Self broadening of OCS rotational lines in the microwave region

G. K. Johis, V. Prakasil and S. L. Srivastava
Department of Physics, Allahabad University, Allahabad 211002

Abstract

Self broadened widths of rotational lines in the microwave region of OCS have been re-studied using the new interruption function under the Anderson's theory which somewhat resolves the discrepancies in theoretical and experimental values. The quadrupole moment of OCS has thus been re-evaluated 10 be 4.25 ± 0.19 DA. The Rabitz effective potential used in Murphy Boggs theory gives too low values of line width parameters.

The collision broadening of OCS has been extensively studied experimentally as well as theoretically. The measured and calculated values of the line width parameters have been compiled in a review by Krisilnaji ${ }^{1}$. Rabitz" has Iso reviewed different theoretical approaches and experimental techniques. There are discrepancies in the measurement of line-width parameters of OCS and thereby in the evaluation of its molecular quadrupole moment. The results are different even with the same technique using different samples of OCS for $\mathrm{J}_{1} \ldots$ line (see Table 1).

Anderson's perturbation theory ${ }^{3}$ as developed by Tsao and Curnutte' and Krishnaji and Srivastava', and Murphy-Boggs theory ${ }^{\text {² }}$ have been used to explain the line width data. Most recently Johri and Srivastavai have proposed a new interruption function in perturbation theory in molecular collisions. This function resolves some of the theoretical and experimental discrepancies and takes into account both the elastic and inelastic collisions unlike MB theory where phase shift has been ignored.

Self broadened width of OCS J_{12}, line at 24325.9 MHz has been remeasured on a double modulation microwave spectrometcr using the techniques of first derivative and second derivatives after distilling the sample of OCS twice under vacuum. The experimental details are the same as described earlier ${ }^{\text {s }}$. The values thus obtained are given in table 1.

Table 1. Linewidth parameter for J_{1-2} line of OCS as measured by different workers

Workers	Linewidth parameter (MHz/Torr)	Ref.	
	(1952)	6.10 ± 0.35	(14)
Johnson and Slager	(1954)	6.44 ± 0.18	(15)
Feeny ct al	(1960)	6.45 ± 0.15	(16)
Dymanus et al	(1966)	6.25 ± 0.18	(17)
Britt and Boggs	(1967)	6.22 ± 0.20	(8)
Krishnaij and Srivastava	(1968)	628 ± 0.0.	(18)
Berendts and Dymanus	(1969)	6.15 ± 0.20	(19)
Battaglia et al	(1973)	6.07 ± 0.14	(20)
Olson et al	(1973)	5.25 ± 0.50	(21)
Wang et al	(1975)	5.27 ± 0.16	(22)
Mehrotra	(1976)		
This work	First derivative	6.06 ± 0.21	
	Second,.	635 ± 0.25	

The calculations using new interruption function in the formal theory due to Anderson have been done for OCS for different transitions considering dipolc-dipole, dipole-quadrupole, quadrupole-quadrupole, quadrupole-dipole and dispersion interactions. Method of calculations is the same as given in earlier papers of the author ${ }^{6}$. The use of this function gives values of line width parameters lower than those obtained from Anderson's approximation no. 2 and are comparable with MB theory (see table 2). The new intertuption

Table 2. Measured and calculated widths for different transitions of OCS and its molecular quadrupole moment from MB theory and from present interruption function

Transition	MeasuredWidths ${ }^{2 n}$$(\mathrm{MHz} /$ Torr $)$	Calculated width ($\mathrm{MHz} /$ Torr)				$\theta(\mathrm{Di})$	
		$\begin{gathered} \text { ATC } \\ \left(\theta^{2}=0\right) \end{gathered}$	$\underset{(\theta=1.57 \mathrm{Di})}{\mathrm{MB}}$	Rabitz	Present Function	MB	Present Function
1-2	6.15	6.20	5.73	4.21	5.81	4.55	3.85
2-3	6.25	6.24	5.80	4.26	5.87	4.90	4.10
3-4	6.37	6.34	5.88	4.36	5.98	5.25	4.50
4-5	6.43	6.39	5.97	4.49	6.08	5.10	4.25
5-6	6.52	6.48	6.02	4.56	6.14	5.15	4.40
		Average $\theta_{\text {oc }}$				± 0.21	4.25 ± 0.19

function gives nearly 15% lower values of quadrupole moment than MB theory. The mean value of $\theta_{\text {ocs }}=4.25 \pm 0.19 \mathrm{DA}$ obtained hy new interruption function agrees with that obtained by Taft and Dailcy ${ }^{8}$ ($\theta_{\text {ocs }}=4.2$ DA) but higher than that obtained by Flygare ${ }^{10}\left(\theta_{\mathrm{cs}}=1.76 \mathrm{DA}\right)$. Recently Rothenberg and Schacfer ${ }^{11}$ have pointed out that quadrupole moment of $\mathbf{O}_{\mathbf{3}}$ determined by Flygare et al may not be reliable. This has created doubt on such a low value of quadrupole monent of OCS reported by Flygare ${ }^{16}$. The use of Rabitz effective potential ${ }^{12}$ in MB theory gives too low values of the line width parameters, but in behaviour is qualitatively similar to MB theory as has also been shown by Mehrotra and Boggs ${ }^{1: 3}$.

AcknowlfidifmFnt

The authors are thankful to Professor Krishnaji for constant help and advice.

Rifirincis

1 Krishnajı, J Soı Ind Res 32 (1973) 108
2 H Rabitz, Ann. Rev. Phys Chem. 25 (1974) 155
3 Anderson, P. W., Phys Rev. 76 (1249). 647.
4. Tsao, C. J. and Curnutte, B. J. Quant. Spectry. and Radiative Transfer 2 (19\%2) 41

5 Krishnaji and S. L. Srivastava, I. Chem. Phys. 41, 2266 (1964): 42, 1546 (1965).
6. Murphy J. S and Boggs J E., J Chem. Phys. 47 (1967) 691.
7. G. K. Johri and S. I. Srivastava (tw be published in Chemical Letters)

8 Krishnajı and S. L. Srivastava. J. Chem. Phys 47, 1885 (1967)
9. H. Taft and B. P. Dalley, I. Chem. Phys. 48, 597 (1968).
10. W. H Flygare et al. J Chem. Phis 50, 1714 (1969)
11. S. Rothenberg and H F Schacler III Mol Phas 21, 317 (1971)
12. H. Rabitz. J. Chem Phys. 57, 1718 (1972)
13. S C. Mehrotra and J F. Boggs (to be published)
14. C. M. Johnson and D. M. Slager. Phys. Rev. 87, 6771 (1952).

15 H. Feeny, H I achner, P. Moser and il V. Smith. J. Chem Phys 22, 79 (1954).
16. A Dymanus, H. A. Dijkerman and (i. R D. Z.ijderweld, J Chem. Phys. 32, 717 (1960)
17. C. O. Britt and J. E. Boggs, J. Chem. Phys 45, 3877 (1966).
18. B. T. Berendts and A. Dymanus, J. (hem Phys, 48, 1361 (1968).

19 A. Battaglia, M. Cattan and D. Torrim, Niovo Cimento 61B, 193 (1969)
20. D. S Ilson, C. O. Britt, V. Praka;il and J E. Boges, J Phys B Atom Mol Phys. 6, 206 (1973).
21. J. H S. Wang, J. M. Levy, S. G. Kukollich and J. 1. Steinfeld, Chem. Phys. I. 141 (1973).
22. S. C. Mehrotra, Ph. D. Thesis, Unibersity of Texas at Austin (1975).

