## Letters to the Editor

The Board of Editors will not hold itself responsible for opinions expressed whe letters published in this section The notes containing reports of new work communicated for this section ahould not contain many figures and should not exceed 500 words in length. The contra'ultane must reach the Assistant Edetor not luter than the 1.5th of the second month precering fint of the zssue in whach the letter is to appear No proof will be sent to the authors.

## 2

# HYDROGEN BONDING IN N-METHYL FORMAMIDE 

K VENKATA RAMIAH and P. G. PURANIK<br> Ommania University, IFyomelabaid

(Recraved, Auqust 28, 1962)
In our earlier work (1952), we have calculated the shifts in the OH and NH stretching froquencies of akcohols and amides, treating hydrogen bonding as an electrostatie interaction. In these calculations it is assumod that the iome character of the NH bond dmmishes due to intermolocular assocmations In this communication, the shift in the NH strecthing frequency of N-methyl formu mide due to intermolecular associations of the type $\mathrm{N}-\mathrm{H} . . \mathrm{O}=\mathrm{C}$ is calculated and compared with the experimentally observed valuo.

The infrared spectra of N-methyl formamide have boen rocorded with PerkinElmer LR Double beam Spectrophotometer Model 21, with NaCl opties. The loonded NH stretching ahsorption has been recorded by pressing a drop of the liquid between two plates of NaCl so as to form a microfilm of unknown thickness. The free NH stretching frequency of the amude was recorded in dilute solutions of $\mathrm{CCl}_{4}$ with matched cells of 0.94 min theckness. The bonded and free NH stretching frequencies, thus recorded are $3290 \mathrm{~cm}^{-1}$ and $3484 \mathrm{~cm}^{-1}$.

The bond lengths used in these calculations are (Katz, 1957) $d(\mathrm{~N}-\mathrm{H})=0.995 \mathrm{~A}$, $\mathrm{d}\left(\mathrm{N}-\mathrm{CH}_{3}\right)=1.47 \AA, \mathrm{~d}(\mathrm{C}-\mathrm{N})=1.29 \AA, \mathrm{~d}(\mathrm{C}-\mathrm{H})=1.094 \AA, \mathrm{~d}(\mathrm{C}=0)=1.23 \AA$ and $\mathrm{d}(\mathrm{N}-\mathrm{H} . . . \mathrm{O})=2.83 \AA$. The bond moments of the various linkages are the sume as reported oarlier (1962).


Fig. 1


Fig. 2

In N-methyl formamide there are iwo possible iosonance structures as shown in Fig. 1.

The unbalanced charges in es.s.u. on various atoms in those two structures are also indicaled in Fig. 1 and are calculated as earher (L962). They are

$$
\begin{aligned}
q_{1} & =1.3 \times 10^{-10}, & q_{2}=-0.46 \times 10^{-10}, & q_{3}=-0.13 \times 10^{-10} . \\
q_{4} & =0.88 \times 10^{-10}, & q_{5}=0.36 \times 10^{-10} & q_{6}=-1.95 \times 10^{-10} \\
q_{2}^{\prime} & =-1.2 \times 10^{-10} & , q_{3}^{\prime}=-069 \times 10^{-10}, & q_{6}^{\prime}=-0.65 \times 10^{-10} .
\end{aligned}
$$

The percentage of double lond character of $\mathrm{C}=0$ and $\mathrm{C}-\mathrm{N}$ bonds in thit amule are 88 per cent and 70 per cent respectively. The unbalanced charge on the oxygen atom is therefore $-179 \times 10^{-10}$ e.s.u. and that on the nitrogen atume is $-0.99 \times 10^{-10}$ e.s.u.

The intermolecular associations in N-methyl fomanude are as shown in Fig. 2. The ratio of the electrostatic force $F_{1}$ on the hydrogen atom due to hydrogen bondeng to $F_{z}^{\prime}$ due to charge mequality in the NH groups is given as

$$
\begin{equation*}
F_{1} / F_{2}=1.79 \times(0.995)^{2} /(1.853)^{2} \times 0.99=0.537 \tag{1}
\end{equation*}
$$

The fractional reduction onie character of the $N H$ bond, due to intermolecular assochations is $22 \mathrm{I} \times\left(F_{1} / F_{2}\right)$. The dissoceation energy $D^{\prime}$ of the bonded NH linkage is then given by

$$
\begin{equation*}
D^{\prime}=93.4-22.1 \times\left(F_{1} \mid F_{2}^{\prime},\right. \tag{2}
\end{equation*}
$$

where $93.4 \mathrm{Kcal} /$ mole is the dissocmation energy of the froe NH linkage. $D^{\prime}$ thus obtained is $81.7 \mathrm{Kcal} / \mathrm{mole}$. The rlissociation energy of the free NH linkage. the reduced mass of the NH group and the freo NH stretching frequency of $N$. methyl formamide are used in

$$
\begin{equation*}
\nu=a / \pi c(D / 2 M)^{d}-\iota^{2} h / 4 \pi^{2} M c \tag{3}
\end{equation*}
$$

to obtain the constant ' $a$ '. Its value is $\$ 2.43 \times 10^{8}$ in $\mathrm{em}^{-1}$. Using the value of $D$ ' and ' $a$ ' in equation (3) the bonderl NH stretching frequency of $N$-methyl formamide is obtamed as $3200 \mathrm{~cm}^{-1}$. It is seen the calculated and the obsorved values agree very well.

## REFはRENOES

Katz, L. , . 1957, Dıss. Abstr., 17, 2039.
Venkata Ramah, K and Purank, 'P. (i., 1962, J'roc Iud. Acad. S'í., 56, 96.
1902, ibid., 56, 155.
", 1902, Curreut Sci , 31, 413.

