ONE OPERATIONAL AMPLIFIER SIMULATES THIRD ORDER SYSTEMS WITH A LEADING-TIME CONSTANT

L. K. WADHWA and JAGDISH CHANDRA

(Recpivel . 1 mil 5, 190:)

Abstract

Itwe pape outhoes a method for the smatation of that order lomar discrassed and obstanted.

The design formular and procedare are also given

1NTRODUOTTON

In previous communidations (Wadhwa, 1963. 1962) on this subject three particular classos of the general third order hoar systems were considered for simulaton with only one operational amplafier. The purposo of this paper is to consuder another particular class of systems, that is, third order systems with a lending tome-constant, which are characterised by a transfer funetion of the form

$$
\begin{equation*}
F^{\prime}\left(S^{\prime}\right)=-\frac{b_{0}\left(b_{1} S+1\right)}{a_{3} S^{3}+a_{2} S^{2}+a_{1} S+1} \tag{1}
\end{equation*}
$$

Where a 's and b 's are positive and real constants, and S is the Laplave operator.
In prinerple, at whould be possible to simulate the system of (1) with the aid of three capacitons and six resistors but the resulting network design formulae and the conditions of physical realisability becone somewhat complicated. With the employment of four cupacitors and five ressistors, howover, the design formulae and the conditions of physical realisability become simple and conveniently computable. It is primarily with a view to ensuring simplicity and convenience that in the networks presented in thes puper four capacitors and five resistors have heen used.

Of the various possible circuit each employing four capacitors and five resistors only two will be prosented hero; their design formulac obtained and conditions of physical realisability discussed.

One Operational Amplifier Siniulates Third Order, etc. 19

Third order system simulation
A network for the sumulation of third order systems is shown in Wig. 1 and its transfer function has been shown to bo

$$
\begin{equation*}
\left.\vdash Y_{3}+Y_{\mathrm{A}}\right)+Y_{3} Y_{5} Y_{8} \tag{2}
\end{equation*}
$$

Fig 1 Network for the mimulation of thitd myotems.

Simulation of the system of (1) with the network of Fig. I is possible if the admittances (Y 's) are properly chosen, and furthermore it should be olvious from (2) that at least three of the appropriate admutances will be required to be purely capaeitative. As already mentioned the use of throo caparitors gives inconveniontly long design formular and contlitions of physical reabsalility while the use of four apacitors makes these simple and ensily computable.
(a) Y_{1}, Y_{2}, Y_{4} and Y_{6} capacitative

A possible circuit for simulating the system of (J) is shown in lig. (2a), in which

$$
\left.\begin{array}{c}
Y_{1}=\left(S C_{1}+\begin{array}{l}
1 \\
R
\end{array}\right) \\
Y_{2}=S C_{2} \\
Y_{4}=S C_{4} \\
Y_{0}=S C_{6} \tag{3}\\
Y_{3}=Y_{5}=Y_{8}=\frac{1}{R} \\
Y_{7}=\frac{1}{\alpha R}
\end{array}\right\}
$$

(b)

Fig 2. Network for tho simulation of

$$
\frac{\pi_{o}}{\pi_{1}^{-}}=-\frac{b_{0}\left(b_{1} S+1\right)}{a_{3} S^{3}+a_{2} S^{2}+a_{1} S+1}
$$

Substituting (3) into (2) and simplifying

$$
\begin{gather*}
E_{0}=\cdots\left(\begin{array}{c}
\alpha \\
E_{1} \\
\left(\begin{array}{c}
\alpha+3
\end{array}\right)\left(R C_{1} S+1\right) \\
\alpha+3
\end{array}\right) R^{3}\left(C_{1}+C_{2}\right) C_{4} C_{0} S^{3}+R^{2} C_{6}\left[\begin{array}{c}
2 \alpha+1 \\
\alpha+3
\end{array}\left(C_{1}+C_{2}\right)+\binom{3 \alpha}{\alpha+\overline{3}} C_{4}\right] S^{2}
\end{gather*}
$$

Equations (1) and (4) will be identioal if

$$
\begin{align*}
& b_{0}=\binom{\alpha}{\alpha--3} \tag{5}\\
& U_{1}=T_{1} \tag{6}\\
& \prime_{1}=\left(\frac{\alpha}{\alpha+3}\right)\left(T_{1}+T_{1}\right)+\left(\frac{5 \alpha+3}{\alpha+3}\right) T_{1} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& a_{2}=T_{6}\left[\left(\frac{3_{\alpha} \mid 1}{\alpha-3}\right)\left(T_{1} \mid T_{2}\right)!\binom{3 x}{\alpha-+3}\right] T_{4} \tag{8}\\
& u_{3}=\binom{\alpha}{a+3}\left(T_{1}-\mid T_{2}\right) T_{4} T_{6} \tag{9}
\end{align*}
$$

whero

$$
\begin{equation*}
T_{n}=R C_{n}^{\prime} \tag{10}
\end{equation*}
$$

Now, smmulation of the system of (l) with the network of lig. $2(a)$ is possible only if the values of $\alpha, T_{1}, T_{2}, T_{4}, T_{6}$ obtained as the solution of (5) through (9) - are real and positive. It is required to cletermino. therofore, in terms of the given real and positive a 's and b 's, the values of $\alpha, T_{1}, T_{2}, T_{4}, I_{0}$ and find the conditions, If any, under which these can bo real and positive.

Elimination of α, T_{1}, T_{2}, and T_{0} from (5) through (9) gives a cubic

$$
\begin{array}{r}
27 b_{0}^{3}\left(a_{1} a_{2}-3 a_{3} b_{0}\right) T_{4}^{3}-9 b_{0}^{2}\left\{a_{1} a_{3}\left(5 b_{0}-1-1\right)+a_{2}^{2}\left(4 b_{0}-1-1\right)\right\} T_{4}^{2}+6 a_{2} r_{3} b_{0}\left(4 b_{0}-1-1\right) \\
\left(5 b_{0}+1\right) T_{4} \cdots a_{3}^{2}\left(4 b_{0}+1\right)\left(5 b_{0}+1\right)^{2}=0 \quad \ldots \tag{11}
\end{array}
$$

which can lave enther one or three real roots depending on whether its discriminant is positive or negative.

Now, as shown in Appendix 1 , a ret of real and positive $\alpha, T_{1}, T_{2}, T_{4}, T_{0}$ exists, provided that

$$
\begin{equation*}
b_{0}<1 \tag{I2}
\end{equation*}
$$

und, eithor

$$
\left.\begin{array}{l}
a_{3}>\frac{a_{2} b_{1}}{3} \tag{13}\\
a_{1}>\frac{3 a_{3} b_{0}}{a_{2}}
\end{array}\right\}
$$

or

$$
\left.\begin{array}{l}
a_{3}<\frac{a_{2} l_{1}}{3} \tag{13a}\\
a_{1}>\frac{3\left(4 b_{0}+1\right)\left(a_{2} b_{1}-3 a_{3}\right)+b_{0} b_{1}}{b_{1}^{2}\left(5 b_{0}+1\right)}+b_{0} b_{1}
\end{array}\right\}
$$

For the design of the network, circuit component values are required to be determined. The proper procedure for clesign would bo to first check and see if the inequalities of (12) and either (13) or (13a) are satisfied. The satisfaction of these conditions signifies that the circuit of Fig. 2(a) for simulation of the system
of (1) is physically realisable. The circuit component values may then be obtained by solving 1 So cubic of (11) for T_{4}. Since α and T_{1} arc known directly from (5) and (6) respectivoly, then T_{2} and T_{θ} may be obtainerl by solving (7) and (8). Havmg thus reterminerl $\alpha, T_{1}, T_{2}, T_{4}, T_{6}$, and choosing arbitrarily a convenient value for any one of the cupacitors, the value of resistons and the remaining capacitors may be then determined with the aid of (10).
(b) Y_{2}, Y_{4}, Y_{5}, and Y_{7} capacitative

Another possilile circuit for the simulation of the system of (l) is shown in Fig. 2(b), "whore

$$
\left.\begin{array}{l}
Y_{2}=S C_{2} \tag{14}\\
\dot{Y}_{4}=S C_{4} \\
Y_{5}=\left(S C_{5}+1 / R\right) \\
Y_{7}=S C_{7} \\
Y_{1}=Y_{3}=Y_{0}=1 / R \\
Y_{8}=1 / \alpha R
\end{array}\right\}
$$

Substituting (14) into (2) and simplifying

$$
\begin{align*}
& \stackrel{E_{0}}{E_{1}}=-\frac{\bar{\alpha}}{\overline{3}(\alpha-1)} \cdot\left(R C_{6} S+1\right) \quad-\frac{\alpha}{3(\alpha+1)} R^{9}\left(_{22} C_{5} C_{7} S^{3}+-\left[\frac{\alpha}{3(\alpha+1)} R^{2}\left(C_{4}+C_{5}\right) C_{2}+\frac{2 \alpha}{3(\alpha+1)} R^{2} C_{2} C_{7}\right.\right. \\
& \left.+\begin{array}{l}
(2 \alpha+\mathrm{J}) \\
3(\alpha+1)
\end{array} R^{2} C_{5} C_{7}\right] S^{2}+\left[\underset{3(\alpha+1)}{2 \alpha} R C_{2}+\frac{(2 \alpha+1)}{3(\alpha-1)} R C_{4}+\frac{2}{3} R C_{5}\right. \\
& \left.+\frac{2(2 \alpha+1)}{3(\alpha+1)} R C_{7}\right] S+1 \quad \ldots \tag{I5}
\end{align*}
$$

Equations (1) and (15) will be identical if

$$
\begin{align*}
& b_{0}=\begin{array}{c}
\alpha \\
3(\alpha+\overline{1})
\end{array} \tag{16}\\
& b_{1}=T_{5} \tag{17}\\
& a_{1}=\frac{2 \alpha}{3(\alpha+1)} T_{2}+\frac{(2 \alpha+1)}{3(\alpha+\overline{1})} T_{4}+\frac{2}{\overline{3}} T_{5}+\frac{2(2 \alpha+1)}{3(\alpha+1)} T_{7} \tag{18}
\end{align*}
$$

$$
\begin{align*}
& a_{2}=\frac{\alpha}{3(\alpha+\mathrm{j})}\left(T_{4}+T_{\mathrm{b}}\right) T_{\Sigma}+\frac{2 \alpha}{3(\alpha+1)} T_{2} T_{7}+\frac{(2 \alpha+1)}{3(\alpha+1)} T_{5} T_{7} \tag{19}
\end{align*} \quad \ldots
$$

where

$$
\begin{equation*}
T_{n}=R C_{n} \tag{21}
\end{equation*}
$$

Elimination of α, T_{4}, T_{5} and T_{7} from (16) through (20) gives n cubic

$$
\begin{equation*}
T_{2}^{9}-\frac{1}{6 b_{0}}\left[3 a_{1}+b_{1}\left(3 b_{0}-1\right)\right] T_{2}{ }^{2}+\frac{a_{2}\left(3 b_{0}+1\right)}{6 b_{0}{ }^{2}} T_{2}-\frac{a_{3}\left(3 b_{0}+1\right)^{2}}{\left.18 b_{0}\right)^{2}}=0 \tag{22}
\end{equation*}
$$

which, as is obvious, can have no negative 1 eal roots and will have ether one or three real posituve roots depending on whether its discrminant Δ is positive or negative.

Now, as shown in Appendix II, if

$$
\begin{align*}
b_{0}< & \operatorname{Min}\left[\begin{array}{l}
1 \\
3
\end{array},\left\{\begin{array}{r}
b_{1} \\
144 a_{3}
\end{array}\left(3 a_{1}-2 b_{1}\right)^{2}-\frac{1}{3}\right\},\left\{\begin{array}{l}
\left(a_{2} b_{1}-2 a_{3}\right)^{2} \\
4 a_{3} b_{1} 3^{3}
\end{array}-\frac{1}{3}\right.\right. \tag{23}\\
& \left(3 a_{1}-2 b_{1}[)>0\right. \\
& \left(a_{2} b_{1}-2 a_{3}\right)>0
\end{align*}
$$

then one set of positive real $\alpha, T_{2}, T_{4}, T_{5}^{\prime}$ and T_{7} exists, provided that eithor
and

$$
\left.\begin{array}{c}
\Delta=4 p^{3}+27 q^{2}>0 \tag{24}\\
O Q>O B>G P>O A
\end{array}\right\}
$$

or
and

$$
\left.\begin{array}{c}
\Delta<0 \tag{24a}\\
O B>O Q>-O A>O P
\end{array}\right\}
$$

But, if (23) is satisfied and
and either

$$
\Delta<0
$$

or

$$
\begin{equation*}
O B>O Q>O P>O A \tag{25}
\end{equation*}
$$

$$
O Q>O B>O A>O P
$$

then two sets of positive real values exist. And three sets of positive real values oan exist if
and

$$
\left.\begin{array}{c}
\Delta<0 \tag{26}\\
O Q>O B>O P>O A
\end{array}\right\}
$$

L. K. Wadhwa and Jagdish Chandr

where

$$
\begin{aligned}
& \begin{array}{c}
0.1=b_{1}\left(3 a_{1}-2 b_{1}\right)-\sqrt{b_{1}\left(3 a_{1}-2 b_{1}\right)^{2}-48 a_{3} b_{1}\left(3 b_{0}-1\right)} 12 b_{0} b_{1}
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& O P=\frac{\left(n_{2} b_{1}-2 a_{3}\right)-\sqrt{ }\left(a_{2} b_{1}-2 a_{3}\right)^{2}-\overline{4} n_{3} b_{1}^{3}\left(\overline{b_{0}}+\frac{a_{4}}{4}\right)^{-}}{2 b_{0} b_{1}^{2}} \tag{27}
\end{align*}
$$

$$
\begin{aligned}
& \left.\eta=\underset{a_{2}\left(3 b_{2}+1\right)}{a_{2}\left(\begin{array}{l}
1 \\
a_{1}
\end{array}\right]} \begin{array}{c}
3 a_{1}+b_{1}\left(3 b_{0}-1\right) \\
a_{1}
\end{array}\right]^{2} \\
& q=-\frac{\mu_{1}\left(3 b_{11}-11\right)^{2}}{18 b_{0}{ }^{3}}+\frac{\left.c_{2}\left(3 b_{0}+1\right) \mid 3 a_{1}-1 b_{1}\left(3 b_{10}-1\right)\right]}{108 b_{0}{ }^{3}} \\
& -\frac{2}{27}\left[\frac{3 a_{1}+b_{1}\left(3 b_{0}-1\right)}{6 b_{0}^{-}}\right]^{3}
\end{aligned}
$$

To summarise, thereforo, if (23) and either
or

$$
\begin{equation*}
O Q>O B>O P>O A \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\Delta^{\prime}=4 p^{3}+27 q^{2}<0 \tag{29}
\end{equation*}
$$

are satinfied 1 ben it is possille to smatate the system of (1) with the circuit of lig. $2(b)$. The circult component values may be obtained with the aid of (16), (17), (22), (20), (18) and (21).

ACKNOWLEDGMENT

The authors wish to thank the Disector, Defence Researeh and Development Laboratory, for his permussion to publish this paper.

REFERENCES
Widhwa, L. K. 1361, Sceenth ('ongress, Induan Socict!y of Theoretical and Applied Machemicn, December

Wadhwa, I. TE., 10t:2, Jour. IT.E. 8 No. 1, pp 01.

APPENDIX I

CONDITIONS UNDER WHICH THE CIRCUIT OF FIGUIRE 2(a) IS PHYSICALLY REALISABLE

Simulation of the system represented by (1) with the network of Fig. 2(a) is possible only if the values of $\alpha, T_{1}, T_{2}, T_{4}$ and T_{6} obtained as the solution of equations

$$
\begin{align*}
& b_{0}=\frac{\alpha}{\alpha+3} \tag{1.1}\\
& b_{1}=T_{1} \tag{1.2}\\
& a_{1}=\binom{\alpha}{\alpha+3}\left(T_{1}+T_{2}\right)+\left(\begin{array}{c}
\frac{\sigma+3}{\alpha+3}
\end{array}\right) T_{6} \tag{1.3}\\
& a_{2}=T_{6}^{\prime}\left[\left(\frac{2 \alpha+1}{\alpha+3}\right)\left(T_{1}+T_{2}\right)+\left(\frac{3 \alpha}{\alpha+3}\right) T_{4}\right] \tag{1.4}\\
& a_{3}=(\underset{\alpha}{\alpha}+3)\left(T_{1}+T_{\mathrm{z}}\right) T_{4} T_{6} \tag{1.5}
\end{align*}
$$

are real and positive; where a 's and b 's are real and positive constants.
It is, therefore, required to determine the conditions under which α, T_{1}, T_{2}, T_{4}, T_{0} can be real and positive; and graphical mothods may be perhaps a convenient means of obtaining these.

Eliminution of α, T_{1} and T_{4} from (1.1), (1.2), (1.3), (1.5) and (1.1), (1.2), (1.4), (1.5) give the following two equations

$$
\begin{equation*}
b_{0} T_{\mathrm{a}}+\left(4 b_{0}+1\right) T_{0}=\left(a_{1}-b_{0} b_{1}\right) \tag{1.6}
\end{equation*}
$$

and

$$
T_{6}=\frac{3 a_{2}}{\left(5 b_{0}+1\right)\left(T_{2}+b_{1}\right)}-\begin{gather*}
9 a_{3} \tag{1.7}\\
\left(5 b_{0}+1\right)\left(T_{2}+b_{1}\right)^{2}
\end{gather*}
$$

The intersection of the straight line of (1.6) and the curve of (1.7) in the first quadrant of the $T_{2}-T_{0}$ plane will give both T_{2} and T_{0} as real and positive. It is obvious from (1.1), (1.2) and (1.6) that the corresponding α, T_{1} and T_{4} are also real and positive, provided that

$$
\begin{equation*}
b_{0}<1 \tag{1.8}
\end{equation*}
$$

It should be clear, therefore, that only the portion of the curves lying on the right of the T_{g}-axis are of interest.

The intercepts that the entraight line of (1.6) makes with the T_{2} and T_{0}-axos renpeotively, are given by

$$
\begin{align*}
& O A=T_{2}^{\prime}=\binom{a_{1}-b_{0} b_{1}}{b_{n}} \tag{1.9}\\
& O H=T_{0}^{\prime}-\binom{a_{1}-b_{0} b_{1}}{4 b_{0}+1} \tag{1.10}
\end{align*}
$$

which are roal and, ubo poritive if

$$
\begin{equation*}
a_{1}>b_{0} u_{1} \tag{1.11}
\end{equation*}
$$

Simularly, the curve of (1.7) will eut the axes at pomis P and Q whose T_{2} and T_{6} coordinates aro respoctively given by

$$
\begin{align*}
& O P=T_{2}^{\prime \prime}=\binom{3 a_{3}-a_{2} b_{1}}{a_{2}} \tag{1.12}\\
& O Q=T_{0}^{\prime \prime}=\begin{array}{c}
3\left(a_{2} b_{1}-3 a_{3}\right) \\
b_{1}^{2}\left(5 l_{0}+1\right)
\end{array} \tag{1.13}
\end{align*}
$$

Now, if
i.e.

$$
\left.\begin{array}{c}
\left(3 a_{3}-a_{2} b_{1}\right)>0 \tag{1.14}\\
a_{3}>a_{2} b_{1}
\end{array}\right\}
$$

then the intercept $O P$ is postive and $O Q$ negative, but if

$$
\left.\begin{array}{rl}
& \left(3 a_{9}--\left(c_{2} b_{1}\right)<0\right. \\
\text { i.e. } \quad & a_{3}<\begin{array}{r}
a_{2} b_{1} \\
3
\end{array} \tag{1.10}
\end{array}\right\}
$$

then the intercept $O Q$ is positive and $O P$ negative.
'Therefore, if the comditions as exprensed in (1.11) and enther in (1.14) or (1.15) are satistierl then it is possible for a portion of the straight line and the eurve to exist in the first yuadrant and it may be possible, under eartain conditions, for these to intersect each other at one or more points in that region. The sketches of the straight line of (1.6) and a portion of the carve of (1.7) lying on the right of the T_{a}-axis are shown in Fig. 1.1.
 other in the first quadrant.

It is evident from the sketch of Fig. 1.1(a) that if (1.11) and (1.14) are satisfiod and

$$
O A>O P
$$

i.e.

$$
\begin{equation*}
a_{1}>\frac{3 a_{3} b_{0}}{a_{2}} \tag{1.16}
\end{equation*}
$$

or, as seen from figure $1.1(b)$, if (1.11) and (1.15) aro satisfied, and

$$
O B>O Q
$$

i.e.

$$
\begin{equation*}
a_{1}>\frac{3\left(4 b_{0}+1\right)\left(a_{2} b_{1}-3 a_{3}\right)}{b_{1}^{2}\left(\bar{b} b_{0}+1\right)}+\dot{b}_{0} b_{1} \tag{1.17}
\end{equation*}
$$

then it is possible for the straight line and the curve to intersect each other in the first quadrant giving T_{2} and T_{E} as real and positive.

To summarise, therefore, if

$$
\begin{equation*}
b_{0}<1 \tag{1.8}
\end{equation*}
$$

and, either

$$
\left.\begin{array}{c}
a_{3}> \tag{1.10a}\\
3 \\
a_{1}>\frac{3 a_{2} b_{1} b_{0}}{a_{2}}
\end{array}\right\}
$$

or

$$
\left.\begin{array}{l}
a_{3}<\frac{a_{2} b_{1}}{3} \tag{1.17a}\\
a_{1}>\frac{3\left(4 b_{0}+1\right)\left(a_{2} b_{1}-3 a_{3}\right)}{b_{1}^{2}\left(5 b_{0}+1\right)}+b_{0} b_{1}
\end{array}\right\}
$$

then the crrsuit of Fig. 2(a) for simulating the system of (1) is physically realisqble.

APPENDIX II

CONDITIONS UNDER WIIICH THE CIRCUIT OF FIG. 2(b) IS PHYSICALLY REALISABLE

If the values of $\alpha, T_{2}, T_{4}, T_{5}$ and T_{7} obtained as the solution of equations

$$
\begin{align*}
& b_{0}=\begin{array}{l}
\alpha \\
3(\alpha+1)
\end{array} \tag{2.1}\\
& b_{1}=T_{5} \tag{2.2}\\
& a_{1}=\frac{2 \alpha}{3(\alpha \mid-1)} T_{2}+\begin{array}{l}
(2 \alpha+1) \\
3(\alpha+1)
\end{array}+\frac{2}{3} T_{5}+\begin{array}{l}
2(2 \alpha+1) \\
3(\alpha+1)
\end{array} T_{7} \tag{2.3}\\
& a_{1}=\frac{\alpha}{3(\alpha+1)} T_{\mathrm{g}}\left(T_{4}+T_{5}\right)+\underset{3(\alpha+1)}{2 \alpha} T_{2} T_{7}+\frac{(2 \alpha+1)}{3(\alpha+\overline{1})}, T_{5} T_{7} \ldots \tag{2.4}\\
& a_{3}=\frac{\alpha}{3(\alpha+1)} T_{2} T_{5} T_{7} \tag{2.5}
\end{align*}
$$

are real and positive, then it is possible to simulate the system of (1) with the cirouit of Fig. 2(b).

Elimination of α, T_{5} and T_{7} from (2.1), (2.2), (2.3), (2.5) and (2.1), (2.2), (2.4), (2.5) give the following two equations:

$$
\begin{align*}
& T_{4}=\frac{\left(3 a_{1}-2 b_{1}\right)}{\left(3 b_{0}+1\right)}-\frac{2 a_{3}}{b_{0} b_{1} T_{2}^{\prime}}-\frac{6 b_{0}}{\left(3 b_{0}+1\right)} T_{2} \tag{2.6}\\
& T_{4}=\frac{\left(a_{2} b_{1}-2 a_{9}\right)}{b_{0} b_{1} T_{2}}-\frac{a_{3}\left(3 b_{0}+1\right)}{3 b_{0}^{2} T_{2}^{2}}-b_{1} \tag{2.7}
\end{align*}
$$

The intersection of the curves of (2.6) and (2.7) in the first quadrant of the $T_{2}-T_{4}$ plane will give both T_{2} and T_{4} as real and positive. It is evident from (2.1), (2.2) and (2.5) that the corresponding α, T_{5} and T_{7} will be also real and positive, provided that

$$
b_{0}<1 / 3
$$

The curve of (2.6) will cut the T_{2}-axis (i.e, $T_{4}=0$) at two points A and B whose T_{g} coordinates may be obtained by equating to zero the right hand side of (2.6) and solving the resulting quadratic

$$
\begin{equation*}
6 b_{0}^{2} b_{1} T_{2}^{2}-b_{0} b_{1}\left(3 a_{1}-2 b_{1}\right) T_{2}+2 a_{3}\left(3 b_{0}+1\right)=0 \tag{2.0}
\end{equation*}
$$

whose roots are given by

$$
\begin{equation*}
T_{2(\Lambda, B)}=\frac{b_{1}\left(3 a_{1}-2 b_{1}\right) \pm \sqrt{b_{1}}\left(3 \overline{a_{1}}-\overline{2} b_{1}\right)^{\overline{2}}-48 a_{3} b_{1}\left(3 b_{0}+1\right) \quad \ldots \quad 12 b_{0} b_{1}}{12} \tag{2.10}
\end{equation*}
$$

Now, A and B will be real, if
i.e.

$$
\begin{align*}
& b_{1}\left(3 a_{1}-2 b_{1}\right)^{2}>48 a_{3}\left(3 b_{0}+1\right) \\
& b_{0}<-\frac{b_{1}}{144 a_{3}}-\left(3 a_{1}-2 b_{1}\right)^{2}-\frac{1}{3} \tag{2.11}
\end{align*}
$$

and their coordinates will be positive, if

$$
\begin{equation*}
\left(3 a_{1}-2 b_{1}\right)>0 \tag{2.12}
\end{equation*}
$$

Similarly, (2.7) will cut the T_{2}-axis at two points P and Q whose T_{2}-coordinates are
and which will be real and positive, if
i.e.
and-

$$
\left.\begin{array}{c}
\left(a_{2} b_{1}-2 a_{3}\right)^{2}>4 a_{3} b_{1}^{3}\left(b_{0}+1 / 3\right) \tag{2.14}\\
\left.b_{0}<\frac{\left(a_{2} b_{1}-2 a_{3}\right)^{2}}{4 a_{3} b_{1}^{3}}\right)_{3}^{1} \\
\left(a_{2} b_{1}-2 a_{3}\right)>0
\end{array}\right\}
$$

Therefore, if the conditions as expressed in (2.11), (2.12) and (2.14) are satisfied then it is possible for a portion of the curves of (2.6) and (2.7) to exist in the
finst quadrant, wad it may be poskible, ander certain conditions, for these to internere each other at one or more ponts in that region.

Wlimination of T_{4} from (2.6) and (2.7) gives a cubic

$$
\begin{equation*}
I_{2}^{13}-\frac{1}{3 b_{2}}\left\{3 a_{1}+b_{1}\left(3 b_{0}-1\right)\right\} T_{2}^{2}+\frac{a_{2}\left(3 b_{0}-1\right)}{6 b_{n}^{2}} T_{2}-\frac{a_{3}\left(3 b_{0}-1-1\right)^{2}}{18 b_{0}^{3}}=0 \quad \ldots \tag{2.15}
\end{equation*}
$$

$$
\begin{gathered}
\left(3 a_{1}-2 b_{1}\right)>0 \\
9<\frac{b b_{1}\left(3 a_{i}-2 b_{1}\right)^{2}}{4 a\left(3 b_{0}+1\right)}
\end{gathered}
$$

$$
\begin{aligned}
& \left(a_{2} b_{1}-2 a_{3}\right)>0 \\
& b_{0}<\frac{\left(a_{2} b_{1}-2 a_{3}\right)^{2}}{4 a_{1} b_{1}^{b}}-\frac{1}{3}
\end{aligned}
$$

$1 \quad T_{4}=\frac{\left(3 a_{1}-2 b_{1}\right)}{\left(3 b_{0}+1\right)}-\frac{2 a_{1}}{4 b_{3}}-\frac{6 b_{0}}{\left(3 b_{0}+1\right)} T_{2}$

- $T_{4}=\frac{\left(a_{2} b_{1}-2 \Delta_{3}\right)}{b b_{1} T_{2}}-\frac{\bar{c}_{3}\left(3 b_{0}+1\right)}{3 b_{0} T_{2}^{1}}-b_{1}$

Fig 2.1. Sketches of the curven for positive valuef of T_{2}.
The real roots of (2.15) give the real points of intersection of the curves of (2.6) and (2.7). It is obvious, in view of (2.12), that (2.15) can have no negative real roots, theceforc. The curves do not interseet at real points on the left of the T_{d}-axis. If its discrimmant Δ is positive then (2.15) will have one real root signifying that the curves intersect eath other at one point on the right of T_{4}-axis; and if Δ is negative then the curves can intersect each other at three points on the right of T_{Δ}-axis. The sketches of portions of the curvos lying on the right of the T_{4}-axis are shown in Fig. 2.1.

Now, as evident from figure 2.1, if the points A and B interlace with the points P and Q, such that

$$
\begin{equation*}
O Q>O B>O P>O A \tag{2.16}
\end{equation*}
$$

One Operational Amplifier Simulates Third Order, etc.

then the curves will intersect each other at one point in the first quadrant if

$$
\Delta=4 p^{3}+27 q^{2}>0
$$

and at three points if

$$
\Delta<0
$$

Hence, at loast one set of positive real $\alpha, T_{2}, T_{1}, T_{5}, T_{7}$ exist if (2.16) is satisfied, irrespective of whether Δ is positive or negative.

But if
and

$$
\left.\begin{array}{c}
\Delta<0 \tag{2.17}\\
O B>O Q>O A>O P
\end{array}\right\}
$$

then one sot of real positive values exists, and two real posilive sets of values exist if
and either

$$
\left.\begin{array}{c}
\Delta<0 \tag{2.18}\\
O B>O Q>O P>O A \\
O Q>O B>O A>O P
\end{array}\right\}
$$

or
where

$$
\begin{align*}
& O A=\frac{b_{1}\left(3 a_{1}-2 b_{1}\right)-\sqrt{b_{2}} \overline{\bar{L}_{1}}\left(3 \overline{a_{1}}-2 \dot{b}_{1}\right)^{2} \overline{4} \overline{8} c_{a_{3}} \bar{b}_{1}\left(3 b_{0} \mp 1\right)}{12 b_{0} b_{1}} \\
& O B=\frac{b_{1}\left(3 a_{1}-2 b_{1}\right)+\sqrt{\left.b_{1}^{2}(3) a_{1}-2 b b_{1}\right)^{2}-4} \overline{8 a_{3}} \overline{b_{1}}\left(\overline{3} b_{0}-\overline{1}\right)}{12 b_{0} b_{1}} \\
& O P=\left(a_{2} b_{1}-2 a_{3}\right)-\sqrt{\left(a_{2} b_{1}-2 a_{3}\right)^{2}-4 a_{3}} \frac{b_{1} b^{9}\left(b_{0}+1 / 3\right)}{2 b_{0} b_{1}^{2}} \\
& O Q=\frac{\left(a_{2} b_{1}-2 a_{3}\right)+\sqrt{\left(\overline{a_{2} b_{1}-}-2\left(a_{3}\right)^{2}-4 a_{3} b_{1}{ }^{3}\left(b_{0}+1 / 3\right)\right.}}{2 b_{0} \bar{b}_{1}^{2}} \tag{2.19}\\
& p=\frac{a_{2}\left(3 b_{0}+1\right)}{6 b_{0}^{2}}-\frac{1}{3}\left[3 a_{1}+b_{1}\left(3 b_{0}-1\right)\right]^{2} \\
& q=\frac{-a_{3}\left(3 b_{0}+1\right)^{2}}{18 b_{0}^{3}}+\frac{a_{3}\left(3 b_{0}+1\right)\left[3 a_{1}+b_{1}\left(3 b_{0}-1\right)\right\}}{108 b_{0}^{8}} \\
& \left.-\frac{2}{27}\left[\frac{3 a_{1}+b_{1}\left(3 b_{0}-1\right)}{6 b_{0}}\right]^{3}\right]
\end{align*}
$$

32 L. K. Wadhwa and Jagdish Chandra

To summarise, thorefore, if

$$
\left.b_{0}<\operatorname{Min}\left[\frac{1}{3},\left\{\begin{array}{c}
b_{1} \tag{2.20}\\
144 a_{1}
\end{array}\left(3 a_{1}-2 b_{1}\right)^{2}-\frac{1}{3}\right\},\left\{\begin{array}{l}
\left(a_{2} b_{1}-2 a_{3}\right)^{2} \\
4 a_{3} b_{1}^{3}
\end{array}\right] \frac{1}{3}\right\}\right]
$$

$$
\begin{aligned}
& \left(3 a_{1}-2 b_{1}\right)>0 \\
& \left(a_{2} b_{1}-2 a_{3}\right)>0
\end{aligned}
$$

und eithor

$$
\begin{equation*}
O Q>O B>O P>O A \tag{2.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta=4 p^{3}+27 q^{2}<0 \tag{2.21}
\end{equation*}
$$

then it is possible to simulate the system of (1) with the circuit of $\mathrm{Fg} .2(b)$,

