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[1] Bulk aerosol samples were collected from 16 July 2008 to 26 July 2009 at Lulang, a
high-altitude (>3300m above sea level) site on the southeast Tibetan Plateau (TP);
objectives were to determine chemical characteristics of the aerosol and identify its major
sources. We report aerosol (total suspended particulate, TSP) mass levels and the
concentrations of selected elements, carbonaceous species, and water-soluble inorganic
ions. Significant buildup of aerosol mass and chemical species (organic carbon, element
carbon, nitrate, and sulfate) occurred during the premonsoon, while lower concentrations
were observed during the monsoon. Seasonal variations in aerosol and chemical species
were driven by precipitation scavenging and atmospheric circulation. Two kinds of
high-aerosol episodes were observed: one was enriched with dust indicators (Fe and Ca2+),
and the other was enhanced with organic and elemental carbon (OC and EC), SO4

2�,
NO3

�, and Fe. The TSP loadings during the latter were 3 to 6 times those on normal days.
The greatest aerosol optical depths (National Centers for Environmental Protection/National
Center for Atmospheric Research reanalysis) occurred upwind, in eastern India and
Bangladesh, and trajectory analysis indicates that air pollutants were transported from the
southwest. Northwesterly winds brought high levels of natural emissions (Fe, Ca2+) and low
levels of pollutants (SO4

2�, NO3
�, K+, and EC); this was consistent with high aerosol optical

depths over the western deserts and Gobi. Our work provides evidence that both geological
and pollution aerosols from surrounding regions impact the aerosol population of the TP.
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1. Introduction

[2] The Tibetan Plateau (TP), the world’s highest and
largest plateau, exerts a major influence on the monsoonal
circulation in Asia [An et al., 2001]. Moreover, the TP not
only affects large-scale atmospheric circulation, but it also
impacts the hydrological cycle of the entire Asian continent.
These effects are mediated through its dynamical and

thermal influences on the atmosphere as well as through
snow and glacier melt [Lau et al., 2010; Wu et al., 2007].
[3] The TP is at the juncture of several important natural and

anthropogenic aerosol sources, including the Taklimakan
and Gobi Desert to the north and northwest, deserts in
southwestern Asia and the Middle East to the west and
southwest, densely populated areas in the Indo-Gangetic
Plain, and areas in South Asia where biomass is burned
extensively [Xia et al., 2011]. Transport of pollutants from
the densely populated countries (such as India, Pakistan,
China, and Nepal) to the Himalayas may not only result in
substantial radiative forcing in South Asia with potential
effects on the monsoon circulation but also on regional
climate and hydrological cycles [Venzac et al., 2008].
Black carbon (BC) that is deposited on the TP absorbs solar
radiation, and it is one of the most important substances that
cause the melting of ice and snow. Recent studies show that
over the past decade, Tibetan glaciers have been melting at
an accelerating rate, raising the threat of future shortages in
the water supply in neighboring countries [Xu et al., 2009].
[4] High-elevation sites are well suited for sampling the

free troposphere, and studies at those sites are particularly
useful for characterizing typical background conditions and
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investigating the influences of human activity on its
composition. In the past decade, numerous scientific studies
have been conducted in the Indo-Asia-Pacific region, and an
extensive observational system has been developed within
the Indian Ocean Experiment project [Ramanathan and
Crutzen, 2003]. Studies at these sites have served to better
understand the “brown cloud” which can extend from the
Indian Ocean to the Himalayan range, attain a vertical
thickness of about 3 km [Ramanathan et al., 2007] during
the dry season (especially from November to March), and
affect some of the most populous Asian regions, currently
home of more than 2 billion persons.
[5] Atmospheric aerosols build up over the southern slope

of the TP during the premonsoon season, and they are lifted
by the Himalayan topography [Xia et al., 2011]. Aerosol
mass and BC concentrations increased significantly over
the southeastern TP during a dry period when numerous
fires burned, and there was transport of pollution from
nearby regions in South Asia and the northern part of the
Indian Peninsula [Engling et al., 2011]. Some previous
investigators have already suggested that the southern
Himalayas are affected by significant amounts of pollution
that is either uplifted by the typical valley circulation or
advected by regional and long-range transport events
[Hindman and Upadhyay, 2002; Bonasoni et al., 2008].
Observations at the Nepal Climate Observatory-Pyramid
provide convincing evidence that the southern side of the
high Himalayan valleys represents a “direct channel”
through which brown cloud pollutants can be transported
up to 5 km above sea level (asl) especially during the
premonsoon period; this is a case where normally clean
atmospheric conditions could be strongly compromised

[Bonasoni et al., 2010]. However, the effects of the
Tibetan aerosol on regional climate variability remain
largely unknown, and this is due, at least in part, to the
limited number of observations over the plateau.
[6] Although the monitoring of atmospheric composition

at high altitudes is recognized as important for understanding
climate change, experimental work in high-altitude regions
has been sparse [Carrico et al., 2003; Hindman and
Upadhyay, 2002]. To this end, we conducted a 1 year study
of bulk aerosol (total suspended particulate, TSP) at Lulang,
which is on the southeastern flank of the TP. The study
focused on selected aerosol chemical components, including
organic (OC), elemental carbon (EC), water-soluble inorganic
ions, and dust-derived trace elements, and it included an
assessment of their seasonal variability, especially in
relation to the monsoonal circulation. We show how
anthropogenic activities dramatically perturb the background
aerosol levels and discuss how the aerosol chemical
composition changes in such cases (episodes). Potential
sources for the aerosol particles and their transport
pathways during high-aerosol loading episodes are also
evaluated and discussed.

2. Data and Methodology

2.1. Aerosol Sampling

[7] The Lulang sampling site (Figure 1) is situated in
Linzhi Prefecture, which is on the southeastern margin of
the TP (94.44°E, 29.46°N). To the west of the sampling site
is the Yarlung Tsangpo River Valley, which has an altitude
of 3300m, and the Himalaya Mountains rise south of the
site. Lulang is approximately 30 to 50 km west of several

Figure 1. Geographical location of the sampling site. Adapted from www.earthobservatory.nasa.gov.
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small villages [Cao et al., 2010]. There are extensive forests
in Linzhi, and the sampling site is located in a remote area
with no major anthropogenic sources nearby. Hence,
long-range transport from upwind regions to the plateau
is the presumptive cause for elevated pollutant concentrations.
During the summer monsoon, low-pressure systems over the
plateau induce a flow of moist warm air from the Indian and
Pacific Oceans to the Indian subcontinent and TP. In winter,
on the other hand, high-pressure systems drive cold, dry air
out of the plateau [Byson, 1986; Tang, 1998].
[8] Sampling was normally conducted once every 6 days

starting at 10:30 Beijing Time (BJT), and the sampling intervals
were typically 3 days. Aerosol (TSP) samples were
collected at a flow rate of 40 L/min with a KC-120H
QingDao Laoshan sampler (Laoshan Electronic Instrument
Factory Co., LTD., QingDao, China). The flow rate of the
sampler was lowered from 100 L/min to 40 L/min to adjust
for the atmospheric pressure in this high-altitude site. The
aerosol particles were collected on 90mm Whatman quartz
fiber filters (QM-A™, Whatman, Clifton, NJ, USA) from 16
July 2008 to 26 July 2009. The filters were preconditioned
by heating at 900°C for 3 h to remove residual carbon.
After sampling, the filters were transported in a portable
cooler to the aerosol laboratory at the Institute of Earth
Environment, Chinese Academy of Sciences, to avoid the
loss of volatile compounds. Field blank filters were also
collected periodically by exposing filters in the sampler
without drawing air through them; these were used to
account for any artifacts introduced during the sample
handling process.
[9] An automatic weather station was installed at the

sampling site, and meteorological data, including wind
speed and direction, air temperature, precipitation, air
pressure, and relative humidity, were collected routinely.
Abrupt variations in relative humidity (RH), wind direction
(WD), and precipitation were used to identify the onset and
conclusion of the summer monsoon and winter seasons.
Based on the seasonality of atmospheric circulation, the annual
cycle was defined as follows: monsoon (16 July 2008 to 3
October 2008; 28 April 2009 to 26 July 2009), postmonsoon
(4 October 2008 to 9 November 2008), winter season (10
November 2008 to 17 February 2009), and premonsoon
(18 February 2009 to 30 April 2009). Table 1 summarizes
the meteorological conditions during the study. A total of
61 samples were collected; 27 of these were collected dur-
ing the monsoon, 6 during the postmonsoon, 16 during the
winter season, and 12 during the premonsoon.

2.2. Experimental

2.2.1. Gravimetric Analysis
[10] After ~24 h equilibration at a temperature between 20

and 23°C and RH between 35 and 45%, the quartz fiber filters
were analyzed gravimetrically for mass concentrations with
the use of a Sartorius MC5 electronic microbalance that had
a sensitivity of ±1μg (Sartorius, Göttingen, Germany).
Each filter was weighed at least three times before and after
sampling, and the net mass accumulation was obtained by
subtracting the difference between the averaged presampling
and postsampling weights.
2.2.2. Water-Soluble Inorganic Ions Analysis
[11] An aliquot of a sample filter (~4.33 cm2) was

extracted with 10 mL of ultrapure water for the inorganic
ion studies. Eight inorganic ion concentrations (Na+,
NH4

+, K+, Mg2+, Ca2+, Cl�, NO3
�, and SO4

2�) were deter-
mined with the use of a DX600 ion chromatography system
(Dionex Inc., Sunnyvale, CA, USA). A CS12 column
(150 × 4mm) and an AS14 column (150 × 4mm) were used
for cation and anion analysis, respectively. Standard
reference materials produced by the National Research
Center for Certified Reference Materials (Beijing, China)
were analyzed for quality control and assurance purposes
[Zhang et al., 2011]. Field blank levels were averaged and
subtracted from the samples. Ten percent of the samples
were submitted for replicate analyses, yielding coefficients
of variance of ±0.25% for Na+, ±22.8% for NH4

+, ±1.82%
for K+, ±2.90% for Mg2+, ±3.75% for Ca2+, ±1.59% for Cl�,
±2.34% for NO3

�, and ±1.39% for SO4
2�.

2.2.3. OC and EC Analysis
[12] A 0.5 cm2 punch from each quartz filter was analyzed

for OC and EC by the IMPROVE_A thermal/optical reflectance
protocol [Chow et al., 2007] and the use of a Desert
Research Institute (Reno, NV, USA) Model 2001 thermal/
optical carbon analyzer (Atmoslytic Inc., Calabasas, CA,
USA). Details of the method, including quality assurance/
quality control (QA/QC) procedures, are described in Cao
et al. [2003].
2.2.4. Elemental Analysis
[13] All samples were analyzed by energy dispersive X-ray

fluorescence spectrometry with the use of an Epsilon 5 XRF
analyzer (PANalytical, Almelo, Netherlands). The X-ray
source was a side window X-ray tube with a gadolinium
anode; the instrument operated at an acceleration voltage
between 25 and 100 kV and a current of 0.5 to 24mA
(maximum power: 600 W). The characteristic X-ray radiation
was detected with the use of a PAN 32 germanium detector.

Table 1. Seasonal Meteorological Characteristics at Lulang

Season

Start Date End Date Surface Pressure Relative Humidity Daily Mean Temperature Total Precipitation Average Wind Speed

(YYYY-MM-DD) (hPa) (%) (°C) (mm) (m s�1)

2008 Ma 2008-07-16 2008-10-03 681.94 82.65 11.63 340.80 1.47
Post-Mb 2008-10-04 2008-11-09 684.90 72.67 3.37 82.80 1.57
Winter 2008-11-10 2009-02-17 681.66 64.98 �1.77 6.60 1.72
Pre-Mc 2009-02-18 2009-04-27 679.70 71.39 2.73 98.60 1.93
2009 Md 2009-04-28 2009-07-26 680.54 76.78 11.05 296.00 1.70
Annual 2008-07-16 2009-07-26 681.40 73.51 5.50 824.80 1.69

aMonsoon in 2008.
bPostmonsoon.
cPremonsoon.
dMonsoon in 2009.
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[14] Concerns over the validity of the elemental data for
the quartz fiber filters led to an intercomparison of elemental
concentrations for samples collected on two different types of
filters. The intercomparison study was based on XRF
measurements made on nine collocated Teflon-membrane
and quartz fiber filters from Xi’an. The concentrations were
found to be comparable, with correlations (r) ranging from
0.982 for Fe and Zn (slopes of 1.054 and 1.062, respectively)
to 0.915 for As (slope of 1.204) for these elements.
Measurement precision was calculated as the standard
deviation of several analyses of the same sample; the precisions
were ±7.6% for Fe, ±8.6% for Ti, ±12.5% for Mn, ±7.6% for
Zn, ±23.5% for As, ±33.3% for Br, and ±7.9% for Pb at typical
concentration levels [Cao et al., 2012]. The QA/QC of the
analysis is described by Xu [Xu et al., 2012].
[15] In this study, Fe and K were used to estimate the

loadings of crustal matter and to evaluate the influence of
biomass burning, respectively. Prior studies have shown

that Fe accounts for 4% of Asian dust and Chinese loess
[Zhang et al., 2003]; hence, soil dust concentrations were
estimated from the following equation:

Csoil dust ¼ CFe=4% (1)

where Csoil dust is soil dust concentration and CFe is the
elemental Fe concentration. And K+/K ratio was used to
evaluate the extent of biomass burning or dust in different
episodes [Shen et al., 2007]. Moreover, S, K, Fe, Ca, and
Ti were used for source apportionments by positive matrix
factorization (PMF).

2.3. Satellite Data

[16] Space-based sensors provide near-real-time information
on atmospheric aerosols, and the data obtained with them
are invaluable because the coverage is global and spatial
resolution kilometer scale [King et al., 1999; Kaufman

Figure 2. Temporal variations of analyzed chemical species in total suspended particle (TSP) samples
from Lulang (July 2008 to July 2009) (yellow: episode type I; gray: episode type II).
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et al., 2002]. Satellite aerosol products considered in this
study consist of both level-2.0 aerosol optical depth (AOD)
from the Moderate Resolution Imaging Spectrometer
(MODIS) which is deployed on the Terra satellite [Remer
et al., 2005] and the level-2.0G UV aerosol index (AI) derived
from the Ozone Monitoring Instrument (OMI) carried by
the Aura spacecraft [Torres et al., 2007]. MODIS AOD
has been shown to be suitable for the detection of aerosol
pollution [Chu et al., 2003; Li et al., 2007], while the OMI
AI has been used for long-term remote sensing of UV
absorbing aerosols, such as desert dust [Moulin and
Chiapello, 2004;Huang et al., 2007]. Accordingly, we used
both MODIS AOD and OMI AI for the case studies
described in section 3.4.

2.4. Air Mass Back Trajectory Analysis

[17] Air mass back trajectory analysis is another useful
tool for identifying the probable sources and transport
pathways for air pollutants. In this study, 72 h air mass back
trajectories starting 3000 m above ground level at 0:00 UTC
were calculated using the NOAA HYSPLIT4 trajectory
model. The trajectories were used to study the origins of
the aerosol pollution, and to this end, the high-aerosol
loading episodes were classified according to the direction
of air mass transport.

2.5. Source Apportionment Method

[18] Receptor modeling by positive matrix factorization
(PMF 3.0, developed by the U.S. Environmental Protection
Agency) was used to apportion the measured ambient aerosol
concentrations among potential sources. PMF can use the
information contained in aerosol concentration and composition
data to identify presumptive sources. This approach has
been widely used for receptor modeling, and it is typically
applied when the source profiles are unknown [Chen et al.,
2007, 2010]. Here PMF was applied as a way of evaluating
the origins of the aerosols over the southeastern TP.

3. Results and Discussion

3.1. Variations of Aerosol Mass Concentrations

[19] The arithmetic mean annual aerosol mass concentration
was 23.5±20.3μgm�3, and it ranged from 8.2 to 139.2μgm�3.
Figure 2 shows the seasonal variations of TSP loadings and
major chemical species levels at the Lulang site. The TSP
mass exhibits a well-defined seasonal cycle, with the
highest mass concentration (43.7 ± 37.2 μg m�3) observed
during the premonsoon and the lowest value during the
monsoon (14.8 ± 6.6 μg m�3). The aerosol levels in the
premonsoon period were larger by about a factor of 3
compared with mean level during the monsoon; however,
the standard deviation of aerosol mass during the premonsoon
was much larger than during the monsoon period. This
seasonal variation is similar to the aerosol mass and black
carbon concentration variations found at the Nepal Climate
Observatory at Pyramid (NCO-P) site in the southern
Himalayas [Marinoni et al., 2010].
[20] High concentrations of aerosol mass and large

variability at high elevations, particularly prior to the onset
of the monsoon, have been attributed to long-range
pollution transport [Shrestha et al., 2000]. As shown in
Figure 2, major peaks in the TSP mass concentrations
always coincided with high loadings of OC, EC, major ions,
and Fe. This implies that the same physical processes,
including those during both production and transport,
caused these species’ concentrations to covary. The aerosol
mass seasonality we observed at Lulang is similar to the
variations observed at other sites in Nepal and India; that
is, lower loadings during the monsoon season and higher
concentrations in the winter and premonsoon periods
[Ganguly et al., 2006; Marinoni et al., 2010; Mouli et al.,
2006]. Wet scavenging is one likely cause for the lower
aerosol concentrations during the monsoon while in winter,
higher aerosol concentrations correspond with diminished
precipitation in air brought by strong westerly flow.
[21] Eight high-aerosol loading events, operationally

defined by aerosol mass loadings > 35μg m�3, were
observed during the year of measurements. Two types of
high-aerosol episodes were identified on the basis of
differences in transport pathways as depicted by back
trajectory analysis (Figure 3). Type I episodes (marked in
yellow in Figures 2 and 3) were classified as a dust events
owing to the abundance of Fe. Three type I events occurred
from the premonsoon to monsoon season; these were on 11
to 14 March, 10 to 13 April, and 18 to 21 May. The
corresponding aerosol mass loadings for these three events
were 139.2 μg m�3, 40.0 μg m�3, and 37.3 μg m�3, giving
an arithmetic mean of 72.2 μg m�3, which is over 3 times
the yearly mean value.
[22] Type II episodes (marked in gray as shown in

Figures 2 and 3) were defined as pollution events because
they were characterized by high concentrations of OC, EC,
and three major ions (K+, SO4

2� and NO3
�). Five type II

events occurred over a total of 15 days; one event in winter
(9 to 12 February) and four events during the premonsoon
period (15 to 18 February, 5 to 8 March, 17 to 20 March,
and 23 to 27 April). The mean aerosol mass for type II episodes
was 53.8μg m�3, which is over 2 times the annual value.
Chemical profiles for type II episodes were characterized by
high K+/K ratios, indicating important contributions from

Figure 3. Three day air backward-in-time air mass trajectory
analysis for high-aerosol loading episodes at Lulang.
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biomass burning upwind. Xia et al. [2011] monitored a
pollution episode at the Namco site in the central TP from
14 to 19 March 2009, and their results, consistent with ours,
indicated that during that time, air pollution was transported
to the TP from upwind sources.
[23] The high concentrations of carbonaceous species and

major ions during type II episodes can be linked to air flow
driven by the SW monsoon; the transport pathways often
pass over densely populated areas of the Indo-Gangetic
Plain. This region is characterized by heavy anthropogenic
emissions, and during the premonsoon season, it is usually
dry there [Marinoni et al., 2010]. In contrast, for type I
episodes, the back trajectories show a simple flow pattern
in which air masses, mainly from western China, bring
crustal matter from desert dust source regions to Lulang.

3.2. Chemical Composition

3.2.1. Carbonaceous Aerosol
[24] The abundances of TSP, OC, EC, water-soluble ionic

species (WSIS), and OC/EC ratios in the aerosol samples are
presented in Table 2 where they are grouped according the
type of high-aerosol episode. The overall average concentra-
tions of OC and EC were 4.28 ± 2.05μg m�3 and
0.52 ± 0.35μg m�3, respectively. Both OC and EC showed
distinct seasonal variations with remarkably higher concen-
trations in late winter into the early premonsoon compared
with the other seasons (Figure 2). The EC seasonal trends
are in good agreement with the record of EC in ice cores
taken from Tibetan glaciers where peaks occur during
November to March [Xu et al., 2009]. For OC, the concentra-
tions decreased in the following order: premonsoon (5.15μg
m�3)>monsoon (4.27μg m�3), and postmonsoon (4.30μg
m�3)>winter (3.65μg m�3), while EC followed a decreas-
ing order of premonsoon (0.84μg m�3)> postmonsoon
(0.67 μg m�3)>winter (0.58 μg m�3)>monsoon (0.31μg
m�3). The most abundant precipitation occurred during
the monsoon (Table 1), and the removal of aerosol particles
from suspension by precipitation scavenging was the most
likely reason for the lower EC concentrations at that time
of year.
[25] The ratios of OC to EC ranged from 1.7 to 8.6, 7.8 to

58.4, 1.9 to 8.4, and 1.7 to 9.6 in premonsoon, monsoon,
postmonsoon and winter, respectively; and the correspond-
ing averages were 6.3, 17.7, 6.7, and 6.5. These seasonally
averaged OC/EC ratios are comparable with those reported

for other high-altitude sites such as Mt. Abu (range: 4.8 to
27.2) and Manora Peak (range: 3.0 to 11.5) [Ram et al.,
2008]. Comparisons with other sites on the TP show that
the OC concentrations at Lulang (Table 3) were larger than
those at the Namco site in the central TP [Cong et al.,
2007; Ming et al., 2010]. EC was higher than the value
measured at Waliguan in northeast TP [Wen et al., 2001] or
Muztagh Ata Mountain, in the western TP [Cao et al.,
2009]. These comparisons suggest that Lulang site is more
strongly influenced by pollution sources upwind than some
other parts of the TP.
[26] The data for the high-aerosol episodes were excluded

to characterize the chemical composition of the aerosol on
more normal days. OC was found to be more abundant
during the monsoon and postmonsoon than in the other two
seasons. These trends can be explained by the emission of
plant spores and pollen as well as the formation of greater
quantities of secondary organic carbon (SOC) in the periods
with the higher OC loadings. The average OC (3.88 ± 1.21μg
m�3) and EC (0.44 ± 0.22μg m�3) concentrations on normal
days were ~9 to 14% lower than the annual mean values, and
neither OC nor EC showed significant differences on normal
days in the four periods (the average OC in four seasons were
2.89, 4.21, 4.30, and 3.52 μg m�3, while EC were 0.50, 0.31,

Table 2. Arithmetic Averages ± Standard Deviations (μg m�3) for Mass and Chemical Components During Four Seasons

Premonsoon Monsoon Postmonsoon Winter Annual Type I Episode Type II Episode

Na 12 27 6 16 61 3 5
Mass 43.71 ± 37.24 14.78 ± 6.61 18.29 ± 4.84 24.41 ± 6.69 23.49 ± 20.25 72.16 ± 58.03 53.84 ± 23.28
OC 5.15 ± 3.89 4.27 ± 1.23 4.30 ± 1.61 3.65 ± 1.07 4.28 ± 2.05 5.41 ± 0.81 7.93 ± 4.87
EC 0.84 ± 0.55 0.31 ± 0.17 0.67 ± 0.25 0.58 ± 0.16 0.52 ± 0.35 0.61 ± 0.09 1.30 ± 0.57
OC/EC 6.29 ± 1.69 17.67 ± 11.05 6.72 ± 1.86 6.45 ± 1.68 11.41 ± 9.28 9.00 ± 1.58 5.96 ± 1.40
Na+ 0.36 ± 0.19 0.41 ± 0.63 0.20 ± 0.05 0.22 ± 0.12 0.33 ± 0.44 0.38 ± 0.19 0.47 ± 0.20
K+ 0.18 ± 0.29 0.04 ± 0.03 0.03 ± 0.004 0.04 ± 0.02 0.06 ± 0.14 0.04 ± 0.02 0.38 ± 0.39
Mg2+ 0.10 ± 0.07 0.08 ± 0.13 0.05 ± 0.01 0.04 ± 0.01 0.07 ± 0.09 0.16 ± 0.08 0.10 ± 0.06
Ca2+ 0.56 ± 0.42 0.31 ± 0.13 0.34 ± 0.09 0.27 ± 0.08 0.35 ± 0.23 0.94 ± 0.62 0.55 ± 0.31
Cl� 0.08 ± 0.11 0.16 ± 0.49 0.06 ± 0.04 0.05 ± 0.05 0.10 ± 0.33 0.22 ± 0.14 0.05 ± 0.06
NO3

� 0.45 ± 0.60 0.15 ± 0.07 0.17 ± 0.06 0.13 ± 0.06 0.21 ± 0.30 0.33 ± 0.11 0.77 ± 0.86
SO4

2� 2.07 ± 1.82 0.79 ± 0.99 0.75 ± 0.33 0.92 ± 0.55 1.07 ± 1.17 1.59 ± 0.45 3.41 ± 2.18
K 0.90 ± 0.88 0.17 ± 0.19 0.20 ± 0.12 0.38 ± 0.14 0.38 ± 0.50 1.51 ± 1.37 1.11 ± 0.63
Fe 0.88 ± 0.97 0.22 ± 0.22 0.23 ± 0.13 0.50 ± 0.19 0.45 ± 0.55 1.85 ± 1.58 0.99 ± 0.37

aNumber of samples.
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0.67 and 0.57 μg m�3, respectively). During type II episodes,
the average OC and EC concentrations reached 7.93 (4.86 to
16.58) and 1.30 (0.74 to 2.23) μg m�3, these were much
higher than those during type I episodes or on normal days.
The higher OC and EC levels in the type II samples imply
that compared with the others, combustion sources were
stronger contributors during the type II events.
[27] The OC and EC concentrations were generally well

correlated, with a least squares linear regression for the full
data set yielding the following equation: OC=4.1×EC+2.1
(with a correlation coefficient r = 0.70 and probability for
chance occurrence p< 0.0001, n=61). Relationships between
the concentrations of OC and EC in the monsoon and other
periods are shown in Figure 4 to illustrate the seasonal
differences in aerosol characteristics. However, the correlations
for the four separate seasons are relatively lower (r=0.3 to 0.6)
than the entire data set; this suggests the existence of
multiple sources of OC and EC that were not always linked.
3.2.2. Water-Soluble Ionic Species (WSIS)
[28] The sums of the concentrations of the eight ions

analyzed were 3.81, 1.92, 1.60, and 1.67μg m�3 in the
premonsoon, monsoon, postmonsoon, and winter samples,
respectively, and these sums amounted to 16.24%, 8.17%,
6.81%, and 7.10% of the total TSP mass. The dominant
compounds were SO4

2�, Ca2+, and NO3
�, whose combined

concentrations accounted for more than 75% of the total
water-soluble ion mass. Ion mass balance calculations were
used to evaluate the acid-base balance of aerosol and to

determine whether significant quantities of undetected ions
were present in the samples [Jain et al., 2000]. A strong
correlation (r = 0.87) between cation and anion equivalents
for all samples implies that the ions measured in our study
were in fact the most abundant ions on the filters. The ratio
of anion to cation equivalents was ~0.86, which was higher
than the ratios determined at Zhuzhang and Lhasa, Tibet
[Qu et al., 2008; Tang et al., 2005], and this suggests that
the Lulang TSP is more alkaline than the aerosol from the
other two sites.
[29] Interestingly, most of the NH4

+ values were below
the detection limit (data not shown in Table 1)—the excep-
tions were samples collected during three heavy pollution
events (15 to 18 February, 5 to 8, and 17 to 20 March).
Indeed, the aerosol during type I episodes was depleted in
NH4

+ compared with the samples collected during type II
episodes. Prior studies have similarly shown depletions in
NH4

+ during dust storm events compared with pollution
events [Shen et al., 2009]. The pattern in NH4

+ concentra-
tions at Lulang is similar to what was observed in previous
studies at the NCO-P site on the southern Himalayas. There
the ammonium levels also were below the detection limit
except during the premonsoon [Decesari et al., 2010]. The
low concentrations of ammonium at these high-latitude sites
highlight the somewhat usual ion profiles of particular mat-
ter (PM) from the TP; one implication of the low NH4

+ load-
ings is that other cations, such as Ca2+ andMg2+, should play
relatively more important roles in ion balance.

Figure 5. Seasonal and episodic variations of mass concentrations and fractions of organic matter,
elemental carbon, nitrate, sulfate, sea salt, and crustal material normalized to aerosol mass concentration.
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[30] In the data sets with the high-aerosol events excluded,
none of the ions showed significant variations except for Na+

and Cl�; this implies that there were no substantial changes in
the pollution sources under clean background conditions. The
rank order for the most abundant to least abundant ionic species
followed the sequence SO4

2�> Na+> Ca2+ > NO3
�> Cl�;

> Mg2+> K+> NH4
+. In the monsoon season, when winds are

predominantly from the Arabian Sea, the concentrations of
Na+ and Cl� were relatively high (average: 0.42 and 0.16μg
m�3, respectively), in fact, twice the loadings in the other pe-
riods. This pattern is similar to the seasonality in sea salt ob-
served at Mt Abu, India [Rastogi and Sarin, 2005].
[31] Previous studies have shown that biomass burning is a

major source of aerosol particles in Southern Asia [Chan
et al., 2003; Duncan et al., 2003]. The concentrations of K+, a
tracer of biomass burning [Andreae, 1983; Shen et al., 2009],
in aerosol samples during the type II episodes (0.38μg m�3)
were much higher than those in the premonsoon (0.04μg
m�3), monsoon (0.04μg m�3), postmonsoon(0.03μg m�3),
winter seasons (0.03μg m�3), or type I episodes (0.04μg
m�3). This can be explained by strong emissions from biomass
burning sources upwind of themeasurement site during the type
II episodes. The concentrations of SO4

2� and NO3
� during

these episodes also were enhanced by factors of 4 to 5 over
those on normal days. The elevated loadings of K+, along with
SO4

2�, NO3
�, OC, and EC in the type II samples, suggest that

emissions from a combination of biomass burning and fossil
fuel combustion sources were brought to Lulang during those
episodes, mostly likely as a result of long-range transport.

3.3. Material Balance

[32] The relative contributions of major chemical species to
the aerosol mass for different seasons (excluding the pollution
events) as well as during two type episodes are shown in
Figure 5. Organic matter (OM) concentrations were calculated
as 1.8 times the OC content as suggested by Turpin and Lim
[2001]. Sea salt was estimated from Cl� + (1.4486 ×Na+)
where 1.4486 is the ratio of the sum concentration of all
elements except Cl� in sea water to the concentration of Na+

[Li et al., 2010]. Crustal matter (geological material) was
calculated by Fe/4% [Zhang et al., 2003].
[33] The sums of the measured and estimated components

accounted for 68, 91, 79, and 79% of the aerosol mass in the
premonsoon, monsoon, postmonsoon, and winter samples, re-
spectively. During the premonsoon, crustal matter was the
most abundant species, followed by OM, sulfate, EC, sea salt,
and nitrate. In contrast, during the monsoon and postmonsoon,
OM dominated, accounting for 57% and 42% of the mass, re-
spectively, and crustal matter decreased when compared with
the premonsoon period. Sea salt accounted for only 1.7% of
the aerosol mass in the premonsoon and winter season, but
the percentage did increase by a factor of ~2.2 during the mon-
soon. For the winter samples, the contributions in order of im-
portance were geological material>OM> sulfate> elemental
carbon> sea salt> nitrate. Approximately 9 to 32% of the
measured mass was not quantified by the chemical analysis,
and this can be ascribed to residual water and other unmeasured
species, underestimations of the weighting factors for
OM, sea salt, and geological material. Possible errors in

1010.1

1010.1

Enhancement Factor

Episode Type-I

M

Episode Type-II

Figure 6. Enhancement factors for selected species in total suspended particles at Lulang during eight
high-aerosol loading events. The enhancement factor for species i (EnFi) is the ratio of that species’ TSP
mass fraction on the designated date to the ratio of its annual average concentration to the annual average
of TSP (i.e., EFik ¼ Fik= ∑K

n¼1FikTSPn=∑
K
n¼1TSPn

� �
, where EnFik= enhancement factor for species i on

sample k, Fik = ratio of species i concentration to TSP concentration on sample k,K total number of samples,
and TSPn =TSP concentration on sample n).
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the gravimetric analyses, which would mainly be due to
uncertainties in the equilibration of the filters [Kajino
et al., 2006], also must be acknowledged.
[34] During type I events, crustal matter was the most

abundant aerosol constituent, contributing 53% to the mass,
and it was followed by OM (19%). These results can be
compared with data for the dust storm observed at Zhenbeitai;
in that study, mineral dust contributed 51% to the PM2.5 mass,
followed by carbonaceous matter (12%) [Xu et al., 2004]. For
type II episodes, the percentage of the aerosol mass contributed
by crustal matter decreased to 40%, while the percentages of
sulfate, nitrate, and EC increased; these are relatively similar
to their contributions in the premonsoon and winter. The high
crustal material loadings and high sulfate, nitrate, and EC, in
terms of both concentration and percentage, show that both
geological and anthropogenic sources provided significant
quantities of the aerosol that was transported to the southeastern
TP in type II episodes.

3.4. Species Enhancements During High-
Aerosol Episodes

[35] Enhancement factors (EnF, plural EnFs) are defined
here as the ratio of the mass fraction for a species during

the eight high-aerosol episodes normalized to the annual
average mass fraction (see text for description of enhancement
factors in the caption of Figure 6) [Watson et al., 2002].
Here we calculate the EnFs to further investigate the
chemical composition of PM during the high-aerosol
loading events (Figure 6).
[36] For all events, the EnFs of OC and Na+ were less

than unity, showing that these species did not contribute
significantly to the high-aerosol loads. In addition, as
Figure 6 shows, the EnFs of most combustion- and indus-
try-related species (K+, SO4

2�, EC) showed mass fractions
less than the annual average (EnFs < 1) for the 21 May,
13 April, and 14 March 2009 episodes, and the moderate
enhancement of crustal K for these days is consistent with
regional transport from the northwest. For the type II
episodes (typical haze events), the EnFs for K+, SO4

2�

were relatively high, while the EnFs for NO3
�, S, and K

were lower. Compared with type I episodes, the EnFs
for the type II events seem to be more variable, and it is
worth noting that the EnFs for each of these pollution
events were different from one other.
[37] During one severe episode (15 to 18 February),

several species associated with combustion products

Figure 7. NCEP/NCAR wind trajectory analysis at 500 hPa and satellite (MODIS) integrated aerosol
optical depth (AOD) for typical high-aerosol episode days: (a, b, and c) NCEP/NCAR wind trajectories
for 17 to 20 March and (d) average AOD for 17 to 20 March. (The yellow circle: sampling site).
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(NO3
�, SO4

2�, Pb, and K+) showed significant enhance-
ments (EnFs: 2 to 10), and this is an indication that the
high-aerosol load during this episode was due, at least in
part, to emissions produced from fossil fuel combustion.
In contrast, the EnFs for crustal matter (Fe) and Ca2+ were
less than unity during the event, indicating a relatively
small contribution from dust. This haze episode evidently
was influenced by a combination of strong anthropogenic
emissions on Indian subcontinent coupled with dry meteo-
rological conditions during regional transport; this conclu-
sion also is supported by back trajectory analysis (as
shown in Figure 3).
[38] During another episode (17 to 20 March), K+ and K

were the most strongly enhanced components of all
measured species (EnFs of 4.0 and 1.5, respectively), and
the EnFs for NO3

�, EC, SO4
2�, and S also were relatively

high. This can be explained by the transport of polluted
boundary layer air enriched with products from biomass
burning and fossil fuel combustion. The EnF analysis
indicated that several kinds of pollutants were enhanced
several fold as a result of transport from upwind regions, and
this is important because anthropogenic substances can exert

several types of influences on the environment and climate
of the TP; these effects include alterations of the radiative
balance as well as melting the glaciers on the TP.

3.5. Further Evidence for Long-Range
Aerosol Transport

[39] The seasonally averaged levels of TSP, EC, OC,
and ions are compared with other measurements from
the TP, Nepal, and the Indian Peninsula in Table 3. The
concentrations of OC, EC, and ions are comparable with
those at two high-altitude sites—the Atmospheric Brown
Cloud-Pyramid Observatory [Bonasoni et al., 2008] and
NCO-P [Decesari et al., 2010]—but they are much lower
than those on the Indian subcontinent [Rastogi and Sarin,
2005, 2009; Rengarajan et al., 2007; Venkataraman
et al., 2002], especially urban sites (Ahmedabad and
Mumbai). Such comparisons along with the air flow
analyses (see below) suggest that the high-aerosol emis-
sions over the Indian Peninsula were major influences
on the TP air.
[40] To further investigate the transport of anthropogenic

aerosol to the southeastern TP, we analyzed National

Figure 8. NCEP/NCAR wind trajectory integrated UV-AI (OMI) for typical episode days: (a, b, and c)
NCEP/NCAR wind trajectories for 18 to 21 May and (d) UV-AI from OMI for 17 to 20 March.
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Centers for Environmental Protection/National Center for
Atmospheric Research (NCEP/NCAR) winds at 500 hPa,
the corresponding MODIS AOD at 550 nm, and the ultravi-
olet aerosol index values (UV-AI) from the Ozone
Monitoring Instrument for two typical episodes (Figures 7
and 8). These two figures are comprehensive maps of the
spatial distributions of AOD/AI over the study region.
Daily NCEP/NCAR reanalysis wind trajectories were used
to determine the daily trends in the wind directions during
the episodes.
[41] As shown in Figure 7, the 17 to 20March high-aerosol

episode had the highest concentrations of SO4
2�, NO3

�, K+,
OC, and EC (Figure 2) of all the events. For this case, the
wind direction in the vicinity of the measurement site was
from the west or southwest, with a mean speed of 10 m
s�1. The air mass passed over the Thar Desert, located in
northwestern India, and this was likely responsible for the
high-dust load during this period. Results from MODIS
showed that Lulang was shrouded in high-aerosol loads at
this time, with the AOD value exceeding 0.9 (Figure 7d).
The remarkably high AOD area stretched along the southern
slope of the Himalayas (including southeastern India and
areas east of Nepal and northeast of Myanmar) during this
episode, and the information on wind fields and AOD in
Figure 7 clearly indicates a likely pathway for pollutants as
they were transported to Lulang. Another recent study
similarly showed that high BC concentrations at Lulang
were associated with the transport from the southwest
[Cao et al., 2010].
[42] Figure 8 shows that the high mass and high Fe (dust)

concentrations observed from 18 to 21 May were associated
with northwesterly winds with speeds of <10m s�1. The
OMI AI in the northern TP (regions adjacent to the
Taklimakan Desert and Qaidam Desert) and in northwestern
India (parts of the Thar-Cholistan Desert) were high, that is,
>2 (Figure 8d). The NCEP/NCAR wind trajectories
showed that winds from the northwest prevailed during

the period, and the patterns in OMI AI suggest that the
winds carried large quantities of geological material to the
site. In contrast, the concentrations of combustion products
(SO4

2�, NO3
�, K+, and EC) during this period were

relatively low. Other studies conducted at this sampling site
have shown that transport from northwest was associated
with low BC levels but high-dust loadings [Cao et al.,
2010; Xia et al., 2008].

3.6. Source Apportionment With the Use
of a PMF Model

[43] All of the aerosol data, that is, the concentrations of
OC, EC, S, K, Ca, Ti, Fe, Na+, K+, Mg2+, Ca2+, Cl�,
NO3

�, and SO4
2�, were included in PMF analyses, which

followed the procedures described in Reff et al. (2007)
and Green et al. (2012). The frequency distribution of
scaled residuals was taken into account in the model; most
of these were between �2 and +2, and this attests to a good
agreement between the PMF model results and the input
data. The profiles for each factor and the factor loadings
are shown in Figure 9.
[44] Factor 1 was dominated by OC, EC, K, K+, Ti, and Fe

(Figure 9a), and it is best interpreted as a mixture of dust and
combustion aerosol. It is noteworthy that the Factor 1
contribution to TSP mass was high in premonsoon season
(Figure 9b), especially from 15 to 18 February, 5 to
8 March, 17 to 20 March, and 23 to 27 April. All of these
intervals were characterized as type II high-aerosol events.
This result is also supported by air mass back trajectories
and MODIS AODs, which provide evidence for the
long-range transport of mixed aerosols from the Indo-
Gangetic Plain along the valley of the Yarlung Tsangpo
River to the southeastern TP. Nearly one third of the
TSP mass was accounted for by this factor (Figure 9c).
[45] The second PMF factor had high loadings for Na+, K+,

Mg2+, Ca2+, Cl�, and OC, and this factor is most readily
explained as a combination of SOC and sea salt. The Factor
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profiles for total suspended particles from PMF, (b) factor contributions from PMF in relation to sampling
time, and (c) factor loading for TSP mass (yellow arrow: episode type I; gray arrow: episode type II).

11,371

ZHAO ET AL.: AEROSOL PARTICLES IN SOUTHEAST TP



2 contribution was higher in summer, and this factor
accounted for 22% of annual TSP mass.
[46] The NO3

�, SO4
2�, and sulfur concentrations in the

profiles of the third factor were very high, and this can be
attributed to the formation of secondary aerosols. The highest
contribution from Factor 3 occurred from 9 to 12 February
and 17 to 20 March (marked by gray arrows in Figure 9b).
The strong loadings of Factor 3, combined with air mass
trajectories for these dates, indicated that aged air that had
passed over the Indo-Gangetic Plain carried high loadings
of secondary aerosols to Lulang. We note that the sample
collected from 11 to 14 March (yellow arrow) had a large
contribution from both Factor 3 (secondary aerosol) and
Factor 4 (dust storms). This can be explained by the back tra-
jectory analysis (Figure 3) which also is substantiated by the
wind directions determined from the NCEP/NCAR
reanalysis (Figure 10). That is, from 13 to 14March, the wind
direction at Lulang changed from northwest to southwest,
and therefore, one can see how this flow could bring a
mixture of crustal matter from the northwest and secondary
pollutants from the southwest to our sampling site. The back

trajectory for this period (Figure 3) shows how the air flow
changed course and passed over the northern edge of India
before arriving at the southeastern TP. This factor accounted
for 17% of the annual average TSP mass, and high contribu-
tions occurred in the winter and premonsoon season.
[47] Factor 4 was enriched in crustal elements (e.g., Ca, Fe,

Ti, K, Mg2+, Ca2+, and Cl�), and this factor clearly represents
mineral aerosol and fugitive dust. In the same way as Factor
1, major contributions occurred during 11 to 14 March, 10 to
13 April, and 18 to 21 May (marked by yellow arrows in
Figure 9b); these were all characterized as type I episodes.
This factor accounted for 28% of TSP mass.

4. Summary and Conclusions

[48] One year of continuous observations of aerosol
composition (from July 2008 to July 2009) were conducted
at Lulang (3300m above sea level) on the southeastern TP.
The data set provides insights into the chemical composition
and the sources of aerosols over a remote, high-altitude site
on the TP. Major results were summarized as below.
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[49] 1. During the premonsoon, the highest seasonal values
of TSP, OC, EC, K+, NO3

�, and SO4
2�were observed, while

the lowest concentrations of EC and TSP occurred during the
monsoon, and OC was lowest in winter. The clear seasonal
variations of these compounds at Lulang can be explained
by seasonal differences in atmospheric conditions.
[50] 2. Source apportionment by PMF produced four

factors of the TSP mass; there were (1) mixed dust and com-
bustion aerosols, (2) SOC and sea salt, (3) secondary aero-
sols, and (4) mineral aerosol and fugitive dust. The mixed
dust and pollution factor was the largest contributor, account-
ing for 33.8% of TSP mass, followed by mineral aerosol and
fugitive dust (28.0%). The highest contributions for these
two factors were coincident with the high-aerosol episodes,
and the interpretations were supported by air mass back tra-
jectory and MODIS AOD analyses.
[51] 3. The concentrations of major chemical species

increased several fold during pollution episodes compared
with normal days. Evidence obtained from back trajectories
and NCEP/NCAR reanalysis highlighted the impact of
pollution from northern India on the southeastern TP.

[52] Further studies are needed to better understand the
sources and transport of anthropogenic particles from South
Asia and dust particles from the surrounding deserts;
additional studies also are needed to reveal their potential
climatic and environmental impacts.
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