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Heng-Yi Wu 

TRANSLATIONAL DRUG INTERACTION STUDY USING TEXT MINING TECHNOLOGY 

Drug-Drug Interaction (DDI) is one of the major causes of adverse drug reaction (ADR) and 

has been demonstrated to threat public health. It causes an estimated 195,000 

hospitalizations and 74,000 emergency room visits each year in the USA alone. Current 

DDI research aims to investigate different scopes of drug interactions: molecular level of 

pharmacogenetics interaction (PG), pharmacokinetics interaction (PK), and clinical 

pharmacodynamics consequences (PD). All three types of experiments are important, but 

they are playing different roles for DDI research. As diverse disciplines and varied studies 

are involved, interaction evidence is often not available cross all three types of evidence, 

which create knowledge gaps and these gaps hinder both DDI and pharmacogenetics 

research. 

In this dissertation, we proposed to distinguish the three types of DDI evidence (in vitro 

PK, in vivo PK, and clinical PD studies) and identify all knowledge gaps in experimental 

evidence for them. This is a collective intelligence effort, whereby a text mining tool will 

be developed for the large-scale mining and analysis of drug-interaction information such 

that it can be applied to retrieve, categorize, and extract the information of DDI from 

published literature available on PubMed. To this end, three tasks will be done in this 

research work: First, the needed lexica, ontology, and corpora for distinguishing three 

different types of studies were prepared. Despite the lexica prepared in this work, a 

comprehensive dictionary for drug metabolites or reaction, which is critical to in vitro PK 
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study, is still lacking in pubic databases. Thus, second, a name entity recognition tool will 

be proposed to identify drug metabolites and reaction in free text. Third, text mining tools 

for retrieving DDI articles and extracting DDI evidence are developed. In this work, the 

knowledge gaps cross all three types of DDI evidence can be identified and the gaps 

between knowledge of molecular mechanisms underlying DDI and their clinical 

consequences can be closed with the result of DDI prediction using the retrieved drug-

gene interaction information such that we can exemplify how the tools and methods can 

advance DDI pharmacogenetics research. 
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Chapter 1. Introduction 

1.1 Adverse Drug Reaction and Drug-Drug Interaction 

Adverse drug reaction (ADR) is one of major causes of morbidity and mortality occurring 

in clinical care every year. To investigate the crucial problem, US Food and Drug 

Administration (FDA) found that more than 40% US population is prescribed more than 

four medications at a single time, which makes more susceptible to ADR (Knapp & Tomita, 

1987). A literature search in Medline and Embase database from 1990 to 2006 showed 

that drug-drug interactions (DDIs) were held responsible for 0.054% of the emergency 

department (ED) visits, 0.57% of the hospital admissions and 0.12% of the re-

hospitalizations (M. L. Becker et al., 2007). It is possible that drug interaction can be 

beneficial or detrimental. The use of multiple drugs might provide synergism such as 

increasing the efficacy of therapeutic effect, decreasing dosage but holding the same 

efficacy to avoid toxicity, or minimizing the drug resistance (Chou, 2006). However, we 

have more interests in the investigation of negative interaction because pathological 

significance is often unexpected and hard to be diagnosed. To predispose DDIs, the 

importance of high risk factors like age, polypharmacy and genetic polymorphisms should 

be carefully evaluated (Magro, Moretti, & Leone, 2012). In the elder population, DDIs 

account form 4.8% of the hospital admissions, which is much higher than the proportion 

of DDI victims within the total population. The reason is directed to the abatement of liver 

metabolism or kidney function (Juurlink, Mamdani, Kopp, Laupacis, & Redelmeier, 2003; 

Merle, Laroche, Dantoine, & Charmes, 2005). Genetic polymorphism has profound 
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influence on enzyme function, which might results in increased drug metabolism and 

absence of drug response. Evidences (Johansson & Ingelman-Sundberg, 2011) suggested 

that patients affected by genetic polymorphisms will experience severe toxicities upon 

drug intake. 

For economic aspect, the problem of DDI effect or co-medication effect has scaled such 

heights that it has even led to withdrawing of drugs from the market after approval. The 

1990s saw the withdrawal of more than 11 drugs as shown in (Ajayi, Sun, & Perry, 2000). 

In 2007, the biopharmaceutical industry invested roundabout $58.8 billion for the 

research and development as the withdrawing of drugs (DiMasi & Grabowski, 2007) is a 

major setback to the industry as the deployment of a single drug compound is estimated 

at $200 million. 
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1.2 Drug-Drug Interaction Mechanisms and In Vitro and In Vivo Drug Interaction Studies 

Drug-drug interaction can result when a substance affects the activity of a drug or its 

metabolites when these two drugs are administrated at the same time. The simultaneous 

administration of two drugs, which causes synergistic or antagonistic effect, might lead 

to the alternation of medication effectiveness or some harming effects on patient body. 

Those potential influences on human body should be noticed to prevent from a high risk 

of multiple interactions because the number of approved drugs increases. To preclude 

the possibility of hazardous interaction, understanding the significant scientific principles 

or mechanisms of drug-drug interaction is important. 

Due to the continued growth in drug development and the insight into molecular biology, 

we come to realize that transporter and enzyme played an important role in drug 

elimination, which inspired a clue to dig the mechanisms surrounding drug-drug 

interaction. In brief, there are two major molecular mechanisms of drug-drug interaction, 

enzyme-based drug metabolism and transporter-based drug transportation (Pang, 

Rodrigues, & Peter, 2010). To study DDI with P450-mediated drug metabolism, the 

investigation of how a drug inhibit or induce another drug can learn from how this drug 

is metabolized as well as which enzymes are catalyzing the main metabolic pathway.  If 

an enzyme that is responsible for the metabolism of one drug is induced or inhibited by 

another drug, then the bioavailability of original drug will be changed, which might result 

in being toxic or less effective. For transporter-based drug transportation, transporter is 

important to drug deposition. Only drugs can be metabolized after they are transported 
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into liver cells. To know how transporter-mediated DDI happen, the knowledge of which 

transporters inhibited by the investigational drug or the affinity of substrate with drug 

transporter can also suggest a potential for drug-drug interaction (Use, 2012). 

There are two basic types of drug interaction, pharmacokinetics (PK) and 

pharmacodynamics (PD). In short, PK investigates the activity of drug combinations with 

drug absorption, disposition, metabolism, excretion, and transportation (ADMET), which 

describes how these five criteria influence drug level (concentration). 

Pharmacokinetically speaking, potentiative or reductive combinations are respectively 

correlated to positive or negative modulation of drug transport, permeation, distribution, 

localization, or metabolism. Potentiative modulation of drug transport will enhance drug 

absorption via the disruption of transport carrier, increase drug concentration in plasma 

by inhibiting metabolic process, and stimulate or inhibit the metabolism of drugs into 

active or inactive form.  On the other hand, reductive modulation provides contrasting 

perspectives to potentiative modulation. The reductive modulation of drug transport 

typically blocks drug absorption, decreases drug concentrantion in plasma, and reduces 

drug metabolism activity (Jia et al., 2009). Those information brings to systematically 

investigate the physiological and biochemical mechanisms of drug exposure in multiple 

tissue types, cells, animals, and human subjects (M. Rowland & Tozer, 1995), which links 

preclinical and clinical phase of drug development. If the PK can be interpreted as the 

dose-concentration relationship, pharmacodynamics (PD) can be defined as the 

mechanism of drug action and relationship between drug concentration and effect. A 

drug’s pharmacodynamics effect ranges widely from the molecular signals (such as its 
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targets or downstream biomarkers) to clinical symptoms (such as the efficacy or side 

effect endpoints). To classify its therapeutic effects, it can be synergistic, additive, or 

antagonistic if the effect is greater than, equal to, or less than the summed effects of drug 

combinations (Jia et al., 2009). 

As stated in the previous section, the complicated transporter-enzyme interplay in the 

deposition of drug leads to the difficulty for the identification of DDIs in drug 

administration and drug development. Thus, understanding the molecular mechanism 

underlying different types of drug interaction could facilitate the discovery of novel DDI. 

Recently, in-vitro technologies can qualitatively provide an insight into the potential DDI 

based on the observation of enzyme kinetic parameters. Via ADME screening efforts as 

well as the assessment of CYP inhibition, the choice of test compound inhibiting the 

metabolism of one probe substrate for an enzyme in the in-vitro experiment can be 

fulfilled to carry out the prediction of in-vivo DDI. (Wienkers & Heath, 2005) addressed 

basic principles of in-vitro inhibition prediction underlying the generation of in-vitro drug 

metabolism data and suggested several factors that introduced error or uncertainty into 

a quantitative prediction of in-vivo DDI based on in-vitro derived PK parameters. In 

(Rostami-Hodjegan & Tucker, 2004), three factors authors recommended for the ideal 

model to predict metabolic drug-drug interaction (M-DDI) should be an accurate 

measurement in the average increase in the area under the plasma concentration-time 

curve (AUC) of a victim drug following administration of a perpetrator drug, the plasma 

binding displacement interaction and the impact of the concentration-time profile of the 

inhibitor. To evaluate the potential for M-DDI, (Rostami-Hodjegan & Tucker, 2004) 
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developed an in silico software SIMCYP, which incorporate extensive data on 

demographics, disease states, anatomical, physiological, genetic, biochemical variables, 

and input of information on in-vitro drug metabolism and transport. 
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1.3 Computational Drug Interaction Prediction and Drug Interaction Text Mining 

1.3.1 Overview of Computational Drug Interaction Prediction 

The evaluation of the potential risk of DDI is of importance in patient safety since drug-

drug interactions can raise the danger of patients and the cost of healthcare system. 

According to the guidance for industry from the Food and Drug Administration (Huang, 

Temple, Throckmorton, & Lesko, 2007), study design, data analysis and implication for 

dosing and labeling are suggested to deal with drug interaction studies. When studying 

DDI for a new drug, it usually begins with in vitro study to determine whether a drug is a 

substrate, inhibitor, or inducer of metabolizing enzymes. The consequence of in vitro 

investigations can serve as an evidence to screen out the candidate potential drug pairs 

for additional in vivo study. To conduct an in vivo DDI study for an investigating drug, a 

quantitative analysis to mathematically describe the kinetics of drug metabolism involved 

in ADME process is needed. The basic model for the initial assessment of DDI based on in 

vitro and in vivo studies can be achieved by physiologically-based pharmacokinetics (PBPK) 

modeling. From published in vitro experiments and in vivo studies, (Chien et al., 2006; Li, 

2007; Li et al., 2007; Quinney et al., 2010; Wang, Kim, Quinney, Zhou, & Li, 2010; Yu, Kim, 

Wang, Hall, & Li, 2008; J. Zhou, Qin, Sara, et al., 2009; J. Zhou, Qin, Yu, et al., 2009) had 

developed Bayesian models and computational algorithms to construct physiological 

based pharmacokinetic (PBPK) models for DDI prediction. 

Another common way to explore novel DDI is literature-based discovery. The hidden 

knowledge among information embedded in publications can be dug out through finding 
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connections between articles. To this end, many researchers took advantage of some 

commercial or public databases as resource, such as Metabolism & Transport Drug 

Interaction Database (DIDB) (Hachad, Ragueneau-Majlessi, & Levy, 2010), PharGKB 

(Hewett et al., 2002), and DrugBank (Knox et al., 2011) which provided extensive lists of 

DDI information published in articles, clinical files or biomedical research reports. 

(Gottlieb, Stein, Oron, Ruppin, & Sharan, 2012) proposed a computational framework 

INDI to infer and explore DDI by calculating similarity measurement between drug pair 

via diverse feature measurements i.e chemical-based, ligand-based, side-effect based, 

annotation-based, sequence-based, and etc. However, the problem of data inconsistancy 

arose when using different databases. Some significant scientific evidences associated 

with DDI are limited or lacking in some existing databases. This deficiency is hard to 

prevent because the tasks of data collections are manually accomplished by different 

research groups or professional experts. To conquer this problem, employing the 

technologies from Information Retrieval (IR) or Natural Language Processing (NLP) can be 

a solution to help extract data more efficiently and consistently. 

 

1.3.2 Biomedical Text Mining 

Text mining refers to the process of deriving high-quality information from text, which 

relies on Natural Language Processing (NLP). To translate the text into computer-readable 

language, there are some basic steps of NLP (Nadkarni, Ohno-Machado, & Chapman, 

2011), including sentence splitting, tokenization, part-of-speech, name entity recognition, 
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shallow parsing, and syntactic parsing. In this section, we do not go into the details of 

techniques for NLP tools. The attentions will be paid more on the tasks of corpus 

construction, information retrieval (IR) or information extraction (IE), which employs 

highly scalable statistics-based techniques to index and search large volume of text 

efficiently. 

Extracting facts from texts is the goal of text mining systems. The range of extraction tasks 

can be narrow from retrieving potentially relevant articles by sophisticated keyword 

search or classifying papers into different ontological types (IR), recognizing biological 

entities or concepts in text, detecting relations between biological entities (IE) and 

broader to document summarization or question answering (beyond IE) (Zweigenbaum, 

Demner-Fushman, Yu, & Cohen, 2007). To fulfill those tasks in biomedical domain, name 

entity recognition is an initial processing step because the significant knowledge is usually 

centered on the mechanism of biological activities which are described by nominalized 

verbs and nouns within sentences. Therefore, to identify text that satisfies various types 

of information needs is an important first step toward accurate text mining. But how to 

utilize the identified entities for improving text mining is challenging. One solution to this 

problem is an annotated corpus. The corpus annotated with such information allows real 

usage within text to be taken into account. The annotated sentence then can be 

represented in syntactic and semantic format, which shows the different levels of 

scientific characteristics. However, the strategy of constructing corpus is diverse. It differs 

with the purpose of text mining task and the methodology we used in extracting 

information. (J. D. Kim, Ohta, Tateisi, & Tsujii, 2003) introduces GENIA corpus with 
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linguistically rich annotations for biomedical articles. The value of GENIA corpus comes 

from its annotations. All biologically meaningful terms are semantically annotated with 

descriptors from GENIA ontology. (Wilbur, Rzhetsky, & Shatkay, 2006) suggests the basic 

guideline and criteria of corpus construction and annotation task for facilitating the 

training components of IE system by using machine learning method. Another value of 

annotated corpus is being a gold standard that facilitates the evaluation of approach. The 

success of practical applications crucially depends on the quality of extraction results, 

which against the access of gold standard reference. 

 

1.3.3 Relationship Extraction 

Within information extraction (IE) methods, we are more interesting in relationship 

extraction. The goal of relationship extraction is to detect the prespecified type of relation 

between a pair of entities of given types. A relation is typically represented as a pair of 

entities, linked by an arc that is either directed or undirected. The arc is given a label 

usually corresponding to a semantic type. In biology, the type of entities can be very 

specific such gene, protein, or drug, while the type of relationship can be referred from 

some particular verbs, including transcribe, repress, or inhibit. 

To effectively extract relationship, analysis of sentence structure is necessary. The use of 

semantic processing or deep parsing techniques that analyze both the syntactic and 

semantic structure of texts can benefit relation extraction. Several approaches had been 

reported in literature to extract relation of interest. Generally, there are three main 
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approaches for relationship extraction: co-occurrence-based, rule-based, and machine-

learning based approaches. (Muller, Kenny, & Sternberg, 2004) employ co-occurrence-

based method, which is the simplest way to capture relationships relying on co-

occurrence of two entities to derive a relation. Rule-based approaches (Feldman, Regev, 

Finkelstein-Landau, Hurvitz, & Kogan, 2002; K., R., & R., 2007) are to take advantage of 

linguistic technology to grasp syntactic structure or semantic meaning for understanding 

the relationship from the unstructured text. (Feldman et al., 2002) employed a NP1-Verb-

NP2 template to identify the relation between two domain-specific entities. (K. et al., 

2007) constructed a set of domain-specific rules and applies them to dependency parse 

tree to capture different forms of expressing a given relationship. Finally, classifiers using 

machine-learning approaches such as Support Vector Machines (SVM) (Qian & Zhou, 2012) 

often used for relation extraction. This method needs laborious efforts to define 

grammars or rules and text in training dataset is manually tagged by a human expert. This 

text mining method use the training data to automatically learn the “rules” so it can mine 

wanted information or identify the necessary knowledge (Airola et al., 2008; Chen, Liu, & 

Manderick, 2009; Pyysalo et al., 2008; Tikk, Thomas, Palaga, Hakenberg, & Leser, 2010). 

The comparison among different methods is not easy because each method obtains its 

inherited pros and cons. Co-occurrence method provides highest recall but poor precision 

among three. A large amount of false positive relations are returned whenever the 

sentence is sophisticated with more than two entities or two key entities co-occurred in 

each single sentence but it does not state their relationship. Thus, co-occurrence method 

is more suitable to use as a simple baseline method for performance comparison. Rule-
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based method achieves better precision in extracting binary relationships due to the more 

precise rule conditions for defining relationship. But when it meets the complex sentence 

with various coordinates and relational clauses, the performance turn down obviously (D. 

Zhou & He, 2008). In general, machine learning-based method performs the best among 

methods. As an evidence in BioCreative challenge (M., F., & A., 2009), the frameworks 

using supervised machine learning algorithm outperformed existing methods in detecting 

protein-protein interaction. One important advantage is system can predict categories for 

unseen samples. However, this advantage is heavily relying on annotated corpus (Segura-

Bedmar, Martinez, & de Pablo-Sanchez, 2011b). Therefore, it can be also a big 

disadvantage because of the need for huge learning set. 

 

1.3.4 Literature Review for Extracting Drug-Drug Interaction 

Different approaches had been developed for extracting biomedical relationships such as 

protein-protein interactions. From the experience of previous researches centered on 

protein-protein interaction (PPI) (Airola et al., 2008; Chen et al., 2009; Pyysalo et al., 2008; 

Qian & Zhou, 2012; Tikk et al., 2010), few approaches have been proposed to the problem 

of detecting DDI. To promote the development of DDI extraction tools, DDIExtraction 

2011, the first challenge task on drug-drug interaction extraction, was held in 2011 at 

Spain. In this workshop, they provided evidence for the most effective methods available 

to solve specific problems and reveal the performance on these problems. In competition, 

most participants proposed systems using classifiers SVM or RLS. Their choices verified 
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that machine learning can outperform other methods in relation extraction. Observed 

from results, approaches based on kernel methods achieved better performance than the 

classical feature-based methods (Segura-Bedmar, Martınez, & Sánchez-Cisneros, 2011a). 

Thus, the advantages of kernel-based method using machine learning classifier are 

spotlighted in this workshop. 

In literature, some articles are outstanding in DDI extraction. The co-chairs of 

DDIExtraction 2011 (I. Segura-Bedmar, P. Martinez, et al., 2011b) proposed a hybrid 

approach, which combines shallow parsing and pattern matching to extract relation 

between drugs based on annotated corpus. It utilizes the proposed syntactic patterns to 

split the sentence into clauses from which relations are extracted by matching patterns. 

The ability of dealing with complicated sentence is the advantage of this method. 

Complexity can be diminished by separating a long sentence into simplified clauses and 

by the detection of the apposition and coordinate structure. But there is one gap in the 

extraction of DDI information if used in pharmacokinetics or pharmacogenetics articles. 

Only exploring DDI based on literal denotation will lead to the missing detection of actual 

DDI information due to the lacking of scientific knowledge. In (B. Percha, Garten, & Altman, 

2012), DDIs are identified by aggregating drug-gene interactions which are extracted via 

rule-based method. The extracted interactions are then normalized and mapped into 

their standardized ontology to form the semantics network. The network could be useful 

to find potential DDI and the types of relationship.  
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Differed from (B. Percha et al., 2012) extracting DDI via the perspective of 

pharmacogenetics, (L. Tari, Anwar, Liang, Cai, & Baral, 2010) developed a method that 

combined text mining and automated reasoning to extract DDIs with the support of 

enzyme domain knowledge. This work focused on the discovery of DDIs through the 

integration of biological knowledge with biological facts from published literature by 

using text mining and automated reasoning approach. The novelty of this method is not 

only to extract DDI pairs from explicitly mentioned text like the typical extraction 

approach (I Segura-Bedmar, Martínez, P., de Pablo-Sánchez, C., 2011) but also enable to 

discover potential DDIs by automated reasoning. In this work, the biological knowledge 

includes the two relationships between drugs and metabolism enzymes, including how 

the drug is catalyzed by an enzyme and how the induction or inhibition of metabolism 

enzymes by another drug. On the other hand, the biological facts are curated from 

literature. Since the biological factors curated from literature can meet the relationship 

of biological knowledge and identify which enzyme is induced or inhibited by specific drug 

or the enzymes which are responsible for the metabolism of that drug, the DDI evidence 

can be acquired through the use of logic representation of the domain knowledge and 

automated reasoning. The distinct capability of extracting drug-enzyme interactions to 

infer DDIs that are not explicitly stated in text through automated reasoning is the beauty 

of this work.  

Similar to (L. Tari, Anwar, S., Liang, S., Cai, J., Baral, C., 2010), Boyce (R. Boyce, Collins, 

Horn, & Kalet, 2009b)  applied a pharmacological knowledge base called Drug Interaction 

Knowledge-base (DIKB) to predict significant interactions in a validation set. Differed from 
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Tari’s work, this approach obtains the ability of leveraging the available scientific evidence 

within a domain for supporting important drug package insertions. It benefits from a key 

component of the system, a rule-based theory of how drugs interact by metabolic 

inhibition. Based on the background knowledge in DIKB and the rule-based theory, it 

distinguished between assertion instance (a clear statement of some property) and 

insertion types (such as X substrate-of Y). Therefore, experts can calculate their 

confidence scores for drug-mechanism assertions by defining combinations 

of evidence types from each assertion type in the system’s evidence taxonomy. Then, the 

system ranks the evidence-type combinations by the relative amount of confidence score, 

called levels-of-evidence (LOEs).  
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1.4 Knowledge Gap for Drug-Drug Interaction Studies 

Since the attention paid more to drug interactions has increased, current research aims 

to investigate different scopes of drug interactions, including pharmacogenetics (PG), 

pharmacokinetics (PK), and pharmacodynamics (PD) (R. Boyce, Collins, Horn, & Kalet, 

2009a; R. Boyce et al., 2009b; Hennessy & Flockhart, 2012).  All three types of studies are 

critical, but they get insight into the truth in different aspects. PG studies explore the 

inherited genetic difference in drug metabolism pathways, which can influence individual 

response to drugs (Klotz, 2007). PK studies examine how an organism affects a drug in 

terms of absorption, distribution, metabolism, and excretion; whereas PD studies is used 

to know how the drugs affect the organism (Knollmann, 2011). As diverse disciplines and 

varied studies are involved, interaction evidence is often not available cross all three types 

of evidence, which create knowledge gaps and these gaps hinder both DDI and 

pharmacogenetics research.  

Owing to the development of automatic text mining technology, it should be a good 

opportunity to aggregate and tap into our collective scientific knowledge from biomedical 

literature and potentiate translational drug interaction research. However, most of 

current works largely treat DDI as if it is studied at a single scale. For a given drug 

interaction, the three types of evidence are typically not reported together and are often 

not all available. We refer to lack of evidence along any of the three types as a knowledge 

gap. As current automatic extraction methods treat all DDI reports similarly, without 

distinguishing experimental evidence at different scales, the problem of knowledge gaps 
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in DDI evidence has not been hitherto considered or addressed. This may explain the 

relatively low performance so far achieved by general-purpose DDI extraction 

(e.g.F1≈0.34-0.75) (Segura-Bedmar, Crespo, de Pablo-Sanchez, & Martinez, 2010; I. 

Segura-Bedmar, Martínez, P., de Pablo-Sánchez, C., 2011).  
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1.5 Proposed Solutions 

To conquer this issue, three aims are proposed to close such gaps in DDI evidence by using 

informatics methods to integrate and tap into our collective scientific knowledge. 

1.5.1 Scope of Aim 1: Lexica, Ontology, and Corpora for DDI Evidence 

The purpose of this aim is to prepare the required resources that can be used to 

distinguish the three types of DDI evidence (in vitro PK, clinical PK, and clinical PD studies). 

In this work, DDI lexica, ontology and corpora pertaining to three types of studies are 

developed. a) The lexica contain terminologies pertaining to drugs, study design, 

drug/enzyme/transporter relationships, ADR, DDI models and their parameters. b) A 

comprehensive PK ontology was constructed to build the relationship between concepts 

for in vitro PK and in vivo PK studies, which can provide background knowledge for text 

mining tools. c) Two different corpora are prepared: The first corpus is constructed to be 

the golden standard corpus. The second corpus is prepared to be the training data for 

large-scale text mining. For golden standard corpus, using our ontology and lexica, DDI 

information in entity level, sentence level, and entity-relationship level were indicated 

and annotated with the type of evidence. For training corpus, 300 DDI relevant abstracts 

for each evidence type and 800 DDI irrelevant abstracts including single drug, drug-

nutrition, PD related and randomly selected abstracts are manually curated from Medline 

database. The detail of this aim will be described in Chapter 2 and Chapter 3.  
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1.5.2 Scope of Aim 2: Named Entity Recognition for Drug Metabolite and Reaction 

Although there exist many well-established dictionaries for drug names, such as DrugBank, 

MeSH terms, Rx-Norm, NDC, PubChem, etc, the existing resources that contain the 

terminologies of drug metabolites are very limited. To enrich the information available in 

public database and differentiate from metabolome, the purpose of this aim is to propose 

a NER tool for drug metabolite and reaction from biomedical literature. In this work, 1) 

metabolite-rich corpora and 2) a comprehensive lexical repository, including a drug name 

dictionary and the lexicon of general nomenclatures (prefix/suffix) for drug metabolite 

are constructed. 2) A named entity recognition tool to annotate drug metabolites and 

reactions in scientific text, utilizing an integrated dictionary and machine learning 

algorithms, is developed. The detail of this aim will be described in Chapter 4. 

 

1.5.3 Scope of Aim 3: Evidence-based Text Mining Tools for DDI 

The purpose of this aim is to develop a text mining pipeline for large-scale mining and 

analysis of drug-interaction information such that it can be applied to retrieve, categorize, 

and extract the information of investigated DDI pairs from published literature available 

on PubMed and to identify all knowledge gaps in experimental evidence among them. To 

implement a large-scale screening on whole Medline database, training datasets consist 

of hundreds of positive and negative abstracts. Second, we develop a suite of text mining 

tools to explicitly identify each type of DDI evidence, namely in vitro PK, in vivo PK and 

clinical PD. The suite consists of: 1) Information Retrieval (IR): Document-level classifiers 
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for retrieval of PubMed abstracts presenting each type of DDI evidence; 2) Information 

extraction (IE) tools for tagging drugs, drug metabolites, interaction verbs, and 

experimental endpoints and identifying interacting drug pairs from abstracts. 3) Identify 

knowledge gap of DDI Evidence: Identify and automatically annotate interaction-evidence 

obtained from PubMed abstracts based on their likelihood to convey reliable evidence of 

each type. Display the Venn Diagram of DDI evidence cross all types of studies and ranked 

and annotated list to experts who will use it to select drug-pairs with strong in-vivo and 

clinical interaction evidence but insufficient in-vitro evidence. The detail of this aim will 

be described in Chapter 5. 

 

1.5.4 The Theoretical Model for This Project 

As shown in Figure 1.1, Aim 1 provides the resource of a drug name dictionary and In Vitro 

PK corpus to Aim 2 and offers the lexica and corpus of DDI evidences for AIM 3. With the 

resource that Aim 1 provides, Aim 2 proposed a NER tool to discover drug metabolite and 

reaction from literature, which is valuable to enrich the limited resource in public 

database, improve the identification of drug metabolite in pharmacological articles, and 

increase the coverage of information extraction. For Aim 3, the lexica, ontology and 

corpus from Aim 1 are critical components for text mining. The lexica and ontology can 

used to annotate all aspects of DDI and create features to distinguish different DDI 

evidences from diverse studies. The corpus facilitated DDI text mining from the literature. 
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Figure 1.1 Theoretical Model of This Project 
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1.6 Impact of This Project 

1.6.1 Impact of Aim 1 

In this work, lexica, ontology, and corpus are constructed. By bringing terminologies of 

diverse types of experiments together from different databases into an unified resource, 

the integrated lexica allow researchers from diverse background and disciplines to 

conduct data collection and distinguish DDI evidence from different types of studies. The 

DDI ontology is built to interpret raw text in biomedical articles by the descriptors with a 

standardized format and organized into hierarchical structure. Such an advantage allows 

complex text to be represented with semantic and consistent manner. DDI corpus 

construction is an important first step towards more accurate text mining, which allows 

utilizing scarce resources to annotate text as a training corpus for machine learning. In 

addition, the corpus can be widely useful to the biomedical data-mining research 

community for exploring the information of drug interaction and lead to the development 

of practical and useful resources. Overall, this aim contributes an integrated lexicon for 

collecting terminologies of diverse DDI studies, an ontology for interpreting DDI 

terminologies with a semantic format, and a set of corpus for implementing DDI text 

mining. 
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1.6.2 Impact of Aim 2 

The importance of drug metabolite to DDI: Drug metabolism, distribution, and excretion 

are the primary pharmacokinetics research areas. A drug’s pharmacokinetics (PK) involves 

not only the parent compound, but also its metabolites (Malcolm Rowland, Tozer, & 

Rowland, 2011). In some instances, an active drug metabolite can retain enough or even 

dominate its intrinsic activity at target receptor and contribute to the pharmacological 

effects. Certain drugs such as codeine and losartan have active metabolites (morphine 

and EXP3174 respectively) that are responsible for more therapeutic action than their 

parent drugs (Obach, 2013). On the other hand, pro-drugs, formulated in an inactive form, 

are designed to be metabolized inside the body to form the active drugs (Hacker, Messer 

II, & Bachmann, 2009).  A salient example is tamoxifen. As a pro-drug, tamoxifen itself is 

not an active compound to treat breast cancer. Instead, his metabolites, 4-OH-tamoxifen 

and endoxifen are potent inhibitors to estrogen alpha (Desta, Ward, Soukhova, & 

Flockhart, 2004; Johnson et al., 2004; Lee, Ward, Desta, Flockhart, & Jones, 2003; Stearns 

et al., 2003). Drug interactions always make the PK research even more complicated. One 

drug’s metabolism, distribution, and excretion can be changed by another drug, and 

sometimes the other drug’s metabolites, too. A notable example is itraconazole. 

Itraconazole itself is a potent CYP3A inhibitor, so are its metabolites, such as hydroxy-

itraconazole, keto-itraconazole, and N-desalkyl-itraconazole (Isoherranen, Kunze, Allen, 

Nelson, & Thummel, 2004). Therefore, all of the CYP3A substrates’ metabolism, such as 

midazolam, triazolam, and etc, are inhibited by itraconazole and its metabolites, if they 

are taken together. Pharmacogenetics, another forefront of pharmacology research, also 
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has major impact on drug metabolism products. Using the previous tamoxifen example, 

tamoxifen active metabolite, endoxifen, is generated through CYP2D6 enzyme. Among 

breast cancer patients with CYP2D6 loss functional variants (e.g. *4, *5, and*10), the 

patients usually have very limited tamoxifen metabolite, endoxifen concentration 

(Stearns et al., 2003). Therefore, drug metabolites and their parent drugs are equally 

important in pharmacokinetics research. 

Improve the deficiency of drug metabolite in public database: Although there are a 

number of well-established dictionaries for drug names, such as DrugBank, MeSH terms, 

Rx-Norm, NDC, PubChem, etc, there is very limited naming system for drug metabolites. 

In particular, we want to make a distinction between metabolome and drug metabolites. 

The metabolome is considered to be the collection of all metabolites in a biological cell, 

tissue, organ, or organism. Metabolome may include both endogenous metabolites that 

are naturally produced by an organism (such as amino acids, organic acids, nucleic acids, 

fatty acids, amines, sugars, vitamins, co-factors, pigments, antibiotics, etc.) as well as 

exogenous chemicals (such as drugs, environmental contaminants, food additives, toxins 

and other xenobiotics) that are not naturally produced by an organism (Nordstrom, 

O'Maille, Qin, & Siuzdak, 2006; Wishart, 2007). Therefore, ideally, metabolome shall 

include drug metabolites. However, due to the limitation of Mass-Spectrometry (MS) or 

Nuclear Magnetic Resonance (NMR) biotechnologies, metabolome studies and drug 

metabolisms studies are conducted in very different protocols. Drug metabolites rarely 

can be found from metabolome studies, either because they are different metabolites, or 

their names are totally different. For instance, the highly populated Human Metabolome 

https://en.wikipedia.org/wiki/Metabolites
https://en.wikipedia.org/wiki/Organism
https://en.wikipedia.org/wiki/Amino_acids
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Database (HMDB) (Wishart et al., 2013), in which reports data on >29,000 endogenous 

metabolites, 2485 drugs, and 948 drug metabolites, is not known in the pharmacokinetics 

research fields at all. Other examples are DrugBank 4.0 (Law et al., 2014) and ChEBI 

(Degtyarenko et al., 2008), comprising of only 1,445 and 111 drug metabolites 

respectively, which are  much less than the total number of generic drugs (8,184). 

Contribution to pharmacology research community: The main purpose of Aim 2 is to 

construct a tool for recognizing drug metabolite and reaction from text. In this task, an 

annotation guideline, a gold standard corpus and a NER tool for drug metabolite were 

constructed. The annotation guideline provides well-defined rules for annotators to 

recognize and differentiate drug metabolite from metabolome and classify the types of 

drug metabolite representation in text.  With the proposed annotation guideline, a high 

quality gold standard corpus is finely annotated by three domain experts. This corpus 

covers all types of drug metabolite representations, which facilitates the next step 

machine learning to discover drug metabolites from unknown text. With such a gold 

standard corpus, an innovative drug metabolite NER tool was developed to capture drug 

metabolite and reaction defined in the proposed annotation guideline. The main impact 

of this project is to enrich the limited resource of drug metabolite in public database, 

improve the identification of drug metabolite in pharmacological articles, and increase 

the coverage of information extraction for drug interaction. 
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1.6.3 Impact of Aim 3 

Explore evidence at multiple scales of drug-drug interaction: Evidence-based assessment 

of published drug-drug interaction information appears to be feasible and would help 

clinicians and patients. Assessment of this information on a large scale requires significant 

resources and the resolution of a number to technical issues. To meet this problem, 

recent interest in automatic DDI identification focuses primarily on extraction of 

interacting drug-pairs from multiple resources, including biomedical literature, EHRs, and 

FDA labeling (Segura-Bedmar, Martinez, & de Pablo-Sanchez, 2011a; L. Tari, Anwar, S., 

Liang, S., Cai, J., Baral, C., 2010). However, current work largely treats DDI as if it is studied 

at a single scale. To expedite progress through DDI information it is essential to note that 

experimental evidence for DDI ranges in scale from intracellular biochemistry to human 

populations, and can be categorized into three main types (Hennessy & Flockhart, 2012):  

in vitro, in vivo and clinical. While clinical evidence may ultimately trigger DDI alerts, it 

does not provide insight into molecular mechanisms underlying the interactions. The 

latter is vital for determining drug absorption, distribution, metabolism, excretion, and 

targeting, which enable investigating less risky alternatives. 

Due to the diverse disciplines involved in DDI studies (Hennessy & Flockhart, 2012), for a 

given drug interaction, the three types of evidence are typically not reported together 

and are often not all available. We refer to lack of evidence along any of the three types 

as a knowledge gap. As current automatic extraction methods treat all DDI reports 

similarly, without distinguishing experimental evidence at different scales, the problem 
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of knowledge gaps in DDI evidence has not been hitherto considered or addressed. This 

may explain the relatively low performance so far achieved by general-purpose DDI 

extraction (e.g.F1≈0.34-0.75) (I. Segura-Bedmar, P. Martinez, et al., 2011a). 

Large-scale, comprehensive text-mining for identifying knowledge gaps for DDI: 

Biomedical text from a broad variety of publications and multiple sources forms an 

increasingly important basis for integrating our collective scientific knowledge and 

enabling knowledge discovery (Albright et al., 2013; Savova et al., 2010). This provides the 

opportunity to tackle the problem of missing DDI evidence and integrate dispersed 

published evidence to close knowledge gaps in experimental DDI evidence. In contrast to 

the traditional drug interaction research, which usually focuses on one drug a time, we 

propose to utilize text mining to approach the problem at the entire “bibliome” scale. 

That is, we propose to apply our tools to all published experimental reports in PubMed, 

the 20,446 available FDA prescription-drug labels (R. D. Boyce, Collins, Clayton, Kloke, & 

Horn, 2012), as well as take advantage of other available resources such as DrugBank 

(Segura-Bedmar I, 2010) in our lexica- and tool-development. 

Translation between molecular and clinical research: Clinical decisions typically stem from 

in vivo and clinical evidence. However, studying molecular interaction mechanisms in 

vitro is essential for understanding the hazards of specific drugs given certain genetic 

polymorphisms and for exploring potential alternative treatments. Since translational DDI 

research aims to link between knowledge of molecular mechanisms underlying DDI and 

their clinical consequences, it is of paramount importance to identify knowledge gaps that 



  

28 

prevent such translation. Therefore, an essential and fundamental step toward 

developing reliable clinical decision systems requires Comprehensive drug-interaction 

evidence of all three types.  

Indeed, the quality of outcome in the proposed work might be imperfect and there are a 

great deal of false positives in the result. Even the DDI pairs are truly mentioned in a 

specific study, they can be only considered as potential drug interactions. A complete 

evaluation of the potential for the drug interaction is needed to decide whether the 

potential interaction exists and, if so, whether the potential for such interaction indicates 

the needs for dosage adjustment or additional therapeutic monitoring. However, the 

value of this work is that the aggregative result can provide an exciting opportunity to 

promote translation of molecular to clinical research.  We will be able to follow-up by 

experimentally testing potentially problematic DDIs that our proposed research uncovers. 

This will further facilitate the downstream development of more effective clinical decision 

systems. 

Improve the coverage of DDI evidence in public databases: Recently, more and more 

research studies utilized DDI evidences from existing public databases for drug interaction 

study. However, an overlapping analysis between Drugbank and Micromedex showed 

that there are around 25% of disagreements (Wong, Ko, & Chan, 2008). The lack of 

comprehensive scientific evidences complicates the process of verifying the discrepancies. 

Therefore, to explore the mechanism behind drug interaction, it will supply the more 

necessary scientific evidence to validate DDIs.   



  

29 

Chapter 2. An Integrated Pharmacokinetics Ontology and Corpus 

2.1 Background 

Pharmacokinetics (PK) is a very important translational research field, which studies drug 

absorption, disposition, metabolism, excretion, and transportation (ADMET). PK 

systematically investigates the physiological and biochemical mechanisms of drug 

exposure in multiple tissue types, cells, animals, and human subjects (Malcolm Rowland 

& Tozer, 1995 ). There are two major molecular mechanisms of a drug’s PK: metabolism 

and transportation. The drug metabolism mainly happens in the gut and liver; while drug 

transportation exists in all tissue types. If the PK can be interpreted as how a body does 

on the drug, pharmacodynamics (PD) can be defined as how a drug does on the body. A 

drug’s pharmacodynamics effect ranges widely from the molecular signals (such as its 

targets or downstream biomarkers) to clinical symptoms (such as the efficacy or side 

effect endpoints) (Malcolm Rowland & Tozer, 1995 ). 

Drug-drug interaction (DDI) is another important pharmacology concept. It is defined as 

whether one drug’s PK or PD response is changed due to the presence of another drug. 

PD based drug interaction has a wide range of interpretations (i.e. from molecular 

markers to clinical endpoints). PK based drug interaction mechanism is very well defined: 

metabolism enzyme based and transporter based DDIs. Pharmacogenetic (PG) variations 

in a drug’s PK and PD pathways can also affect its responses (Malcolm Rowland & Tozer, 

1995 ). In this paper, we focus our discussion on the PK, PK based DDI, and PK related PG. 
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Although significant efforts have been invested to integrate biochemistry, genetics, and 

clinical information for drugs, significant gaps exist in the area of PK. For example 

DrugBank (http://www.drugbank.ca/) doesn’t have in vitro PK and its associated DDI data; 

DiDB (http://www.druginteractioninfo.org/) doesn’t have sufficient PG data; and 

PharmGKB (http://www.pharmgkb.org/) doesn’t have sufficient in vivo and in vitro PK 

and its associated DDI data. As an alternative approach to collect PK from the published 

literature, text mining has just started to be explored (Malcolm Rowland & Tozer, 1995 ; 

Segura-Bedmar, Martinez, & de Pablo-Sanchez, 2011d; L. Tari et al., 2010; Wang et al., 

2009). 

From either database construction or literature mining, the main challenge of PK data 

integration is the lack of PK ontology. This paper developed a PK ontology first. Then, a 

PK corpus was constructed. It facilitated DDI text mining from the literature.  
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2.2 Material and Methods 

2.2.1 PK Ontology Construction and Content 

PK Ontology is composed of several components: experiments, metabolism, transporter, 

drug, and subject (Table 2.1). Our primary contribution is the ontology development for 

the PK experiment, and integration of the PK experiment ontology with other PK-related 

ontologies. 

Categories Description Resources 

Pharmacokinetic
s Experiments 

Pharmacokinetics 
studies and 
parameters. There 
are two major 
categories: in vitro 
experiments and in 
vivo studies. 

Manually accumulated from text books and 
literatures. 

Transporters Drug 
transportation 
enzymes 

http://www.tcdb.org 

Metabolism 
Enzymes 

Drug metabolism 
enzymes 

http://www.cypalleles.ki.se/ 

Drugs Drug names http://www.drugbank.ca/ 

Subjects Subject description 
for a 
pharmacokinetics 
study. It is 
composed three 
categories: 
disease, 
physiology, and 
demographics 

http://bioportal.bioontology.org/ontologie
s/42056 
http://bioportal.bioontology.org/ontologie
s/39343 
http://bioportal.bioontology.org/ontologie
s/42067 

Table 2.1 PK Ontology Categories 
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Experiment specifies in vitro and in vivo PK studies and their associated PK parameters. 

Table 2.2 presents definitions and units of the in vitro PK parameters. The PK parameters 

of the single drug metabolism experiment include Michaelis-Menten constant (Km), 

maximum velocity of the enzyme activity (Vmax), intrinsic clearance (CLint), metabolic ratio, 

and fraction of metabolism by an enzyme (fmenzyme) (Segel, 1975). In the transporter 

experiment, the PK parameters include apparent permeability (Papp), ratio of the 

basolateral to apical permeability and apical to basolateral permeability (Re), radioactivity, 

and uptake volume (International Transporter et al., 2010). There are multiple drug 

interaction mechanisms: competitive inhibition, non-competitive inhibition, 

uncompetitive inhibition, mechanism based inhibition, and induction (Rostami-Hodjegan 

A, 2004). IC50 is the inhibition concentration that inhibits to 50% enzyme activity; it is 

substrate dependent; and it doesn’t imply the inhibition mechanism. Ki is the inhibition 

rate constant for competitive inhibition, noncompetitive inhibition, and uncompetitive 

inhibition. It represents the inhibition concentration that inhibits to 50% enzyme activity, 

and it is substrate concentration independent. Kdeg is the degradation rate constant for 

the enzyme. KI is the concentration of inhibitor associated with half maximal Inactivation 

in the mechanism based inhibition; and Kinact is the maximum degradation rate constant 

in the presence of a high concentration of inhibitor in the mechanism based inhibition. 

Emax is the maximum induction rate, and EC50 is the concentration of inducer that is 

associated with the half maximal induction. 
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Experiment Types Parameters Description Unit References 

Single Drug 
Metabolism 
Experiment 

Km Michaelis-Menten constant. mg L-1 Segel p28. 

Vmax Maximum velocity of the enzyme activity. mg h-1 
mg-1  

Segel p19 

CLint Intrinsic metabolic clearance is defined as ratio of 
maximum metabolism rate, Vmax, and the 
Michaelis-Menten constant, Km. 

ml h-1 mg-

1  
RT p165 

Metabolic ratio Parent drug/metabolite concentration ratio NA 
 

fmenzyme Fraction of drug systemically available that is 
converted to a metabolite through a specific 
enzyme. 

NA RT xiii 

Single Drug 
Transporter 
Experiment 

Papp The apparent permeability of compounds across the 
monolayer cells. 

cm/sec Transport 
Consortiu
m 

Re Re is the ratio of basolateral to apical over apical to 
basolateral. 

NA Transport 
Consortiu
m 

Radioactivity Total radioactivity in plasma and bile samples is 
measured in a liquid scintillation counter 

dpm/mg  Transport 
Consortiu
m 

Uptake Volume The amount of radioactivity associated with the cells 
divided by its concentration in the incubation 
medium. 

ul/mg  Transport 
Consortiu
m 

Drug Interaction 
Experiment 

IC50 Inhibitor concentration that inhibits to 50% of 
enzyme activity. 

mg L-1 
 

Ki Inhibition rate constant for competitive inhibition, 
noncompetitive inhibition, and uncompetitive 
inhibition. 

mg L-1 Segel p103 

Kdeg The natural degradation rate constant for the 
Enzyme. 

h-1 Rostami-
Hodjegan 
and Tucker 

KI The concentration of inhibitor associated with half 
maximal Inactivation in the mechanism based 
inhibition. 

mg L-1 Rostami-
Hodjegan 
and Tucker 

Kinact The maximum degradation rate constant in the 
presence of a high concentration of inhibitor in the 
mechanism based inhibition. 

h-1 Rostami-
Hodjegan 
and Tucker 

Emax Maximum induction rate Unit free Rostami-
Hodjegan 
and Tucker 

EC50 The concentration of inducer that is associated with 
the half maximal induction. 

mg L-1 Rostami-
Hodjegan 
and Tucker 

Type of Drug 
Interactions 

Competitive/noncompetitive/ 
uncompetitive/mechanism based 
inhibition  and induction. 

Rostami-Hodjegan and Tucker 
  

Table 2.2 In Vitro PK Parameters 
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The in vitro experiment conditions are presented in Table 2.3. Metabolism enzyme 

experiment conditions include buffer, NADPH sources, and protein sources. In particular, 

protein sources include recombinant enzymes, microsomes, hepatocytes, and etc. 

Sometimes, genotype information is available for the microsome or hepatocyte samples. 

Transporter experiment conditions include bi-directional transporter, uptake/efflux, and 

ATPase. Other factors of in vitro experiments include pre-incubation time, incubation 

time, quantification methods, sample size, and data analysis methods. All these info can 

be found in the FDA website 

(http://www.abclabs.com/Portals/0/FDAGuidance_DraftDrugInteractionStudies2006.pd

f). 

  

http://www.abclabs.com/Portals/0/FDAGuidance_DraftDrugInteractionStudies2006.pdf
http://www.abclabs.com/Portals/0/FDAGuidance_DraftDrugInteractionStudies2006.pdf
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Experimental 
Conditions: 

drugs Substrate, metabolite, and inhibitor/inducer FDA Drug 
Interaction 
Guidance, 
2006. Metabolism 

Enzymes 
Buffer Salt composition 

EDTA concentration 

MgCl2 concentration Cytochrome b5 concentration 

NADPH source Concentration of exogenous NADPH added isocytrate 
dehydrogenase + NADP 

protein Non-recombinant 
enzymes 

Microsomes (human liver 
microsomes, human intestine 
microsomes, S9 fraction, cytosol, 
whole cell lysate, hepatocytes. 

Recombinant 
enzymes 

Enzyme name mg/mL or uM 

genotype 
 

Transporters Bi-Directional CHO; Caco-2 cells; HEK-293; Hepa-RG; LLC; LLC-PK1 
MDR1 cells; MDCK; MDCK-MDR1 cells; Suspension 
Hepatocyte Transport 

Uptake/efflux tumor cells, cDNA transfected cells, oocytes injected 
with cRNA of transporters 

ATPase membrane vesicles from various tissues or cells 
expressing P-gp, Reconstituted P-gp 

Other factors Pre-incubation time 

Incubation time 

Quantification 
methods 

HPLC/UV, LC/MS/MS, LC/MS, radiographic 

Sample size 

Data Analysis log-linear regression, plotting; and nonlinear regression 

Table 2.3 In Vitro Experiment Conditions 

  



  

36 

The in vivo PK parameters are presented in Table 2.4. All of the information are 

summarized from two text books (Gibaldi M, 1982; Malcolm Rowland & Tozer, 1995 ). 

There are several main classes of PK parameters. Area under the concentration curve 

parameters are (AUCinf, AUCSS, AUCt, AUMC); drug clearance parameters are (CL, CLb, CLu, 

CLH, CLR, CLpo, CLIV, CLint, CL12); drug concentration parameters are (Cmax, CSS); extraction 

ratio and bioavailability parameters are (E, EH, F, FG, FH, FR, fe, fm); rate constants include 

elimination rate constant k, absorption rate constant ka, urinary excretion rate constant 

ke, Michaelis-Menten constant Km, distribution rate constants (k12, k21), and two rate 

constants in the two-compartment model (λ1, λ2); blood flow rate (Q, QH); time 

parameters (tmax, t1/2); volume distribution parameters (V, Vb, V1, V2, Vss); maximum rate 

of metabolism, Vmax; and ratios of PK parameters that present the extend of the drug 

interaction, (AUCR, CL ratio, Cmax ratio, Css ratio, t1/2 ratio). 
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Category Name Description Unit reference 

PK 
parameter 

AUCinf Area under the drug concentration time curve. mg h L-1 RT p37 

AUCSS Area under the drug concentration time curve within a dosing curve at steady state. mg h L-1 RT pxi 

AUCt Area under the drug concentration time curve from time 0 to t. mg h L-1 RT p37 

AUMC Area under the first moment of concentration versus time curve. mg2 h L-2 RT p486 

AUCR AUC ratio (drug interaction parameter). Unit free 
 

CL Total clearance: defined as the proportionality factor relating rate of elimination to the plasma drug concentration. ml h-1 RT p23 

CLb Blood clearance: defined as the proportionality factor relating rate of elimination to the blood drug concentration. ml h-1 RT p160 

CLu Unbound clearance: defined as the proportionality factor relating rate of elimination to the unbounded plasma drug 
concentration. 

ml h-1 RT p163 

CLH Hepatic portion of the total clearance. ml h-1 RT p161 

CLR Renal portion of the total clearance. ml h-1 RT p161 

CLpo Total clearance of drug following an oral dose. ml h-1 
 

CLIV Total clearance of drug following an IV dose. ml h-1 
 

CLint Intrinsic metabolic clearance is defined as ratio of maximum metabolism rate, Vmax, and the Michaelis-Menten 
constant, Km. 

ml h-1 RT p165 

CL12 Inter-compartment distribution between the central compartment and the peripheral compartment. ml h-1 
 

CL ratio Ratio of the clearance (drug interaction parameter). Unit free 
 

Cmax Highest drug concentration observed in plasma following administration of an extravascular dose. mg L-1 RT pxii 

Cmax ratio The ratio of Cmax (drug interaction parameter). Unit free 
 

Css Concentration of drug in plasma at steady state during a constant rate intravenous infusion. mg L-1 RT pxii 

Css ratio The ratio of Css (drug interaction parameter). Unit free 
 

E Extraction ratio is defined as the ratio between blood clearance, CLb, and the blood flow. Unit free RT p159 

EH Hepatic extraction ratio. Unit free RT p161 

F Bioavailability is defined as the proportion of the drug reaches the systemic blood. Unit free RT p42 

FG Gut-wall bioavailability. Unit free 
 

FH Hepatic bioavailability. Unit free RT p167 

FR Renal bioavailability. Unit free RT p170 

fe Fraction of drug systemically available that is excreted unchanged in urine. Unit free RT pxiii 

fm Fraction of drug systemically available that is converted to a metabolite. Unit free RT pxiii 

fu Ratio of unbound and total drug concentrations in plasma. Unit free RT pxiii 

k Elimination rate constant. h-1 RT pxiii 

K12, k21 Distribution rate constants between central compartment and peripheral compartment. h-1 
 

ka Absorption rate constant. h-1 RT pxiii 

ke Urinary excretion rate constant. h-1 RT pxiii 

km Rate constant for the elimination of a metabolite. h-1 RT pxiii 

Km Michaelis-Menten constant. mg L-1 RT pxiii 

MRT Mean time a molecular resides in body. h RT pxiv 

Q Blood flow. L h-1 RT pxiv 

QH Hepatic blood flow. L h-1 RT pxiv 

tmax Time at which the highest drug concentration occurs following administration of an extravascular dose. h RT pxiv 

t1/2 Half-life of the drug disposition. h RT pxiv 

t1/2 ratio Half-life ratio (drug interaction parameter). Unit free 
 

t1/2,α Half-life of the fast phase drug disposition. h 
 

t1/2,β Half-life of the slow phase drug disposition. h 
 

V Volume of distribution based on drug concentration in plasma. L RT pxiv 

Vb Volume of distribution based on drug concentration in blood. L RT pxiv 

V1 Volume of distribution of the central compartment. L RT pxiv 

V2 Volume of distribution of the peripheral compartment. L 
 

Vss Volume of distribution under the steady state concentration. L RT pxiv 

Vmax Maximum rate of metabolism by an enzymatically mediated reaction. mg h-1 RT pxiv 

λ1, λ2 Disposition rate constants in a two-compartment model. h-1 GP p84 

Pharmacoki
netics 
Models 

Non-Compartment Use drug concentration measurements directly to estimate PK parameters, such as AUC, CL, Cmax, Tmax, t1/2, F, and V. GP p409 

One Compartment  The whole body is a homogeneous compartment, and the distribution of the drug from the blood to tissue is very fast. It assumes 
either a first order or a zero order absorption rate and a first order eliminate rate.  

RT p34 
GP p1 

Two Compartment  It assumes the whole body can be divided into two compartments: central compartment and peripheral compartment. It assumes 
either a first order or a zero order absorption rate and a first order eliminate and distribution rates.  

GP p84 

Study 
Designs 

Hypothesis Bioequivalence, drug interaction, pharmacogenetics, and disease conditions. 
 

Design Single arm or multiple arms; cross-over or fixed order design; with or without randomization; with or without stratification; 
prescreening or no-prescreening; prospective or retrospective studies; and case reports or cohort studies. 

 

Sample size The number of subjects, and the number of plasma or urine samples per subject. 
 

Time points Sampling time points and dosing time points. 
 

Sample types Blood, plasma, and urine. 
 

Dose Subject specific doses. 
 

Quantifi. 
methods 

HPLC/UV, LC/MS/MS, LC/MS, radiographic 
 

Table 2.4 In Vivo PK Studies 
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It is also shown in Table 2.4 that two types of pharmacokinetics models are usually 

presented in the literature: non-compartment model and one or two-compartment 

models. There are multiple items need to be considered in an in vivo PK study. The 

hypotheses include the effect of bioequivalence, drug interaction, pharmacogenetics, and 

disease conditions on a drug’s PK. The design strategies are very diverse: single arm or 

multiple arms, cross-over or fixed order design, with or without randomization, with or 

without stratification, pre-screening or no-pre-screening based on genetic information, 

prospective or retrospective studies, and case reports or cohort studies. The sample size 

includes the number of subjects, and the number of plasma or urine samples per subject. 

The time points include sampling time points and dosing time points. The sample type 

includes blood, plasma, and urine. The drug quantification methods include HPLC/UV, 

LC/MS/MS, LC/MS, and radiographic. 

CYP450 family enzymes predominantly exist in the gut wall and liver. Transporters are 

tissue specific. Table 2.5 presents the tissue specific transports and their functions. Probe 

drug is another important concept in the pharmacology research. An enzyme’s probe 

substrate means that this substrate is primarily metabolized or transported by this 

enzyme. In order to experimentally prove whether a new drug inhibits or induces an 

enzyme, its probe substrate is always utilized to demonstrate this enzyme’s activity 

before and after inhibition or induction. An enzyme’s probe inhibitor or inducer means 

that it inhibits or induces this enzyme primarily. Similarly, an enzyme’s probe inhibitor 

needs to be utilized if we investigate whether a drug is metabolized by this enzyme. Table 

2.6 presents all the probe inhibitors, inducers, and substrates of CYP enzymes. Table 2.7 
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presents all the probe inhibitors, inducers, and substrates of the transporters. All these 

information were collected from industry standard 

(http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/uc

m064982.htm), reviewed in the top pharmacology journal (Huang et al., 2007). 
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Gene Aliases Tissue type Function 

ABCB1 P-gp, MDR1 Intestinal enterocyte, kidney proximal tubule, 
hepatocyte (canalicular), brain endothelia 

Efflux 

ABCG2 BCRP Intestinal enterocyte, hepatocyte (canalicular), kidney 
proximal tubule, brain endothelia, placenta, stem cells, 
mammary gland (lactating) 

Efflux 

SLCO1B1 OATP1B1, OATP-
C, OATP2, LST-1 

Hepatocyte (sinusoidal) Uptake 

SLCO1B3 OATP1B3, OATP-8 Hepatocyte (sinusoidal) Uptake 

SLC22A2 OCT2 Kidney proximal tubule Uptake 

SLC22A6 OAT1 Kidney proximal tubule, placenta Uptake 

SLC22A8 OAT3 Kidney proximal tubule, choroid plexus, brain 
endothelia 

Uptake 

Table 2.5 Tissue Specific Transporters 
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CYP 
Enzymes 

Inhibitors Inducers Substrates 

CYP1A2 Ciprofloxacin, enoxacin, fluvoxamine, 
Methoxsalen, mexiletine, oral 
contraceptives, phenylpropanolamine, 
thiabendazole, vemurafenib, zileuton, 
acyclovir, allopurinol, caffeine, cimetidine, 
daidzein, disulfiram, Echinacea, famotidine, 
norfloxacin, propafenone, propranolol, 
terbinafine, ticlopidine, verapamil 

Montelukast, phenytoin, 
smokers versus non-smokers, 
moricizine, omeprazole, 
phenobarbital 

Alosetron, caffeine, duloxetine, 
melatonin, ramelteon, tacrine, tizanidine, 
theophylline, tizanidine 

CYP2B6 Clopidogrel, ticlopidine prasugrel Efavirenz, rifampin, nevirapine Bupropion, efavirenz 

CYP2C8 Gemfibrozil, fluvoxamine, ketoconazole, 
trimethoprim 

Rifampin Repaglinide, Paclitaxel 

CYP2C9 Amiodarone, fluconazole, miconazole, 
oxandrolone, capecitabine, cotrimoxazole, 
etravirine, fluvastatin, fluvoxamine, 
metronidazole, sulfinpyrazone, tigecycline, 
voriconazole, zafirlukast 

Carbamazepine, rifampin, 
aprepitant, bosentan, 
phenobarbital, St. John’s wort 

Celecoxib, Warfarin, phenytoin 

CYP2C19 Fluconazole, fluvoxamine, ticlopidine, 
esomeprazole, fluoxetine, moclobemide, 
omeprazole, voriconazole, allicin (garlic 
derivative), armodafinil, carbamazepine, 
cimetidine, etravirine, human growth 
hormone (rhGH), felbamate, ketoconazole, 
oral contraceptives 

Rifampin, artemisinin Clobazam, lansoprazole, omeprazole, 
Smephenytoin, S-mephenytoin 

CYP3A Boceprevir, clarithromycin, conivaptan, 
grapefruit juice, indinavir, itraconazole, 

Avasimibe, carbamazepine, 
phenytoin, rifampin, St. John’s 
wort, bosentan, efavirenz, 
etravirine, modafinil, nafcillin, 
amprenavir, aprepitant, 
armodafinil, 
clobazamechinacea, 
pioglitazone, prednisone, 
rufinamide, vemurafenib 

Alfentanil, aprepitant, budesonide, 
buspirone, conivaptan, darifenacin, 
darunavir, dasatinib, dronedarone, 
eletriptan, eplerenone, everolimus, 
felodipine, indinavir, fluticasone, 
lopinavir, lovastatin, lurasidone, 
maraviroc, midazolam, nisoldipine, 
quetiapine, saquinavir, sildenafil, 
simvastatin, sirolimus, tolvaptan, 
tipranavir, triazolam, ticagrelor, 
vardenafil, Alfentanil, astemizole, 
cisapride, cyclosporine, 
dihydroergotamine, ergotamine, 
fentanyl, pimozide, quinidine, sirolimus, 
tacrolimus, terfenadine 

ketoconazole, lopinavir/ritonavir, mibefradil, 
nefazodone, nelfinavir, posaconazole, 
ritonavir, saquinavir, telaprevir, 
telithromycin, voriconazole, amprenavir, 
aprepitant, atazanavir, ciprofloxacin, 
crizotinib, darunavir/ritonavir, diltiazem, 
erythromycin, fluconazole, fosamprenavir, 
grapefruit juice, imatinib, verapamil, 
alprazolam, amiodarone, amlodipine, 
atorvastatin, bicalutamide, cilostazol, 
cimetidine, cyclosporine, fluoxetine, 
fluvoxamine, ginkgo, goldenseal, isoniazid, 
lapatinib, nilotinib, oral contraceptives, 
pazopanib, ranitidine, ranolazine, 
tipranavir/ritonavir, ticagrelor, zileuton 

CYP2D6 Bupropion, fluoxetine, paroxetine, quinidine, 
cinacalcet, duloxetine, terbinafine, 

NA Atomoxetine, desipramine, 
dextromethorphan, metoprolol, 
nebivolol, perphenazine, tolterodine, 
venlafaxine, Thioridazine, pimozide 

amiodarone, celecoxib, clobazam, 
cimetidine, desvenlafaxine, diltiazem, 
diphenhydramine, echinacea, escitalopram, 
febuxostat, gefitinib, hydralazine, 
hydroxychloroquine, imatinib, methadone, 
oral contraceptives, pazopanib, 
propafenone, ranitidine, ritonavir, sertraline, 
telithromycin, verapamil, vemurafenib 

Table 2.6 In Vivo Probe Inhibitors/Inducers/Substrates of CYP Enzymes 
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Transporter Inhibitor Inducer Substrate 

P-gp Amiodarone, azithromycin, captopril, 
carvedilol, clarithromycin, conivaptan, 
cyclosporine, diltiazem, dronedarone, 
erythromycin, felodipine, itraconazole, 
ketoconazole, lopinavir and ritonavir, 
quercetin, quinidine, ranolazine, ticagrelor, 
verapamil 

Avasimibe, carbamazepine, 
phenytoin, rifampin, St 
John’s wort, 
tipranavir/ritonavir 

Aliskiren, ambrisentan, colchicine, 
dabigatran etexilate, digoxin, 
everolimus, fexofenadine, imatinib, 
lapatinib, maraviroc, nilotinib, 
posaconazole, ranolazine, saxagliptin, 
sirolimus, sitagliptin, talinolol, 
tolvaptan, topotecan 

BCRP Cyclosporine, elacridar (GF120918), 
eltrombopag, gefitinib 

NA Methotrexate, mitoxantrone, imatinib, 
irrinotecan, lapatinib, rosuvastatin, 
sulfasalazine, topotecan 

OATP1B1 Atazanavir, cyclosporine, eltrombopag, 
gemfibrozil, lopinavir, rifampin, ritonavir, 
saquinavir, tipranavir 

NA Atrasentan, atorvastatin, bosentan, 
ezetimibe, fluvastatin, glyburide, SN-38 
(active metabolite of irinotecan), 
rosuvastatin, simvastatin acid, 
pitavastatin, pravastatin, repaglinide, 
rifampin, valsartan, olmesartan 

OATP1B3 Atazanavir, cyclosporine, lopinavir, 
rifampin, ritonavir, saquinavir 

NA Atorvastatin, rosuvastatin, pitavastatin, 
telmisartan, valsartan, olmesartan 

OCT2 Cimetidine, quinidine NA Amantadine, amiloride, cimetidine, 
dopamine, famotidine, memantine, 
metformin, pindolol, procainamide, 
ranitidine, varenicline, oxaliplatin 

OAT1 Probenecid NA Adefovir, captopril, furosemide, 
lamivudine, methotrexate, oseltamivir, 
tenofovir, zalcitabine, zidovudine 

OAT3 Probenecid, cimetidine, diclofenac NA Acyclovir, bumetanide, ciprofloxacin, 
famotidine, furosemide, methotrexate, 
zidovudine, oseltamivir acid, (the active 
metabolite of oseltamivir), penicillin G, 
pravastatin, rosuvastatin, sitagliptin 

Table 2.7 In Vivo Probe Inhibitors/Inducers/Substrates of Selected Transporters 
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Metabolism The cytochrome P450 superfamily (officially abbreviated as CYP) is a large 

and diverse group of enzymes that catalyze the oxidation of organic substances. The 

substrates of CYP enzymes include metabolic intermediates such as lipids and steroidal 

hormones, as well as xenobiotic substances such as drugs and other toxic chemicals. CYPs 

are the major enzymes involved in drug metabolism and bioactivation, accounting for 

about 75% of the total number of different metabolic reactions (FP, 2008). CYP enzyme 

names and genetic variants were mapped from the Human Cytochrome P450 (CYP) Allele 

Nomenclature Database (http://www.cypalleles.ki.se/). This site contains the CYP450 

genetic mutation effect on the protein sequence and enzyme activity with associated 

references. 

Transport Proteins are proteins which serves the function of moving other materials 

within an organism. Transport proteins are vital to the growth and life of all living things. 

Transport proteins involved in the movement of ions, small molecules, or 

macromolecules, such as another protein, across a biological membrane. They are 

integral membrane proteins; that is they exist within and span the membrane across 

which they transport substances. Their names and genetic variants were mapped from 

the Transporter Classification Database (http://www.tcdb.org). In addition, we also 

added the probe substrates and probe inhibitors to each one of the metabolism and 

transportation enzymes (see prescribed description). 

Drug names was created using the drug names from DrugBank 3.0 (Knox et al., 2011). 

DrugBank consists of 6,829 drugs which can be grouped into different categories of FDA-
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approved, FDA approved biotech, nutraceuticals, and experimental drugs. The drug 

names are mapped to generic names, brand names, and synonyms. 

Subject included the existing ontologies for human disease ontology (DOID), suggested 

Ontology for Pharmacogenomics (SOPHARM),, and mammalian phenotype (MP) from 

http://bioportal.bioontology.org (see Table 2.1). The PK ontology was implemented with 

Protégé (Rubin, Noy, & Musen, 2007) and uploaded to the BioPortal ontology platform. 

 

2.2.2 PK Corpus 

A PK abstract corpus was constructed to cover four primary classes of PK studies: clinical 

PK studies (n = 56); clinical pharmacogenetic studies (n = 57); in vivo DDI studies (n = 218); 

and in vitro drug interaction studies (n = 210). The PK corpus construction process is a 

manual process. The abstracts of clinical PK studies were selected from our previous work, 

in which the most popular CYP3A substrate, midazolam was investigated (Wang et al., 

2009). The clinical pharmacogenetic abstracts were selected based on the most 

polymorphic CYP enzyme, CYP2D6. We think these two selection strategies represent very 

well all the in vivo PK and PG studies. In searching for the drug interaction studies, the 

abstracts were randomly selected from a PubMed query, which used probe 

substrates/inhibitors/inducers for metabolism enzymes reported in Table 2.6. 

Once the abstracts have been identified in four classes, their annotation is a manual 

process (Figure 2.1). The annotation was firstly carried out by three master level 
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annotators (Shreyas Karnik, Abhinita Subhadarshini, and Xu Han), and one Ph.D. 

annotator (Lang Li). They have different training backgrounds: computational science, 

biological science, and pharmacology. Any differentially annotated terms were further 

checked by Sara K. Quinney and David A. Flockhart, one Pharm D. and one M.D. scientists 

with extensive pharmacology training background. Among the disagreed annotations 

between these two annotators, a group review was conducted (Drs Quinney, Flockhart, 

and Li) to reach the final agreed annotations. In addition a random subset of 20% of the 

abstracts that had consistent annotations among four annotators (3 masters and one 

Ph.D.), were double checked by two Ph.D. level scientists. 

A structured annotation scheme was implemented to annotate three layers of 

pharmacokinetics information: key terms, DDI sentences, and DDI pairs (Figure 2.2). DDI 

sentence annotation scheme depends on the key terms; and DDI annotations depend on 

the key terms and DDI sentences. Their annotation schemes are described as following. 
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Figure 2.1 PK Corpus Annotation Flow Chart  
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Figure 2.2 A Three Level Hierarchical PK and DDI Annotation Scheme.  
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Key terms include drug names, enzyme names, PK parameters, numbers, mechanisms, 

and change. The boundaries of these terms among different annotators were judged by 

the following standard. 

• Drug names were defined mainly on DrugBank 3.0 (Knox et al., 2011). In addition, drug 

metabolites were also tagged, because they are important in in vitro studies. The 

metabolites were judged by either prefix or suffix: oxi, hydroxyl, methyl, acetyl, N-dealkyl, 

N-demethyl, nor, dihydroxy, O-dealkyl, and sulfo. These prefixes and suffixes are due to 

the reactions due to phase I metabolism (oxidation, reduction, hydrolysis), and phase II 

metabolism (methylation, sulphation, acetylation, glucuronidation) (LL, BA, & BC, 2011). 

• Enzyme names covered all the CYP450 enzymes. Their names are defined in the human 

cytochrome P450 allele nomenclature database, http://www. cypalleles.ki.se/. The 

variations of the enzyme or gene names were considered. Its regular expression is 

(?:cyp|CYP|P450|CYP450)?[0–9][a-zA-Z][0–9](?:\*[0–9])?$. 

• PK parameters were annotated based on the defined in vitro and in vivo PK parameter 

ontology in Table 2.2 and Table 2.4. In addition, some PK parameters have different 

names, CL = clearance, t1/2 = half-life, AUC = area under the concentration curve, and 

AUCR = area under the concentration curve ratio. 

• Numbers such as dose, sample size, the values of PK parameters, and p-values were 

all annotated. If presented, their units were also covered in the annotations. 
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• Mechanisms denote the drug metabolism and interaction mechanisms. They were 

annotated by the following regular expression patterns: inhibit(e(s|d)?|ing|ion(s)?|or)$, 

catalyz(e(s|d)?|ing)$, correlat(e(s|d)?|ing|ion(s)?)$, metaboli(z(e(s|d)?|ing)|sm)$, 

induc(e(s|d)?|ing|tion(s)?|or)$, form((s|ed)?|ing|tion(s)?|or)$, 

stimulat(e(s|d)?|ing|ion(s)?)$, activ(e(s)?|(at)(e(s|d)?|ing|ion(s)?))$, and 

suppress(e(s|d)?|ing|ion(s)?)$. 

• Change describes the change of PK parameters. The following words were annotated 

in the corpus to denote the change: strong(ly)?, moderate(ly)?, high(est)?(er)?, slight(ly)?, 

strong(ly)?, moderate(ly)?, slight(ly)?, significant(ly)?, obvious(ly)?, marked(ly)?, 

great(ly)?, pronounced(ly)?, modest(ly)?, probably, may, might, minor, little, negligible, 

doesn’t interact, affect((s|ed)?|ing|ion(s)?)?$, reduc(e(s|d)?|ing|tion(s)?)$, and 

increas(e(s|d)?|ing)$. 

The middle level annotation focused on the drug interaction sentences. Because two 

interaction drugs were not necessary all presented in the sentence, sentences were 

categorized into two classes: 

• Clear DDI Sentence (CDDIS): two drug names (or drug-enzyme pair in the in vitro study) 

are in the sentence with a clear interaction statement, i.e. either interaction, or non-

interaction, or ambiguous statement (i.e. such as possible or might and etc.). 

• Vague DDI Sentence (VDDIS): One drug or enzyme name is missed in the DDI sentence, 

but it can be inferred from the context. Clear interaction statement also is required. 
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Once DDI sentences were labeled, the DDI pairs in the sentences were further annotated. 

Because the fundamental difference between in vivo DDI studies and in vitro DDI studies, 

their DDI relationships were defined differently. In in vivo studies, three types of DDI 

relationships were defined (Table 2.8): DDI, ambiguous DDI (ADDI), and non-DDI (NDDI). 

Four conditions are specified to determine these DDI relationships. Condition 1 (C1) 

requires that at least one drug or enzyme name has to be contained in the sentence; 

condition 2 (C2) requires the other interaction drug or enzyme name can be found from 

the context if it is not from the same sentence; condition 3 (C3) specifies numeric rules to 

defined the DDI relationships based on the PK parameter changes; and condition 4 (C4) 

specifies the language expression patterns for DDI relationships. Using the rules 

summarized in Table 2.8, DDI, ADDI, and NDDI can be defined by C1 ˄ C2 ˄ (C3 ˅ C4). The 

priority rank of in vivo PK parameters is AUC > CL > t1/2 > Cmax. In in vitro studies, six types 

of DDI relationships were defined (Table 2.8). DDI, ADDI, NDDI were similar to in vivo DDIs, 

but three more drug-enzyme relationships were further defined: DEI, ambiguous DEI 

(ADEI), and non-DDI (NDEI). C1, C2, and C4 remained the same for in vitro DDIs. The main 

difference is in C3, in which either Ki or IC50 (inhibition) or EC50 (induction) were used to 

defined DDI relationship quantitatively. The priority rank of in vitro PK parameters is Ki > 

IC50. Table 2.9 presented eight examples of how DDIs or DEIs were determined in the 

sentences. 
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DDI 
relationship 

C1 C2 C3** C4** 

IN VIVO STUDY 

DDI Yes Yes The PK parameter with the 
highest priority* must 
satisfy p-value <0.05 and 
FC > 1.50 or FC < 0.67 

Significant, obviously, markedly, 
greatly, pronouncedly and etc. 

Ambiguous 
DDI (ADDI) 

The PK parameter with the 
highest priority* in the 
conditions of p-value 
<0.05 but 0.67 < FC < 1.50; 
or FC >1.50 or FC <0.67, 
but p-value > 0.05. 

Modestly, moderately, probably, may, 
might, and etc. 

Non-DDI 
(NDDI) 

The PK parameter with the 
highest priority*are in the 
condition of p-value > 0.05 
and 0.67 < FC < 1.50 

Minor significance, slightly, little or 
negligible effect, doesn’t interact etc. 

IN VITRO STUDY 

DDI Yes Yes (0< Ki < 10 or 0< EC50 < 10 
microM, and p-value 
<0.05) 

Significant, obviously, markedly, 
greatly, pronouncedly and etc. DEI 

Ambiguous 
DDI (ADDI) 

(10 < Ki < 100 or 10 < EC50 
< 100 microM, and p-value 
<0.05 or vice versa) 

Modestly, moderately, probably, may, 
might, and etc. 

Ambiguous 
DEI (ADEI) 

Non-DDI 
(NDDI) 

(Ki > 100 microM or EC50 
> 100 microM, and p-value 
>0.05) 

Minor significance, slightly, little or 
negligible effect, doesn’t interact etc. 

Non-DEI 
(NDEI) 

Table 2.8 DDI Definitions in Corpus 

Note: 

C1: At least one drug or enzyme name has to be contained in the sentence. 

C2: Need to label the drug name if it is not from the same sentence. 

C3: PK-parameter and value dependent. 

C4: Significance statement. 

*Priority issue: When C3 and C4 occur and conflict, C3 dominates the sentence.**For the priority of PK 
parameters: AUC > CL > t1/2 > Cmax;; the priority of in vitro PK parameters: Ki>IC50.  
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PMID DDI sentence Relationship and commend 

20012601 The pharmacokinetic parameters of verapamil 
were significantly altered by the co-administration 
of lovastatin compared to the control. 

Because of the words, 
“significantly”, (Verapamil, 
lovastatin) is a DDI. 

20209646 The clearance of mitoxantrone and etoposide was 
decreased by 64% and 60%, respectively, when 
combined with valspodar. 

Because of the fold changes 
were less than 0.67, 
(mitoxantrone, valspodar.) and 
(etoposide, valspodar) are 
DDIs. 

20012601 The (AUC (0-infinity)) of norverapamil and the 
terminal half-life of verapamil did not significantly 
changed with lovastatin coadministration. 

Because of the words, “not 
significantly changed”, 
(verapamil, ovastatin) is a 
NDDI. 

17304149 Compared with placebo, itraconazole treatment 
significantly increase the peak plasma 
concentration (Cmax) of paroxetine by 1.3 fold (6.7 
2.5 versus 9.0 3.3 ng/mL, P≤0.05) and the area 
under the plasma concentration-time curve from 
zero to 48 hours [AUC(0–48)] of paroxetine by 1.5 
fold (137 73 versus 199 91 ng*h/mL, P≤0.01). 

AUC has a higher rank than 
Cmax, and it had a 1.5 fold-
change and less than 0.05 p-
value, thus, (itraconazole, 
paroxetine) is a DDI. 

13129991 The mean (SD) urinary ratio of dextromethorphan 
to its metabolite was 0.006 (0.010) at baseline and 
0.014 (0.025) after St John’s wort administration 
(P=.26) 

The change in PK parameter is 
more than 1.5 fold but P-value 
is >0.05. Thus, 
(dextromethorphan, St John’s 
wort) is an ADDI. 

19904008 The obtained results show that perazine at its 
therapeutic concentrations is a potent inhibitor of 
human CYP1A2. 

Because of words, “potent 
inhibitor”, (perazine, CYP1A2) 
is a DEI. 

19230594 After human hepatocytes were exposed to 10 
microM YM758, microsomal activity and mRNA 
level for CYP1A2 were not induced while those for 
CYP3A4 were slightly induced. 

Because of words, “not 
induced” and “slightly 
induced”, (YM758, CYP1A2) 
and (YM758, CYP1A2) are 
NDEIs. 

19960413 From these results, DPT was characterized to be a 
competitive inhibitor of CYP2C9 and CYP3A4, with 
K(i) values of 3.5 and 10.8 microM in HLM and 24.9 
and 3.5 microM in baculovirus-insect cell-
expressed human CYPs, respectively. 

Because K was larger than 
10microM, (DPT, CYP2C9) and 
(DPT, CYP3A4) are ADEIs. 

Table 2.9 Examples of DDI Definitions 
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Key Terms Annotation Categories Frequencies Krippendorff's alpha 

Drug 8633 0.953 

CYP 3801 

PK Parameter 1508 

Number 3042 

Mechanism 2732 

Change 1828 

Total words 97291 

DDI sentences CDDI sentences 1191 0.921 

VDDI sentences 120 

Total sentences 4724 

DDI Pairs DDI 1239 0.905 

ADDI 300 

NDDI 294 

DEI 565 

ADEI 95 

NDEI 181 

Total Drug Pairs 12399 

Table 2.10 Annotation Performance Evaluation 
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Krippendorff's alpha (Klaus Krippendorff, 2004) was calculated to evaluate the reliability 

of annotations from four annotators. The frequencies of key terms, DDI sentences, and 

DDI pairs are presented in Table 2.10. Their Krippendorff's alphas are 0.953, 0.921, and 

0.905, respectively. Please note that the total DDI pairs refer to the total pairs of drugs 

within a DDI sentence from all DDI sentences. 

The PK corpus was constructed by the following process. Raw abstracts were downloaded 

from PubMed in XML format. Then XML files were converted into GENIA corpus format 

following the gpml.dtd from the GENIA corpus (J. D. Kim et al., 2003). The sentence 

detection in this step is accomplished by using the Perl module Lingua::EN::Sentence, 

which was downloaded from The Comprehensive Perl Archive Network (CPAN, 

www.cpan.org). GENIA corpus files were then tagged with the prescribed three levels of 

PK and DDI annotations. Finally, a cascading style sheet (CSS) was implemented to 

differentiate colours for the entities in the corpus. This feature allows the users to 

visualize annotated entities. We would like to acknowledge that a DDI Corpus was 

recently published as part of a text mining competition DDIExtraction 2011 

(http://labda.inf.uc3m.es/ DDIExtraction2011/dataset.html). Their DDIs were clinical 

outcome oriented, not PK oriented. They were extracted from DrugBank, not from 

PubMed abstracts. Our PK corpus complements to their corpus very well. 
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2.3 Utility 

2.3.1 Example 1 An Annotated Tamoxifen Pharmacogenetics Study 

This example shows how to annotate a pharmacogenetics studies with the PK ontology. 

We used a published tamoxifen PG study (Borges et al., 2010). The key information from 

this tamoxifen PG trial was extracted as a summary list. Then the pre-processed 

information was mapped to the PK ontology (column 2 in Table S1). This PG study 

investigates the genetics effects (CYP3A4, CPY3A5, CYP2D6, CYP2C9, CYP2B6) on the 

tamoxifen pharmacokinetics outcome (tamoxifen metabolites) among breast cancer 

patients. It was a single arm longitudinal study (n = 298), patients took SOLTAMOXTM 

20mg/day, and the drug steady state concentration was sampled (1, 4, 8, 12) months after 

the tamoxifen treatment. The study population was a mixed Caucasian and African 

American. In additional file 1: Table S1, the trial summary is well organized by the PK 

ontology. 

 

2.3.2 Example 2 Midazolam/Ketoconazole Drug Interaction Study 

This was a cross-over three-phase drug interaction study (Chien et al., 2006) (n = 24) 

between midazolam (MDZ) and ketoconazole (KTZ). Phase I was MDZ alone (IV 0.05 

mg/kg and PO 4mg); phase II was MDZ plus KTZ (200mg); and phase III was MDZ plus KTZ 

(400mg). Genetic variable include CYP3A4 and CYP3A5. The PK outcome is the MDZ AUC 
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ratio before and after KTZ inhibition. Its PK ontology based annotation is shown in 

additional file 1: Table S1 column three. 

2.3.3 Example 3 In Vitro Pharmacokinetics Study 

This was an in vitro study (Williams et al., 2002), which investigated the drug metabolism 

activities for 3 enzymes, such as CYP3A4, CYP3A5, and CYP3A7 in a recombinant system. 

Using 10 CYP3A substrates, they compared the relative contribution of 3 enzymes among 

10 drug’s metabolism. Its PK ontology based annotation is shown in additional file 1: Table 

S2. 

 

2.3.4 Example 4 A Drug Interaction Text Mining Example 

We implemented the approach described by (Airola et al., 2008) for the DDI extraction. 

Prior to performing DDI extraction, the testing and validation DDI abstracts in our corpus 

was pre-processed and converted into the unified XML format (Airola et al., 2008). The 

following steps were conducted: 

• Drugs were tagged in each of the sentences using dictionary based on DrugBank. This 

step revised our prescribed drug name annotations in the corpus. One purpose is to 

reduce the redundant synonymous drug names. The other purpose is only keep the 

parent drugs and remove the drug metabolites from the tagged drug names from our 

initial corpus, because parent drugs and their metabolites rarely interacts. In addition, 

enzymes (i.e. CYPs) were also tagged as drugs, since enzyme-drug interactions have been 
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extensively studied and published. The regular expression of enzyme names in our corpus 

was used to remove the redundant synonymous gene names. 

• Each of the sentences was subjected to tokenization, Part-of-Speech (PoS) tags and 

dependency tree generation using the Stanford parser (De Marneffe, 2006). 

• C2
n drug pairs form the tagged drugs in a sentence were generated automatically, and 

they were assigned with default labels as no-drug interaction. Please note that if a 

sentence had only one drug name, this sentence didn’t have a DDI. This setup limited us 

considering only CDDI sentence in our corpus. 

• The drug interaction labels were then manually flipped based on their true drug 

interaction annotations from the corpus. Please note that our corpus had annotated DDIs, 

ADDIs, NDDIs, DEIs, ADEIs, and NDEIs. Here only DDIs and DEIs were labeled as true DDIs. 

The other ADDIs, NDDIs, DEIs, and ADEIs were all categorized into the no-drug 

interactions. 

Then sentences were represented with dependency graphs using interacting components 

(drugs) (Figure 2.3). The graph representation of the sentence was composed of two items: 

i) One dependency graph structure of the sentence; ii) a sequence of PoS tags (which was 

transformed to a linear order "graph" by connecting the tags with a constant edge weight). 

We used the Stanford parser (De Marneffe, 2006) to generate the dependency graphs. 

Airola et al. proposed to combine these two graphs to one weighted, directed graph. This 

graph was fed into a support vector machine (SVM) for DDI/non-DDI classification. More 
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details about the all paths graph kernel algorithm can be found in (Airola et al., 2008). A 

graphical representation of the approach is presented in Figure 2.3. 
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Figure 2.3 Drug Interaction Extraction Algorithm Flow Chart 
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DDI extraction was implemented in the in vitro and in vivo DDI corpus separately. Table 

2.11 presented the training sample size and testing sample size in both corpus sets. Then 

Table 2.12 presents the DDI extraction performance. In extracting in vivo DDI pairs, the 

precision, recall, and F-measure in the testing set are 0.67, 0.79, and 0.73, respectively. 

In the in vitro DDI extraction analysis, the precision, recall, and F-measure are 0.47, 0.58, 

and 0.52 respectively in the in vitro testing set. In our early DDI research published in the 

DDIExtract 2011 Challenge (Karnik, Subhadarshini, Wang, Rocha, & Li, 2011), we used the 

same algorithm to extract both in vitro and in vivo DDIs at the same time, the reported F-

measure was 0.66. This number is in the middle of our current in vivo DDI extraction F-

measure 0.73 and in vitro DDI extraction F-measure 0.52. 

Error analysis was performed in testing samples. Table 2.13 summarized the results. 

Among the known reasons for the false positives and false negatives, the most frequent 

one is that there are multiple drugs in the sentence, or the sentence is long. The other 

reasons include that there is no direct DDI relationship between two drugs, but the 

presence of some words, such as dose, increase, and etc., may lead to a false positive 

prediction; or DDI is presented in an indirect way; or some NDDI are inferred due to some 

adjectives (little, minor, negligible).  
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Datasets Abstracts Sentences DDI Pairs True DDI Pairs 

in vivo DDI training 174 2112 2024 359 

in vivo DDI testing 44 545 574 45 

in vitro DDI training 168 1894 7122 783 

in vitro DDI testing 42 475 1542 146 

Table 2.11 DDI Data Description 

Datasets Precision Recall F-measure 

in vivo DDI Training 0.67 0.78 0.72 

in vivo DDI Testing 0.67 0.79 0.73 

in vitro DDI Training 0.51 0.59 0.55 

in vitro DDI Testing 0.47 0.58 0.52 

Table 2.12 DDI Extraction Performance 

 



  

62 

No. Error Categories Erro
r 
type 

Frequen
cy 

Examples 

In 
vivo 

In 
vitr
o 

1 There are multiple drugs in 
the sentence, and the 
sentence is long. 

FP 6 34 PMID: 12426514. In 3 subjects with measurable 
concentrations in the single-dose study, rifampin 
significantly decreased the mean maximum plasma 
concentration (C(max)) and area under the plasma 
concentration-time curve from 0 to 24 h [AUC(0–24)] 
of praziquantel by 81% (P <.05) and 85% (P <.01), 
respectively, whereas rifampin significantly decreased 
the mean C(max) and AUC(0–24) of praziquantel by 
74% (P <.05) and 80% (P <.01), respectively, in 5 
subjects with measurable concentrations in the 
multiple-dose study 

FN 2 17 PMID: 10608481. Erythromycin and ketoconazole 
showed a clear inhibitory effect on the 3-hydroxylation 
of lidocaine at 5 microM of lidocaine (IC50 9.9 microM 
and 13.9 microM, respectively), but did not show a 
consistent effect at 800 microM of lidocaine (IC50 
>250 microM and 75.0 microM, respectively). 

2 There is no direct DDI 
relationship between two 
drugs, but the presence of 
some words, such as dose, 
increase, and etc. may lead 
to a false positive 
prediction 

FP 6 14 PMID: 17192504. A significant fraction of patients to 
be treated with HMR1766 is expected to be 
maintained on warfarin 

3 DDI is presented in an 
indirect way. 

FN 2 19 PMID: 11994058. In CYP2D6 poor metabolizers, 
systemic exposure was greater after chlorpheniramine 
alone than in extensive metabolizers, and 
administration of quinidine resulted in a slight increase 
in CLoral. 

4 Design issue. Some NDDI 
are inferred due to some 
adjectives (little, minor, 
negligible) 

FP 1 3 PMID: 10223772. In contrast,the effect of ranitidine or 
ebrotidine on CYP3A activity in vivo seems to have 
little clinical significance. 

5 Unknown FP 5 44 PMID: 10383922. CYP1A2, CYP2A6, and CYP2E1 
activities were not significantly inhibited by azelastine 
and the two metabolites. 

FN 6 26 PMID: 10681383. However, the most unusual result 
was the interaction between testosterone and 
nifedipine. 

Table 2.13 DDI Extraction Error Analysis from Testing DDI Sets  
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2.4 Conclusions and Discussions 

A comprehensive PK ontology was constructed. It annotates both in vitro PK experiments 

and in vivo PK studies. Using our PK ontology, a PK corpus was also developed. It consists 

of four classes of PK studies: in vivo PK studies, in vivo PG studies, in vivo DDI interaction 

studies, and in vitro DDI studies. This PK corpus is a highly valuable resource for text 

mining drug interactions relationship. 

We previously had developed entity recognition algorithm or tools to tag PK parameters 

and their associated numerical data (Wang et al., 2009). We had shown that for one drug, 

midazolam, we have achieved very high accuracy and recall rate in tagging PK parameter, 

clearance (CL), and its associated numerical values. However, using our newly developed 

PK corpus, we cannot regain such a good performance in a more general class of drugs 

and PK parameters. This area will need much further investigation. 

We would like to acknowledge that a DDI Corpus was recently published as part of a text 

mining competition DDIExtraction 2011 (http://labda.inf.uc3m.es/ 

DDIExtraction2011/dataset.html). Their DDIs were clinical outcome oriented, not PK 

oriented. They were extracted from DrugBank, not from PubMed abstracts. Our PK corpus 

complements to their corpus very well.  
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Chapter 3. Clinical Pharmacodynamics Drug Interaction Corpus  

3.1 Background 

Drug-drug interactions pose a significant challenge in current medicine, leading to 

adverse drug reactions, emergency room visits and hospitalizations (L. B. Becker, 

Kallewaard, M., Caspers, P.W., Visser, L.E., Leufkens, H.G., et al. , 2007; M. J. Hall, 

DeFrances, Williams, Golosinskiy, & Schwartzman, 2010; Nisha, 2010). Translational DDI 

research aims to link between knowledge of molecular mechanisms underlying DDIs and 

their clinical consequences. Three types of evidence indicate drug interaction (Hennessy 

& Flockhart, 2012): in vivo, in vitro and clinical. While clinical evidence forms the ultimate 

DDI alert, in-and-of itself it does not provide information about molecular mechanisms 

underlying interactions, and as such, does not suggest alternative treatments that 

circumvent DDIs. Therefore, for newly developed drugs, the FDA requires in vitro and in 

vivo DDI studies (L. Zhang, Reynolds, K. S., Zhao, P., Huang, S.M., 2010; L. Zhang, Zhang, 

Y., Zhao, P., Huang, S.M., 2009). An integrated simultaneous view of all three types of DDI 

evidence was shown effective in reducing false DDI predictions (R. Boyce, Collins, C., Horn, 

J., and Kale, I., 2009; R. Boyce, Collins, C., Horn, J., Kalet, I., 2009). However, due to the 

diversity of disciplines involved in the study of DDI along the different levels (Hennessy & 

Flockhart, 2012), the three types of evidence are not all available nor are they presented 

together. 

The medical informatics and text mining research communities have invested much effort 

toward developing standards and tools to extract drug interaction evidence from a variety 
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of sources, such as FDA labels and Medline abstracts (R. Boyce et al., 2009b; Herrero-Zazo, 

Segura-Bedmar I Fau - Martinez, Martinez P Fau - Declerck, & Declerck, 2013; Kolchinsky, 

Lourenco A Fau - Li, Li L Fau - Rocha, & Rocha, 2013; Segura-Bedmar, Martinez P Fau - de 

Pablo-Sanchez, & de Pablo-Sanchez, 2011; L. Tari et al., 2010; H.-Y. Wu, Chiang, & Li, 2014; 

H. Y. Wu, Karnik S Fau - Subhadarshini, et al., 2013). A fundamental step of mining drug 

interaction evidence is to construct gold-standard annotations of existing drug interaction 

evidence. Herrero-Zazo et al created a large DDI corpus, based on 792 entries from the 

DrugBank database and 233 Medline abstracts (Herrero-Zazo et al., 2013). This 

comprehensive DDI corpus contains both pharmacokinetics and pharmacodynamics DDI 

evidence. Independently and at about the same time, our group has published another 

DDI corpus (H. Y. Wu, Karnik S Fau - Subhadarshini, et al., 2013), based on 218 Medline 

abstracts discussing in-vivo DDI evidence (where DDI led to drug concentration change), 

and 210 abstracts discussing in-vitro DDI evidence (where DDI changes enzyme activities). 

Our work also included an ontology for characterizing pharmacokinetics aspects of DDI, 

as well as the specific evidence in the context of in vitro experiments and of in vivo studies. 

That ontology clearly differentiated these two types of DDI evidence. 

One important type of drug interaction evidence comes from epidemiology studies, in 

which co-committed drugs are compared to single drugs on their efficacy and/or adverse 

drug events (ADEs). These clinical pharmacodynamics studies are usually conducted 

within the large health record databases (Duke et al., 2012). The corpus developed by 

Herrero-Zaro and Segura-Bedmar did not stress on the pharmaco-epidemiological studies 

and their statistical DDI evidences, nor did the corpus developed by Wu and Li (H. Y. Wu, 
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Karnik S Fau - Subhadarshini, et al., 2013). This paper aims to address the knowledge gap 

of epidemiologic DDI evidence in the DDI corpus construction. 
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3.2 Material and Methods 

3.2.1 Overall Data Curating and Annotation Description 

In this clinical pharmacodynamics corpus, two curators conducted the clinical 

pharmacodynamics DDI abstract selection and DDI evidence annotation. One curator is a 

clinical pharmacology post-doc fellow, who has extensive training in both molecular 

pharmacology and clinical pharmacology. The other curator is a third year health 

informatics Ph.D. student, who has extensive skills in text mining and corpus construction. 

The second curator also has good knowledge on the drug interaction research. In addition, 

Dr. Lang Li designed and supervised all the corpus construction process. Dr. Li holds the 

full professorship in the Department of Medical and Molecular Genetic, Division of Clinical 

Pharmacology, Department of Biostatistics, and Department of Bio-Health Informatics. 

He has more than 85 published paper related to pharmacology research, and 43 of them 

are drug interaction related. Dr. Li’s extensive expertise in pharmacology, epidemiology, 

biostatistics, and informatics ensures the scientific relevance and data quality of this 

corpus construction. 

The corpus construction was conducted in three steps (Figure 3.1). During the abstract 

screening process (Step 1), given a list of keywords, two searching strategies (journal-

specific search and PubMed search) were conducted separately for screening abstracts. 

After removing duplicates between two searches, the abstracts were ready for the 

validation process (Step 2), inclusion-exclusion criteria (IECs) were predefined to filter the 

abstracts from Step 1. Based on these IECs, both curators validated the abstracts, and the 
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disconcordant selections were judged by Dr. Li. In the final step, both curators annotated 

all DDI entities, sentences, and relationships in the abstracts. Detailed description on 

corpus construction is illustrated below.  
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Figure 3.1 Flowchart of Clinical Pharmacodynamics Drug Interaction Abstract Screening, 

Quality Control, and Annotation Process  
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Step 1: Abstract Screening Process The DDI abstracts are made up of texts from two 

different searching strategies: Journal-specific search and PubMed Search. 

Journal-specific search started from clinical pharmacodynamics drug interaction research 

experts, who have active National Institute of Health funded grants focusing on the 

clinical pharmacodynamics and informatics related drug interaction research. From the 

NIH grant reporting system, CRISP (http://projectreporter.nih.gov/reporter.cfm), we 

identified four current active grants: DK102694, GM104483, LM011838, and GM107145. 

The PI names are Sean Hennessy, Lang Li, Luis Rocha, Hagit Shatkay, Richard Boyce, and 

Nicholas P. Tatonetti, respectively. The first set of drug interactions abstracts were 

selected from their publications and the references within their publications. There were 

79 epidemiological drug interaction studies and their abstracts from 39 journals (The 

detail can be seen in Table S3 of Supplementary Material section). To explore extra clinical 

pharmacodynamics DDI papers, we focused on those 39 journals referenced from the first 

set of clinical pharmacodynamics DDI papers. These journals were categorized into three 

groups: pharmacology, epidemiology, and specific disease areas. Then 6 journals were 

selected from each group. Using the search strings, (“drug-drug interaction”, “clinical 

pharmacodynamics”, “epidemiology”, “medical record” and “concomitant”), the second 

set of DDI abstracts were selected from each journal. During this screening process, an 

abstract was selected as relevant if it mentioned drug interaction based on either health 

record based retrospective studies or prospective clinical trials or observational studies. 

 

http://projectreporter.nih.gov/reporter.cfm
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Searching in Medline (PubMed) was another strategy to retrieve clinical 

pharmacodynamics DDI abstracts. If using the same search terms as in journal specific 

search, only two abstracts were retrieved from PubMed. Therefore, the key terms were 

loosen to “(drug-drug interaction)AND(pharmacoepidemiology)”. 

Step 2: Abstract Validation Process Having retrieved relevant abstracts from two search 

pipelines, two curators further reviewed those abstracts. A list of inclusion and exclusion 

criteria (IEC) were predefined. There were two inclusion criteria: 1) Only abstracts that 

reported a test of a drug-interaction hypothesis, i.e. testing whether two co-committed 

drugs show a different clinical outcome than one drug alone, were further selected as the 

candidate abstracts for the corpus. 2) The second inclusion criterion was expected to 

place restrictions on those clinical pharmacodynamics related articles. On the other hand, 

exclusion criteria filtered out those articles that studied single drug study, drug efficacy 

comparison, co-medication frequency, drug compliance, drug-alcohol/food interaction 

and the articles related to pharmacokinetics, pharmacodynamics, pharmacogenetics, in 

vivo, and in vitro studies. In addition, we excluded case report studies in that DDI situation 

in a single case report cannot represent their DDI effect on population. The detail of IECs 

information is listed in Table 3.1. 
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Inclusion 

1. Drug1/drug2 together can increase ADR risk or efficacy than the single 
drug alone. 

2. The distribution of known DDIs in different patient population defined 
by age, country, disease, or ADR 

Exclusion 

a) Even two drugs are mentioned, but the comparisons are conducted 
between two drugs. 

b) Only reported the co-medication frequencies, not their effect. 

c) Drug interaction detection algorithms or software 

d) Compliance of avoiding DDI 

e) Concordance of DDI reporting among different system 

f) Comparison the performance of DDI clinical decision system 

g) Single drug study without mentioning the DDI 

h) Drug-alcohol/food interaction 

i) Drug/test interaction 

j) DDI in PK, PD, PG, in vivo, and in vitro study 

k) Case report study 

l) Review paper 

Table 3.1 Inclusion-Exclusion Criteria (IEC) for Abstract Validation Process 
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Step 3: Annotation Scheme BRAT rapid annotation tool (Stenetorp et al., 2012) was used 

to annotate the corpus. It has three level annotations: term level, sentence level, and DDI 

level. This structured three-layer annotation scheme started from the annotation of basic 

entities (clinical pharmacodynamics related terms), then the sentences related to DDI, 

and finally interacting drug pairs in the sentences. The procedure of our annotation 

scheme is further detailed in the follow-up paragraphs. 

 The boundaries of the individual terms denoting such entities were defined as 

follows: Drug names were defined mainly on DrugBank 3.0 (Knox et al., 2011) and 

MeSH (Rogers, 1963) Term. In addition to ordinary drug names from DrugBank, 

MeSH contains some classes of compounds typically used in the treatment of a 

specific category of disease or disorder. For example, selective serotonin re-

uptake inhibitors (SSRIs) for depression treatment have many names including, for 

instance, citalopram, escitalopram, fluoxetine, paroxetine, sertraline. In many 

clinical pharmacodynamics articles, the term SSRI was used as opposed to any of 

the generic names. 

 Clinical Endpoints and Their Values Clinical endpoints generally refer to 

phenotypic measurements of evidence of disease (e.g. disease incidence), drug 

efficacy (e.g. patient overall survival), drug side effects (e.g. myopathy or 

neuropathy), and laboratory tests (e.g. CK values or blood pressure). These clinical 

endpoints demonstrate the clinical significance of the drug interaction evidence. 

Clinical endpoint values are quantifications of the clinical endpoints. For examples, 
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incidence rate for the disease, survival rate for the drug efficacy, and frequency of 

the drug side effects. Lab test values are usually numerical. 

 Statistical Models and Their Values Statistical models are used to evaluate the 

statistical significance of the drug interaction evidence. Usually, a linear regression 

model is used to assess the continuous clinical endpoint points, e.g. lab tests; a 

logistic regression is used to assess the binary clinical endpoints, such as disease 

or drug side effect; and a Cox proportional hazard model is used to assess the time 

to event clinical endpoint, such as overall survival. The regression coefficients are 

always used to quantify the clinical effect of drug interactions. They are named 

specifically as the odds ratio (OR) and the hazard ratio (HR) in the logistic 

regression and Cox proportional hazard regression model, respectively. The 

statistical evidences are presented with p-values. DDI evidence of a p-value less 

than 5% was classified as a DDI; otherwise it was classified as a NDDI (i.e. non-DDI). 

For example: Comparing mini-dose warfarin and warfarin plus aspirin, the annual 

rates of major bleeding was 0.3% and 1.4% respectively, (P = .20). In this case, 

warfarin and aspirin interaction was classified as a NDDI. 

 Change Term describes the change of action in clinical endpoints and their values. 

The following words were annotated in the corpus to denote its action: increase, 

alter, elevate, induce, higher, change, decrease, reduce, attenuate, lower, 

exacerbate, and etc (H. Y. Wu, Karnik S Fau - Subhadarshini, et al., 2013). 
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The middle level annotation focused on the identification of drug interaction sentences. 

The criteria of determining DDI sentence is based on the existence of drug pairs with an 

interaction statement, such as an OR or an HR for the change a clinical endpoint when 

comparing co-committed drugs to a single-drug treatment. The interaction statement 

might be either an interaction, or a non-interaction. 

Once the DDI sentences were labeled, DDI pairs in the sentences were further annotated. 

Differed from DDI pair annotation in our pharmacokinetics DDI corpus (H. Y. Wu, Karnik S 

Fau - Subhadarshini, et al., 2013), DDI relationships in clinical pharmacodynamics corpus 

are only classified into two classes (DDI and Non-DDI). 

 

3.2.2 Inter-Annotator Agreement 

To access the quality of the corpus construction and the consistency of the annotation 

task, the inter-annotator agreement was measured for the processes of both validation 

(Step 2) and annotation (Step 3) tasks. In the phase of abstract validation, two curators 

executed the abstract selection independently following the predefined IECs. Any 

disagreements were firstly investigated and discussed between two curators. If the 

consensus was not achieved, the disagreements were resolved by Dr. Li, the supervisor 

curator. In the annotation task, those partially or none overlapped entities, sentences, 

and/or DDI relationships, were firstly investigated by two curators first. Any 

disagreements were finally judged by the supervisor curator. 
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3.3 Results 

3.3.1 Clinical Pharmacodynamics Drug Interaction Abstract Screening 

We retrieved 307 abstracts from relevant journals and 315 abstracts from PubMed engine. 

After removing 17 duplicates between them, there were 605 unique abstracts. 

To ensure the quality of data curation, quality Control and Clinical pharmacodynamics DDI 

Abstract Validation are implemented by two curators using the IEC defined in Table 3.1. 

They disagreed only on 14 out of 605 previously selected abstracts.  Those disagreements 

were further reviewed and resolved by the supervisor curator. As the result of this quality 

control analysis, 465 abstracts from the screening stage were classified as not clinical 

pharmacodynamics drug interaction studies, while the other 140 abstracts were DDI 

related.  Those none clinical pharmacodynamics DDI abstracts include population studies 

that investigated the frequency of known drug interactions in the health databases, 

implementations of drug interaction software, population drug safety study without 

testing DDI hypothesis, care reports and review articles. In Table S4, one clinical 

pharmacodynamics DDI example and four different types of misclassified abstracts from 

our screening step are presented. 

 

3.3.2 Corpus Annotation Representation and Its Statistics 

The corpus was constructed on the 140 DDI-related abstracts with Brat rapid annotation 

tool, (http://caarray.compbio.iupui.edu/brat/#/PharEpi_corpus/). Based on our 

http://caarray.compbio.iupui.edu/brat/#/PharEpi_corpus/
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proposed annotation scheme, the corpora of these abstracts were manually carried out 

by two independent annotators. Figure 3.2 shows two typical examples of complete 

sentences describing DDI annotation using the brat rapid tool. In Figure 3.2 Two Examples 

of DDI Annotation, one interacting pair (SSRIs and NSAIDs) was created according the 

“Change term” on “their statistical model and value”. In Figure 3.2(b), a non-interaction 

relationship (statins-TZD) is identified due to the negation in “Change term” of “endpoint” 

compared with the effect of statins alone. According to both examples, all the semantic 

entities including drug name, clinical endpoint and its value, statistical models and their 

values, and change term are necessary and critical to identify a DDI or a non-DDI in a 

clinical pharmacodynamics study. 

 

 

Figure 3.2 Two Examples of DDI Annotation 

 

  



  

78 

In the corpus, drug names (magenta), change terms (lime green), statistical models 

(yellow), and statistical values (dark magenta) were annotated in the term level; and DDI 

sentences (blue) was annotated in the sentence-level. To indicate drug-drug interaction, 

an arrow was used to link two interacting drugs. Figure 3.2(a) shows a drug combination 

increases the IRR to 12.4, which infers the information of DDI. Figure 3.2(b) shows the 

concomitant use of statin and TZD did not increase the risk of myopathic event. Therefore, 

it is a NDDI sentence. 

Table 3.2 displays the statistics for the agreement of the annotation task in the DDI corpus. 

It comprises of 2181 annotated entities, 297 DDI sentences, and 393 drug pairs. Among 

entity annotations, the most common semantic type was drug (41.9%) following by 

endpoint (17.3%), percentage (11.4%), change term (9.8%), and statistical value (8.9%).  

Those numbers show the recognition of DDI relationship was dominated by those 

important entities. In addition, Table 3.2 presents the results for the annotation 

concordance. The statistics shows very high agreements for term-level annotation 

(2170/2181), sentence-level annotation (285/297), and DDI-pair annotation (378/393).  
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Annotation type Semantic type Number Concordance 

Key Term Level 
(2181 terms) 

Drug names 913 

2170 

Endpoint 378 

Endpoint Value 33 

Statistical 
Model 

149 

Statistical Value 194 

P-value 52 

Percentage 249 

Change Term 213 

Sentence Level 
(297 sentences) 

DDI sentence 297 285 

DDI Level 
(393 pairs) 

DDI pair 341 
378 

NDDI pair 52 

Number of DDI Abstracts  140 126 

Table 3.2 Statistics of Clinical Pharmacodynamics DDI Corpus Annotation 
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3.4 Discussions 

This paper presented a corpus construction for the clinical pharmacodynamics drug 

interaction evidences published in the Medline. It fills in the gap of current drug 

interaction corpus development, and will facilitate the future drug interaction text mining, 

especially for the clinically relevant drug interaction evidences. The following paragraphs 

discusses the limitations, the challenges, and potential new informatics researches based 

on this corpus construction. 

 

3.4.1 How Much Clinical Pharmacodynamics Drug Interaction Information in The Full Text 

Do We Miss When We Have Only DDI Information in The Abstracts? 

We shall all keep it in mind that the annotated clinical pharmacodynamics drug 

interaction evidence published in the abstract is only a tip of the iceberg among all the 

drug interaction information in the full article. Usually an abstract would not illustrate the 

design of an epidemiology study. Hence, we miss the patient population information 

specified in its inclusion and exclusion criteria. In the abstract, we also miss the case 

control match-up definition in the design and covariates justification in the regression 

models, which balance and justify confound biomedical and demographic variables, 

respectively. Moreover, we miss the health record database description. Thus, we cannot 

assess the inherited limitation on the drug interaction evidence. All these additional DDI 

information from the full article are critical, if the drug interaction evidence will be 

assessed and implemented into the clinical setting. 
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3.4.2 Challenges in Pharmaco-epidemiological DDI Abstract Selection and DDI 

Annotations 

During the abstract screen process, we found that DDI information in the clinical 

pharmacodynamics literatures is imbalanced. Comparing two searching strategies, only 

20 abstracts were acquired from the PubMed search, while 120 came out of the journal 

search. Thus, we would recommend a combo strategy in selecting the DDI abstracts. 

While the general PubMed search can keep the generality of query, the journal specific 

search can have high sensitivity. 

In annotating clinical pharmacodynamics DDI information, we recognized that there were 

two difficult situations: term abbreviation and particular sentence representation. Many 

abstracts used the abbreviation to represent drug names, endpoints, side effect, and 

disease. They confused the curators frequently and led to errors during the annotation 

process.  Unlike the explicit examples in Figure 3.2, some DDI sentences represent DDI 

information with indirect statement, and it causes the disagreement between two 

curators. For example, in Figure 3.3, the DDI sentence stated that “proton-pump 

inhibitors are associated with increased risk of ADR, except for clopidogrel”. One curator 

missed the link between the drug pair of proton-pump inhibitors and clopidogrel due to 

the indirect DDI statement.  
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Figure 3.3 The Indirect NDDI Statement and Relationship 

 

3.4.3 Drug Interaction Knowledge Gap Issue 

As diverse disciplines and varied studies for DDI are involved, drug interaction evidence is 

often not available cross all different types of research. It creates the knowledge gap and 

impedes the translational DDI research from molecular pharmacology to clinical 

pharmacology. To examplify such gap, we extend current drug interaction corpus to 

include clinical pharmacodynamics studies.  We applied the same construction strategy 

as our previous drug interaction work (Pharmacokinetics (PK) drug interaction Corpus) to 

the current version of DDI corpus. 

Compared with the PK corpus, the presentation of DDI in clinical pharmacodynamics 

studies is not the same as that in vivo/in vitro drug interaction experiments. In vivo and 

in vitro experiments measure different endpoints (e.g. AUC and clearance) and describe 

the drug response with distinctive models (e.g. one compartment or two compartment 

models). On the other hand, epidemiology studies investigate the effects of drug 

interaction on diseases or ADR conditions in predefined patient populations. To identify 



  

83 

risk factors for DDI, clinical pharmacodynamics studies focus on the study design, data 

collection, statistical analysis, and the interpretation of results. Based on the statistics in 

Table 3.2, there are about two DDI sentences and 2.8 DDI pairs on average in each 

abstract. In our PK corpus, there are more than 3 sentences (1311/428) and over 4 DDI 

pairs (1833/428) on average in each abstract.  These numbers demonstrate the different 

sentence structure and DDI representation between clinical pharmacodynamics and 

pharmacokinetics DDI studies. As the main goal of the DDI corpus construction is to 

develop text mining tools for the large scale DDI extraction, we anticipate that the text 

mining algorithms will be different based on different DDI corpora. In our early work, we 

demonstrated that the text mining algorithms and their performances were different 

between in vitro PK and in vivo PK DDI corpora. We expect the similar trend of text mining 

performances between clinical pharmacodynamics DDI studies and PK drug interaction 

studies. 
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3.5 Conclusion 

In summary, clinical pharmacodynamics DDI corpus was constructed via streamlined 

abstract screening, validation, and annotation processes. The DDI abstracts were 

screened based on both journal based search and PubMed general search; the DDI 

abstracts was validated based on predefined IECs; and a three-layer annotation scheme 

guided the entities, sentence, and interaction annotations. To the best of our knowledge, 

this is the first well annotated corpus for clinical pharmacodynamics DDI studies.  It closes 

the knowledge gap cross all different types of DDI evidence, and provides the NLP 

community an unique opportunity to develop text mining tools to extract pharmaco-

epidemiological DDI evidences. 
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Chapter 4. Named Entity Recognition Method for Drug Metabolite 

4.1 Background 

Drug metabolism, distribution, and excretion are the primary pharmacokinetics research 

areas. A drug’s pharmacokinetics (PK) involves not only the parent compound, but also its 

metabolites (Malcolm Rowland et al., 2011). In some instances, an active drug metabolite 

can retain enough or even dominate its intrinsic activity at target receptor and contribute 

to the pharmacological effects. Certain drugs such as codeine and losartan have active 

metabolites (morphine and EXP3174 respectively) that are responsible for more 

therapeutic action than their parent drugs (Obach, 2013). In some other instances, pro-

drugs, formulated in an inactive form, are designed to be metabolized inside the body to 

form the active drugs (Hacker et al., 2009).  A salient example is tamoxifen, which itself is 

not an active compound to treat breast cancer. Instead, its metabolites, 4-OH-tamoxifen 

and endoxifen are potent inhibitors to estrogen alpha (Desta et al., 2004; Johnson et al., 

2004; Lee et al., 2003; Stearns et al., 2003). Drug metabolites also play very interesting 

roles in drug interactions. A notable example is itraconazole. Itraconazole itself is a potent 

CYP3A inhibitor, so are its metabolites, such as hydroxy-itraconazole, keto-itraconazole, 

and N-desalkyl-itraconazole (Isoherranen et al., 2004). The metabolism of CYP3A 

substrates, such as the midazolam, are inhibited by itraconazole and its metabolites, if 

midazolam and itraconazole are taken together. Pharmacogenetics, another forefront of 

pharmacology research, also has a major impact on the drug metabolism products. Using 

the previous tamoxifen example, tamoxifen active metabolite, endoxifen, is generated 
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through the CYP2D6 enzyme. Among breast cancer patients with CYP2D6 loss functional 

variants (e.g. *4, *5, and*10), the patients usually have very limited tamoxifen metabolite, 

endoxifen. Hence, these patients have much reduced endoxifen concentration such that 

the efficacy of tamoxifen treatment declined (Stearns et al., 2003). All these above 

examples demonstrate that drug metabolites and their parent drugs are equally 

important in pharmacokinetics research. 

Although there are a number of well-established dictionaries for drug names, such as 

DrugBank, MeSH terms, Rx-Norm, NDC, PubChem, etc, there is very limited naming 

system for drug metabolites. In particular, we want to make a distinction between drug 

metabolites and metabolome, which is considered to be the collection of all metabolites 

in a biological cell, tissue, organ, or organism. Metabolome may include both endogenous 

metabolites that are naturally produced by an organism (such as amino acids, organic 

acids, nucleic acids, fatty acids, amines, sugars, vitamins, co-factors, pigments, antibiotics, 

etc.) as well as exogenous chemicals (such as drugs, environmental contaminants, food 

additives, toxins and other xenobiotics) that are not naturally produced by an organism 

(Nordstrom et al., 2006; Wishart, 2007). Therefore, ideally, metabolome shall include 

drug metabolites. However, due to the limitation of Mass-Spectrometry (MS) or Nuclear 

Magnetic Resonance (NMR) biotechnologies, metabolome studies and drug metabolisms 

studies are conducted using very different methodologies. Drug metabolites are usually 

measured with validated drug internal standard as the internal reference using MS 

technologies. Metabolome studies, on the other hand, rarely rely on drug internal 

standards. Therefore, drug metabolites rarely can be found from metabolome studies, 

https://en.wikipedia.org/wiki/Metabolites
https://en.wikipedia.org/wiki/Organism
https://en.wikipedia.org/wiki/Amino_acids
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because they are different metabolites. For instance, the highly populated Human 

Metabolome Database (HMDB) reports data on >29,000 endogenous metabolites, but 

there are only 2485 drugs, and 948 drug metabolites (Wishart et al., 2013). Other 

examples are DrugBank 4.0 (Law et al., 2014) and ChEBI (Degtyarenko et al., 2008), 

comprising of only 1,445 and 111 drug metabolites respectively, which are much less than 

the total number of generic drugs (8,184).  

Although HMDB, Drugbank, and ChEBI provide the limited drug metabolite terminologies, 

most drug metabolites were reported and can be found through scientific literature, 

especially pharmacology-related articles. To capture these drug metabolite names from 

text, named entity recognition (NER) shall be utilized. Already there are many NER tools 

that enable to enrich text with semantic annotations for biomedical or biological 

terminologies (Alias-i, 2008; Björne, Kaewphan, & Salakoski, 2013; David, Sérgio, & José 

Luís, 2012; Eltyeb & Salim, 2014; Fukuda, Tamura, Tsunoda, & Takagi, 1998; Krauthammer, 

Rzhetsky, Morozov, & Friedman, 2000; Leaman & Gonzalez, 2008; McDonald & Pereira, 

2005; Nadeau & Sekine, 2007; Neves & Leser, 2014; Nobata et al., 2011; Rebholz-

Schuhmann, Arregui, Gaudan, Kirsch, & Jimeno, 2008; Rocktaschel, Weidlich, & Leser, 

2012; Segura-Bedmar, Martinez P Fau - Segura-Bedmar, & Segura-Bedmar, 2008; Settles, 

2005; Usie, Alves, Solsona, Vazquez, & Valencia, 2014; Vazquez, Krallinger, Leitner, & 

Valencia, 2011; G. Zhou, Zhang, Su, Shen, & Tan, 2004). Among those systems, most were 

designed to identify general biological terms such as proteins, DNA, RNA, cells, cell lines, 

etc (Alias-i, 2008; David et al., 2012; Leaman & Gonzalez, 2008; Settles, 2005; Tsuruoka & 

Tsujii, 2004), and some of those can annotate drugs, chemicals, or metabolome. Only a 
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few use the dictionary lookup approach to annotate drug metabolites in ChEBI and HMDB 

(Björne et al., 2013; Eltyeb & Salim, 2014; Nobata et al., 2011; Rebholz-Schuhmann et al., 

2008; Rocktaschel et al., 2012; Segura-Bedmar et al., 2008; Usie et al., 2014; Vazquez et 

al., 2011). For instance, Whatizit is a text mining system with a suite of modules that 

analyze text data based on TreeTagger and identify a set of selected annotation types 

based on publicly available resource (Rebholz-Schuhmann et al., 2008). Within the 

Whatizit, WhatizitChebiDict annotates ChEBI entities based on the dictionary search, and 

whatizitOSCAR3 identifies chemistry-specific terms using an approach that combines n-

grams, regular expression, and heuristic rules (Corbett & Murray-Rust, 2006). Integrating 

both drug and chemical terms at the same time, whatizitChemical module annotates drug 

metabolite as it contains the annotations from both whatizitOSCAR3 and 

whatizitChebiDict. A research work by Chikashi et al. created a manually annotated 

golden standard corpus for yeast metabolome and proposed a NER tool to extract yeast 

metabolites using ChEBI and HMDB data as one of features (Nobata et al., 2011). This 

article demonstrated that whatizitChemical achieved lower precision and F-measure 

compared to their NER tool. Nevertheless, we think whatizitChemical’s drug metabolites 

NER performance is restrained by the limited drug metabolite terminologies in ChEBI and 

HMDB databases.  

There are several aspects that we shall increase the performance of the drug metabolite 

NER. Firstly, many drug metabolites are related with their parent drugs through chemical 

reactions via drug metabolism enzymes, such as CYP450 enzyme family. A drug 

metabolite is often times named after their drug names accompanying with a prefix or 
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suffix substring that is related with enzyme catalysation. For example, 4OH-midazolam 

and 4OH-tamoxifen are metabolites of midazolam and tamoxifen through the CYP3A 

oxidation (Desta et al., 2004; Sevrioukova & Poulos, 2017). Secondly, abbreviations are 

frequently used in the biomedical literature to cite drugs and metabolites. Using the 

midazolam and tamoxifen as examples, they were also reported as MDZ and TAM 

repeatedly, and their metabolites were also written as 4OH-MDZ and 4OH-TAM, 

respectively. If these abbreviations can be integrated in the NER algorithm, it shall have a 

much better performance in recognizing not only drug names, but also their metabolites. 

Thirdly, if a drug and its metabolite are two different terms in a publication, they are 

usually very close. Therefore, a drug metabolite NER algorithm shall recognize these 

phenomena in order to have an improved drug metabolite detection performance. 

In this article, we make two major contributions in developing an innovative and better 

drug metabolite NER tool. First, four different drug metabolite presentation patterns are 

defined, and a golden-standard corpus is constructed. This annotated corpus facilitates 

the next step NER algorithm development. Second, our new drug metabolite NER tool is 

a hybrid approach. It combines both a lexicon-based mapping and a machine-learning 

algorithm. This system captures both drug metabolites and their abbreviations. 

 

  



  

90 

4.2 Material 

4.2.1 Define Drug Metabolite and Reaction 

There are four patters that the drug metabolites are presented in the published literature. 

Tamoxifen metabolites are used as the primary example to illustrate these four patterns 

in Figure 4.1. The first two categories (single word drug metabolite Type I and Type II) are 

drug metabolite names in a single entity. Type I clearly contains a substring of a drug name 

as well as a chemical prefix or suffix (e.g. 4-OH-N-desmethyltamoxifen in MEDLINE: 

15685451). Type II, however, does not contain either a substring of its parent drug or 

chemical reaction. Type II has two types of instances. The first one is an abbreviation of 

the drug metabolite (e.g. DFO abbreviates for dimemorfan oxidation in 

MEDLINE:19593786). The second one is a unique term given for its drug metabolite, and 

this term is unrelated to its parent drug name. For instance, endoxifen (MEDLINE: 

20400308) is the primary active metabolite of tamoxifen via CYP2D6 enyzme), which has 

an alternative name of 4-OH-N-desmethyltamoxifen. The other two patterns are 

represented with the form of multi-word entities containing a preposition or conjunction 

for describing the chemical reaction. The examples of multi-word drug metabolite Type I 

and Type II are tamoxifen N-demethylation in MEDLINE: 24737844 and N-demethylation 

of tamoxifen in MEDLINE: 8104124, respectively.  
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Figure 4.1 Patterns of Drug Metabolites 

 

  

4-OH-N-desmethyl-tamoxifen 

tamoxifen N-demethylation 

N-demethylation of tamoxifen 

Drug metabolite type I 

Drug reaction type I 

Drug reaction type II 

endoxifen Drug metabolite type II 
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4.2.2 Corpus Construction 

Drug metabolite corpus was constructed using 210 MEDLINE abstracts from in vitro PK 

corpus (H. Y. Wu, Karnik, et al., 2013). The corpus construction is a manual process (Figure 

4.2). Three annotators with different training backgrounds, including informatics, 

biochemistry, and pharmacology, conduct the annotation tasks independently. The 

disagreed annotations are discussed among three annotators for consensus. If the 

consensus is not achieved, the disagreed annotations are further judged by 

pharmacological research experts (Professors in the Department of Pharmacology) for 

the final decision.  

The annotations were restricted to those names that are involved in drug metabolism or 

are clearly mentioned as drug metabolites. Based on this criterion, we present few 

examples that describe four patters for drug metabolites accordingly. In Figure 4.3 (a), 

Drug metabolite type I is annotated in a sentence in PMID: 10383922. “Azelastine has 

been reported to be metabolized mainly to desmethylazelastine and 6-hydroxyazelastine 

in mammals” describes that both “desmethylazelastine” and “6-hydroxyazelastine” can 

be referred to as azelastine’s metabolites because of the involvement of azelastine’s 

metabolism. Another sentence in PMID: 11259331, “We have identified CYP2C19 and 

CYP3A4 as the principal cytochrome P450s involved in the metabolism of flunitrazepam 

to its major metabolites desmethylflunitrazepam and 3-hydroxyflunitrazepam”, clearly 

mentions that “desmethylflunitrazepam” and “3-hydroxyflunitrazepam” are the 

metabolites of flunitrazepam. Figure 4.3 (b) shows one example of Drug metabolite type 

II. In this case, both dihydroqinghaosu and its abbreviation (DQHS) are the metabolite of 
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Artelinic acid (AL). In Figure 4.3 (c) and (d), ATRA 4-hydroxylation and hydroxylation of 

midazolam are examples of Drug reaction type I and type II, respectively.   

To evaluate the quality of the annotation task, the measurement of inter-annotator 

agreement between two annotators was quantified using “Pairwise Percent Agreement”. 

Since any disagreements among three annotators are resolved by two supervisor 

annotators, the gold-standard corpus for drug metabolite is constructed. In addition, the 

results from three annotators are compared to the gold-standard corpus. Precision, recall, 

and F-measure are adopted to assess the performance of an individual annotator.  
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Figure 4.2 Drug Metabolite Annotation Flow Chart 
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Figure 4.3 The Annotation of Drug Metabolite in Brat Annotation Tool 
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4.2.3 Drug and Drug Metabolism Reaction Lexicon Construction for Named Entity 

Recognition 

In this NER task, two lexica are built, including Drug name lexicon and drug metabolism 

reaction lexicon. Drug name lexicon is built upon the drug names in Drugbank 4.0 (Knox 

et al., 2011) and MeSH term (MeSH). Drugbank has three types of drug names, generic 

(8,184), brand (17,336) and synonym (7,382). MeSH has 74,619 unique drug names. 

Among them, 14,946 MeSH terms are mapped to the drugbank names.  In total, there are 

70,712 unique drug names in the drug name lexicon.  

The drug metabolism reaction lexicon are composed of 65 metabolites’ prefix and suffix 

terms collected from the literature (Golan, 2012; Knollmann, 2011) and our previous work 

(H. Y. Wu, Karnik, et al., 2013). They are further evaluated by two domain experts. Within 

the lexicon, drug metabolism reactions are categorized into two groups: modification 

(phase I) and conjugation (phase II) reactions. The phase I metabolism includes oxidation, 

reduction, and hydrolysis. Phase I metabolism causes a small structural change to a drug, 

which is called phase I derivatives. Then the phase I derivatives go through further phase 

II metabolism. Phase II metabolism includes glucuronidation, sulphation, glutathione 

conjugation, amino acid conjugation, acetylation, and methylation. The drug metabolism 

reaction lexicon is available in Table S5.  
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4.3 Method 

4.3.1 Overview of An Integrated Drug Metabolite Named Entity Recognition Algorithm 

Our drug metabolite named entity recognition algorithm has three phases. The first phase 

is to create features for entities in text. Part-of-Speech (PoS) feature for each entity is 

assigned using PoS Parser in OpenNLP (Albright et al., 2013). In parallel, a dictionary-based 

tagging is applied to identify weather an entity is a drug name and find whether drug 

name and metabolite’s reaction terms are the substring of that entity. Once drug names 

are recognized, their abbreviations in the same abstract, if available, will be also 

recognized using our proposed abbreviation detection method and then tagged as drug 

names (see Drug Abbreviation Detection). In this phase, the outcome for each entity will 

be PoS feature, Drug Index, and Pre/suffix Index. In the second phase, a searching window 

is created centering with a drug name entity. The window is adjusted according to 

predefined conditions of surrounding entities (see Window Construction and Adjustment). 

Within a window, the entity containing a reaction term will be recognized as candidate 

entities for drug metabolites. In the final phase, a supervised ML algorithm learns from 

the linguistic cues using POS information and the Boolean variables for drug names and 

reaction terms (introduced in Phase I) of entities within a searching window (adjusted in 

Phase II) to determine whether the candidate entities in the searching window are 

belonging to drug metabolites or not. The workflow of the proposed NER system is 

depicted in Figure 4.4. 
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To evaluate the performance of the NER algorithm, the identified term strings that match 

the start and end positions of the term strings in golden standard corpus constitute true 

positive (TP) predictions. If the identified terms that cannot be matched fully are false 

positives (FP) and terms in the corpus that were not be retrieved were false negatives 

(FN). Finally, the standard Information-Retrieval (IR) metrics: Precision (P), Recall (R), and 

F-measure (F1) were computed to measure the performance.   
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Figure 4.4 Workflow of Drug Metabolite Annotation 
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4.3.2 Dictionary-based Drug Name and Pre/Suffix Term Tagging 

Within the text, entities are tagged against both drug names and pre/suffix terms in the 

dictionary. Technically, drug names in dictionary are sorted based the length of string in 

the hash table. Then, if an entity can be partially mapped against a drug name or a 

reaction term in the table, drug index or Pre/Suffix index for that entity is given a one 

value to represent its availability. However, some entities might be erroneously tagged 

because of some special brand names. For instance, “Control” which is the brand name 

of chlordiazepoxide might cause the erroneous tagging to the verb “control” in text. To 

eliminate such a false positive, the tag will be removed if the term was recognized as a 

verb with PoS tagger.  

 

4.3.3 Drug Abbreviation Detection 

In this task, we proposed a drug abbreviation detection algorithm, which is depicted in 

Figure 4.5. In pharmacokinetic studies, a drug abbreviation is usually presented in a 

parenthesis after its full name that is first written in an abstract. This algorithm explores 

the existence of parentheses after the tagged drug names in a range of five words. 

However, in this way, we observed that not every term within parentheses are drug 

abbreviations. They might be an enzyme name (e.g. CYP3A4) that catalyzes its substrate, 

drug dosage or drug serum concentration measured in a clinical trial or PK experiment 

(e.g. 10 microM), PK parameters measured in a PK experiment (e.g. IC50), and sometimes 

statistical data analysis results (i.e. p-value or Conference Interval). These terms are 
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removed if they are recognized as enzyme name, dosage information, PK parameters, or 

statistical result in the predefined list using regular expression.  

 

Step 1: Find a drug name in a sentence. 

Step 2: Check if a parenthesis is captured in the range of five words after a tagged 

drug name. 

Step 3: Extract the whole term within the parentheses. 

Step 4: Determine if the term is abbreviation or not. We exclude enzyme (e.g. 

CYP3A4), experimental parameters (e.g. 10 microM, r = 0.900, P <.001, or 30%), or 

company name (e.g. Zeneca, Ltd.) 

Figure 4.5 The Procedure of Drug Abbreviation Detection 
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4.3.4 Window Construction and Adjustment 

The procedure of window creation and adjustment is showed in Figure 4.6. First, based 

on the results of dictionary-based tagging, a window of a span-size of 5 is placed centering 

on the tagged drug name. Second, the window is further trimmed according to the 

following rules: if the window meets the end of a sentence; if the window overlaps with 

another drug name; or if the window meets the entity ending with a comma. 

 

 

Figure 4.6 Window Creation and Adjustment 
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4.3.5 Feature Matrix for Machine Learning 

Three types of input features (PoS tags, drug index, and reaction index) are used to create 

feature matrix (input data) for machine learning algorithms. As shown in Figure 4.7, 

column 2 provides Part-of-Speech tags for each entity. In column 3, Drug index for 

midazolam (W6) located in the center of the searching window is indexed as 1. In column 

4, Pre_Suffix index for both 4’-hydroxylation (W3) and 1’-hydroxylation (W7) are indexed 

as 1 because they contain a reaction term (hydroxyl). In addition, Column 5 to 10 provides 

the PoS information for its surrounding entities (± 3 entities) to represent sentence 

structure around the target entity. If this example is in the training dataset, Tag (column 

11) for W7 is assigned as one. On the other hand, if it is in the testing dataset, all elements 

in Tag column are zero.  

Once a feature matrix for entities in the window are obtained, machine learning 

algorithms are applied to predict whether the entities containing prefix or suffix terms in 

the window are the reaction elements for a drug metabolite name or not.  
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Figure 4.7 Feature Matrix of Entities in A Searching Window 
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4.4 Results 

4.4.1 Performance of Corpus Construction 

To measure the quality of corpus construction, the comparison between the result from 

each annotator and gold-standard data was measured pairwise using precision, recall, 

and F-measure. The result of analysis is shown in Table 4.1. The whole corpus evaluation 

suggested that expert comparable performance on this corpus and found that some of 

disagreements are introduced due to some extra information being communicated during 

the development of annotation guideline. For example, if an abbreviation was mentioned 

right behind its drug metabolite name, one annotator annotated both drug metabolite 

and its abbreviation as a tag.   Another one only annotated drug metabolite but ignored 

the abbreviation part. As shown in the categorization of drug metabolite, the abbreviation 

of drug metabolite is fall in the category of Drug Metabolite Type II. This phenomenon is 

clearly shown in Table 4.2 and most of disagreements for Annotator 1 and Annotator 2 

occurred in this category. For instances related to the issue of abbreviation, in PMID: 

10859153, both annotator 1 and annotator 2 omitted the annotation of NORCIS, which is 

the abbreviation of norcisapride and is the metabolite of cisapride. In addition, many drug 

metabolites that are written with the mixture form of drug abbreviation and a reaction 

term were missed. An example of 3-hydroxyNVP (the metabolite of Nevirapine) can be 

found in PMID: 10570031. For the instance related to unique drug metabolite names, 

dihydroqinqhaosu in PMID: 10456689 is an active metabolite of artelinic acid. From this 

example, it is hard to find clues from its parent drug for recognizing its drug metabolite. 
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 Annotator 1 Annotator 2 Annotator 3 

Precision 0.989 0.994 0.986 

Recall 0.913 0.9 0.97 

F-measure 0.950 0.945 0.978 

Table 4.1 Comparison between Golden-Standard Corpus and The Result of Each 

Annotator 

 

 Annotator 1 Annotator 2 Annotator 3 

FN or 
missing 
annotatio
n 

Drug Metabolite Type 
I 

21 11 3 

Drug Metabolite Type 
II 

70 67 15 

Drug reaction Type I 18 3 13 

Drug reaction Type II 5 3 9 

FP annotation 13 7 18 

Table 4.2 Error Analysis for The Result of Each Annotator (FN) 

 

 Pairwise Percent Agreement 

Annotator 1-2 87.6% 

Annotator 1-3 88.8% 

Annotator 2-3 89.8% 

Table 4.3 Inter-Annotator Agreement Result  
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In addition, the measurement of inter-annotator agreement between two annotators was 

quantified using pairwise percent agreement in Table 4.3. The pairwise percent 

agreement suggests that high levels of agreement (89.8%) are achieved. 

 

4.4.2 Performance of Entities Tagging 

To create the features of drug index or pre/suffix index for entity, the entities containing 

drug names or pre/suffix terms are identified using our proposed dictionaries. The 

statistics for drug metabolite corpus is shown in Table 4.4. There are 3789 drug entities 

in our corpus. Three drug entities (2 unique drugs) were not identified because of their 

drug names were not availability in our dictionary. These two drug names are RPR-106541 

and cholantene. There are 1582 entities containing the reaction terms. Only 7 were 

erroneously tagged because some drug name or their synonyms comprise of our 

proposed pre/suffix terms. In tagging drug abbreviation, 452 terms are identified within 

the parentheses after the tagged drug names within a range of five words. Among these 

452 terms, 138 are true drug abbreviations. Among the remaining 314 false positive terms, 

161 enzyme names and 139 PK parameters and 5 other pharmacology terms were 

systemically removed. This process results in only 9 false positive identifications. They are 

all abbreviation of their reaction terms, such as 5-hydroxythalidomide (5-OH). Overall, the 

performance of identifying drug entities and pre/suffix terms is very good in this corpus. 

It minimizes the effect of error propagation due to the erroneous entity tagging.   



  

108 

 

 Frequency 

 Training Testing Total 

Abstract 168 42 210 

Drug 2966 823 3789 

Term with Pre/suffix 1287 295 1582 

Drug metabolite 1008 289 1297 

Table 4.4 Statistics of Named Entity Recognition 

 

4.4.3 Performance with Different Window 

A window size=2*n+1 (n is one-sided word span) is placed centering on an entity 

containing a drug name. The drug metabolite identification depends on the window size. 

In order to optimize the drug metabolite identification performance, different window 

size is evaluated using our golden-standard corpus. Here, we have investigated the span 

size n = 2, 3, 4, 5, and 6.  As shown in Figure 4.8, the best performance (optimal recall rate 

~ 100%) was obtained using the window of size 11 (span = 5) via the analysis of pre/suffix 

distribution surrounding with drug name.  
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Figure 4.8 Performance of Different Span Sizes for A Searching Window 
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4.4.4 Performance of Drug Metabolite NER 

In this task, from 210 abstracts, 168 abstracts are selected as the training dataset, and the 

remaining 42 abstracts are used as a testing dataset. With 10-fold cross validation on 

manually annotated corpora of training data, three different machine learning (ML) 

algorithms in Weka pipeline (M. Hall et al., 2009), LIBSVM (a Library of Support Vector 

Machines) (Chang & Lin, 2011), J48 (C4.5 algorithm) (Quinlan, 1993), and LMT (Logistic 

Model Tree) (Landwehr, Hall, & Frank, 2005), were implemented to predict the drug 

metabolites in the testing dataset. 

Table 4.5 shows the overall evaluation results for our proposed NER system by using three 

different ML algorithms. The best precision (0.8884), recall (0.7716) and F-measure 

(0.8259) are achieved by SVM algorithm. While the second is the J48 tree, which has 

comparable precision (0.8818) but much lower recall (0.6194) and F-measure (0.7276). 

 J48 Tree LMT Tree SVM 

Precision 0.8818 0.8461 0.8884 

Recall 0.6194 0.5709 0.7716 

F-measure 0.7276 0.6818 0.8259 

Table 4.5 Evaluation of Drug Metabolite NER System with The Test Corpus 
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4.5 Discussion 

4.5.1 Error Analysis 

For error analysis, a manual check was performed to know the major reasons to cause 

errors and further investigate how the performance of the proposed NER system is in 

identifying four different types of drug metabolite representations. 

From the analysis, we perceive five reasons that incur errors during the annotation task, 

including unidentified drug abbreviation, incorrect decisions from machine learning, 

metabolite-like names, unique drug metabolite names, and drug names are not in 

dictionary. Via the analysis using the prediction result of SVM algorithm, Table 4.6 shows 

that a barrier to identify abbreviations of drugs and drug metabolites accounts for about 

44 percent of error annotations. Such an omission because of abbreviation is still a 

challenge to all kinds of NER system. Incorrect decision by machine learning algorithms is 

the second most reason for error annotations (31.87%), which leads to both FP and FN 

errors. Those FP errors occurred when their POS patterns are similar to that of true drug 

metabolite. For example, “hydroxylation in vitro by nelfinavir” in PMID: 11159797 has a 

similar POS pattern (NN_reaction + IN_by + NN_drug) to that of drug reaction type II 

(NN_reaction + IN_of + NN_drug). On the other hand, FN errors occurred when the 

complicated and long phrase is used to represent drug reaction type II. The third reason 

is metabolite-like names, which accounts for 9.89% of error detection. For instance, 

“dihydroergotamine” is recognized as the metabolite of a drug name (“ergotamine”). But 

it is actually a generic drug name in Drugbank. The forth reason is the unique drug 
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metabolite name, which accounts for 7.69% of errors. For example, UK-103 320 in PMID: 

11298070 (the main metabolite of sildenafil) and cycloguanil in PMID: 9923577 (the 

metabolite of proguanil) are not identified because their denominations are not based on 

their parents drug and their names do not exist in our dictionary. Finally, few errors are 

from the unidentified drug name in our dictionary. This challenge might be still an issue if 

there is a comprehensive dictionary. Since the error analysis was manually analyzed, we 

also realized that most of reasons lead to false negative detection in our system. All those 

issues majorly lower the value of recall for all three ML algorithms. From Table 4.5, all 

three algorithms have decent performance in precisions but not their recall rates. This 

result can fully reflect this phenomenon. 

Overall, we realized the superior performance using SVM algorithm from Table 4.5 and 

its main reasons of error detection from Table 4.6. In this analysis, we further inspected 

how the performance is in four different representations of drug metabolites. Table 4.7 

shows the recall and precision rates for the proposed system using SVM algorithm. In this 

result, SVM can handle best in drug reaction type I, which capture 93.75% of positive 

instances with 96.33% precision rate. Compared to drug reaction type I, a comparatively 

lower performance in drug metabolite type I (R:92.65%/P:91.3%) and drug reaction type 

II (R:77.27%/P:89.47%) are acquired. However, for drug metabolite type II, the system 

only can reach a poor recall rate of 32.3%. 
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Reasons Major Error types Error percentage (%) 

Unidentified abbreviation FN 43.96% 

Incorrect decision from ML Both FP and FN 31.87% 

Metabolite-like names FP 9.89% 

Unique Drug metabolite name FN 7.69% 

Drug name is not in dictionary FN 6.59% 

Total  100% 

Table 4.6 Error Analysis of Drug Metabolite Annotation for SVM Algorithm 

 

Recall /Precision SVM 

Drug Metabolite Type I 92.65%/91.3% 

Drug Metabolite Type II 32.3%/87.5% 

Drug Reaction Type I 93.75%/96.33% 

Drug Reaction Type II 77.27%/89.47 % 

Table 4.7 The Recall and Precision Rate for Four Different Types of Drug Metabolite 

Representations 
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From our observation, we ascribe the success of annotating drug reaction type I to its 

simpler structure. When both drug entity and reaction entity in this category are assigned 

a grammatical category of noun (NN) and laid side by side (NN_drug + NN_reaction), over 

90% of instances were correctly identified. For those false negative cases in this category, 

many are referred to the reason of unidentified drug names. For instance, RPR 106541 

sulfoxidation in PMID: 10411567 is one of false negative cases. For drug reaction type II, 

its performance is lower than that of drug reaction Type I. Except for the issue of 

unidentified drug names or abbreviations, complicated and long phrase lead to “incorrect 

decision from ML algorithm”. For drug metabolite type I, most of error detection occurred 

due to the wrong detection of metabolite-like names.  

To face the unfavorable result of drug metabolite type II, we observe that false negatives 

incident to unidentified abbreviations of drug names or unique drug metabolite names 

account for most erroneous detections. This issue is still the most challenging task in 

identifying drug metabolite because there is no cue in perspective of naming convention 

and no existing dictionary that contains comprehensive terminologies. It can be probably 

solved by manual curation or identification using sophisticated natural language process 

from context. 

 

4.5.2 Performance Drug Metabolite NER without Drug Metabolite Type II 

Via the error analysis, we realized that even though those true instances of Drug 

metabolite Type II are included in both training and testing dataset, it seems not to help 
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for recognition and may deteriorate the prediction capability of the training model.  

Therefore, an exercise was implemented to investigate the model without the inclusion 

of Drug Metabolite Type II instances. Table 4.8 shows that this model can improve the 

recall for Drug Reaction Type I but impair that of Drug Metabolite Type I. Interestingly, 

the precision rates for all three representations are all boosted.  

 

Recall /Precision SVM 

Drug Metabolite Type I 89.71%/98.39% 

Drug Reaction Type I 95.54%/98.17% 

Drug Reaction Type II 77.27%/97.14% 

Table 4.8 The Recall and Precision Rates of The Model without Drug Metabolite Type II 

 

4.5.3 Performance Comparisons with WhatizitChemical 

In this study, we try to explore existing methodologies for comparing performance. 

Unfortunately, there is no existing NER system developed for the same purpose as ours. 

(Nobata et al., 2011) is one of limited NERs designed to extract one type of metabolites, 

yeast metabolites, but not drug metabolite. In this task, the performance comparison to 

those available through Whatizit pipelines was implemented. From the result, it showed 

that whatizitChemical (Rebholz-Schuhmann et al., 2008), which is a literature search tool 
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for chemical metabolites, achieved higher recall but lower precision and F-measure than 

their system.  

 

To our understanding, whatizitChemical is designed to identify chemical entities, drugs 

and protein names for EBIMed individually, but it was not fully designed to annotate the 

full term of a drug metabolite. Using an example in PMID: 10460803, “dextromethorphan 

o-demethylation” is a CYP2D6 reaction for dextromethorphan. Using whatizitChemical, 

dextromethorphan and o-demethylation were tagged as a drug and a chemical, 

respectively. Thus, it is difficult to compare the performance of two systems that have 

different annotation criteria. Here, we assume that whatizitChemical recognizes and pairs 

both drug name and its reaction term. Whenever it correctly annotates both drug term 

and its reaction term from the annotation in gold-standard corpus, we call it as a true 

positive annotation. Otherwise, it is a false negative. To make a fair comparison, we only 

count the number of TPs and FNs of annotated terms on the manually curated gold-

standard corpus and calculate their recall.  Table 4.9 shows that, our NER recall is 0.77, 

while whatizitChemical has a recall of 0.65. Our NER outperforms whatizitChemical by 

12%. 

 Recall 

Our NER system with SVM 0.77 

whatizitChemical 0.65 

Table 4.9 Performance Comparison with WhatizitChemical 
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4.6 Conclusion 

The characteristics of drug metabolite are recognized to be an important feature to 

investigate drug-drug interactions, adverse effects of chemical compounds and their 

associations to toxicological endpoints or the extraction of pathway and metabolic 

reaction relations. However, there is no existing dictionary containing comprehensive 

drug metabolite terminologies but also no named entity recognition (NER) system 

focusing on the identification for drug metabolite and reaction. Here, we developed a 

novel NER system to annotate drug metabolites and reactions in scientific text, utilizing 

an integrated dictionary and machine learning algorithms (including SVM, J48, and LML). 

This system utilizes the information of Part-of-Speech, drug index and pre/suffix feature 

to determine whether the entities containing reaction terms belong to the drug 

metabolite or not. To evaluate performance, a golden-standard corpus is created by three 

annotators. With 10-fold cross validation on the corpora, SVM outperformance J48 and 

LMT with the precision (0.8884), recall (0.7710), F-measure (0.8259). In this work, we 

compared our performance with an existing NER system, whatizitChemical, which is 

designed for recognizing small molecules or chemical entities. Our system with SVM 

algorithm outperforms whatizitChemical by 12%. 
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Chapter 5. Translational Drug Interaction Evidence Gap Discovery 

5.1 Background 

Drug-Drug Interaction (DDI) is one of the major causes of adverse drug reaction (ADR) and 

has been demonstrated to threat public health (M. J. Hall et al., 2010; Niska, Bhuiya, & Xu, 

2010). It causes an estimated 195,000 hospitalizations and 74,000 emergency room visits 

each year in the USA alone. With increasing rates of poly-pharmacy, the incidence of DDIs 

is most likely to increase such that drug interaction research remains essential (Hajjar ER, 

2007). Current DDI research aims to investigate different scopes of drug interactions: 

molecular level of pharmacokinetics interaction (PG), pharmacokinetics interaction (PK), 

and clinical pharmacodynamics consequences (PD) (R. Boyce et al., 2009a, 2009b; 

Hennessy & Flockhart, 2012). All types of experiments are important, but they are playing 

different roles for DDI research. For instance, In vitro PK studies investigate molecular 

interactions within tissue cells and uncover protein activity and genetic underpinnings of 

distinct molecular responses to drugs making them highly relevant to current 

pharmacogenetics research (Crews et al., 2012; Wilke et al., 2012). Follow-up of positive 

in vitro finding helps develop an in vivo assessment while its negative findings alleviate 

the need for further in vivo studies. Further studies via In vivo PK experiments are used 

to evaluate whether the molecular interactions impact drug exposure in human body. 

Once potential DDIs are identified based on in vitro and/or in vivo studies, researchers 

can further design studies or collect data for determining whether the effects of the 

experimental drug on a range of substrates. Finally, clinical PD studies test whether drug 
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interactions can change the actual response to drugs, including drug efficacy and the 

induction of ADR (Prueksaritanont et al., 2013). 

As diverse disciplines and varied studies are involved, interaction evidence is often not 

available cross all three types of evidence, which create knowledge gaps and these gaps 

hinder both DDI and pharmacogenetics research. For example, clinical evidence alone 

does not convey sufficient information about underlying molecular or pharmacokinetics 

mechanism. On the other hand, in vitro experiments alone cannot determine how a given 

drug interaction influence drug efficacy or lead to ADR. Therefore, simultaneously 

considering all three types of DDI evidence had been suggested as an effective way to 

reduce false DDI predictions and develop safer treatment for clinical usage (R. Boyce et al., 

2009a, 2009b).  

Despite the existence of several services or databases, either the methods used to obtain 

the knowledge, its reliability, extent or coverage is not always available. First Databank 

provides a drug-drug interaction module that classifies DDIs in terms of severity levels 

and identifies the type of evidence for each drug interaction (e.g. human clinical trial or 

animal studies) ("First Databank," 2014)). Drugbank database provides a list of interacting 

candidates for a queried drug and describes the basis of interaction with a short and 

simple sentence, but it is not enough for distinguishing evidence types (Law et al., 2014)). 

Thus, lacking of knowledge cross all three types of evidences introduces the gap for 

translational drug interaction study. To investigate different types of experimental 

evidences, more recent research aims to identify DDI evidence from biomedical literature 



  

120 

by using in silico technologies (Computer-based technologies such as text mining) (B. 

Percha, Garten, Y., and Altman, R.B., 2012; I. Segura-Bedmar, Crespo, M., de Pablo-

Sanchez C., and Martinez, P., 2011; I. Segura-Bedmar, P. Martinez, et al., 2011a; Segura-

Bedmar, Martinez, & de Pablo-Sanchez, 2011c; L. Tari, Anwar, S., Liang, S., Cai, J., Baral, 

C., 2010; H. Y. Wu, Karnik, et al., 2013). However, most of those studies focus on single 

type of evidence and no one addressed knowledge gaps to distinguish the different types 

of experimental evidence, which impedes the translation of information about molecular 

mechanism into clinical understanding. Thus, we would like to close such gaps in DDI 

evidence by using informatics methods to integrate and tap into our collective scientific 

knowledge. 
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5.2 Material 

5.2.1 Lexica Construction 

A lexica comprising of drug name, enzyme/transporter, and action terms were collected 

from the result of AIM 1 (in Chapter 2). For drug name, the proposed drug name dictionary 

is an integrated drug name database with the connection of multiple oriented drug 

resources. Fundamentally, this database is built based on the drug names in Drugbank 

(Knox et al., 2011), which includes three types of drug names, generic (8194), brand 

(17337) and synonym (7383). In addition, the unique drug names (74619) from MeSH are 

supplied to expand the coverage. Within those from MeSH, 14946 terms are connected 

to the generic names from DrugBank. In total, there are 70712 drug names in the 

dictionary. In this exercise, we focused only on FDA approved and withdrawn drugs, which 

left 2403 unique drug generic names for the mining purpose.  For enzyme’s terms, 94 

generic names and their synonyms (350 terms in total) are collected from Gene ontology 

("Gene Ontology Consortium: going forward," 2015), HUGO Gene Nomenclature 

Committee (HGNC) ("HUGO Gene Nomenclature Committee at the European 

Bioinformatics Institute,"), and The Human Cytochrome P450 (CYP) Allele Nomenclature 

Database (Sim & Ingelman-Sundberg, 2010). For transporter’s terms, 624 generic names 

and their synonyms (1993 terms in total) are collected from Gene ontology ("Gene 

Ontology Consortium: going forward," 2015), HGNC ("HUGO Gene Nomenclature 

Committee at the European Bioinformatics Institute,"), and Transporter Classification 
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Database (Saier et al., 2016). The action terms are collected from our previous work, PK 

ontology (H. Y. Wu, Karnik, et al., 2013). 

 

5.2.2 DDI Corpus Construction 

Two different corpora were prepared (the result of AIM 1). The first corpus is constructed 

to be the golden standard (GS) corpus, which is used in IR and IE exercise. DDI information 

in entity and sentence level and entity-relationship are indicated and annotated with the 

types of evidence. This corpus comprises of in vitro PK DDI abstracts (n = 210), clinical PK 

DDI abstracts (n = 218), and clinical PD abstracts (n=140). The second corpus is prepared 

to be the training and testing data for building the model of Information Retrieval (IR) 

task. In IR corpus, there are 300 DDI relevant abstracts for each evidence type as positive 

data, 800 DDI irrelevant abstracts (200 non-DDI abstracts filtered from the phase of 

PubMed search, 300 drug-related abstracts such as single drug or drug-nutrition, and 300 

drug-irrelevant abstracts) and 10,000 randomly selected abstracts from Medline database 

as negative data. 

Data collection: For building both IR and GS corpora, candidate articles were obtained 

from a PubMed query first. However, many false results may be retrieved using the search 

via the MeSH (Medical Subject Headings) controlled vocabulary used to index Medline 

articles. To improve the quality, a strategy of manual screening was proposed to filter out 

false positives and to determine whether an article satisfies the inclusion-exclusion 

criteria (IECs). In this task, a validation process was executed via manually reading each 
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article by more than two curators. If each article is not agreed by all curators, supervisors 

will involve and make the final decision.   

Text Annotation: The annotation guideline was proposed to implement the annotation 

process. This guideline provides the standards or rules of annotating entities, sentences, 

and entities relationships. In GS corpora, a hierarchical three-level annotation scheme (H. 

Y. Wu, Karnik, et al., 2013) for gold-standard corpus was implemented to annotate three 

layers of DDI information: key terms, DDI sentences, and DDI pairs. Such a golden 

standard corpus can provide the semantic information for specific entities, offer a rule or 

criteria to determine DDI in different types of studies, and be the standard for evaluating 

the text mining result.  

Within each abstract, our annotators will manually tag each sentence with a label 

indicating whether it has evidence for interaction or for no-interaction. Each sentence will 

also be annotated with the specific relevant components namely: drug names, DDI 

relations, interaction-denoting verbs and action words (such as inhibits, metabolizes etc.), 

ADR, experimental parameters and their associated values. Annotations will be done 

using XML format similar to those used in the GENIA corpus (J. D. Kim, Ohta, T., Tateisi, Y., 

and Tsujii, J., 2003).  

Annotation Evaluation: In this task, three senior PhD students were recruited as 

annotators for corpora construction. To guarantee the quality of the annotations, two 

supervised annotators who are professionals in pharmacology and biomedicine will 

ensure that all annotators possess the background necessary for performing the task. If 
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needed, they will further train the annotators on pharmacology and epidemiology of the 

DDI research. The three annotators will go over the retrieved abstracts. Since 

discrepancies arise, they will be resolved through supervised annotators. Krippendorff’s 

alpha (K. Krippendorff, 2004) will be used to assess agreement among the annotators. 

For the detail of data collection, annotation procedure and annotation evaluation, please 

see all the content in Chapter 2 and Chapter 3. 
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5.3 Method 

5.3.1 Overview of Evidence-based Text Mining Tools for Drug-Drug Interaction 

In this task, we aim to develop a suite of text mining tools to explicitly identify each type 

of DDI evidence, namely in vitro PK, clinical PK and clinical PD. The workflow is shown in 

Figure 5.1. Considering the importance of the different types of DDI evidence, we 

developed Document-level classifiers – to distinguish PubMed abstracts likely to contain 

evidences, DDI-level classifiers – to identify interacting drug within those retrieved 

PubMed abstracts. Given the separate corpora, we were able to train distinct, highly-

focused classifiers for each type of evidence, which our preliminary studies (Kolchinsky, 

Lourenco, Li, & Rocha, 2013) had demonstrated that it can lead to high performance. 

Notably, unique drug pairs from distinct abstracts can be extracted using proposed DDI-

level classifier without using syntactic analysis, which improves the efficiency of data 

extraction. Making use of such evidence, drug pairs from three types of studies can 

integrate the collective scientific knowledge of DDIs, identify gaps therein, and inform 

future drug studies thus forming a basis for improved clinical support. 
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Figure 5.1 Workflow of Large-Scale Mining for Drug Interaction Evidence 
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As shown in Figure 5.1, the text mining task for each type of study was accomplished with 

two steps: Information Retrieval phase and Information Extraction phase. For the 

experiment setting, the detail is shown in Figure 5.2. 

In IR phase, IR corpora were utilized to construct the optimal model, which can maximize 

recall rate, for abstract categorization. The IR model was first built based on 150 DDI 

abstracts for each type of studies (positive) and 10,000 randomly selected abstracts 

(negative). It was tuned for reaching the optimal recall on the testing dataset (another 

150 DDI abstracts for each study and 500 single-drug or nutrition-related abstracts plus 

300 random articles. With the optimal settings learnt from IR exercise, the large-scale 

screening task for 25 million abstracts were implemented using the full IR corpora (300 

DDI abstracts for each study type as positive data and 10,000 random abstracts as 

negative data). In addition, the retrieved abstracts were validated using GS corpora to 

evaluate the recall rate in the large-scale screening task.  

In IE phase, GS corpora (210, 218, and 140 abstracts for in vitro PK, clinical PK, and clinical 

PD abstracts) are applied to build the optimal model, which can maximize F-measure, for 

relation-level classification. Similar to IR exercise, 60% of true entity relation pairs were 

used to build the optimal model and test on the rest of relation pairs. With the optimal 

settings, the IE task for extracting DDI pairs from the result of IR phase were constituted 

using full GS corpora.   
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Figure 5.2 Text Mining Experiment Setting 
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5.3.2 Information Retrieval (IR) Exercise 

To identify abstracts containing DDI evidence of three study types from whole Medline 

database, three distinct corpora (in vitro PK, clinical PK, and clinical PD) collected from the 

result of AIM 1 were utilized to build the training model for abstract categorization. To 

accomplish this task, classification architectures in IR exercise were examined and trained 

using finely curated training corpus (150 DDI-relevant abstracts for each study type and 

10,000 DDI-irrelevant abstracts) and testing corpus (150 DDI-relevant abstracts for each 

study type and 800 DDI-irrelevant abstracts including single drug study, drug-nutrition 

study, PD related and randomly selected abstracts). 

For experimental setting, this exercise was implemented with Support Vector Machine 

(SVM) in Weka pipeline (Witten, Frank, Hall, & Pal, 2016) (Figure 5.3). In Figure 5.4, string 

attributes in each abstract are converted into a set of attributes representing word 

occurrence information from the text contained in the strings using “StringToWordVector” 

module. IteratedLovinsStemmer, stopwordsHandler, NGramTokenizer (1-3), 

lowerCaseTokens and wordsToKeep (1000) are used to create word features while 

IDFTransfrom, TFTransform, and outputWordCounts are placed to create statistical 

feature for text classification. With those features, LibSVM in Weka is implemented for 

text classification subject to the optimization of recall rate.  
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Figure 5.3 Classifier Selection and Bag-of-Word Creation  
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Figure 5.4 The Creation of String Attributes using StringToWordVector  
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5.3.3 Information Extraction (IE) Exercise 

After identifying abstracts that are likely to contain DDI evidence, classified by evidence 

type, the next step is to identify actual DDI-related information, including drug names, 

potential interacting drug pairs and interaction indicators, within these abstracts. It was 

achieved with two steps: 

Entity recognition and normalization: We shall tag relevant entities, including drug names 

and interaction verb, using name-entity recognition method (NER): string-matching 

against the developed lexica. Extracted drug names are normalized by mapping them to 

“DrugBank identifiers” or MeSH identifiers and interaction verbs are normalized to 

stemmed forms. In this IE exercise, we focus on FDA approved drug (2202) and withdraw 

drugs (201).  

Drug pair extraction: Relation extraction process is not a trivial task. Most of research 

works recognize a piece of text having a semantic property of interest and extract 

semantic relations between entities using natural language process technology (B. Percha, 

Garten, Y., and Altman, R.B., 2012; I. Segura-Bedmar, P. Martinez, et al., 2011a, 2011c; 

Segura-Bedmar, Martinez, & Herrero-Zazo, 2014; Segura-Bedmar, Martınez, & Sánchez-

Cisneros, 2011b; L. Tari, Anwar, S., Liang, S., Cai, J., Baral, C., 2010). However, biomedical 

concept relationships should be considered as properties of biomedical entities. It is 

insufficient to define a relation between entities using individual sentences (B. Percha & 

Altman, 2015). For instance, an experimental finding in one sentence found that “Drug A 

prolonged the half-life of Drug B”. It is not sufficient to constitute an inhibitory 
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relationship if there exists another statement of “Drug A did not significantly change Drug 

B’s AUC” in a different sentence. Therefore, in this work, we implement a machine 

learning approach to inferring DDI pairs from whole context in an abstract. It allows 

determining interacting drug pairs based on multiple concept relationships from different 

sentences at once. 

Feature creation: We assume that drug i (Di) and an action term (Vk) are mentioned 

starting at 𝒟ℒi,𝒮Di
th or  𝒱ℒk,𝒮Vk

th characters in a sentence 𝒮Di
 or 𝒮Vk

and, where 𝒮Di
∈

[1, 2, … , Nmax] is a variable set that represents the sentence numbers containing Di and 

Nmax is the number of sentence in each abstract. If both Di and Vk co-occur in more than 

one of sentences in each abstract, the value of |𝒮Di
∩ 𝒮Vk

|  will greater than 1. To 

determine whether drug i and drug j are investigated for drug interaction in each abstract, 

the following 15 measurements are utilized to be the inputs of machine learning 

algorithms. 

Numerical measurements: 

1. Minimum sentence difference between Di and Dj (SDi,j): 

𝑆𝐷𝑖,𝑗 = 𝑚𝑖𝑛(|𝒮𝐷𝑖
− 𝒮𝐷𝑗

|),                                                                                    (1) 

2. Number of sentences containing Di  and Dj  that can be divided by an action term 

(NDVi,j): 

NDVi,j =  ∑ INDVi,j,k,𝒮
k,S

                                                                                (2) 
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where INDVi,j,k,𝒮
= {

1,
0,

      
if 𝒟ℒi,𝒮 < 𝒱ℒk,𝒮 < 𝒟ℒj,𝒮

otherwise
is an index function to determine if 

Di and Dj can be separated with Vk in sentence 𝒮 and 𝒮 ∈ [𝒮Di
∩  𝒮Dj

∩ 𝒮Vk
]. 

3. % of sentences containing Di and Dj that can be divided by an action term (ANDVi,j) 

ANDVi,j =  
NDVi,j

|𝒮|
                                                                                                (3) 

where  |𝒮| is the number of sentences containing Di, Dj and Vk. 

4. Average angle of each drug pair to interaction verb (∡i,j): 

∡i,j =
∑ ∠i,j,k,s

k,s

|# of Vk in 𝒮 |
                                                                                              (4) 

where ∠i,j,k,s =  cos−1 (
dis(Di,Vk)2+dis(Dj,Vk)

2
−dis(Di,Dj)

2

2×dis(Di,Vk)×dis(Dj,Vk)
) , dis(Di, Vk) =

√|𝒟ℒi,s − Vℒk,s| , dis(Dj, Vk) = √|𝒟ℒj,s − Vℒk,s| , and dis(Di, Dj) =

√|𝒟ℒi,s − 𝒟ℒj,s| 

5. The frequency of Di in an abstract (FDi
) 

6. The frequency of Dj in an abstract (FDj
) 

7. The frequency of Di-Dj mentioned in the same sentence (FDi,Dj
) 

8. The frequency of Di tagged in the abstract/Total # of tagged drugs (F̅Di
) 

9. The frequency of Dj tagged in the abstract/Total # of tagged drugs (F̅Dj
) 

10. The frequency of Di - Dj  mentioned in the same sentence/ Total # of drug pair 

combinations (F̅Di,Dj
) 

 

 



  

135 

Categorical measurement: 

11. Whether both Di and Dj mentioned in title sentence  (YES/NO) 

12. Whether both Di mentioned in title sentence  (YES/NO) 

13. Whether both Dj mentioned in title sentence  (YES/NO) 

14. Have action verbs in one of the sentence with either drugs (YES/NO) 

15. FDA probe information (5 Categories) 

16. Whether both Di and Dj have shared ATC code at level 4 (YES/NO) 

Different measurements can introduce different characteristics for helping distinguish 

whether an interaction of drug pairs is mentioned in an abstract or not. Since we do not 

utilize deep parsing techniques in this task, instead Feature 1-4 are used to represent the 

characteristics of syntactic structure for text. Feature 1 (SDi,j)  is minimum sentence 

difference between Di and Dj, which provides a weight to adjust the possibility of having 

a relationship between two drugs. In the perspective of natural language, if the value of 

SDi,j is high, which means two drugs locate apart from one another, we can assume that 

one of drugs are only mentioned once in the beginning or a part of abstracts, not an 

investigated drug in that experiment. On the other hand, if the value of SDi,j is lower, 

which means two drugs locate closely in term of sentence level, it is likely to deem that 

they might involve in the same biomedical event. Feature 2 and Feature 3 are the number 

and percentage of sentences containing Di  and Dj  that are divided by an action term 

(NDVi,j and ANDVi,j), respectively. These two features provide a clue to their frequency 

and possibility of drug interactions mentioned in an abstract. For instance, when the 
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values of both NDVi,j and ANDVi,j are great, this drug pair might have a higher chance of 

having an interaction. But when ANDVi,j is low, this article is to compare their efficacy on 

the other drug. Feature 4, average angle of a drug pair to interaction verbs (∡i,j), is a 

virtual index to measure the relative location of a drug pair to action verbs. By taking 

square root of 2 in the absolute distance among three nodes in a sentence, it converts 

the relative location among  Di and Dj and Vk from one dimension into two dimensions 

and creates a triangle for three nodes. In equation (4), if the value of ∠i,j,k,s is 90 degree, 

it means Di  and Dj  can be separated by Vk  in the sentence s  and dis(Di, Vk) +

dis(Dj, Vk) = dis(Di, Dj). Besides, when the value of ∠i,j,k,s is less than 90 degree, two 

drugs will be in the same side from an action verb. In terms of the value of ∠i,j,k,s, when it 

is close to 0 degree, two drugs locate closely but apart from an action verb. But when it is 

closer to 90 degree (e.g. 75 degree), two drugs are apart but one of the drug is more close 

to an action verb. As shown in Figure 5.5, unlike Feature 2 and 3, Feature 4 can further 

differentiate the relationship between two drugs even though they locate in the same 

side from an action verb. In addition, Feature 5-10 are the numerical features to offer the 

statistics information for drug pairs and Feature 11-14 offer the categorical features to 

determine the availability of drugs found in the title sentence for each abstracts. Differed 

from Feature 1-14 collected from the text of an abstract itself, Feature 15-16 are the 

features assigned based on a priori knowledge (FDA probe information and ATC code). 

For Feature 15, one of categories (5 categories in total) is assigned for each drug pair 

according to their drug probe information. If both drugs have same genes involved 

(enzyme or transporter) and act as different roles, e.g. one drug is a CYP3A4 inhibitor and 
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the other is a CYP3A4 substrate, Category 1 will be assigned, which indicates these two 

drugs are likely to interact with each other because of the property of drug metabolism 

and inhibition. If both drugs have the same gene involved, and act as the same role, 

Category 2 is assigned, which indicates these two drugs are less likely to have interactions. 

For Category 3, only one drug has FDA probe information, but the other does not. For 

Category 4, both drugs have FDA probe information, but no common enzyme/transporter 

gene involved. For Category 5, FDA probe information for both drugs is unknown. Similar 

to Feature 15, Feature 16 is a binary category to define whether two drugs have shared 

ATC codes at level 4. If the value of Feature 16 is positive, it means that they belong to 

the same chemical/pharmacological/therapeutic subgroup and obtain similar 

pharmacology property and chemical structure, which hints are less likely to have 

interaction.  
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Figure 5.5 Examples of ∠_(i,j,k,s) Calculation 
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Features and Classifier selection: Drug interaction evidence from different types of 

studies might be described in different ways. In vitro PK studies characterize extensively 

its major drug-metabolizing human CYP isoforms; Clinical PK studies investigate how a 

drug behave in metabolism with LC-MS analysis of drug concentration and other 

pharmacokinetic matrices; Clinical PD studies majorly emphasize on the risk or adverse 

reaction of drug interaction in population level. Due to such diversity of interest, text for 

drug interaction evidence is written or organized differently. Therefore, applying all 15 

features as inputs to a single machine learning algorithm to determine drug interactions 

for all three study types is not feasible. In this task, we examine features and classifiers in 

terms of the performance of information extraction in a particular study. In Table 5.1, the 

feature sets for G1, G2, and G5 are manually selected. G1 and G2 describe features 

differently in statistics information (Feature 5-10) and G5 utilizes all features. For G3 and 

G4, their features are selected in statistical manners. Using the measurement of Akaike 

information criterion (AIC), optimal features for distinct classifiers are determined using 

stepwise regression model. The only difference is that G3 does not consider 2-way 

interaction terms, but G4 does. 
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Table 5.1 Feature selections for three study types 

 

With 5 groups of features, 7 popular classifiers (J48, Naïve Bayes, SMO, Logistic Regression, 

Random Forest, LMT, and Iterative Classifier Optimizer in Weka pipeline) are used to 

examine the performance in terms of F-measure. 

 

  

 1 2 3 4 5 6 7 8 9 1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

Interaction terms 

G1 X  X X X X X    X    X X NA 

G2 X  X X    X X X X    X X NA 

G3  V  V    V V   V   V V NA 

T T  T T   T T   T   T T 

C C   C   C C    C C   

G4 
 V  V    V V V      V 

V: 15*9, 2*15, 10*8, 
4*8, 2*8, 2*16, 9*12 

T T               
T: 15*2, 4*2, 9*10, 
4*10, 9*15, 8*12, 
2*12, 2*10, 4*12 

C   C C   C C    C C   
C: 9*13, 8*4, 13*2, 
8*13 

G5 X X X X X X X X X X X X X X X X NA 

NOTE: X,V,T, and C symbols represent that the features are selected by all three 

studies, Clinical PK, In Vitro PK, and Clinical PD studies, respectively 
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5.4 Results 

5.4.1 Performance Evaluation and Result of Information Retrieval Exercise 

To evaluate the performance of the proposed IR model, 150 DDI related abstracts for each 

type of studies (positive dataset) and 10,000 randomly selected abstracts (negative 

dataset) are built for training model. For testing, another 150 positive abstracts for each 

study are chosen; 500 drug- or nutrition-related abstracts plus 300 random articles are 

used to be negative dataset. In this work, the performance using Support Vector Machine 

(SVM) classifier in Weka is shown in Table 5.2.  In this table, the desirable F-measures for 

in vitro PK, clinical PK, and clinical PD (0.94, 0.84, and 0.7, respectively) are obtained. Also, 

the recall rates for all three studies are high, which means most of DDI relevant abstracts 

in GS corpus can be captured.  

 

 

SVM Classifier Precision Sensitivity Specificity F-Measure 

In vitro PK 0.907407407 0.98 0.98125 0.942307692 

Clinical PK 0.726829268 0.993333333 0.937777778 0.83943662 

Clinical PD 0.589041096 0.86 0.8875 0.699186992 

Table 5.2 Performance of IR Exercise 
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Using the same experiment setting with 300 positive abstracts and 10,000 randomly 

selected abstracts, a large-scale IR exercise from around 25 million abstracts in PubMed 

(1975-2015) is implemented. From the result of this exercise, the numbers of retrieved 

abstracts for in vitro PK, clinical PK, and clinical PD are 7,924, 20676, and 93653, 

respectively. However, among those abstracts, some research works are animal-related 

studies. To remove those abstracts, MeSH terms under tree number “B01.050” (Animal) 

are utilized. After eliminating animal-related abstracts, the numbers of retrieved 

abstracts for in vitro PK, clinical PK, and clinical PD are 5,199, 17,048, and 80,246. 

To investigate the sensitivity of information retrieval exercise, golden standard corpora 

(218, 210, and 140 abstracts for Clinical PK, in vitro PK, and clinical PD studies) are used 

for evaluation. This exercise demonstrated that the proposed IR model can be able to 

capture more than 96% of relevant abstracts (Table 5.3).   

 

SVM Classifier Sensitivity 

In vitro PK 210/210=100% 

Clinical PK 210/218=96.3% 

Clinical PD 138/140=98.6% 

Table 5.3 Performance of Large-Scale IR Exercise 
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5.4.2 Performance Evaluation and Result of Information Extraction Exercise 

To evaluate the performance for information extraction, golden standard corpora 

comprising of 210, 218, and 140 abstracts for in vitro PK, Clinical PK, and clinical PD studies 

are used. Utilizing various features calculated using the measurement of drugs’ and 

interaction terms’ location and existing knowledge for drugs, proposed classifiers were 

implemented to distinguish whether unique drug pairs in each abstract are interacting or 

not. In identifying drug interaction pairs, 5 feature groups and 7 classifiers are tested. The 

performance evaluation for in vitro PK, Clinical PK, and clinical PD are shown in Table 5.4, 

Table 5.5, and Table 5.6, respectively. For in vitro PK study, the optimal precision and 

recall rates are 0.76 and 0.91using feature group 5 (G5) with NaiveBays classifier. For 

clinical PK study, the optimal precision and recall rates are 0.87 and 0.82 using Feature 

Group 1 (G1) with IterativeClassifierOptimizer. For clinical PD study, the optimal precision 

and recall rates are 0.80 and 0.67 using feature group 1 (G1) with NaiveBays classifier.  
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  J48 NB SMO LogiR RandF LMT ICO 

Feature Group 1 (G1) 

P 0.778 0.555 0.754 0.750 0.683 0.618 0.737 

R 0.525 0.950 0.575 0.563 0.513 0.588 0.525 

F-1 0.627 0.700 0.652 0.643 0.586 0.603 0.613 

Feature Group 2 (G2) 

P 0.724 0.664 0.737 0.790 0.741 0.423 0.736 

R 0.525 0.938 0.525 0.613 0.500 0.513 0.663 

F-1 0.609 0.777 0.613 0.690 0.597 0.463 0.697 

Feature Group 3 Selected features by using stepwise regression (G3) 

P 0.825 0.672 0.909 0.900 0.833 0.825 0.880 

R 0.598 0.943 0.460 0.724 0.460 0.598 0.506 

F-1 0.693 0.785 0.611 0.803 0.593 0.693 0.642 

Feature Group  4 (stepwise regression with interaction terms) (G4) 

P 0.765 0.784 0.952 0.783 0.865 0.729 0.836 

R 0.747 0.874 0.230 0.540 0.517 0.494 0.701 

F-1 0.756 0.826 0.370 0.639 0.647 0.589 0.763 

Feature Group 5 All features (G5) 

P 0.836 0.760 0.882 0.887 0.880 0.558 0.880 

R 0.529 0.908 0.517 0.724 0.506 0.494 0.506 

F-1 0.648 0.827 0.652 0.797 0.642 0.524 0.642 

Table 5.4 Performance Evaluation of IE for In Vitro PK Study 
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  J48 NB SMO LogiR RandF LMT ICO 

Feature Group 1 (G1) 

P 0.802 0.796 0.831 0.824 0.875 0.837  0.872 

R 0.77 0.82 0.74 0.75 0.7 0.77  0.820 

F-1 0.786 0.808 0.783 0.785 0.778 0.802  0.845 

Feature Group 2 (G2) 

P 0.903 0.819 0.874 0.878 0.878 0.871 0.809 

R 0.650 0.680 0.760 0.720 0.650 0.740 0.720 

F-1 0.756 0.743 0.813 0.791 0.747 0.800 0.762 

Feature Group 3 Selected features by using stepwise regression (G3) 

P 0.889 0.872 0.911 0.911 0.907 0.900 0.847 

R 0.720 0.680 0.720 0.720 0.680 0.720 0.720 

F-1 0.796 0.764 0.804 0.804 0.777 0.800 0.778 

Feature Group  4 (stepwise regression with interaction terms) (G4) 

P 0.795 0.840 0.922 0.918 0.854 0.914 0.830 

R 0.700 0.630 0.710 0.780 0.700 0.740 0.730 

F-1 0.745 0.720 0.802 0.843 0.769 0.818 0.777 

Feature Group 5 All features (G5) 

P 0.845 0.795 0.877 0.899 0.886 0.886 0.855 

R 0.710 0.660 0.710 0.710 0.700 0.700 0.710 

F-1 0.772 0.721 0.785 0.793 0.782 0.782 0.776 

Table 5.5 Performance Evaluation of IE for Clinical PK Study 
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J48 NB SMO LogiR RandF LMT ICO 

Feature Group 1 (G1) 

P 0.815 0.795 0.938 0.833 0.774 0.842 0.724 

R 0.478 0.674 0.326 0.435 0.522 0.348 0.457 

F-1 0.603 0.729 0.484 0.571 0.623 0.492 0.560 

Feature Group 2 (G2) 

P 0.909 0.800 0.938 1.000 0.741 0.871 0.731 

R 0.435 0.609 0.326 0.370 0.435 0.587 0.413 

F-1 0.588 0.691 0.484 0.540 0.548 0.701 0.528 

Feature Group 3 Selected features by using stepwise regression (G3) 

P 0.645 0.667 0.875 0.828 0.722 0.821 0.739 

R 0.435 0.696 0.304 0.522 0.565 0.500 0.370 

F-1 0.519 0.681 0.452 0.640 0.634 0.622 0.493 

Feature Group  4 (stepwise regression with interaction terms) (G4) 

P 0.537 0.784 1.000 0.839 0.727 0.885 0.933 

R 0.478 0.630 0.261 0.565 0.522 0.500 0.304 

F-1 0.506 0.699 0.414 0.675 0.608 0.639 0.459 

Feature Group 5 All features (G5) 

P 0.875 0.750 1.000 0.793 0.806 0.792 0.680 

R 0.457 0.652 0.326 0.500 0.543 0.413 0.370 

F-1 0.600 0.698 0.492 0.613 0.649 0.543 0.479 

Table 5.6 Performance Evaluation of IE for Clinical PD Study
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Using the optimal settings obtained from IE exercises, 3,894, 3,920, and 17,315 

interacting drug pairs are extracted from 5,199 in vitro PK abstracts, 17,315 clinical PK 

abstracts, and 80,246 clinical PD abstracts, respectively. With those retrieved drug pairs, 

the Venn Diagram shown in Figure 5.6 was constructed to represent the overlapping 

among the drug combinations cross three study types. In this figure, the highlight must 

spot on those 986 unique drug pairs. That is because those 986 drug pairs are highly 

possible to be well-investigated in all three types of studies and can be potential for 

clinical utilities. Also, the genetics hypothesis for the relationship among drug-gene-ADR 

can be generated based on the validated result of those 986 drug pairs. Otherwise, 

another important number (2157) represents the overlapping between clinical PK and 

clinical PD studies, which means they have clinical PD/PK DDI evidence but their DDI 

mechanism in molecular level is unknown. 13,012 DDI pairs with only clinical PD evidence 

will have enormous research potential for pharmacology communities. Table 5.7 shows 

some existing examples of knowledge gaps from literature articles. With the cases of Theophylline 

& Ciprofloxacin, “Fexofenadine & Itraconazole” and “Theophylline & Propranolol”, there are few 

publications, describing their mechanism in Clinical PK and PD levels, but in vitro PK mechanisms 

are still not very clear. With the example of “Tamoxifen & Midazolam”, tamoxifen reversely 

inhibited midazolam in PK level but no pharmacodynamics evidence can be found. Another 

example of “Clopidogrel & Acetylsalicylic acid” shows 200 records only in Clinical PD result. Dual 

therapy with Acetylsalicylic acid and clopidogrel may result in an antiplatelet effect with fewer 

side effects. However, its mechanismcannot be found in clinical and in vitro PK studies but also 

not be predicted through the result of drug-gene interaction.   



  

148 

Drug pair Evidence PMID 

Theophylline & Ciprofloxacin Clinical PK and PD MEDLINE:2328197,3571046 

Fexofenadine & Itraconazole Clinical PK and PD MEDLINE:16669847,16796706 

Theophylline & Propranolol Clinical PK and PD 
MEDLINE:4041342,7408406, 
2888791 

Tamoxifen & Midazolam 
Clinical PK and In 

vitro PK 
MEDLINE:12419016 

Clopidogrel & Acetylsalicylic 
acid 

Clinical PD MEDLINE:16421012 

Table 5.7 Examples of Knowledge Gaps for Drug Interacting Pairs 

 

 

Figure 5.6 Venn Diagram of Drug Interaction Evidence for In Vitro PK, Clinical PK, and 

Clinical PD Studies  
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5.5 Validation 

5.5.1 Validation with Drugbank Database 

To evaluate the validity of our findings, the information of drug interaction in Drugbank 

is utilized. In Drugbank, drug interaction information were majorly collected from several 

sources, including Physician's Desk Reference ("Physicians' Desk Reference,"), e-

Therapeutics ("e-Therapeutics,"), Medicines Complete ("Medicines Complete,"), 

Epocrates RX ("Epocrates RX,"), and Drugs.com ("Drugs.com,"). In this validation task, 

focusing on FDA approved and withdrawn drugs, we retrieved 46,244 drug interactions 

from Drugbank database. Unfortunately, Drugbank does not distinguish in vitro PK, 

clinical PK, and clinical PD evidence. To make a reasonable comparison, the overlapping 

between those of Drugbank (46,244) and all unique drug pairs from three groups (19,695) 

are used. This comparison task introduced 9,588 overlapping drug pairs. Otherwise, 

10,107 drug pairs can be found in our result but not in Drugbank; 36,656 drug pairs can 

be found in Drugbank but not in our result. To discuss these three numbers, for 9,588 

overlapping drug pairs, those drug combinations can be considered as reliable 

information. On the other hand, 36,656 drug pairs may come from the reports of studies 

or clinical trials in pharmacology companies, such as Physician's Desk Reference, 

Medicines Complete, or Epocrates RX. They were not always reported or published in 

published literature. For those 10,107 drug pairs found in our result but not in Drugbank, 

they can be used for improving the comprehensiveness of existing databases.  
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In addition, to demonstrate the reliability of our result, we manually validate the top 20 

DDIs that are retrieved from all three evidences types. From the result of evaluation 

(Table 5.8), 19 out of 20 DDI pairs are validated to have interaction information from our 

discovery, but only 13 DDI pairs exist in Drugbank database. For these two false positive 

predictions in our result, both drug pairs, including “Simvastatin & Atorvastatin” (C10AA; 

C10BA; C10BX) belong to the same drug groups according to ATC classification. This 

means that they are frequently co-administrated in clinical trial or are compared in terms 

of efficacy.  
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 Drug Pair Frequency 
Availability in 
Drugbank 

Availability in our 
result 

Fluorouracil & Leucovorin 256 YES YES 

Clopidogrel & Acetylsalicylic acid 200 YES YES 

Carboplatin & Paclitaxel 147 YES YES 

Gemcitabine & Cisplatin 119 NO YES 

Warfarin & Acetylsalicylic acid 113 YES YES 

Ritonavir & Lopinavir 111 YES YES 

Cisplatin & Fluorouracil 108 NO YES 

Cisplatin & Paclitaxel 101 YES YES 

Oxaliplatin & Fluorouracil 96 NO YES 

Cisplatin & Etoposide 95 YES YES 

Hydrocortisone & Corticotropin 95 NO YES 

Warfarin & Phylloquinone 90 YES YES 

Simvastatin & Ezetimibe 90 YES YES 

Fluorouracil & Irinotecan 77 NO YES 

Midazolam & Propofol 76 YES YES 

Clopidogrel & Prasugrel 76 YES NO 

Simvastatin & Atorvastatin 70 NO NO 

Ritonavir & Atazanavir 69 YES YES 

Cisplatin & Docetaxel 69 YES YES 

Oxaliplatin & Capecitabine 67 NO YES 

Table 5.8 Availability of Top 20 DDI Pairs (Retrieved from All Three Evidence Types) in 

Drugbank and Our Results 
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To further study the top 20 DDIs of each study type (by reporting frequency), manually 

validation was implemented. Of the top 20 drug pairs for in vitro PK, clinical PK, and 

clinical PD, 13, 9, and 9 were reported in Drugbank, but 20, 17, and 19) can be manually 

validated. From these two analyses, it can prove that our result not only can provide solid 

drug interaction information with experimental evidence from publication but also can 

further explore extra DDI information other than those in Drugbank.  

 

5.5.2 Validation with Genetic Hypothesis 

Clinical decisions typically stem from in vivo and clinical evidence. However, studying 

molecular interaction mechanisms in vitro is essential for understanding the hazards of 

specific drugs given certain genetic polymorphisms and for exploring potential alternative 

treatments. Since translational DDI research aims to link between knowledge of 

molecular mechanisms underlying DDI and their clinical consequences, it is of paramount 

importance to identify knowledge gaps that prevent such translation.  

To fulfill such a translational research work, understanding how the relationship between 

genetics and DDI induced adverse drug events will be critical. In this task, 986 drug 

interaction pairs found from all three studies are valuable candidates for further 

investigation. Since we realized that CYP3A and CYP2D6 are two major cytochrome P450 

systems that are responsible for 55% of drug metabolism; as such, drug interactions 

mediated through inhibition or induction of those CYPs might induce specific adverse drug 

events. With this concept, we are looking for all ADEs in those abstracts containing drug 
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interaction via CYP3A and CYP2D6 and exploring their potential relationships. Among 

those 986 drug combinations, there are 71 sensitive substrates of CYP3A and 26 sensitive 

substrates of CYP2D6 co-occurring with 552 ADEs and 192 ADEs, respectively. The top 20 

ADEs for both CYP3A and CYP2D6 substrates are shown in Table 5.9. Those ADEs provides 

us a starting point to explore potential candidates for the relationship of DDI-enzyme-

ADE.  

To validate the assumption of DDI-enzyme-ADE relationship, the exploration of ADEs 

caused by the interaction between sensitive substrates and strong inhibitors of CYP3A 

and CYP2D6 was manually extracted from published articles. Table 5.10 and Table 5.11  

show the sentences that describe DDI-induced ADEs via the pathways of CYP3A and 

CYP2D6, respectively. Taking one example from Table 5.10, in PMID: 8623953, the 

psychomotor effect is enhanced by the interaction of Midazolam and Itraconazole and 

the interaction is significant in statistics. This result can be supported using the combined 

knowledge collected from PMID: 17655375 and PMID: 20739919. In PMID: 17655375, this 

article mentions that Midazolam is the sensitive substrate of CYP3A. If its CYP3A activity 

is inhibited, it might result in prolonged drowsiness and inhibition of psychomotor 

performance, which means CYP3A is dependent on psychomotor performance. In 

addition, in PMID: 20739919, Itraconazole is studied to be a strong CYP3A inhibitor. 

Therefore, with such collective information, the evidence we found in PMID: 8623953 can 

be validated using the integrated information obtained from PMID: 17655375 and PMID: 

20739919. With this exploration, those DDI-induced ADE instances further support by the 

prediction using our genetic hypothesis. Therefore, such a comprehensive drug-
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interaction evidence of all three types combining with the prediction of genetic 

hypothesis can be an essential and fundamental step toward developing reliable clinical 

decision systems. 
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CYP3A sensitive substrate 
Report 
Freq. 

CYP2D6 sensitive substrate 
Report 
Freq. 

IMMUNODEFICIENCY 322 DEPRESSION 65 

BLOOD CHOLESTEROL 281 HEART RATE 33 

VIRAL LOAD 180 SENSATION OF PRESSURE 25 

TRANSPLANT 157 TACHYCARDIA 24 

RENAL TRANSPLANT 154 NOREPINEPHRINE 19 

DIARRHOEA 153 NAUSEA 17 

BLOOD TRIGLYCERIDES 141 ANXIETY 16 

LOW DENSITY LIPOPROTEIN 111 NERVOUSNESS 14 

RHABDOMYOLYSIS 105 DIABETES MELLITUS 13 

HEPATITIS C VIRUS TEST 98 
ELECTROCARDIOGRAM QT 

INTERVAL 
13 

NAUSEA 97 
EOSINOPHILIA MYALGIA 

SYNDROME 
13 

SENSATION OF PRESSURE 95 PREMENSTRUAL SYNDROME 13 

HEADACHE 92 INFUSION 12 

HYPERCHOLESTEROLAEMIA 87 PAIN 12 

IMMUNOSUPPRESSION 87 SCHIZOPHRENIA 12 

ASTHENIA 73 DIZZINESS 10 

HYPERTENSION 73 HEADACHE 10 

RENAL FAILURE 70 HYPERHIDROSIS 10 

CORONARY ARTERY 
DISEASE 

69 ARRHYTHMIA 9 

MYOPATHY 69 BLOOD PRESSURE DIASTOLIC 9 

ELECTROCARDIOGRAM QT 
INTERVAL 

64 DIARRHOEA 8 

HYPERLIPIDAEMIA 64 HOT FLUSH 8 

PROPHYLAXIS 62 VENTRICULAR EXTRASYSTOLES 8 

HIGH DENSITY LIPOPROTEIN 61 AFFECT LABILITY 7 

RASH 61 FATIGUE 7 

HEART RATE 58 BIPOLAR DISORDER 6 

NEPHROPATHY TOXIC 56 CARDIAC FIBRILLATION 6 

DRUG TOLERANCE 50 CONSTIPATION 6 

LIVER TRANSPLANT 50 GASTRIC PH 6 

VOMITING 47 INSOMNIA 6 

Table 5.9 The Top 20 ADEs for Both CYP3A and CYP2D6 Substrates 
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Substrate Inhibitor Clinical Effect PMID Genetic Effect PMID 

Midazolam   Itraconazole 
Increased psychomotor 

effects 
8623953 

psychomotor performance 17655375 

Itraconazole contribute to CYP3A4 
inhibition 20739919 

Triazolam   Itraconazole Increased PD effects 8841155 

Significant benzodiazepine agonist-
like pharmacodynamic effects 10773013 

Itraconazole is a potent inhibitor of 
cytochrome P450 (CYP) 3A  20497744 

Midazolam   Ritonavir 
Prolonged sedation 

effect 
19792991 Sedative effect 12402721 

ritonavir is an inhibitor of CYP3A 20002087 

Buspirone   Itraconazole Increased PD effect 9333111 

Pharmacodynamic effect 18220561 

Itraconazole is a potent inhibitor of 
CYP3A4 9333111 

Midazolam   Saquinavir 
Profound sedative 

effects. 
10430107 

Sedative effect 12402721 

Saquinavir is an inhibitor of CYP3A4 19792991 

Tacrolimus   Itraconazole 
Developed renal 

dysfunction 
16503502 

Decline in renal function 
22205779; 
28280692 

Itraconazole is a potent inhibitors of 
cytochrome P450 (CYP) 3A 22971159 

Midazolam  
 

Voriconazole 
Increased the 

psychomotor effects 
16580904 

Prolonged drowsiness and inhibition 
of psychomotor performance.  17655375 

Voriconazole is an inhibitor of 
CYP3A4  16205037 

Simvastatin  
 

Clarithromyc
in 

Increased risk of death 
or hospitalisation 

26497728 

hospitalisation  

25571290 
Clarithromycin is a potent inhibitor 
of CYP3A4. 

Everolimus  
 

Voriconazole 
Increased kidney 

transplant recipient 
25417855 

kidney transplant recipient 19499965 

Voriconazole inhibits P450-3A4 
actitivy 25417855 

Triazolam   Ritonavir 
Increased 

benzodiazepine agonist 
properties 

10935688 

Significant benzodiazepine agonist-
like pharmacodynamic effects 

16513448; 
10773013 

Ritonavir inhibits both enteric and 
hepatic CYP3A 16513448 

Triazolam  
 

Clarithromyc
in 

Enhanced 
Benzodiazepine agonist 

effects  
9757151 

Significant benzodiazepine agonist-
like pharmacodynamic effects 

9757151; 
10773013 

Clarithromycin, a potent inhibitor of 
CYP3A 19897389 

Simvastatin   Itraconazole 
Enhanced myotoxicity 

risk 
18563955 

risk of myotoxicity 17178259 

Itraconazole  is a strong inhibitor of 
CYP3A4 17178259 

Atorvastati
n  

 Itraconazole 
Experienced dry skin 

and vomiting 
11061579 

Adverse events (abdominal 
distention, nausea, vomiting, and 
hunger) 

11061579; 
28207527 

Itraconazole, a potent inhibitor of 
CYP3A4 9695720 

Alprazolam   Ritonavir 

Enhanced PD effects 
consistent with its 

benzodiazepine agonist 
properties 

10801241 

PD effects 10801241 

ritonavir is both an inhibit and an 
inducer of CYP3A  10801241 

Tacrolimus   Telaprevir 
Adverse events of mild 

pruritusand mild 
excoriation 

21618566 
Pruritusand 22205779 

Telaprevir is an inhibitor of the 
enzyme cytochrome P450 3A 21618566 

Table 5.10 DDI Pairs via CYP3A and Their ADR Found Three Types of Studies 
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Substrate Inhibitor 
Effect when 
coadministration 

PMID Genetic Effect PMID 

Desipramine   Paroxetine Increased  tiredness 14730412 

Side effects, including nausea, 
tiredness, dizziness.  

20840444; 
2271367  

Paroxetine is a potent inhibitor of 
CYP2D6 

12584155 

Dextrometh
orphan  

 Quinidine 
Increased QTc intervals 
or headedness  

20373255 

Side effects were light-headedness, 
slurred speech 

28290770; 
7998781 

Quinidine (Q), a potent cytochrome 
P450 2D6 inhibitor 

20839238 

Dextrometh
orphan  

 Paroxetine 
The incidence of AEs was 
higher 

22283559 

Insomnia was reported  
28290770; 
15231978  

Paroxetine is a potent inhibitor of 
CYP2D6 

15903129 

Metoprolol   Paroxetine 
The heart rate and 
systolic blood pressure 
decreased 

21923449 

Increased HRV indexes 
12891223; 
8607401 

Paroxetine is a very potent inhibitor 
of CYP2D6 

15903129 

Propafenone   Quinidine 
Reduction of premature 
ventricular contraction 

3630896 

70--80% reduction of total number of 
PVCs 

23585605; 
7201833 

Quinidine (Q), a potent cytochrome 
P450 2D6 inhibitor 

20839238 

Propranolol   Quinidine 
A significant inhibition of 
exercise-induced 
tachycardia 

2093126 

cardiac failure in 2 patients 
9399616; 
5922889 

Quinidine (Q), a potent cytochrome 
P450 2D6 inhibitor 

20839238 

Imipramine   Fluoxetine QT interval prolongation 15687478 

Prolong QTc interval 
9205822; 
11830802 

Potent inhibition of cytochrome P450 
2D6 (CYP2D6) by fluoxetine 

8477556 

Oxycodone   Paroxetine 

VA scores for subjective 
drug effects, drowsiness 
and deterioration of 
performance were 
slightly increased 

20642550 

ADEs: Nausea and pruritus 
20590588; 
20857093 

Paroxetine is a potent inhibitor of 
CYP2D6 

12584155 

Mexiletine   Quinidine 

Increased ERP, thereby 
producing greater 
postrepolarization 
refractoriness than 
either drug alone 

2481766 

Increased the ERP/APD ratio 
9690950; 
2795468 

Quinidine (Q), a potent cytochrome 
P450 2D6 inhibitor 

20839238 

Table 5.11 DDI Pairs via CYP2D6 and Their ADR Found Three Types of Studies
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5.6 Conclusion 

The successful completion of Aim 3 will result in three sets of DDI relevant abstracts (from 

IR exercise) and their corresponding drug interacting pairs (from IE exercise) for in vitro 

PK, clinical PK and clinical PD studies. The aggregative information will introduce a Venn 

Diagram and show the overlapping cross three different evidences, which intuitively 

reveals the practical status of drug interaction research work. Notably, this task need not 

be completed using complicated natural language process technology for creating 

features for machine learning and further facilitate the downstream development of 

more effective clinical decision systems with the use of collective knowledge. Indeed, the 

outcome of the proposed work provides an exciting opportunity to promote translation 

of molecular to clinical research.   
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Chapter 6. Conclusion and Future Work 

The contribution of this work can be listed in the following: 1) Provide a comprehensive 

lexicon for DDI related terminologies; 2) Provide finely curated corpus with semantic 

information for specific entities and drug interactions and introduce a DDI annotation 

guidance and; 3) Propose a NER tool for identifying drug metabolite; 4) Construct a text 

mining pipeline to retrieve, extract, and explore the knowledge gap for drug interactions. 

5) Utilize a hypothesis based on genetic studies to generate a dataset that contains the 

strong evidences of DDI-induced ADEs cross all three studies. 

To further uncover the unknown components and close such a knowledge gap in clinical 

PD and PK evidence on DDI, DDI prediction using Drug-Gene Interaction (DGI) is a potential 

method to identify the unknown components of potential DDI in in vitro PK studies. To 

identify the drug-gene relationship within Medline abstracts for predicting DDI evidence 

in molecular level, the methodology is similar to the work of DDI retrieval and extraction. 

Based on the discovery, this task will be able to explore those drug pairs that have clinical 

PK or PD DDI evidences but no existing in vitro investigation. Even though we cannot 

provide granular information about interaction types for specific drug pairs, the asset of 

this work is to reflect the big picture of drug interaction for pharmacology research. 
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Supplementary 

 

Table S1 Clinical PK Studies 

Note: The annotations are aligned for each row. The left column is the ontology tree 

presentation. The central and right columns display their corresponding annotations from 

the paper. 
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Table S2 In Vitro PK Study 

Note: The annotations are aligned for each row. The left column is the ontology tree 

presentation. The central and right columns display their corresponding annotations from 

the paper. 
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Journal Name Frequency Journal Category 

Arch Intern Med 7 Epidemiology 

Am J Cardiol 6 Special Clinical Domains 

Pharmacoepidemiol Drug Saf 6 Epidemiology 

Am J Med 5 Epidemiology 

Clin Pharmacol Ther 5 Pharmacology 

Drug Saf 4 Epidemiology 

Am J Health Syst Pharm 3 Pharmacology 

Br J Clin Pharmacol 3 Pharmacology 

J Manag Care Pharm 3 Pharmacology 

JAMA 3 Epidemiology 

Am J Gastroenterol 2 Special Clinical Domains 

Ann Pharmacother 2 Pharmacology 

Arthritis Rheum 2 Special Clinical Domains 

Clin Ther 2 Pharmacology 

J Clin Epidemiol 2 Epidemiology 

J Clin Pharm Ther 2 Pharmacology 

Am J Cardiovasc Drugs 1 Special Clinical Domains 

Am J Geriatr Pharmacother 1 Pharmacology 

Ann Intern Med 1 Special Clinical Domains 

Ann Med 1 Special Clinical Domains 

Arch Gen Psychiatry 1 Special Clinical Domains 

Arthritis Res Ther 1 Special Clinical Domains 

BMJ 1 Special Clinical Domains 

CMAJ 1 Special Clinical Domains 

Clin J Am Soc Nephrol 1 Special Clinical Domains 

Gastroenterology 1 Special Clinical Domains 

J Am Coll Cardiol 1 Special Clinical Domains 

J Am Geriatr Soc 1 Special Clinical Domains 

J Med Assoc Thai 1 Special Clinical Domains 

Med Care 1 Special Clinical Domains 

N Engl J Med 1 Epidemiology 

PLoS One 1 Special Clinical Domains 

Pediatr Allergy Immunol 1 Special Clinical Domains 

Pharmacotherapy 1 Pharmacology 

Res Social Adm Pharm 1 Pharmacology 

Rheumatology (Oxford) 1 Special Clinical Domains 

Thromb Haemost 1 Special Clinical Domains 

Pubmedhealth 1 Special Clinical Domains 

PLoS Comput Biol  1 Pharmacology 

Table S3 Pharmaco-epidemiology Drug Interaction Associated Journal Names, Abstract 

Frequencies and Journal Categories 

 Note: The selected journals are highlighted in bold  

http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0063607/
http://www.ncbi.nlm.nih.gov/pubmed/22912565


  

163 

 

Category PMID and Example Abstract  

Pharmacoepidemiology drug 
interactions 

Medline 16581331 

Epidemiological study on the 
frequency of the known drug 
interactions in the health 
databases 

Medline 12071783 

Implementations of drug 
interaction software 

Medline 16622155 
 

Population drug safety study, 
but no DDI information 

Medline: 8876849 
 

Reviews Medline 1312320 
 

Table S4 Categories and Examples of Related and no-Related Clinical PD DDI Abstracts 
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Group Reaction Phase  

acetyl Acetylation Phase II Acetyltransferase 

acyl Amino Acid Conjugation Phase II UDP-glucuronosyltransferase 

adenosyl Methylation Phase II Methyltransferases 

alkyl Oxidation, dealkylation Phase I Cytochrome P450 

amide Hydrolysis Phase I Amidases 

amino and aryl Acetylation Phase II Acetyltransferases 

aroma Oxidation Phase I  

ascorbyl    

azo (aryl or alkyl nitro) Reduction Phase I This hydrolysis can occur with no enzyme involved,  

butylat    

carbamoyl    

carbonyl Reduction Phase I carbonyl reductases 

carboxyl Conjugation Phase II UDP-glucuronosyltransferase to form aceyl-glucuronides 

carboxylate Glucuronidation Phase II UDP-glucuronosyltransferase to form aceyl-glucuronides 

carboxylic Glucuronidation Phase II UDP-glucuronosyltransferase to form aceyl-glucuronides 

decarboxyl  Hydrolysis  Phase I decarboxylase 

deacetyl Hydrolysis  Phase I deactylation 

dealkyl Oxidation Phase I Cytochrome P450 

debutyl Oxidation Phase I Cytochrome P450 

dechloroethyl Oxidation Phase I Cytochrome P450 

deethyl Oxidation Phase I Cytochrome P450 

dehydroly Oxidation Phase I Cytochrome P450 

demethyl Oxidation Phase I Cytochrome P450 

deoxy    

desalkyl Oxidation Phase I Cytochrome P450 

desisopropyl Oxidation Phase I Cytochrome P450 

desmethyl Oxidation Phase I Cytochrome P450 

desulfur Oxidation Phase I Cytochrome P450 

dehalo Reduction Phase I Cytochrome P450 

didemethyl Oxidation Phase I Cytochrome P450 

didesmethyl Oxidation Phase I Cytochrome P450 

diethyl Oxidation Phase I Cytochrome P450 

dihydro Reduction  Phase I Cytochrome P450 

esters Hydrolysis Phase I  

epoxide Hydrolysis Phase I  

ethyl Oxidation (dethylation) Phase I  

fluoro Oxidation (defluorination)  Phase I  

glucuronide Glucuronidation Phase II UDP-glucuronosyltransferase to form aceyl-glucuronides 

glutathione Glutathione Conjugation Phase II Glutathione S-transferases  

hydroxy Oxidation Phase I Cytochrome P450 

hydroxyl Oxidation Phase I Cytochrome P450 

OH Oxidation Phase I Cytochrome P450 

oxid Oxidation Phase I Cytochrome P450 

hydroxylamine Glucuronidation Phase II  

keto Hydrolysis  Phase I Aldo-keto reductase 

lactone Hydrolysis  nonenzymatic 

laurate    

methoxy    

methyl Methylation Phase II  

methylhydroxy Oxidation  Phase I Cytochrome P450 

nitro Reduction Phase I  

nor Oxidation Phase I Cytochrome P450 

phenyl Oxidation  Phase I  

phosphosulfate Sulphation Phase II  

sulfate Sulfate conjugation Phase II Sulfotransferases 

sulfhydryl Glucuronidation Phase II  

sulfide Hydrolysis  nonenzymatic 

sulfoxide Oxidation Phase I  

tetrahydro Reduction  Phase I  

threo Reduction Phase I Aldoketoreductase 

Sulfur  Oxidation Phase I Cytochrome P450 

N-oxide Oxidation Phase I Cytochrome P450 or FMOs 

alcohol Oxidation Phase I Dehydrogenases 

aldehyde Oxidation Phase I Dehydrogenases 

Table S5 The List of Prefix and Suffix for Drug Metabolite Reaction 
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National Chung Hsing University, Taiwan 



  

 
 

Research and Training Experience 

 Research Assistant – Center for Computational Biology and Bioinformatics: Sep 

2011 – Present 

 Analytic Programmer – Department of Medical & Molecular Genetics, Indian 

University: School of Medicine: Dec 2010 – Sep 2011 

 Research Assistant – Department of Biomedical Informatics, The Ohio State 

University: Sep 2009-Dec 2010 

Computer Languages and Tools: 

 Languages: C, R, Perl, Python, SQL, SAS, Matlab, HTML, and UNIX. 

Conference Attended 

Oral Presentation 

1. Heng-Yi Wu, Using Machine learning algorithms to identify genes essential for cell 

survival, ICIBM 2017 in Houston 

2. Heng-Yi Wu, Translational drug interaction study using text mining technologies, 6th 

Annual Indiana CTSI Symposium on Disease and Therapeutic Response Modeling, at 

Indiana University School of Medicine (Nov 9-10, 2016) 

3. Yaoyun Zhang*, Heng-Yi Wu*, Xu Hua, and Lang Li, Leveraging Syntactic and 

Semantic Graph Kernels to Extract PK Drug Drug Interactions from Biomedical 

Literature, ICIBM2015 

4. Heng-Yi Wu, Yu Wang, Zheng, P., Jiang, G., Yunlong Liu, Huang, T.H.M., Nephew, K.P., 



  

 
 

Lang Li, "An ERα/modulator regulatory network in the breast cancer cells" in Proc. 

IEEE 2011 Workshop on Genomic Signal Processing and Statistics (GENSIPS). 

 

Poster Presentation 

1. Heng-Yi Wu, Deshun Lu, Mustafa Hyder, and Lang Li, Name Entity Recognition for 

Drug Metabolite by Using Text-Mining Technology, PSB2016 

2. Heng-Yi Wu, Shijun Zhang, Luis M. Rocha, Hagit Shatkay, Desta Zeruesenay, Sara K. 

Quinney, Lang Li, Translational Drug Interaction Evidence Gap Discovery Using Text 

Mining, ASCPT 2017, AMIA 2017, and Regenstrief conference 2016 

Publications: 

Journal paper 

Under Preparation or Submitted 

1. Pengyue Zhang*, Heng-Yi Wu*, Chien-Wei Chiang, Lei Wang, Samar Binkheder, 

Xueying Wang, Sara K. Quinney, and Lang Li, Translational Biomedical Informatics 

and Pharmacometrics Approaches in the Drug Interaction Research, CPT: 

Pharmacometrics & Systems Pharmacology (Under Preparation) 

2. Pengyue Zhang, Meng Li, Wang Lei, Yang Xiang, Lijun Cheng, Weixing Feng, Heng-Yi 

Wu, Donglin Zeng, Lang Li, A Three-Component Mixture Model Based Adverse Drug 

Event Signal Detection for the Adverse Event Reporting System, (Submitted to CPT: 

Pharmacometrics & Systems Pharmacology IF=3.24) 



  

 
 

3. Xueying Wang, Pengyue Zhang, Chien-Wei Chiang, Heng-Yi Wu, Li Shen, Xia Ning, 

Donglin Zeng, Lei Wang, Sara K. Quinney, Weixing Feng, Lang Li, Mixture Drug-Count 

Response Model for the High Dimensional Drug Combinatory Effect on Myopathy 

(Submitted to Biometrics IF= 1.827) 

4. Heng-Yi Wu, Shijun Lee, Luis M. Rocha; Hagit Shatkay; Lang Li, Biomedical text 

annotation definitions, guidelines and corpus construction for drug interaction, 

(Under Preparation) 

5. Heng-Yi Wu, Shijun Zhang, Desta Zeruesenay, Sara K. Quinney, Lang Li, Translational 

Drug Interaction Evidence Gap Discovery Using Text Mining, (Under Preparation) 

6. Heng-Yi Wu, Deshun Lu, Mustafa Hyder, and Lang Li, Name Entity Recognition for 

Drug Metabolite by using text mining method, (Under Preparation) 

Published 

1. Santosh Philips, Heng-Yi Wu, Lang Li, Using Machine learning algorithms to identify 

genes essential for cell survival, BMC Genomics, 2017 (IF=3.87) 

2. Yaoyun Zhang*, Heng-Yi Wu*, Xu Hua, and Lang Li, Leveraging Syntactic and 

Semantic Graph Kernels to Extract PK Drug Drug Interactions from Biomedical 

Literature, BMC Systems Biology 2016 (IF=3.24) 

3. Yaoyun Zhang*, Heng-Yi Wu*, Jingchen Du, Jingqi Wang, Cui Tao, Lang Li , Xu Hua, 

Extracting Drug-Enzyme Relation from Literature as Evidence for Drug Drug 

Interaction, Journal Of Biomedical Semantics 2016 Mar 7 (IF=1.62) 

4. Lei Du, Arindom Chakraborty, Chien-Wei Chiang, Lijun Cheng, Sara K. Quinney, Heng-



  

 
 

Yi Wu, Pengyue Zhang, Lang Li, and Li Shen, Graphic Mining of High-Order Drug 

Interactions and Their Directional Effects on Myopathy Using Electronic Medical 

Records, Pharmacometrics & Systems Pharmacology, 2015 (IF=3.24) 

5. Pengyue Zhang, Lei Du, Lei Wang, Lijun Cheng, Chien-Wei Chiang, Heng-Yi Wu, Sara 

K. Quinney, Li Shen, and Lang Li, A mixture Does-Response Model for Identifying 

High-Dimensional Drug Interaction Effects on Myopathy Using Electronic Medical 

Record Databases, Pharmacometrics & Systems Pharmacology, 2015 (IF=3.24) 

6. Lei Wang, ChienWei Chiang, Hong Liang, Heng-Yi Wu, Weixing Feng, Sara K. Quinney, 

Jin Li and Lang Li, How to Choose In vitro Systems to Predict In Vivo Drug Clearance: 

A System Pharmacology Perspective, BioMed Research Internatioal, 2015 (IF=1.58) 

7. Artemy Kolchinsky, Anália Lourenço, Heng-Yi Wu, Lang Li, Luis M. Rocha, Extraction 

of Pharmacokinetic Evidence of Drug-drug Interactions from the Literature, PLOS One, 

2015 (IF=3.23) 

8. Heng-Yi Wu, Shreyas Karnik, Abhinita Subhadarshini, Zhiping Wang, Santosh Philips, 

Xu Han, Chienwei Chiang, Lei Liu, Malaz Boustani, Luis M Rocha, Sara K Quinney, 

David Flockhart, Lang Li, An integrated pharmacokinetics ontology and corpus for 

text mining. BMC Bioinformatics, 2013. 14:p.14-35 (IF=2.44) 

9. Heng-Yi Wu, Zheng, P.Jiang, G., et al.: A modulator based regulatory network for 

ERalpha signaling pathway. BMC Genomics, 2012. 13 Suppl 6: p. S6. (IF=3.87) 

Book Chapter (1) 

  Heng-Yi Wu, Chien-Wei Chiang and Lang Li. “Text Mining for Drug-Drug Interaction”, 



  

 
 

Methods in molecular biology (Clifton, N.J.) 01/2014, 1159:47-75 

Conference paper 

1. Heng-Yi Wu, Shijun Zhang, Desta Zeruesenay, Sara K. Quinney, Lang Li, Translational 

Drug Interaction Evidence Gap Discovery Using Text Mining, ASCPT 2017 

2. Santosh Philis*, Heng-Yi Wu*, and Lang Li, Using Machine learning algorithms to 

identify genes essential for cell survival, ICIBM2016 

3. Yaoyun Zhang*, Heng-Yi Wu*, Xu Hua, and Lang Li, Leveraging Syntactic and 

Semantic Graph Kernels to Extract PK Drug Drug Interactions from Biomedical 

Literature, ICIBM2015 

4. Heng-Yi Wu, Yu Wang, Zheng, P., Jiang, G., Yunlong Liu, Huang, T.H.M., Nephew, K.P., 

Lang Li, "An ERα/modulator regulatory network in the breast cancer cells" in Proc. 

IEEE 2011 Workshop on Genomic Signal Processing and Statistics (GENSIPS). 

5. Heng-Yi Wu, Jie Zhang and Kun Huang, "Peak Detection on ChIP-Seq data using 

Wavelet transformation" in Proc. IEEE BIBM 2010 Workshop on data-mining of Next 

Generation Sequencing Data. 

6. Shien-Tang Chiu, Guo-Shiang Lin, Heng-Yi Wu and Min- Kuan Chang, "An Effective 

Shot Boundary Detection Algorithm for Movies and Sports," in Proc. IEEE ICICIC2008 

7. Shi-Yong Lee, Heng-Yi Wu, and Min-Kuan Chang, "New Lifetime-aware Bit and Power 

Allocation in OFDM Systems," in Proc. IEEE APWCS2007 

8. Heng-Yi Wu, Min-Kuan Chang, and Chia-Chung Chang, "The Switch-based Subcarrier 

Allocation Policies in Multi-service OFDM Systems," in Proc. IEEE VTC06 Spring  



  

 
 

9. Heng-Yi Wu, and Min-Kuan Chang, " A Novel subchannel Allocation in Multi-service 

OFDM Systems based on Weighted Round Robin" in Proc. IEEE APWCS2006 

Note: * means Co-First author 


