POTENTIAL PARAMETERS FOR LIKE AND UNLIKE INTERACTIONS ON MORSE POTENTIAL MODEL

ANIL SARAN

INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, CALCUTTA-32.

(Received, May 15, 1963)

ABSTRACT. Viscosity data have been utilised to determine the force constants for the Mano potential model for Ar, N₂, He, CO₂ and O₂. These parameters can reproduce the experimental viscosity data more satisfactorily than the parameters determined from the second visial and crystal property data. A set of combination rules for unlike interactions have been proposed and tested in relation to the interaction coefficients. The results thus obtained show a good agreement with the experimental value, available in the literature

INTRODUCTION

Of the various forms of the inter-molecular potential, the Lennard-Jones (12:6) model and Buckingham Exp-six model are quite realistic and are, therefore, invariably used for calculating the transport and equilibrium properties of gases. Recently, Konowalow, Taylor and Hirschfelder (1961a) have calculated the second virial coefficient for the Morse potential and these have been utilised by Konowalow and Hirschfelder (1961b) for determining the potential parameters for some non-polar molecules from the virial coefficients and crystal data. Over a wide range of temperature, the theoretical second virial coefficients determined from the Morse potential agree very well with the experimental data and are quite comparable with those obtained by using Lennard-Jones (12 6) and Buckingham Exp-six potential.

Morse potential is written in the form,

$$\phi(r) = c\{\exp\left[-2(c/\sigma)(r-r_m)\right] - 2\exp\left[-(c/\sigma)(r-r_m)\right]\} \qquad \dots (1)$$

where $\phi(r)$ is the potential energy of the two molecules separated by a distance r, c is the maximum attraction energy at $r = r_m$. σ is the finite value of r at which $\phi(r) = 0$, and the parameter c is related to the width of the potential well. The quantity c is given by the relation

$$r = \sigma(1 + 1/c \ln 2)$$
(2)

Very recently, Lovel and Hirschfelder (1962) have evaluated the collision integrals for the gases obeying the Morse potential and hence the evaluation of the parameters from transport data is also possible. Usually viscosity data are used for this purpose. Very accurate data for the viscosity of Ar, N₂, He, CO₂ and O₂

Anil Saran

are available for a wide range of temperature. We have here utilised these data to obtain the potential parameters for these substances.

A set of combination rules has been proposed to determine the unlike molecular interactions from a knowledge of the like interactions. These were so chosen as to fit in with the experimental data on the inter-diffusion coefficients of the systems He-Ar, He-N₂, CO₂-N₂ and CO₂-O₂ given by Walker and Westenberg (1958, 1959 and 1960) and by workers in this laboratory.

CALCULATIONS OF POTENTIAL PARAMETERS FROM VISCOSITY

Various methods can be employed to determine the potential parameters from the experimental viscosity data. In the present paper, we have used the ratio method. The viscosity data for Ar, N₂, He and O₂ in the temperature range 100° K-1000°K and for CO₂ in the temperature range 200°K-1000°K were utilised for this purpose.

On the Chapman-Enskog theory, the coefficient of viscosity η is given to the first approximation as (Hirschfelder *et al.*, 1954).

$$[\eta]_{1} \times 10^{7} = \frac{266}{\sigma^{2}} \frac{93 \times \sqrt{T \times M}}{\Omega^{(2,2)*}[c, T^{*}]}$$
(3)

where T is the absolute temperature, M is the molecular weight of the substance, $\Omega^{(c,2)*}[c, T^*]$ are the collision integrals depending on c and $T^* = T/(c/k)$ as tabulated by Lovell and Hirschfelder (1962).

Let η_1 and η_2 be the viscosity coefficients at temperatures T_1 and T_2 respectively. Then

$$\begin{bmatrix} \eta_2 \\ \eta_1 \end{bmatrix} = \begin{bmatrix} \frac{T_2}{T_1} \end{bmatrix}^{\frac{1}{2}} \frac{\Omega_1^{(2,2)*}[c, T_1^*]}{\Omega_2^{(2,2)*}[c, T_2^*]}$$
(4)

By knowing experimentally the quantities η_1 and η_2 , values of c and c/k can be so adjusted that the right hand side of eqn. (4) becomes equal to the experimental $[\eta_2/\eta_1]$. A particular value of $[\eta_2/\eta_1]$ was chosen and for various values of c, values of c/k were found satisfying the eqn. (4). Thus for one particular value of $[\eta_2/\eta_1]$ we found corresponding values of c and c/k. The values of c were plotted against c/k for various values of $[\eta_2/\eta_1]$ and from the intersection of the curves c and c/kwere found. The values of σ was then calculated using eqn. (3) at two or three temperatures and mean taken Eqn. (2) now determines the value of r_m . The values of the force constants thus obtained are shown in the Table J. For the sake of comparison the values obtained by Konowalow and Hirschfelder (1961b) from virial and crystal data are also included in the table.

It is seen from the table, that the potential parameters determined from viscosity and those from the virial and crystal data are mutually not quite consistent. This type of discrepancy between the potential parameters determined from the non-equilibrium and the equilibrium properties of fluids has been observed in the case of other potential models as well.

Substanco -	From viscosity			From Virial and crystal data			data	
	ı	e/k''K	σÂ	$r_m \mathbf{\hat{A}}$	ı	*//\°K	σÅ	ı "Å
Λr	5.7	120	3 461	3 882	5.0	144.8	3 386	3 855
N_2	61	92	3 697	4 117	55	134 4	3.579	4 030
IIo	6.0	11	2.622	2 925	-	—		
CO_2	51	196	3 968	4.507				
0 <u>2</u>	59	98	3 544	3 957		-		

TABLE I

Values of the force constants on Morse potential model

COMPARISON WITH EXPERIMENT

In order to test the reliability of the force constants thus determined, it is necessary to see how far they reproduce the experimental data over a wide range of temperature.

TABLE II

Experimental and calculated viscosity coefficients for Ar, N_2 , He, CO_2 and O_2 at different temperatures

	11 9 72	$\eta \times 10^{\eta}$	η×10° g/cm sec. calculated with force constants from		
Substance	TK	g/rm see oxpt	Viscosity	Virial and crystal property data	
	100	839#	841	769	
	120	993a	1003	921	
	140	1146a	1157	1077	
Ar	160	12984	1308	1226	
	180	14474	1457	1377	
	200	1594ª	1602	1527	
	220	1739a	1743	1671	
	240	18784	1878	1813	
	260	2014^{a}	2000	1952	
	280	2145"	2125	2083	

Nul at an at	<i>(</i>) (<i>T</i>	$\eta > 10^{7}$	$\eta imes 10^7$ g/cm. see. calculated with force constants from		
5408141100	3. X	g/cin.soc oxpt	Viscosity	Virial and crystal property data	
	300	2270a	2254	2209	
	800	46216	4617	4761	
Ar	1000	53026	5380	5593	
	100	6981	705	620	
	120	826°	832	737	
	140	918°	955	858	
	160	1068¢	1072	972	
	180	1183¢	1186	1084	
N 2	200	1295°	1290	1194	
	220	1403°	1391	1301	
	210	1505°	1493	1410	
	260	16030	1588	1510	
	280	1696¢	1681	1606	
	300	1786°	1769	1698	
	800	3493^{b}	3504	3563	
	1000	4011b	4064	4158	
	100	947a	941	_	
	120	1068#	1062	_	
	140	1182a	1178		
	160	1290#	1288		
	180	13954	1393	<u> </u>	
	200	1496a	1495	<u> </u>	
По	220	1595a	1594	<u> </u>	
	240	1692ª	1688	_	
	260	1789a	1783	_	
	280	1888ª	1875		
	300	1987a	1963		
	800	3840d	3861		
	1000	4455d	4521	_	

TABLE II-(contd)

Subdupoo	ידו יינוי	$\eta \times 10^{7}$	$\eta < 107$ g/cm sec. calculatort with force constants from		
SHOKELICO	1 X	expt.	Viscosity	Virial and crystal property data	
	200	1015"	1015		
	220	11121	1111		
	240	1209*	1212		
(0)	260	13036	1307		
τυ,	280	1400*	1405		
	300	14950	1499		
	800	3391 ^b	3383		
	1000	3935^{b}	3986		
	100	768°	794		
	120	9170	940	-	
	140	1061¢	1080	_	
	160	12021	1216	~	
	180	1341°	1348	-	
	200	1476 ^c	1473	-	
0	220	1604°	1587	-	
O_2	240	17280	1707	-	
	260	1845°	1817		
	280	19580	1913		
	300	20710	2031		
	800	4115¢	4059	-	
	1000	472() ^e	4717		

TABLE 11 (contd.)

a =Johnston, II. L and Grilly, E. R , (1942)

b = Vasilesco, V (1945)

c = Johnston, H. L., and McCloskey, K. E (1940)

d =Trautz, M , and Zink, R., (1930)

 e -. Values obtained in from the interpolation of available high tomperature viscosity data.

Viscosity

Experimental and calculated viscosity coefficients in the wide range of temperature for Ar, N_2 , He, CO₂ and O₂ are given in the Table II. The

Anil Suran

calculated values of the viscosity coefficients for Ar and N_2 using the force constants from virial and crystal data are also given in the table for comparison. It can be seen from the table that the experimental viscosity data are much better reproducible with the force constants determined in this paper than with those from virial and crystal property data.

COMBINATION RULES FOR UNLIKE MOLECULAR INTERACTION

The properties of gas mixtures are dependent on the forces between unlike molecules. In principle, these forces can be determined from the accurate experimental data on the transport and equilibrium properties of mixtures. In the absence of accurate experimental data it would be very helpful to be able to predict the interaction for unlike molecules from the known interaction for like molecules. In this way the properties of gas mixtures could be calculated from the data on the pure components. Combining rules for the Moise potential model can be obtained by writing the eqn. (1) in the form

$$\phi(r) = Ae^{-2br} - Be^{-br} \qquad \dots \tag{5}$$

Following Zener (1931), we get the parameter b for unlike interaction, as

$$b_{12} = \frac{1}{2}(b_1 + b_2) \qquad \dots \qquad (6)$$

which, when expressed in terms of the constants of the Morse potential, gives

$$\frac{c_{12}}{\sigma_{12}} = \frac{1}{2} \left[\frac{c_1}{\sigma_1} + \frac{c_2}{\sigma_2} \right] \qquad .. (7)$$

Following the suggestion of Srivastava and Srivastava (1958), the combination rule for the parameter c is taken as

$$c_{12} = [c_1 \times c_2]^{\frac{1}{2}} \qquad \dots \qquad (8)$$

The usual combination rule for σ , which is exactly valid for the rigid sphere, is given by

$$\sigma_{12} = \frac{1}{2}[\sigma_1 + \sigma_2] \qquad \dots \qquad (9)$$

The value of c_{12} is fixed by eqs. (7) and (9). The fourth parameter r_m of the Morse potential for the unlike interaction is then

$$(r_m)_{12} = \sigma_{12} \left[1 + \frac{1}{c_{12}} \ln 2 \right] \qquad \dots (10)$$

However, it was found that the agreement with the calculated values of the interdiffusion coefficient from the prescribed combination rules [Eqs. (7)-(10)] and the

496

experimental values was not satisfactory. Consequently, we have tried the geometric mean rule for σ_{12} , i.e.

$$\sigma_{12} = [\sigma_1 \times \sigma_2]^4 \qquad \dots \qquad (11)$$

The agreement between the calculated and the experimental values of the interdiffusion coefficients maprove by using the geometric mean rule for σ_{12} . Consequently, we suggest, eqs. (7), (8), (10) and (11) as the combination rules for unlike interactions on the Morse potential The unlike interaction parameters for the gas pairs He-Ar. He-N₂ CO₂-N₂ and CO₂-O₂ determined by using the like interaction parameters of Table I and the combination rules are given in Table III.

The combination rules for the gas pairs shown in Table III have been tested by comparing with the experimental values of the interdiffusion coefficients. To the first approximation, the inter-diffusion coefficient D_{12} is given as (Hirschfelder *et al.*, 1951).

$$[D_{12}]_{I} = \frac{0.002628}{p} \frac{\sqrt{T^{3}} (M_{1}^{-1} | M_{2})/2 M_{1} M_{2}}{p\sigma_{12}^{2} - \Omega_{12}^{(1,0)} (M_{1}^{-1} | \sigma_{12}^{-1} | T_{12}^{-1} | T_{12}^{-1}]}$$
(12)

where p is the pressure in atmosphere, M_1 and M_2 are molecular weights of species 1 and 2. T is the absolute temperature, σ_{12} is the collision diameter, $\Omega_{12}^{-1,1)*}$ $[c_{12}, T_{12}^{*}]$ is the collision integral and T_{12}^{*} is the reduced temperature equal to kT/ε_{12} .

Gas pairs	C1 2	r1"/k"K	σιÅ	$(r_m)_{12}$ Å
Не—Аг	5.9	36.3	3 012	3 366
He—N2	61	31.8	3.113	3.467
CO ₂ -N ₂	5.6	134.3	3.830	4 304
CO2O2	5.5	138 6	3.750	4.223

TABLE III

Unlike force constants on Morse potential model.

The experimental and the calculated values of D_{12} over extensive range of temperatures are shown in Table IV. It may be seen that except for the measurements of Srivastava (1959) on the He-Ar system, the agreement between the experimental and the calculated values of D_{12} is only fair. A large part of the discrepancy may be altributed to the uncertainties in the experimental method of Walker and Westenberg (1958, 1959 and 1960). Consequently, till better data are available to provide a more definite answer, the combination rules for the Morse potential as suggested in this paper may be used for calculating unlike interactions.

в

Anil Saran

. . .

TABLE IV

Experimental and calculated values of inter-diffusion coeffic	ient for
the systems Ho-Ar, IIe-Ng, CO_2 -N ₂ and CO_2 -O ₂ at 1 at	tm.

Systems	т⁰К	D ₁₂ cm ² /sec expt.	D ₁₂ cm ² /see calculated using the combination rules proposed
	273	0.640ª	0 640
	288	0 701ª	0.702
	300	0 726 ^b	0 752
	303	0.7604	0 765
	318	0 825a	0.830
	400	1 2475	1 224
He—Ar	500	1 8315	1 786
	600	2 557 ^b	2 432
	700	3.347^{b}	3 158
	800	$4 \ 202^{b}$	3,956
	900	5.149^{b}	4.837
	1000	6.310^{b}	5 782
	243.2	0.4770	0.510
	275 0	0 596°	0.629
	300.0	0.739d	0.728
	303 55	0.7190	0 743
	332 5	0.8110	0 866
	400	1.218d	1.183
$H_{0}-N_{2}$	500	1.782^{d}	1.724
	600	$2 \ 434^{d}$	2.344
	700	3.144d	3.038
	800	3.940^{d}	3.849
	900	4.752d	4.650
	1000	5 652d	5 560
	300	0.171d	0.157
	400	0.300d	0.264
	500	0.445^{d}	0.392
	600	0.610đ	0.539
$CO_2 - N_2$	700	0.798d	0.704
	800	0.998^{d}	0.897
	900	1.215^{d}	1.085
	1000	1.4684	ī.299

Systems	T ⁰K	D12 cm2/50c oxpt	D ₁₂ cm ² /sec calculated using the combination rules proposed
	300	0 160¢	0 156
	400	0 270*	0 203
	500	0 400*	0 391
	600	0 565*	0 538
CO2-02	700	0 740*	0.705
	800	0 928 ^e	0.887
	900	1.142"	1 086
	1000	1 386 ^e	1 302

TABLE IV (contd.)

a == Srivastava, K. P (1959).

b = Walker, R. E. and Westenberg, A. A., (1959).

c = Paul, R., and Suvastava, 1 B., (1961).

d = Walker, R. E. and Westenberg, A. A., (1958).

e = Welker, R. E. and Westenberg, A. A., (1960).

ACKNOWLEDGMENT

The author is grateful to Prof. B. N. Srivastava, D.Sc., F.N I., for suggesting the problem and for his valuable guidance throughout the progress of the work. Thanks are also due to Mr. P. K. Chakraborti, for some helpful discussions.

REFERENCES

Hirschfelder, Curtass and Bard, 1954, Molecular Theory of Gases and Liquids, (John Wiley and Sons, Inc., N. Y.) Johnston, H. L. and McCloskey, K. E , 1940, J. Phys. Chem , 44, 1038. Johnston, H. L., and Grilly, E. R , 1942, J. Phys. Chem., 46, 948, Konowalow, D. D., Taylor, M. H., and Huschfolder, J. O., 1961a, Phys. Fluids, 4, 622. Konowalow, D. D., and Hurschfelder, J O., 1961b, Phys. Fluids. 4, 629. Lovell, S. E. and Hurschfelder, J. O., 1962, Univ. of Wisconsin, WIS-AF-21. Paul, R., and Srivastava, I. B., 1961, Ind. Jour Phys., 85, 523. Srivastava, B. N. and Srivastava, K. P., 1958, J. Chem. Phys., 29, 543. Srivastava, K. P., 1959, Physica, 25, 571. Trautz, M., and Zink, R., 1930, Ann. Physik, 7, 427. Vasilesco, V., 1945, Ann Physique, 20, 292. Walker, R. E. and Westenborg, A. A., 1958, J. Chem Phys., 29, 1139. Walker, R. E. and Westenberg, A A., 1959, J. Chem. Phys., 81, 519. J. Walker, R. E., and Westenborg, A. A , 1900, J. Chem. Phys., 32, 436. Zener, C., 1931, Phys. Rev., 37, 556.