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Effect of relaxation parameters on the performance
of a gas laser*
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This paper goneralises the results of the well known Lamb theory
of optical masers for a single mode operation by lifttmg the Doppler
Limit restriction on ygn. the relaxation parameter and L, the Doppler
varameter. The equation tor the intonsity parameter /s seen fo
be highly nonlinear in gq, fke and the detumng. The dependenee ol

/
I on yepikn is wore remarkable awayv from resonance.  For com-
patable valaes of yefkn the Lamb dip s shavper than the carlier
predicted value. The effoet of pressure and collisions havo heen
incorporated in a simpliticd manuer tough vepiku, The results
so-derive show a qualitative similarly with the results o Stenholm
for the sime problem A companson with the results obtaiued (om
rate equation approximation is made,

1. INTRODUCTION

Livuh’s theory of optical masers (Lamb 1964) s capable of expliuning, af least
quahitatively, most observed features of luser operations and also forms o basis
ol thoores for Zoeman and ring lasers.  However, departures o Chis theony
oceur even at moderate intensity  These departures are thought 1o he due to
truncation of the eolution st the third ovder or may he inherent in the Tormula-
ton of the problem (Stenhobn & Lamb 1969).  Uchara & Shimoda (1965) and
Shimoda & Uehara (1971) havo extended the caleudations to Jugher  orders.
Steuholm & Lamb (1969) have mceorporated the elfeet of population change
into the solutson through continued fractions or rate equation approximation
(REA).  Kxeept for the work of Stenholm (1970) the theory scems to he res-
tricted to the Doppler limit.  Lamb (1964) denotes the Doppler limit approxima-
tion as the &-function approximation. whieh restriets the usefulness of the solution
because the exact effect of yqap, the relaxation parameter and ku, the Doppler
parametor cannot, be caleulated.  This vestriction must, be lifted to make Lamb's
theory more universally usable, Lamb-Stenholm approach does not give an
explicit. expression for incensity parameter 7. Indeed, even for moderate inten
8ity of w Jaser, no explicit expression for 7, showing the exnet etieet of 54, nnd
ku. seems to exist. Gyorfly, Borenstein & Lamb (1968) have caleulated an
oxpression for / at a moderato mtoensity, but the Doppler himit restriction still
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remains,  Further, their treatment is valid only for operations near resonance
Lamb’s results, when extended to higher orders (Uehara & Shimoda 1965) and
with REA (Stenholm & Lamb 1969) soem to be fairly accurate, so that the know-
Jedge of the explicit dependence of 1 on yepfhn within the striet framework of
the theory, seems desirable. This might also answer the guestion of the limit
of validity ol Lawh’s theory.

Hewee the derivation of explieit dependence of £ on yg and ks the prime
aini of this paper. This vadue of 7 will he shown 1o he quite aceurate, subjeet

to the it of cortain numerical computation. for moderate values of the relative

exneitation density N Ax the relaxation terms ave known to he influenced by
pressure aud collision effects m the matermal system, the results of this paper
have been extended, albeit in an over simplificd manoer, to include these effeets
Though theories deseribing these effeets are not lacking (Gyorfly of al 1968,
Stenholin 1970), this step s desirable on Awo counts.  Fiest, as wmentioned ex-
pressions for [ away (rout resonunee and {rons Doppler limit restrictions, are
lacking even for low and moderate excitation density. Second, consdering the
faet that experiments are unable to distinguish between the different deseriptions
of collisions, a sinple theory displaying the cssential features of laser operations

al. moderate mtensities may not be out of place (Stenhol 1970).

v . . . . L4

L the next two sections the basix for calculation is estabhshed and expres-
stoms for froqueney pullmg and 1 oare derived. Seetion 4 wtroduces the dea
of collision and pressure effects. The mplications are discussed in seetion 5,
incorporating the idea of saturation and comparing the resalts with the ones
alroady  oxisting,.

2. st AND TRIRD ORDER CALCULATIONS

I'or the prrpose of thas paper the calealations are restrieted {o single lrequeney

operations of an optical masor. Following Lamb the tirst order value of €'0(1)

and SO are then the same as those given by Lamb (1964)
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where U(e,y) and V(e y) are the real and imaginary parts of the error {unetion
of the complex argument : - (r3-iy) with @ = (v—w)/ku and y - yaplku: yau
boing the relaxation constant for the non-dizgonal clements of the density matrix.
K is the oleeteie field and # is the matrix element for the cleetrie: dipole moment

between the lasmg lovels. N is the excitation density averaged over the eavity.
The functions (r, y) and V(. y) aee woll tubulated (Feddoyeva & Terent'ev
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19G1) and are related to plasma dispersion funotion through a multiplying constant.
U(x, y) and V(x, ) are defined by the equation

w(z) = U(z, y)+4-iV(z, y) = virr‘j" oxp(—1) 4 e (2)

x—1

Iu the first ordor it is also soen
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For a single frequency operation the third order values of € and S, under Lamb's
(1964) condition are given by
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3. INTENSITY PARAMETER AND FREQUENCY DETUNING

Up to third ordor, Lamb's (1964) amplitude determining cquation hocomes

E = ab—pE® v (1)
¥hore
FU@ 9
@ = -—MQ[ ¥y, " e (D)
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whore N - N/Np. We define the dimensionloss intensity parameter I by
2 [oryen)
752’)")'ab
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The exprossion for 1 at rosonanee (v - w) is independent of yqp/ku and in this the

)

present results are identical with Loamub's expression.  In Fig. (1), we compare
the intonsity detuning curve of this papoer with Lamb’s (196G4) results fork ulyan
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(r u)/l "

I 1. Comparison of Lamb’s rosult (b) with the present result (a).

=20, Bonnett (1962) has porformed the experinient wider conditions corres-
ponding to kw/yan - 20, s seen in Fig. (1) that Laauah dip at resonance becomo
more sharper than the Lamb’s curve.  The shallowness of Lamb’s curve is duc
to the Doppler limit. approximation,

The [roquency detormining oquation of Lamb (1964) givos
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From Fig. (2) points of stable operation can be computed from the points where
the slope of the curve changes sign.  When the vondition
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g 2 Dependenee of (v= Q) on (r—a)fhu dov Lalyqy - 10, 20
is sutistied, an inerease of relative excitation N omoves the operationad frequency
from @ to Q. For small detuning the condition (11) beeomoes

ku
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4. Ervecr or PrEssuri AND COLLISION ON INTENSITY PARAMETIER

For considering effoets of pressure and collision on the operation of the gas
laser, we define the intensity parameter

3 (rE)l Y Yan by
r Llh!?'”yub .\Pl‘(w o (129
where
1 .
Yab = 3(vat ¥o) 4 s - U8)

Pab = Yap+(1—cos ¢)/T", e (14)
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and

YaYv 1

Yatre  Th
Here ¢ is the phase change resulting due to the collisions occurring during the
time 7', and the average is over a set of possible collisions, The assumption and
dorivative leading to this is indicated an apprndix A, 7,7 is the collision fre-
quency for the velocity changing collisions,  We have followed the convention
of Stenholm (1970). - For purpose of convenience in later comparison with known
results wo adopt the value given by Foley (1969)

r=2 [ (15)

win @ (1—cos ¢) = 0-726. (16)
The exprossion for 1 is then
I LN e B ICCYA S AT .
”""'.[ Uiy = "5 Vi, L X ['[‘: U, )+ Vi, ;1/1)]
(17)
where g, - Ugpfkw. From equation (16) we cvaluate the value of Pgp to be

ya(l | 1:3n) where w - 1{Tyyqp is the number of collisions in the transverse
Ny
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Fig. 3. Dependence of 1 on (v— w)/kie for varous values of n.

The shift in the tramsition frequency duc to phase changing colli-
sions s @/ 7 is not taken into account explicitly (Stenholm 1970), as this is not

decay time,

nuportunt tor caleulntion of laser operation, I is plotted as a function of (v— w)/ku



Performance of a gas laser 29

for different. values of » in figure (3). The value of / at resonance changes for
difterent values of n, as 1 at resonance is a function of Py, The Lamb dip vanixhes
wtn= 4 for kufyap — 10. For kujfyq, 20, n should be greater than 4 for smeat -
ing the dip.  In addition, the usual broadening due to collisions is also observed.
A comparizon of these results with that of Stenholm (1970) shows that the simple
calenlations of this paper brings ont the essentinl characteristios of prossure and
collisions effeets on the performanee of gas laser. Thus a sitaple treatment
expluining these effeets is not out of place because of the reaxon given in Section 1.

5. DIScussIONS

It should be noted (hat our caleulations in this paper are free from any
approximation on kufyg,.  Asa rvesult, the ealeulations are valid for a wide range
of values of keulve,.  Thus the results of this paper are applicable to the gas
lagers operating at low tenmperatures where Au/yqp is low.  In this case, the opera-
tional churacteristios cannot he eaplained by the caleulation of Lamb (1964)
due to the Doppler limit approximation.  Our caleulations are also valid for
laser operating al infrared and optical frequencies where S v, Bennett
(1962) has shown that the value of kufyqp is around 20 when the wavelength of
transition is 11522:76A for He-Ne laser.  For this value of kujygy. 11K seen in
figure 1 thet Lamb’s results (1964) show noticable deviations from our ealeula-
tions owing to the Doppler Limit approximation.  For a laser operating at the
wavelength 63284 the values of relaxation parameters wsed by Gyorffy el al
(1968) are : 4, — 83 MIlz, yp 186 MHz and /ku = 470 MHz and thus the
value of kulye comes aromd 40, Thir value of kujyap has been used by Stenholm
& Lamby (1969) for - heir theory calenlated in the Doppler limit approximation,
A comparison ot the intensity curve evew for bu - 40y, with that of Stenholm
& Lamb (1909) shows that, the shapes of the curves resulting from both the cal-
culations are very similar for (v— o) > 10 ygq, and N < 15, The peak of the
mtensity curvos obtained from both the methods oceur almost at the same value
of detimng. But the peak value of / in the present ecase differ from those ol
REA. However in both casos 1 is arbitrary and as pointed out by Uehara &
Shomoda (1965) the shapes not the exact value 18 important.

Now we comparo the results of this paper with the results obtamed from
REA to gel a range of validity of the parameters.  For this pmpore we take
the ey, (85) in section (18" of Stenholm & Lamb (1969)

S = wrzﬁly'(:]ya,,/z)‘ L 'Fla(w—v—-kv) Fa(w—v+ kv)|W()

AL Ma(w—r | ko) |- a(w-~v— ko) [} 2dv e (1)

The volocity integral in this equation is complicated and it 5 combersome to
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expross the results in terms of the functions U and V. At this stage wo do not
neod a generalizod exprossion as our vesults are equivalent o Tamb's results
(1964) near resonunce and comparison with REA can be found in Stenholm &
Lamb (1964). So we aro concerned only with the condition {v~ w| > Y- In

this case. the eelocity integral of cq (29) takes the form

‘| o
Yat! § [(or—v —k0) -y F41)) "W (@)de = miy(L+40)30(x. Y)
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Fur 1 Comparison of  tensity-exentation charactoristics  obtuwined  from  the  present

calondutions (0) with that obtamed from REA (b)
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where Y — y(1--4NE Utilizing this the amplitude equation m the steady
stale gives

% U,y
N - o (1A ANA 20
Tho mtensity-excitation characteristics are compared m figures 4 Ix it seen
that our vesults agree with the REA vesults within less (han 2 por cont. upto
N 5 whon veeo - 05 kn and ku ~ Hyen. This agreement s adequate
considering the compatation error in the present theory and REA. Our results
deviate only a little from this agreement for Fu = 10 y4p. The resulis of this
paper appear more sensitive to o change m Aupygy, than the REA yesults, Further
a decroase of (v —w)fku reduces the range of similmity with REA, as under such
a condition our results approach Lamb’s (1964) vesults A considoration ol
higher values of N ois unnocessary sinee itois well known that 7 < 1-0 for the
present purpose,  Further any similarity (or the lack ol it) of theories at higher
I can only ho ol acadomic interest for a monomode operation due to the reasons
given nt seetion (7) of Stenholm & Langh (1969).

It is evidend from the above discussions that the similarity will inerease

whoen the value of kufyq is decroased. Thus upto N == 15, ow theory agreos
quite. well with REA for (v~ @) 2 05 kw (ligures 4). As oxpected, the theory
15 guite adogquate at Jow ku. the best rogion of operation bemg fu 227 10 974, In
addition, our method of ealeulation is less combersome and an explicit oxpression
for I is ocasily obtainable whereas the volocity integrals in REA muake it dafficult.

to obtain a genoralised direct expression for 1.
APPENDIX A

For phase-changing collisions, pgp, is given by peue'?. The cquation of

motion for pg, in the field freo case bocomoes

- o e—? . =L

/'al;‘f—'e“l' i Pav = —(fw | Yav)pure” W (f+ig)rave " .. (A
The avorage is taken over a set of possible collisions.  We have assumed that
tho collision changos o to w-+g and yap o Yap- f. Soparating the usual
equation of motion from pgy, we got

=1
%t - Pay = = (f+1ig)pave="?
or
—10\ T
I LA

e—'

which gives cos p—igin ¢ = (1—fTy—igT,). v (AL2)
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Since 1 fT and GT . Soparating the real and imaginary parts of eq. (A.2).
we got,

oo U=sing) e
1

and
i1 ¢
'(] - 7’1_5, s (A 4)
1
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