (Red). To estimate RyR and IP3R 
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activity, calcium imaging was performed according to the schematic shown in Panel (B).  

First, 1.5 mM Mg-ATP was added to establish steady-state ER Ca2+ levels. Caffeine is 

an agonist for RyR, while IP3 is an agonist for IP3R. Caffeine or IP3 was applied in the 

indicated concentrations to generate-dose response curves of RyR and IP3R activation, 

respectively.  Decreases in Mag-Fluo-4 AM intensity were used to calculate relative ER 

Ca2+ release, and GraphPad Prism Software was used to fit data from IP3R and RyR 

functional assays to sigmoidal dose-response curves, which were analyzed by two-way 

ANOVA with Tukey-Kramer post-test.  (C) Upper panels show the dose-response curves 

for RyR activation by caffeine in INS-1 cells pre-treated with 300 nM TM or DMSO for 6, 

12, and 24 hrs.  Lower panels show the maximal response and 95% confidence intervals 

for each timepoint; n = at least 3 replicates for each timepoint in different caffeine 

concentration.  (D) Upper panels show the dose-response curves for IP3R activation by 

IP3 in INS-1 cells pre-treated with 300nM TM for 6, 12, and 24 hrs.  Lower panels show 

the maximal response and 95% confidence intervals; n = at least 3 replicates for each 

timepoint and IP3 concentration.  *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 compared to control 

conditions.  
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Figure 5. Pro-inflammatory cytokine stress impaired IP3R function 

(A) Dose-response curves for RyR activation by caffeine in INS-1 cells pre-treated with 5 

ng/mg IL + 25 mM glucose (ILHG) for 6, 12, and 24 hrs; n = at least 3 replicates for each 

timepoint and caffeine concentration.  (B) Dose-response curves for IP3R activation in 

INS-1 cells pre-treated with pretreated with ILHG for 6, 12, and 24 hrs. *p ≤ 0.05; **p ≤ 

0.01; ***p ≤ 0.001 compared to control conditions. Values shown are the LogEC50 for 

INS-1 cells analyzed under control conditions (top) and following ILHG-treatment 

(bottom). 
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2.3 Stress-mediated ER Ca2+ loss was reduced by RyR and IP3R inhibition 

To test whether RyR or IP3R inhibition was sufficient to prevent ER Ca2+ loss 

under diabetogenic stress conditions, we tested the effects of RyR antagonists, 

dantrolene and ryanodine (Ry), and the IP3R antagonist, xestospongin C (XeC) using 

INS-1 cells. Since Ry can activate RyR at low concentration (~ 1 nM) Ry 100 µM was 

used to inhibit RyR. Following tunicamycin treatment, there was a trend towards 

improved ER Ca2+ levels with dantrolene (Fig. 6A), while inhibition of RyR with Ry (Fig 

6B) significantly prevented ER Ca2+ loss compared to TM alone. Consistent with results 

from the functional assays, Ry was unable to block ER Ca2+ loss in response to IL-

1β+HG (Fig. 6D), whereas inhibition of IP3R with XeC partially rescued ER Ca2+ levels 

following IL-1β+HG treatment (Fig. 6C).  

ER stress and cytokines are known to induce β cell death (286), so we next 

tested whether modulation of ER Ca2+ loss via RyR or IP3R inhibition were sufficient to 

protect against β cell death.  TM-treatment resulted in a time-dependent increase in 

caspase 3- and 7 activity (Fig. 7A) and led to increased expression of cleaved-caspase 3 

protein (Fig. 7B).  Interestingly, cell death was partially abrogated by Ry co-treatment 

(Fig. 7A-B), suggesting that cell survival was improved through prevention of RyR-

mediated ER Ca2+ leak in response to TM-induced ER stress.  In contrast, despite an 

observed effect to partially restore ER Ca2+ levels (Fig. 5C), XeC was unable to reduce 

caspase activity in response to IL-1β+HG (Fig. 7C).    
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Figure 6. ER Ca2+ loss was prevented by blocking RyR under ER stress conditions 

and by IP3R blockade under pro-inflammatory cytokine stress conditions 

INS-1 cells were treated with 300nM TM for 24 hours with or without 1 µM Dantrolene 

(Dt) (A) or 100 µM Ryanodine (Ry) (B). (A-B) Representative traces for TG-induced Ca2+ 

release (left), and quantified results (right); n = at least 11 replicates per condition.  (C-D) 

INS-1 cells were treated with 5 ng/ml IL1β+25 mM glucose (ILHG) for 24 hrs with or 

without 5 µM XeC (C) or 100 µM Ry (D).  (C-D) Representative traces for the TG-

induced Ca2+ release (left), and quantified results (right); n = at least 15 readings per 

condition; *p ≤ 0.05; **p≤ 0.01; ***p≤ 0.001 compared to control conditions. §p ≤ 0.001 

for comparison between TM and TM + Ry. #p ≤ 0.05 for comparison between ILHG and 

ILHG + XeC.  
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Figure 7. Ryanodine treatment prevented TM-induced cell death 

(A) Caspase 3/7 activity was measured in INS-1 cells treated with 300 nM TM with or 

without 100 µM uM Ryanodine for indicated times; n = 4 replicates for each timepoint 

and condition. (B) Immunoblot analysis was performed in INS-1 cells treated with 300 

nM TM with or without 100 µM Ryanodine for indicated times using antibodies against 

cleaved caspase-3, and Actin.  Quantitative protein levels from three independent 

experiments are shown graphically.  (C) Caspase 3/7 activity was measured in INS-1 

cells treated with 5 ng/ml IL1β + 25 mM glucose (ILHG) for 24 hours; n = 4 replicates for 

each condition. **p ≤ 0.01 and ***p ≤ 0.001 compared to control conditions.  In (A), §p ≤ 

0.001 for the comparison between TM for 24 hrs and TM+Ry for 24 hrs.  In (B), #p ≤ 

0.05 and †p ≤ 0.01 for the comparisons between TM and TM + Ry for 24 and 36 hrs, 

respectively.   
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2.4 Reduction of ER Ca2+ leak via the RyR suppressed TM-induced Ca2+ transients 

and activation of the UPR  

Results thus far suggested a dominant role for RyR dysfunction under ER stress 

conditions, but primarily focused on bulk analysis of Ca2+ dynamics in large cell 

populations.  To define patterns of ER Ca2+ leak through the RyR in real-time at the 

single-cell level, spontaneous Ca2+ transients were measured in response to graded 

Ca2+ loading.  Ca2+ serves as the primary ligand of the RyR.  Spontaneous Ca2+ 

transients are observed in excitable cells, such as neurons and cardiac myocytes and 

have been shown to be coupled with ER Ca2+ leak through the RyR (287).  To date, this 

process has not been studied in the pancreatic β cell, either under normal or stress 

conditions. By increasing extracellular Ca2+ concentration up to 2 mM, oscillating and 

spontaneous Ca2+ transients were induced in 10.40 % ±1.54 % (S.E.M) of β cells under 

control conditions.  In response to TM-induced ER stress, the percentage of responding 

cells increased significantly, to a maximum of 55.74 % ± 6.67 % of cells after 12 hrs of 

treatment (Fig. 8A, C). Ryanodine co-treatment was found to significantly decrease TM-

induced Ca2+ transients (Fig. 8A, D), suggesting the ER Ca2+ leak was mediated through 

the RyR.  Notably, the response to caffeine, a pharmacological agonist of the RyR, was 

inhibited in the presence of 100 µM Ry (Fig. 8B), confirming that Ry was indeed acting 

through inhibition of RyR-mediated Ca2+ transients and cellular hyperexcitability.   

To define whether β cell depolarization contributed to these ER-stress induced 

Ca2+ transients, cells were hyperpolarized by diazoxide (Dz) to inhibit activation of 

voltage-dependent Ca2+ channels (VDCCs). In this context, spontaneous Ca2+ transients 

induced by tunicamycin were similarly reduced (Fig. 8E), suggesting that ER-stress 

induced Ca2+ transients originate from ER Ca2+ leak from the RyR as well as through 

secondary signals generated by Ca2+ influx through VDCCs.  
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Figure 8. ER Ca2+ dynamics regulated electrical activity of β cells 

 (A) Intracellular Ca2+ transients were measured in response to graded Ca2+ loading in 

INS-1 cells treated under control conditions (top), following treatment with TM for 12 hrs 
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(middle), or following co-treatment with TM + Ry for 12 hrs (both).  Data shown are 

representative of 30 single cell recordings from at least three independent experiments. 

(B) Traces show intracellular Ca2+ levels in INS-1 cells in response to caffeine treatment 

under control conditions and with ryanodine pre-treatment.  (C) Percentages (%) of 

responding cells in INS-1 cells treated with TM for 6 hrs (n= 2 replicates); 12 hrs (n = 5 

replicates); and 24 hrs (n = 4 replicates).  (C) The % of responding cells was significantly 

reduced by Ry co-treatment (n = 3 replicates per conditions).  (D) Representative trace 

indicates that spontaneous TM-induced Ca2+ transients were reduced by diazoxide (Dz).  

Data shown are representative of 15 single cell recordings.  *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 

0.001 for indicated comparisons. 
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During ER stress, cells activate an adaptive response known as the UPR in order 

to both clear unfolded proteins and increase the folding capacity of the ER (288). 

However, prolonged UPR activation eventually leads to apoptosis if cellular homeostasis 

is not restored (289,290). While UPR activation has been linked with ER Ca2+ loss (138), 

the temporal relationships and causal effects between UPR activation and ER Ca2+  loss 

remain poorly understood. To address, we first measured XBP1 mRNA splicing to 

validate this marker as an early upstream indicator of UPR activation.  An increase in the 

spliced to total XBP1 ratio was observed within 2 hrs of TM treatment and occurred prior 

to induction of both AFT4 and CHOP expression, which both increased around 6 hrs 

(Fig. 9A).  Next, time-course experiments were performed to define how suppression of 

ER Ca2+ leak from the RyR impacted UPR activation.  Our results revealed that 

ryanodine was able to significantly delay TM-induced UPR activation (Fig. 9B). To study 

this further, single-cell Ca2+ transients were measured at these early timepoints. 

Intracellular Ca2+ transients were found to increase within 3 hrs of TM treatment.  Similar 

to results obtained with chronic TM treatment, co-treatment with Ry was sufficient to 

suppress these Ca2+ transients (Fig. 9C-D), indicating that ER Ca2+ leak is an early 

response to misfolded protein accumulation that occurs prior to full expression of the ER 

stress signaling cascade.  Moreover, our results indicated that suppression of RyR-

mediated Ca2+ leak was sufficient to reduce propagation of the UPR.   
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Figure 9. Inhibition of RyR-mediated ER Ca2+ leak attenuated activation of the 

unfolded protein response 

(A) INS-1 cells were treated with 300 nM TM for indicated times, and mRNA levels of the 

spliced/unspliced XBP-1 ratio, ATF4, and CHOP were measured by RT-PCR. (B) The 

spliced/unspliced XBP-1 ratio was measured by RT-PCR in INS-1 cells treated with TM 

or TM+Ry for 3 hrs (left panel), 4 hrs (center), and 6 hrs (right panel). **p ≤ 0.01; ***p ≤ 

0.001 compared to time 0 or control conditions; †p ≤ 0.01 and §p ≤ 0.001 for 
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comparisons between TM and TM + Ry groups.  (C) Intracellular Ca2+ transients were 

measured in response to graded Ca2+ loading in INS-1 cells treated with TM for 3 hrs 

(top) or following co-treatment with TM+Ry for 3 hrs (bottom).  Data shown are 

representative of 30 single cell recordings with n=at least 3 replicates for each condition. 

(D) Quantification of the % of responding cells in INS-1 cells treated under controls 

conditions, with TM or with TM + Ry for 3 hrs; n = at least 3 replicates for each condition.  

*p ≤ 0.05; **p ≤ 0.01 for comparison between indicated groups. 
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2.5 Pharmacological inhibition of the RyR improved intracellular Ca2+ dynamics in 

TM-treated human islets and islets isolated from Akita mice 

To test whether these findings could be recapitulated in a human model system, 

dispersed cadaveric human islets were treated with tunicamycin and intracellular Ca2+ 

transients were measured.  Similar to results observed in INS-1 β cells, spontaneous 

Ca2+ transients were induced under ER stress evoked by TM, and ryanodine co-

treatment decreased TM-induced Ca2+ transients (Fig. 10A-B),  

Finally, we tested whether RyR inhibition would show similar result in an islet 

model of misfolded protein accumulation and ER stress (283,284). To this end, islets 

were isolated from 6-week old Akita mice and incubated with ryanodine or DMSO for 24 

hours.  Fura-2 AM imaging was performed to measure glucose-induced Ca2+ oscillations 

(GICOs).  GICOs were markedly diminished in Akita islets under control conditions, 

while treatment with ryanodine improved the oscillation frequency and area under the 

curve of the glucose-induced Ca2+ responses (Fig. 10C-E).  Moreover, Ry treatment 

significantly decreased the area of dead cells in islets from Akita mice (Fig. 10F-G). 

Finally, glucose stimulated insulin secretion (GSIS) was measured, the fold-increase of 

insulin secretion was the same between DMSO and Ry treated Akita islets. 
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Figure 10. Ca2+ signaling and cell death were rescued by ryanodine treatment in 

tunicamycin-treated human islets and islets from Akita mice 
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(A) Representative data from 20 single cell calcium recordings performed in dispersed 

cadaveric human islets from a single biological donor analyzed under control conditions 

(top), following treatment with TM for 6 hrs (middle), and following co-treatment with TM 

+ Ry for 6 hrs (bottom).  (B) The % of responding cells was quantified for each condition.  

(C) Glucose-stimulated calcium oscillations were measured in islets isolated from Akita 

mice treated with DMSO or Ryanodine for 24 hrs.  Shown are representative recordings 

from 4 individual islets.  (D) The frequency of oscillations and area under curve for 

calcium responses (E) were quantified from 3 biological replicates per conditions.  (F) 

Representative pictures of Live (green) and Dead (red) staining performed in Akita islets 

treated with DMSO or Ryanodine for 48 hrs. (G) Quantification of the % of dead cells 

from n=3 replicates per condition. (H) Using Akita islets GSIS was measured after 

treating DMSO or 100 µM Ry for 48 hrs. LG indicates low-glucose treated group and HG 

indicates high-glucose treated group with n=3 replicates; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 

0.001 for comparisons between indicated groups. 
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Chapter 3. Discussion 

3.1 Summary and significance 

The Ca2+ concentration within the lumen of the β cell ER is estimated to be three 

orders of magnitude higher than intracellular Ca2+ levels.  Ca2+ within this cellular 

compartment serves as an essential cofactor for protein chaperones and foldases 

required for insulin processing, while Ca2+ release from the ER regulates glucose-

stimulated Ca2+ oscillations and phasic insulin secretion. Loss of ER Ca2+ has been 

shown to lead to impaired insulin secretion as well as activation of cell-intrinsic stress 

pathways including ER and oxidative stress and reduced β cell survival.  Whereas a 

prominent role for reduced β cell SERCA pump activity has been identified in diabetes, 

the question remains if alterations in RyR or IP3 function, which regulate ER Ca2+ 

release, similarly contribute to these processes.  

To test this, we applied intracellular and ER- Ca2+ imaging techniques to 

measure ryanodine receptor (RyR) and inositol 1,4,5-triphosphate receptor (IP3R) 

activity in response to two distinct stress paradigms known to contribute to the 

pathogenesis of both type 1 and type 2 diabetes.  The stress paradigms tested were ER 

stress, which was induced chemically using tunicamcyin in INS-1 β cells and in 

cadaveric human islets. Aspects of our model were also evaluated in islets from Akita 

mice, a strain harboring a spontaneous mutation in one allele of the INS2 gene, resulting 

in impaired proinsulin folding and severe ER stress (283,284).  To recapitulate pro-

inflammatory cytokine induced dysfunction, INS-1 cells were treated with high glucose 

(25 mM glucose) in combination with IL-1β, a cytokine known to be systemically elevated 

in diabetes.  In aggregate, our results revealed a preferential sensitivity of the RyR to ER 

stress, while pro-inflammatory cytokine stress was found to primarily impact IP3R 

activity. Pharmacological inhibition of the RyR with ryanodine and inhibition of the IP3R 
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with xestospongin C were both able to prevent ER Ca2+ loss under these respective 

stress conditions.  However, inhibition of RyR-mediated Ca2+ loss was distinct in its 

ability to prevent β cell death.  Additional analysis showed that RyR inhibition also 

delayed the initiation of the UPR and an improvement of glucose-induced Ca2+ 

oscillations and insulin secretion.   

The RyR is a large macromolecular complex that is primarily localized to the ER 

or sarcoplasmic reticulum membranes.  The RyR remains closed at low intracellular Ca2+ 

concentrations.  However, as intracellular Ca2+ levels increase in the range of 0.01-20 

uM, Ca2+ binds the receptor, leading to channel opening and ER Ca2+ release (179). . In 

addition to ligand binding, channel activity is modulated by a number of interacting 

proteins contained within this macromolecular complex (156-159). RyR was found to be 

expressed on the surface of β cell dense core secretory vesicles (291), and two 

independent groups have demonstrated secretory vesicle Ca2+ release in response to 

RyR activation, (291) indicating the RyR may also regulate localized Ca2+ signals 

responsible for granule exocytosis.    

RyR dysfunction has been well-documented in a number of other disease states 

including cancer-associated muscle weakness (153), Alzheimer’s disease (171), and 

cardiomyopathy (164). In contrast, only a handful of studies have investigated whether β 

cell RyR dysfunction contributes to the diabetes pathophysiology. Luciani and 

colleagues found that both RyR and IP3R inhibition were able to attenuate thapsigargin-

induced ER stress in MIN6 β cells (211). This approach caused ER stress by inducing 

ER Ca2+ loss, therefore this does not likely show how ER stress affect ER Ca2+ 

dyanamics and cell death. To address this, we have induced ER stress directly by using 

TM, and our analysis was uniquely able to distinguish the impact of two different stress 

paradigms on RyR and IP3R activity and function, a topic unaddressed in previous 

studies.  Our results indicate that RyR dysfunction is uniquely induced by misfolded 
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protein accumulation, while pro-inflammatory cytokine stress had little impact on RyR 

function.  In support of our findings, the RyR antagonist, dantrolene, was previously 

shown to reduce cell death in INS-1 β cells lacking WSF1 protein, another model of 

severe ER stress (212).   

To document the mode of RyR dysfunction in response to ER stress, we 

measured spontaneous intracellular Ca2+ transients at the single cell level in response to 

graded increase in extracellular Ca2+.  Our results indicate that ER-stress lowers the 

threshold and frequency of RyR-mediated ER Ca2+ release in both INS-1 cells and 

cadaveric human islets. We also found these ER-stress induced Ca2+ transients were 

composed of both ER Ca2+ release and Ca2+ influx through VDCCs, thus contributing to 

an overall state of β cell hyperexcitability. These results are consistent with findings in 

other excitable cells and pathologic states. For example, prion as well as amyloid-beta 

protein accumulation in cortical neurons has been shown to lead to ER stress, ER Ca2+ 

release from the RyR, and increased neuronal excitability (292).    

A handful of molecular pathways have been implicated as potential contributors 

to β cell RyR dysfunction. Mice with a mutated form of the RyR2 leading to constitutive 

CaMKII-mediated phosphorylation and chronic RyR2 gain of function exhibited impaired 

glucose-induced insulin and Ca2+ responses as well as glucose intolerance (293).  

Similarly, RyR mutations that lead to dissociation of calstabin2 have been shown to lead 

to RyR gain of function, resulting in a condition known as catecholaminergic polymorphic 

ventricular tachycardia (CVPT) in humans. Mice expressing two mutated forms of the 

RyR2 associated with CVPT were shown to be glucose intolerant. Isolated islets 

exhibited decreased glucose-stimulated insulin secretion and impaired mitochondrial 

metabolism.  Intriguingly, humans with CPVT were found to have higher glucose levels 

and lower insulin levels during an oral glucose tolerance test compared to age and BMI-

matched controls (210). Oxidative stress has been shown to contribute to both calstabin 
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dissociation from the RyR as well CaMKII-mediated RyR phosphorylation.  Indeed, 

alterations in calstabin and RyR association have been demonstrated in islets from 

donors with Type 2 diabetes (210).  Recently, loss of sorcin, a Ca2+ sensor protein that 

inhibits RyR activity, was similarly shown to lead to glucose intolerance, while sorcin 

overexpression improved GSIS and ER Ca2+ storage. Palmitate-induced lipotoxicity 

decreased sorcin expression in human and mouse islets (294). Interestingly, in a model 

of Parkinson’s disease, ER stress itself led to aberrant accumulation of RyR, resulting in 

increased ER Ca2+ release (295).  Thus, whether RyR dysfunction occurs secondary to 

loss of stabilizing or inhibitory protein, through impaired receptor degradation, or through 

yet another distinct mechanism in the pancreatic β cell will be explored in future studies.  

Notwithstanding this unknown, our data suggests that targeting the RyR receptor has the 

potential to improve β cell survival through attenuation of ER stress as well and β cell 

function through restoration of glucose-induced Ca2+ oscillations and improved insulin 

secretion (Fig. 11). Drug discovery efforts are actively done aimed at identifying small 

molecular RyR-stabilizers (296).  In aggregate, our data suggest such compounds may 

have utility in improving the health of the diabetic β cell.    
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Figure 11. Model for protecting ER Ca2+ dynamics by RyR inhibition under ER 

stress 

ER stress leads to RyR-mediated ER Ca2+ leak, while inhibition of RyR-mediated ER 

calcium loss restores ER Ca2+ dynamics, glucose-stimulated calcium oscillations and 

attenuates UPR activation and cell death.  (A) Our data indicate that under ER stress 

conditions, RyR function is disrupted, leading to decreased ER Ca2+ storage and altered 

ER Ca2+ dynamics.  As a consequence, cellular excitability and GICOs are disrupted and 

activation of the UPR is increased, eventually leading to cell death. (B) Inhibition of RyR-

mediated loss of ER Ca2 leads to a partial rescue of ER Ca2+ dynamics under ER stress 

conditions. This leads to improved cellular excitability, improved GICOs, delayed 

initiation of the UPR, and improved cellular survival.   
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3.2 Limitations and Future Study 

3.2.1 Techniques to measure ER Ca2+ dynamics 

In the current research, we have estimated free ER Ca2+ concentration in 

populations of β cells under stress conditions by measuring the increase in intracellular 

Ca2+ following pharmacological inhibition of SERCA in Ca2+ free extracellular solutions 

using the calcium indicator, Calcium 6. SERCA inhibition results in passive ER Ca2+ 

release from RyR and IP3R until ER Ca2+ is depleted (Fig. 3). The kinetics of ER Ca2+ 

release induced by TG is slow process due to the passive release from RyR and IP3R 

and reaches a peak fluorescent intensity in tens of seconds to minutes.  The kinetics of 

this process is also affected by the function of plasma membrane ion transporters such 

as PMCA and NCX whose function may also have been altered by the stress conditions 

(297). While this technique is widely accepted, inhibition of plasma membrane and 

organellar Ca2+ transporters would have given better estimation especially when it 

comes to the small change induced by weaker stress. 

Furthermore, TG induced minimal elevations in intracellular Ca2+ in intact islets, 

so estimation of ER Ca2+ levels in islets was not successfully using this approach. Within 

the islets, β cells are known to be physically connected through gap junction channels 

(278) and the increase in intracellular Ca2+ is likely buffered by neighboring cells. In 

addition, TG simply may not penetrate cells inside the islet. Therefore, techniques to 

directly measure ER Ca2+ concentration more reliably should be considered. 

We also measured directly ER Ca2+ release by using low affinity Ca2+ indicator, 

Mag-fluor 4 AM (Fig. 4 and 5). This was a technique that enabled a high-throughput 

format and was beneficial in making dose-response curves with agonists. Although this 

directly measured Ca2+ in ER, imaging was done after permeabilization of plasma 

membrane and by studying population of cells.  
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The approaches taken above can capture only one aspect of ER Ca2+ such as 

ER Ca2+ concentration or ER Ca2+ release. These approaches do not capture ER Ca2+ 

dynamics, which are more relevant to physiological activities. Our approach to measure 

spontaneous intracellular Ca2+ transients provides some insight into ER Ca2+ dynamics, 

and showed that bursts of ER Ca2+ release increased under ER stress conditions (Fig. 

8). Nevertheless, the techniques that can reliably detect ER Ca2+ dynamics by directly 

measuring ER Ca2+ will be beneficial, which will be discussed in the future direction.  

 

3.2.2 Basis of RyR and IP3R dysfunction 

 Our results from functional assays showed that RyR function was altered under 

ER stress, while IP3R function was preferentially altered under pro-inflammatory stress 

conditions (Fig. 4 and 5).  This data was supported by results showing that ER Ca2+ loss 

induced by these respective stress conditions were rescued by inhibiting RyR under ER 

stress conditions and IP3R in response to pro-inflammatory stress (Fig. 6 and 7). This 

approach enabled us to document receptors dysfunction. However, the basis of the 

dysfunction was not addressed in the current study.  This information will be crucial in 

order to identify more specific drug target.  

Possible molecular mechanisms that may cause changes in overall receptor 

function include changes in expression levels and post-translational modifications. The 

known regulation of RyR and IP3R by post-translational modification was summarized in 

detail in the Introduction section. For instance, RyR undergoes phosphorylation and 

oxidation, and nitrosylation that can cause dissociation of RyR stabilizing protein 

calstabin resulting in Ca2+ leak from ER (298-300). It is likely that ER stress may have 

induced one of these modifications, leading to ER Ca2+ release and increased 

intracellular Ca2+ transients that exacerbate UPR activation and lead to cell death. 
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Inhibition of RyR by Ry under ER stress conditions may have mitigated the deleterious 

effects of these post-translational modifications. Our result showed that S107, which 

stabilizes the RyR and calstabin interaction did not restore the ER Ca2+ under ER stress 

(Fig. 12). This indicates either ER stress was robust enough to nullify the effects of S107 

or that other post-translational modifications were involved in this process. These 

possibilities could be tested in future studies. 

Likewise, IP3R can be regulated by phosphorylation or by the binding of 

associated proteins to its regulatory domain. For instance, PKA activation leads to an 

opening of IP3R (301,302). Therefore, a more thorough understanding of the effects of 

post-translational modifications will be necessary. In addition, these results may need to 

be studied within the context of ER Ca2+ dynamics, because efforts to stabilize the 

calstabin interaction or prevent oxidative stress, for example, may impact spontaneous 

ER Ca2+ release without being able to restore ER Ca2+. 
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Figure 12. ER Ca2+ loss was not prevented by the RyR stabilizer S107 under ER 

stress conditions 

INS-1 cells were treated with 300nM TM for 24 hours with or without 10 µM S107; n = at 

least 3 replicates per condition; ***p≤ 0.001 compared to control conditions.  
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3.2.3 Limitations arising from the use of rodent models 

 The current study was performed using cell lines and through ex vivo analysis of 

islets from rodent models. These models may not necessarily recapitulate in vivo 

findings. Therefore, key aspects of our model need to be confirmed using in vivo models 

and in human islets and humans. There are considerable difference even in islets 

between mouse and humans. In a mouse islet, α cells reside mostly on the surface of an 

islet, while β cells tend to be more in the center of the islet (303). In contrast, α cells and 

β cells are equally distributed throughout the human islet (303). In addition to localization 

within islets, channels regulating to Ca2+ dynamics and action potentials in β cells are 

different between mice and human. For instance, human and mouse β cells both 

express Na+ channels. Na+ channels in human β cells amplify action potentials (47), but 

the Na+ channels in mouse β cells has minimal effects (251). P/Q-type Ca2+ channels 

and L-type Ca2+ channels (Cav 1.2 and 1.3) elicit about 40% of Ca2+ current each in 

human β cells (47), but L-type Ca2+ channels elicits more than 60% of total Ca2+ current 

in mouse β cells and P/Q-type Ca2+ channels have minimal effects (251). 

 In addition, in vivo plasma glucose levels are continuously fluctuating, and β cells 

will be exposed to a countless number of molecules such as hormones, lipids or 

cytokines that can regulate channel activities and as well as cellular activities. To make 

matters more complicated, there are neuronal innervations to islets and β cells. These 

include efferent neurons coming from brain as well as inter and intra-islet neuronal 

networks (304). Therefore, studying β cell function in vivo is crucial.   

Finally, our apoptosis or cell death assay was difficult to apply to islets. This may 

be because islets the expression levels of proteins related to apoptosis are low, or 

macrophages clear dead cells fairy quickly (305). Therefore studying in vivo with all 

these things could tell you more about the relevance of human diseases. 
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3.2.4 Future directions 

Studying ER Ca2+ dynamics in islets or β cells is challenging due to the 

limitations with currently available techniques mentioned above. The genetically-

encoded Ca2+ indicator D4ER maybe able to resolve the problem, however islet cells 

exhibits autofluorescence when excited at blue or green light (~430-490 nm) (306), 

which will cross contaminate and mask the fluorescence of D4ER  (Ex. 435 nm, Em. 540 

and 475 nm), which is the fluorescent Förster resonance energy transfer (FRET)- based 

ER Ca2+ indicator widely used. To solve the issue with autofluorescence, a Ca2+ indicator 

with other wavelengthes such as mCherry CEPIA (307), or bioluminescence resonance 

energy transfer (BRET)- based Ca2+ indicator (308) would be worthwhile options. BRET 

is advantageous because it does not require any excitation light, and does not undergo 

photobleaching because of illumination. 

To overcome the limitations with in vitro studies, it will be beneficial to perform 

experiments in vivo. To conduct Ca2+ imaging in vivo, our lab has recently generated an 

insulin Cre-induced GCaMP6s mouse line. Using this line, we can express GCaMP6s, 

which are genetically encoded high affinity Ca2+ indicator, in β cells. Our approach could 

be to apply intravital microscopic techniques to image the mouse pancreas (309,310). 

With this approach, pancreata will be surgically exposed outside the body and the 

pancreas can be imaged using two-photon microscopy. With this technique, Ca2+ 

oscillation in vivo could be studied and this will greatly advance the field to study 

hormonal, neuronal, and pharmacological regulation of Ca2+ in β cells. To follow up the 

current study, mouse with inducible RyR knockout model under stress conditions could 

be used to replicate what we found in β cell line and mouse pancreatic islets.   

This intravital microscopy will be beneficial not only for the Ca2+ imaging, but can 

also be applied to visualize many other biological assays. For instance, the apoptosis 

and cell death assay could be tested in vivo, and the interactions of immune cells could 
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be clarified by also visualizing macrophages. Furthermore, UPR marker such as Xbp1 or 

Chop could be visualized in vivo as well. 
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Chapter 4. Materials and Methods 

4.1 Materials 

4.1.1. Animals, islet isolation and human islet preparation 

a. Mice 

C57BL/6J (WT) mice, Akita mice, are db/db mice were obtained from Jackson 

Laboratories (Bar Harbor, ME) at 5 - 10 weeks of age, and maintained under protocols 

approved by the Indiana University Institutional Animal Care and Use Committee, the 

U.S. Department of Agriculture’s Animal Welfare Act (9 CFR Parts 1, 2, and 3), and the 

Guide for the Care and Use of Laboratory Animals  

b. Human islets  

Human cadaveric islets isolated from non-diabetic donors were obtained from the 

Integrated Islet Distribution Program or the National Disease Research Interchange.  

Upon receipt, human islets were hand-picked and allowed to recover overnight in 

Dulbecco’s modified essential medium (DMEM) medium containing 5.5mM glucose, 

10% fetal bovine serum (FBS), 100U/ml penicillin, and 100µg/ml streptomycin. 

4.1.2 Cell culture and islet isolation 

INS-1 832/13 rat insulinoma cells were cultured in regular 11mM glucose Roswell 

Park Memorial Institute medium (RPMI) 1640 supplemented with 10mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, 1mM sodium pyruvate, 

50µM β-macaptoethanol and, 10% FBS, penicillin and streptomycin.  

Mice islets were isolated by collagenase digestion as described previously (311). 

The islets were hand-picked, and allowed to recover overnight in regular RPMI 

supplemented with 10% FBS, 100U/ml penicillin, and 100µg/ml streptomycin. 
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4.1.3. Primers, antibodies and reagents 

Standard polymerase chain reaction (PCR) reactions for quantitative PCR 

(qPCR) for gene expressions were performed using oligonucleotides synthesized by 

Invitrogen (Table 3).  

Antibodies used in western blotting, immunofluorescent and 

immunohistochemistry staining are listed in Table 2. Chemicals and reagents used in 

the research are listed in Table 4.  
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Table 2. Antibodies for Western Blotting and Immuno-staining 

Targeted protein Host 
Species Manufacturer Dilution 

Total caspase 3  Rabbit Cell Signaling 1:1000 

Mouse IgG (IRDye 800CW) Donkey Li-cor 1:10000 
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 Table 3. Quantitative RT-PCR Primers 

Gene Species Forward (5’-3’) 
Reverse (5’-3’) 

Total Xbp-1 Rattus rattus AGCACTCAGACTACGTGCGCCTC 
CCAGAATGCCCAAAAGGATATCAG 

Spliced Xbp-1 Rattus rattus CTGAGTCCGCAGCAGGT 
TGTCAGAGTCCATGGGAAGA 

ATF4 Rattus rattus GTTGGTCAGTGCCTCAGACA 
CATTCGAAACAGAGCATCGA 

CHOP Rattus rattus CCAGCAGAGGTCACAAGCAC 
CGCACTACCACTCTGTTTC 
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Table 4. Chemicals and Reagents 

Name Manufacturer 

Caffeine Santa Cruz  

D-Glucose Sigma-Aldrich 

Hanks' Balanced Salt Solution (HBSS) Lonza 

D-myo-Inositol-1,4,5-triphosphate hexapotassium salt (IP3) Santa Cruz 

Xestospongin C Santa Cruz 

Tunicamycin Cayman 
Chemicals 

Thapsigargin Cayman 
Chemicals 

Fura-2-acetoxymethylester (Fura-2 AM) Thermo Fisher 

Mag-Fluo-4 AM Thermo Fisher 

Mouse IL-1 beta Recombinant Protein (IL-1β) Thermo Fisher 

Diazoxide Sigma-Aldrich 

Dantrolene Sigma-Aldrich 

Adenosine 5’-triphosphate magnesium salt (ATP) Sigma-Aldrich 

Ryanodine Tocris 

Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) Tocris 

Calcium 6 Molecular Devices 
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Table 5. Ca2+ indicators and Wavelengths 

Name Excitation and Emission Wavelength Manufacturer 

Calcium 6 Ex. 490 nm, Em. 525 nm Molecular Devices 

Fura 2AM Ex. 340 and 380 nm, Em. 510 nm Thermo Fisher 

Mag-fluor 4AM Ex. 490 nm, Em. 525 nm Thermo Fisher 
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4.2 Methods 

4.2.1 Animal studies and cell culture 

Male C57BL/6J, heterozygous Ins2Akita (Akita), and C57BLKS-homozygous 

Leprdb (db/db) mice were obtained from Jackson Laboratories (Bar Harbor, ME) and 

maintained under protocols approved by the Indiana University Institutional Animal Care 

and Use Committee.  Mice were kept in a standard light-dark cycle with ad libitum 

access to food and water. Pancreatic islets were isolated by collagenase digestion, 

hand-picked, and allowed to recover overnight as described previously (311). INS-1 

832/13 rat insulinoma cells were maintained according to previously published protocols 

(312,313).   

 

4.2.2 Immunoblot and quantitative PCR  

Immunoblot experiments were performed as described (314). In brief, cells were 

lysed in 1% IGEPAL reagent supplemented with 10% glycerol, 16 mM NaCl, 25 mM 

HEPES, Sigma-Aldrich, St. Louis, MO), 60 mM n-octylglucoside (Research Products 

International Corp.), phosphatase inhibitor cocktails (PhosSTOP tablets, Roche) and 

phosphatase inhibitor cocktails (EDTA-free cOmplete tablets, Roche). Protein 

concentration was measured using the Bio-Rad DC protein assay (Bio-Rad, Hercules, 

CA) and a SpectraMax M5 multiwell plate reader (Molecular Devices, Sunnyvale, CA). 

Equal concentrations of proteins were suspended in 10% SDS solution. Protein lysates 

were electrophoresed and transferred to methanol-activated PVDF membrane 

(Immobilon-FL Transfer Membrane from Millipore). Membranes were then blocked with 

Odyssey blocking buffer (LI-COR, Lincoln, NE) prior to incubation with primary 

antibodies listed in Table 2. Subsequently, membranes were incubated with IRDye 800 

or 680 fluorophore-labeled secondary antibodies from LI-COR. The total protein levels 
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were normalized to actin protein levels. Images were analyzed using LI-COR Image 

Studio and Image-J software (National Institutes of Health, Bethesda, MD, USA). 

For qPCR, Cultured cells or isolated islets were processed for total RNA using 

the Qiagen RNeasy Mini Plus kit (Valencia, CA, USA). For reverse transcription-PCR 

experiments, total RNA was processed using Moloney murine leukemia virus (MMLV) 

reverse transcriptase (Invitrogen, Grand Island, NY). Subsequently, qPCR was 

performed using JumpStart™ Taq DNA Polymerase (Sigma-Aldrich, St. Louis, MO), and 

using SYBR Green I dye and previously published methods (312). Primers used for 

qPCR is listed in Table 3. 

 

4.2.3 Stress simulation 

To mimic the pro-inflammatory stress milieu of diabetes, cells and mouse islets 

were treated in RPMI media containing 5 ng/mL of mouse IL-1β for indicated times. To 

mimic the ER stress in diabetic milieu, INS-1 cells or mouse islets were cultured in RPMI 

containing 300 nM TM with indicated times. 

 

4.2.4 Intracellular calcium (Ca2+) imaging 

Intracellular Ca2+ was measured using the FLIPR Calcium 6 Assay Kit and the 

Molecular Devices FlexStation 3 system (Sunnyvale, CA, USA) or using the ratiometric 

Ca2+ indicator Fura-2 AM as previously outlined (315). In brief, INS-1 832/13 cells were 

plated in black wall/clear bottom 96-multiwell plates from Costar (Tewksbury, MA, USA) 

and cultured for 2 days. Following drug or stress treatment, cells were transferred to 

Ca2+ free Hanks’ balanced salt solution from Lonza (Basel, Switzerland) supplemented 

with 0.2% BSA and EGTA. Calcium 6 reagent was added directly to cells, and cells were 

incubated for an additional 2 hours at 37  °C and 5% CO2. ER Ca2+ was estimated by 



 
75 

measuring the increase of intracellular Ca2+ upon application of 10 µM thapsigargin (TG). 

Data acquisition on the FlexStation 3 system was performed at 37°C using a 1.52-  s 

reading interval with an excitation wavelength of 485 nm and emission wavelength of 

525 nm. For data analysis, values derived from the TG response (ΔF) were divided by 

resting intracellular calcium [Ca2+]i (F0), using the formula ΔF/ F0.  Fura-2 AM 

fluorescence intensity was measured using an excitation wavelength of 340 nm and 380 

nm and an emission wavelength of 510 nm.  Images were captured using a Zeiss Z1 

microscope with a 10x or 20x objective. Spontaneous intracellular Ca2+ transients were 

measured using the method described by Tang et al (287). Briefly, INS-1 cells or 

dispersed mouse islets were imaged under Ca2+ free conditions using Fura-2AM. 

Extracellular Ca2+ was increased in a step-wise fashion to evoke Ca2+ transients until a 

physiological extracellular Ca2+ concentration of 2mM was reached. Data were analyzed 

using Zeiss Zen Blue software (Oberkochen, Germany). The wavelength used for this 

experiment is summarized in Table 5.  

 

4.2.5 IP3R and RyR functional assays 

IP3R and RyR activation were evaluated in response to IP3 and caffeine, 

respectively using modifications to the protocol described by Tovey and Taylor (285). 

INS-1 cells were loaded with the low-affinity Ca2+ indicator, Mag-Fluo-4 AM followed by 

permeabilization of the plasma membrane with 10 µg/ml saponin, leaving Mag-Fluo-4 

AM in the lumen of cellular organelles. Data acquisition on the FlexStation 3 system was 

performed at 37°C using a 1.52-  s reading interval, with an excitation wavelength of 490 

nm and an emission wavelength at 525 nm. To establish steady-state ER Ca2+ levels, 

1.5mM Mg-ATP was added; then IP3 or caffeine were applied at the indicated 

concentrations to activate IP3R and RyR respectively. 
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4.2.6 Cell death assays and insulin secretion 

To measure Caspase 3/7 activity, INS-1 cells were cultured in black wall/clear 

bottom 96-multiwell plates for 2 days.  Following drug or stress treatment, Caspase-Glo 

reagent (Promega, Madison, WI) was added directly to cells, and cells were incubated 

for an additional 30 minutes at room temperature. The luminescence of each sample 

was measured by using a SpectraMax M5 microplate reader (Molecular Devices).  Cell 

viability in mouse islets was quantitated using the Live/Dead Cell Viability Assay from 

Thermo Fisher (Waltham, MA), according to the manufacturer’s instructions. Images 

were acquired using a Zeiss LSM 510 confocal microscope, and the area of dead cells 

was calculated by the ratio of ethidium homodimer-1 positive red area (Dead) and 

calcein-AM positive green area (Live). Glucose-stimulated insulin secretion was 

measured in isolated mouse islets as previously described.  Insulin secretion into the 

supernatant was normalized to DNA concentration, and insulin was measured using a 

mouse insulin ELISA from Mercodia (Uppsala, Sweden) (54,316). 

 

4.2.7 Statistical analysis 

Results are displayed as the means ± S.E.M.  GraphPad Prism Software (La 

Jolla, CA, USA) was used to fit data from IP3R and RyR functional assays to sigmoidal 

dose-response curves.  Differences between groups were analyzed for significance 

using GraphPad Prism Software and an unpaired Student’s t-Test or one-way ANOVA 

with Tukey-Kramer post-test.  A p value < 0.05 was used to indicate a significant 

difference between groups. 
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