Semiempirical study of bond and molecular polarizabilities of polyatomic molecules

A. N. PANDEY AND D. K. SHARMA

Molecular Spectroscopy Research Laboratory, Department of Physics, Meerut College, Meerut.

AND

S. L. GUPTA AND V. KUMAR

Department of Physics, M. M. College, Modinagar.

AND

K. BALASUBRAMANYAN

P S G Arts College, Coimbatore

The delta-function potential model of chemical binding has been employed to compute the bond and molecular polarizabilities for seventy one molecules having five to nineteen residual atomic polarizability degrees of freedom. The experimental values of molecular polarizabilities are in good agreement with those calculated on the basis of delta-function potential model. The transferability of bond parallel component has been examined. The evaluated results will be helpful in the study of ionicreaction, electron ionization cross section and Raman intensities.

1. INTRODUCTION

Molecular polarizabilities (Otvos & Stevenson 1956, Franklin *et al.* 1957, Beran & Kevan 1969) have piayed a very important role in the studies of kinetic aspects of positive ion chemistry, ion-molecule reaction cross sections, cross sections, electron ionization cross sections and Raman intensities. On account of immense utility of such data, the study of bond and molecular polarizabilities has attracted considerable attention in recent years (Beran & Kevan 1969, Sanyal et al. 1972, 1973, Nagarajan 1973, Sharma et al. 1974). Theoretical and in few cases the experimental values of polarizabilities exist for mostly hydrocarbons and their halogen derivatives, but for most other molecular types comprehensive data are lacking. In particular, the data on silicon and germanium compounds are limited. Recent interest in the ionic reaction (King & Elleman 1968) and electron ionization cross sections (Beran and Kevan 1969) has created a need for polarizability data on different compounds. We have, therefore, evaluated bond and molecular polarizabilities for different types of compounds especially for silicon and germanium.

2. POLARIZABILITY EVALUATION

Among the different semiempirical methods used for the calculation of polarizabilities, the calculation of bond and molecular polarizabilities using deltafunction potential model of chemical binding, proposed by Lippincott & Stutman (1964) has gained wide popularity now-a-days. In this model the Coulombic potentials are replaced by delta-function potentials in the Schroedinger equation of a molecular system. The linear combinations of atomic delta-function wave functions are used to obtain molecular wave functions.

Molecular polarizability is composed of bond parallel and perpendicular components. The bond parallel component is obtained from the contribution of two sources, namely, the bond region electrons and non-bond region electrons. The contribution by the bond region electrons is calculated by using a linear combination of atomic delta-function wave functions representing the two nuclei involved in the bond. This is the expectation values of the electronic position squared $\langle x^2 \rangle$ along the bond axis and used to compute the bond parallel component of the polarizability α_{IIIb} from the expression

$$\alpha_{11b} = \frac{4n A_{1}}{a_0} (\langle x^2 \rangle)^2 , \qquad (1)$$

where n is the bond order A_{ii} is the root mean-square delta-function strength of the nuclei i, and j, involved in the bond ij, and a_0 is the Bohr radius. The expectation value $\langle x^2 \rangle$ is evaluated from relation,

$$\langle x^2 \rangle = \frac{R^2}{4} + \frac{1}{2C_{11}^2}$$
, where R is the internuclear distance at the

equilibrium configuration and $C_{R_{ij}}$ is the root mean-square value of $C_{R_{ij}}$ and $C_{R_{ij}}$ which are known from principal quantum number and column number in the periodic table. For a heteronuclear bond, a polarity correction is introduced using the Pauling's scale of electronegativities (Pauling 1960) to determine the percent covalent character; accordingly the expression with polarity correction is given as $\alpha_{11j} = \alpha_{11b} \sigma$ where $\sigma = \exp[-(\frac{1}{4}) (X_i - X_j)^2]$. Here X_i and X_j are the electronegativities of the atoms i, and j, respectively on the Pauling's scale.

The contribution of the non-bonded region electrons to the bond parallel component of the polarizability $\alpha_{\rm in}$ is calculated from the fraction of remaining electrons not involved in the bonding and the atomic polarizability of the atom concerned. This is analytically expressed as $\Sigma \alpha_{\rm lin} = \Sigma f_i \alpha$ where f_1 is the fraction of electrons in the ith atom not involved in bonding and α_i the atomic polarizability of the atom obtainable from the delta-function strength A

The sum of the bond perpendicular components of the bond polarizability is obtained by an empirical approach made by Lippincott & Stutman (1964), which is given by the expression

$$\Sigma 2\alpha_{1i} = (3N - 2n_b) \frac{\Sigma X_1^2 \alpha_i}{\Sigma X_1^2}$$
 (2)

Here, N is the number of atoms in the molecule, n_b the number of bonds in the molecule, X_i the electronegativity of the ith atom on Pauling's scale (1960), and α_i the atomic polarizability of the i th atom. The term $(3N-2n_b)$ gives the number of remaining (residual) atomic polarizability degrees of freedom, denoted by $n_{\rm af}$. This is obtained from the knowledge of the symmetry of geometry of the molecular system.

Now the analytical expression for the average or mean molecular polarizability for a polyatomic molecule with polarity correction is given by

Eq. (3) has been applied to many polyatomic molecules by using atomic polarizabilities, parallel bond polarizabilities, Pauling's electronegativities and

delta-functon strength A values, tabulated by Nagarajan (1973) together with the experimental bond length in the molecules which have been currently reported in literature, Sutton 1958, Kennard *et al.* 1970, *Durig et al.* 1968, 1969, 1970, 1971, 1972, 1973, 1974, Carney *et al.* 1961, Rankin and Robertson 1975, Sverdlov & Razbegaeva 1974.

3. RESULTS AND DISCUSSION

The molecules under present study have been classified according to their respective number of residual atomic polarizability degrees of freedom ranging from five to nineteen. The individual values of bond parallel component ($\Sigma \alpha_{ilp}$) contribution from non-bonded region electrons, bond perpendicular component and mean molecular polarizability for each molecule are collected in table 1. In the last column of the table 1 the experimental values of mean molecular polarizability have been included for a few molecule for which the data are available in literature Smyth & McAlpine 1934, Landot & Bornstein 1950, Le Fevre and Le Fevre 1954, Lippincott & Stutman 1964, Rao *et al.* 1967. It is apparent from the table 1 that the calculated values are in good agreement with the experimental ones. This shows the soundness of the method followed here.

The bond perpendicular component is a linear combination of atomic polarizabilities and independent of internuclear distance and hence may be transferred from one molecular system to another for the same pair of atoms. The bond parallel component depends on internuclear distance and, therefore. it is not readily transferable from one molecular system to another. However, in cases where the internuclear distances are nearly identical, it is transferable. In order to examine the transferability of bond parallel component among different molecules, we have collected the values of bond parallel component for individual bond in table 2 and are compared with experimental values reported in literature Rao et al. 1967, Lippincott & Stutman 1964, Rendell et al. 1975. It is seen from table 2 that the values are well comparable and, therefore, the bond parallel component is transferable in these molecules. The small changes in values of bond parallel components from one molecular system to another may be on account of slight difference in bond lengths. Thus, the present study leads us to conclude that the deltafunction potential model is very useful for the evaluation of bond and molecular polarizabilities. The results of this investigation will be helpful in the study of ionic reaction, electron ionization cross sections, and Raman intensities, particularly, for the compouds involving silicon and germanium.

					-	
Molecule	n _{di}	$\sum \alpha_{1 p}$	Σα _{lin}	$\sum 2\alpha_1$	α _M (cal)	α _M (expt.)
	-					
SH ₂	5	25.512	14.233	61 596	33 781	36.4*
O_3	5	46.759	16.08 0	41 450	34,930	
Se H.	5	35.910	16,827	67.763	40 166	45 73*
S Cl ₂	5	101.342	42.108	87 859	77 103	
CO_2	6	23.260	11.053	56.337	30 217	26.5+†
COS	6	52.477	19.760	77.726	49 988	
CS ₂	6	78.821	28.467	112.800	73 362	87 4++
COSe	6	68.234	22.353	82.248	57 612	
CSTe	6	118.627	39,580	137 219	98 475	
Cl ₂ CO	6	74.212	33.401	76 026	61 21 3	65.778**
S.,Cl.,	6	153.960	56.341	110 076	106 792	
BCl ₃	7	75.036	41.811	116-358	77 735	80.05*
CH₄	7	27.755	0	55 687	27.814	26.0††
CBr ₄	7	182 784	88.903	167 283	146.323	
CI	7	267.477	101.897	185612	184,995	
CHCl ₃	7	103.381	41.811	102 370	82 521	82 30*
GeH.,Cl.,	7	131 176	27 874	112.584	90.545	
GeH.Br.	7	163.085	44 451	150.702	119413	
GeH.J.	7	227.262	50.948	160 261	146 157	
C.Cl.O.	8	110.095	38.927	92.005	80 342	
C.Br.O.	8	121.031	55,505	118.593	98 376	
CICH_CN	8	143.236	13.937	64.862	74.012	
BrCH_CN	8	152.158	22.226	89 66 3	88 016	
ICH_CN	8	181 618	25.208	109.630	105 485	
C'H-AsF.	9	72 464	11.777	83.684	55 975	
CH ₃ Asr ₂	9	142.478	27.874	127 733	99 362	
CH AsBr	9	196 303	44 451	161 441	134.065	
CH.Asl.	9	297.745	55.417	166.974	171.712	
RE	10	45 144	23,554	82 255	50 318	
	10	127.415	55.748	167.709	116.957	
D ₂ C1 ₄ Р Е	10	115 771	45 794	94.050	85 205	
CH	10	38 971	0	91,466	43 479	42.00*
	10	65 717	35 331	76.568	59,204	46†
$C_2 r_6$	10	714 081	83 623	157 788	151 830	155 5*+
	10	214 001	133,354	233.624	217.324	
С2DI ₆ €: Е	10	122 233	35,331	83 249	80 271	
CS:CI	10	744 978	83 623	167.030	165.210	
CU SU CI	10	134 613	13.937	113.298	87.283	
	10	151 579	77 874	128,860	102.771	
	10	1010/0	21.014			

Table 1. Calculated values of molecular polarizabilities in 10⁻²⁵ cm³ for molecules of different atomic polarizability degrees of freedom

Molecule	n _{dı}	$\Sigma 2_{\alpha_{11p}}$	$\Sigma \alpha_{\rm in}$	Σα,	α _M (cal.)	α _M (expt.)
CH_CISiH.	10	142.920	13.937	113.298	90.052	
CHCL_SiH_	10	168.019	27.874	128.862	108.252	
CH ₄ GeH ₅	10	119.686	0	105.937	75.540	
CH _a GeCl _a	10	192.852	41.814	149,143	127.936	
CH _a GeBr _a	10	240.716	66,667	197.317	168.239	
H _o PBH _o	10	167.175	0	101.956	89.710	
Cl ₉ PBH ₄	10	236.941	41.811	147.249	142.001	
CH [°] CHCl [°]	10	103.461	27.874	117.989	83.108	
CH,CHBF.,	10	90.705	20.008	88.400	63.627	
CH ₂ CHGeH	11	143.128	0	121.591	88.240	
CH ₂ CHGeCl ₃	11	218.018	41 811	162.566	140.800	
CH _o CHGeBr ₃	11	265.883	66.667	209.149	180.569	
CH ₃ CH ₂ SiH ₃	13	147 818	0	133.017	93.612	
CH ₃ CH ₂ SiCl ₃	13	176.378	41.811	168.066	128.752	
CH ₃ CH ₂ SiBr ₃	13	211.461	66 677	263 179	183 772	
(CH ₃) ₂ O ₃	13	87.464	16.580	108.614	70.886	
(CH ₃) 2GeH2	13	158.860	0	148.109	202.323	
CH ₃ CH ₂ GeH ₃	13	151.940	0	144.666	98.868	
CH ₈ CH ₂ GeCl ₃	13	226.830	41.811	176.446	148.362	
CH ₃ CH ₂ GeBr ₃	13	274.694	66 667	222.471	187.947	
(CH ₃) ₈ CH	16	131 286	0	139.756	90.347	
(CH ₈) ₃ C Cl	16	1,59.737	13.937	157.156	110.277	98.0* †
(CH ₃) ₃ CBr	16	171.472	22.226	172.233	121.977	111.0*†
(CH ₃) ₃ SiH	16	186.720	0	148.829	121.850	
(CH ₃) ₃ SiF	16	170.165	5 88 8	143.887	106.647	
(CH ₃) ₃ SiCl	16	205.097	13.937	166.382	128.472	
(CH ₈) ₃ GeH	16	197.784	0	158.841	118.875	
(CH ₃) ₃ GeCl	16	216 350	13.937	175.836	135.374	
(CH ₃) ₃ GeBr	16	232.305	22.225	192.375	148.968	
(CH ₃) ₃ GeI	16	264.393	50.948	192.237	169.193	
(C ₂ H ₃) ₃ B	18	202.430	0	182.903	128.444	
(CH ₃) ₃ PBH ₃	19	282.855	0	182.464	155.106	

Table 1 (Contd.)

** Smyth & McAlkine (1934) † Landolt & Bornstein (1950)

* Lippincott & Stutman (1964)

+ Demote al (1967)

†† Rao et al. (1967)

*† LeFevre & LeFevre (1954)

Bond	(Cal.)	(exp)
C-C	19.8	18 8
С-Н	6.8	79
C-F	7.2	7.1
C-C1	33.3	36 7
C-Cl (C ₂ Cl ₂ O ₂)	28.0	258 (C ₂ H ₂ I ₂)
C-Br	45.1	50.4
C-Br (C ₂ Br ₂ O ₂)	36.9	$37.2 (C_2 H_2 Br_2)$
C-I	66 .8	57 9 (C ₂ H ₂ Cl ₂)
C ()	18 2	199
C=Se	56.6	
C=Te	78.0	
Si-H	19.5	10.8
Si-C	36.2	
Si-Si	82.4	
Si-F	6.9	82
Si-Cl	37 1	37 2
B-B	294	
B-Cl	24.4	
Р-Р	78.0	
P.F	9.4	
S-H	127	
S-C1	52.9	
S-S	43 7	
Se-H	17.9	

Table 2. Bond parallel components of palarizability (in 10⁻²⁵ cm³) forIndividual bonds

*Rao et al. (1967); †Lippincott and Stutman (1964); **Rendell et al. (1915)

ACKNOWLEDGMENTS

The authors (SLG, VK) are thankful to Dr. S. D, Lohiwal Principal M. M. College, Modinagar for his continued encouragement and providing necessary facilities. One of the authors (DKS) is thankful to CSIR, New Delhi for post doctoral fellowship.

REFERENCES

- Beran, J. A. & Kevan, L. 1969 J. Phys. Chem., 73, 3860.
- Beran, J. A. & Kevan, L. 1969 J. Phys. Chem., 73, 3866.
- Carney, R. A., Piotrowski, E. A., Meister, A. G., Braun, J. & Cleveland, F. F. 1961 J. Mol. Spectrosc., 7, 209.
- Durig, J. R., Craven, S. M. & Bragin, J. 1970 J. Chem. Phys., 53, 38.
- Durig, J. R., & Hawley, C. W. 1973 J. Chem. Phys., 59, 1.
- Durig, J. R., Craven, S. M. & Bragin, J. 1969 J. Chem. Phys., 51, 5663.
- Durig, J. R. & Wertz, D. W. 1968 Spectrochim., Acta, 24A, 21.
- Durig, J. R. & Turner, J. B. 1971 Spectrochim. Acta, 27A, 395, 1623.
- Durig, J. R., Jumper, B. F. & Willis Jr. J. N. 1971 Appl. Spectrose, 25, 218.
- Durig, J. R., Sloan, A. E. & Witt, J. D. 1927 J. Phys. Chem., 76, 3591.
- Durig, J. R., Chen, M. M., Li, Y. S. & Turner J. B. 1973 Inorg. Chem, 77, 227.
- Durig, J. R., Carter, R. O. & Odom, J. D. 1974 Inorg. Chem., 13, 701.
- Franklin, J. L., Field, F. H. & Lampe, F. W. 1957 J. Amer. Chem. Soc., 79, 6129.
- King, J. & Elleman, D. D. 1968 J. Chem. Phys., 48, 412.
- Kennard, O., Watson, D. G., Allen, F. H., Isaacs, N.W., Motherwell, W. D. S., Petterson, R. C. & Town, W. G., 1970 Molecular structures and dimensions. N. V. A. Dosthock's Uitgevers Mij Utrecht.
- Landot, H. H. & Bornstein, R. Zahlenwerte and Function 6 Auflage 1950 Atom and Molccular Physik 3 Teil Springer-Verlag Berlin.
- Le Fevre, (Mrs.) C. G. and Le Fevre, R. O. W. 1954 J. Chem. Soc, 1577.
- Li, Y. S. & Durig, J. R. 1973 Inorg. Chem. 12, 306.
- Lippincott, E. R. & Stutman, J. M. 1964 J Phys. Chem. 68, 2926
- Nagarajan, G. 1973 Acta Phys Polonica, A43, 301.
- Otvos, J. W. and Stevenson, D. P. 1965 J. Amer. Chem. Soc. 78, 546
- Odom, J. D., Hudgens, B. A. & Durig, J. R. 1973 J. Phys. Chem. 77, 1972.
- Odom, J. D., Hall, L. W., Riethmiller, S. & Durig, J. R. 1974 Inorg. Chem. 13, 170.
- Pauling, L. 1960 The Nature of Chemical Bonds, Cornell university press Ithaca.
- Rankin, D. W. H. & Robertson, A. 1975 J. Mol. Structure 24, 438.
- Rao, C. N. R., George, M. V., Mahanty, J. & Narasimhan, P. T. 1957 A Handbook of Chemistry and Physics, East West Press Pvt. Ltd., New Delhi.
- Rendell, C. H., Ford, T. A., Mavi's Redshaw & Orville-Thomas, W. J. 1975 J. Mol. Structure 24, 187.
- Sanyal, N. K., Dixit, L. & Pandey, A. N. 1972 J. Pure Appl. Phy., 10, 329.
- Sanyal, N. K., Ahmad, P. & Dixit, L. 1973 J. Phys. Chem. 77, 2552.
- Sharma, D. K., Pandey, A. N. & Pandey, B. N. 1974 Acta. Ciencia India, 1, 35.
- Smyth, C. P. & Mc Alpine, K. B. 1934 J. Amer. Chem. Soc., 56, 1697.
- Sverdiov, L. M. & Razbegaeva, L. A. 1974 Opt. Spektrosk 36, 1230.