DISCRETE FREQUENCIES IN A LATTICE PERTURBED BY ISOTOPE DEFECTS

J. MAHANTY and RAM Klishore sharma

(Recenord Ipril 21, 1062)

Abstract

An investigation is made of that poerss of generubion of diserete vibra-

LNTKO』U(TIUN

The problem of generation of discrete vibrational frequeneses due to isotope deferts im a latidee has been sturlied by lifshitz (1943a, 1943b, 1944, 1956), and by Montroll and Potts (1955,1956). The general techniques developed by them have been appled mostly to it latitice model in which there is no couphling letwoen tho various components of the dhplacements of the atoms. Recontly, Nardolli (1960) hits studted the problem in the case of culne lattires. The olject of this paper is to discuss a few lative motels in which there is coupling between the displarements; but still it is possible to evaluate the discreto frequencies due to an isotope delect exametly.

> THKNROUAAK NQUATION FOH THE JOSOREJE FRGQUENOY

We will adopt here the notation of lifshitz (L943a) with slight changos. The lattice under consideration has N unt eclls m eath of which there are p atoms, the mass of the s-th atom being m_{s}. The coordmate of the unit cell is given by the vector q, whose dimension equals the dimension of the lattice. Periodic boundary conditions will be insed throughout.

The eigenfrequencies of the unperturbel lathee are the roots of the equation

$$
\begin{equation*}
\left|\hat{A}-\hat{I} \omega^{2}\right|=0 \tag{l}
\end{equation*}
$$

where the dynamical matrix \hat{A} is determined from the equations of motion of tho atoms in the lattice. Wach element of \hat{A} has six indices, three for the row and
three for the column. The following equation gives the correspondence between this notation and that of Born and Huang (1954);

$$
A_{q-q^{\prime}}\left(s, j \mid s^{\prime}, j^{\prime}\right)=\underset{\sqrt{m_{s} n_{n^{\prime}}}}{1} \quad \phi_{j j^{\prime}}\left(\begin{array}{cc}
q-q^{\prime} \tag{2}\\
s & s^{\prime}
\end{array}\right)
$$

The mdex j refers to the component of the displacement of the aloms.
In the presence of an isotoje defect of mass $m_{s}{ }^{\prime}$ at the s-th position in the y-the unil cell, the eigenfrequencios are the roots of the equation

$$
\begin{equation*}
|\hat{I}+\hat{G}(\omega) \hat{\wedge}|=0 \tag{3}
\end{equation*}
$$

where $\hat{d}(\omega)=(\hat{A}-\hat{J}(\omega))^{-1}$ and $\hat{\Lambda}$ is the perturbation matrix. In this caso $\hat{\wedge}$ is a dagonal matrix whone elements are given by

$$
\begin{gather*}
\wedge q^{\prime}-a^{\prime \prime}\left(s^{\prime}, j^{\prime} \mid s^{\prime \prime}, j^{\prime \prime}\right)==\epsilon_{b}\left(\omega^{2} \delta_{q^{\prime}}^{\prime} j^{\prime \prime} \delta_{s^{\prime}, \delta_{q}} \delta_{q^{\prime} q} \delta_{q^{\prime \prime} q} \delta_{s^{\prime \prime}}\right. \tag{4}\\
\epsilon_{q}=1-\frac{m_{s}^{\prime}}{m_{\varepsilon}} .
\end{gather*}
$$

where

In a three dimensional lativie, for example, there will be only three uonvanishing eloments in $\hat{\wedge}$, and they will be the dagomal elements oharaterised by the indices q, s, and the three values of g

The determinant in egnation (3) ean be reduced to the form

The evaluation of the clements of \hat{G} matrix which oceur in equation (5) can be done lyy the bslinear formula for the matrix elements of a function of an oporator.
The oigenvectors of \hat{A} span a space of $3 \mu \mathrm{~N}$ dimensions, ind constitute an orthogonal set. (The degenerate eigenvector's cain be orthogonalised in the usual way). For convenience we will use the symbol $\mid k, r>$ for a typical normalisel eigenvector of \hat{A}, where k can tilke up N values inside the unit coll of the reciprocal lattice, of volume $(2 \pi)^{3} / N$, and r can take up $3 p$ values.

Each ergenvertor of \hat{A} has $3 p N$ components. We will denote a typical component by the symbol $\mid k, r ; q, s, j>$. These components aro known to be of the form (Lifshitz, 1943a)

$$
\mid k, r ; q, k, j>-\frac{1}{\sqrt{ } N} Q_{Q_{T},,(k)} \exp \left(\begin{array}{cc}
2 \pi i & k . q \tag{6}\\
\tilde{N} &
\end{array}\right)
$$

Discrete Frequencies in a Lattice Perturbed by Isotope, etc. 129

where $Q_{r}{ }^{s, 9}(k)$ is the (s, j)-th component of the r-the eigenvector of a $3 p \times 3 p$ Hermitean matrix $\hat{a_{k}}$ which is related to \hat{A} by the equation

$$
u_{k}\left(s, j \mid s^{\prime}, j^{\prime}\right)=\sum_{q} A_{q}\left(s, j \mid s^{\prime}, j^{\prime}\right) \exp \left(\begin{array}{cc}
2 \pi i & k, q \tag{7}
\end{array}\right)
$$

The eigenvalues of \hat{a}_{k} are the $3 p$ branch (squared) fregnencies ω, (k) tor a givon value of k. Tho branch index r can take up $3 p$ valucs. In oach branch there are N froquencies corresponding to the N values of k.

By the bilmear formula, the matrix element of \hat{G} is

$$
\begin{align*}
& G_{q-q^{\prime}}\left(s, j \mid s^{\prime}, j^{\prime}\right)=-\frac{\underset{k}{\prime}, r}{}-\underline{k}, r, q^{\prime}, s^{\prime}, j^{\prime} \mid k, r ; q, s, j \geq \\
& \omega_{r}^{2}(k)-\omega^{2} \tag{8}
\end{align*},
$$

In this, the summation over k has been replaced by an integration. V^{*} is the volume of the unit cell of the secaprocal latitace*.

In particular, the elements of \hat{f} that oceor in oquation (5)are given by

$$
\begin{equation*}
G_{0}\left(s, j \mid s^{\prime}, j^{\prime}\right)=\frac{1}{(2 \pi)^{3}} \sum_{r} \int_{j^{\prime}} \frac{d^{3} k}{d^{3}} \frac{Q_{r}^{\beta^{\prime}, \eta}(k) Q^{*}{ }^{*} r^{r^{\prime}}, j^{\prime}(k)}{\omega_{r}^{2}(k)-\omega^{2}} \tag{9}
\end{equation*}
$$

Actual computation of the discrete frequencies has been done in those lattice models in which there is no coupling between the various components of the displacements of the atoms, since the evaluation of the mutrix elements of \hat{G} is easy for such models. We will now prove is theorem that if at certain criterion is satisfied in a lative model, an isotope defect perturbs each frequeney braneh separately, and evaluation of the matrix elements of \hat{G} is somewhat simpler even in the presence of coupling between the displacement components.

Only monatomic lattices can sitisfy this criterion. We will evaluate the disarote frequencies in certain linoar lattice models satisfying thes criterion, and it will be shown that when thes criterion is satisfied, the range of interaction between

[^0]the atoms is of no consequence, as far as the solvability of the problem is concernerl.

Let us consider : monatomic latite morlel ($p=1$), in which cach atom has 1.hree degroes of freedom, and in which the elements of \hat{A} satisfy the equation

$$
\begin{equation*}
A_{q^{\prime}-\eta^{\prime \prime}\left(j^{\prime} \mid \jmath^{\prime \prime}\right)}=C_{q^{\prime}-q^{\prime \prime}} \alpha\left(j^{\prime} \mid j^{\prime \prime}\right) \tag{10}
\end{equation*}
$$

where $\alpha\left(J^{\prime} J^{\prime \prime}\right)$ is at numbor independent of q.
The dynamical matrices corresponding to the various branches are obtainer by a smilarity transiormation

$$
\begin{equation*}
\hat{P} \hat{A} \hat{P}^{-1}=\hat{B} \tag{11}
\end{equation*}
$$

where \hat{B} is it matrix of the form

$$
B=\left[\begin{array}{lll}
\hat{X} & \hat{O} & \hat{O} \tag{12}\\
\hat{O} & \hat{Y} & \hat{O} \\
\hat{O} & \hat{O} & \hat{Z}
\end{array}\right]
$$

Here \hat{X}, \hat{Y}, and \hat{Z} are $N \times N$ submatrices.
In this model it is easily shown that the elements of \hat{P} are

$$
\begin{equation*}
P_{a^{\prime}-a^{\prime \prime}}\left(j^{\prime} \mid j^{\prime \prime}\right)=\delta_{q^{\prime} q^{\prime \prime}} \beta\left(j^{\prime} \mid j^{\prime \prime}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{gather*}
\hat{X}-x \hat{C} \\
\dot{Y}=y \hat{C} \tag{14}\\
\hat{Z}=z \hat{C}
\end{gather*}
$$

where x, y, and z are pure numbers and \hat{C} is a $N \times N$ cyclic matrix. x, y and z are, in fact, the engenvalues of the 3×3 matrix $\hat{\alpha}$ whose olements are $\alpha\left(j^{\prime} \mid j^{\prime \prime}\right)$. Using equation (11) it can be shown that the 3×3 matrix $\hat{\beta}$ whose clements are $\beta\left(j^{\prime} \mid j^{\prime \prime}\right)$ daagonalses $\hat{\alpha}$ by the similarity transformation

$$
\hat{\beta} \quad \hat{\alpha} \hat{\beta}^{-1}=\left[\begin{array}{lll}
x & 0 & 0 \tag{15}\\
0 & y & 0 \\
0 & o & z
\end{array}\right]
$$

Discrete Frequencies in a Lattice Perturbed by Isotope, etc. 131
The wellknown symmetry properties of \hat{A} require that $\hat{\alpha}$ must be a symmetrie matrix, so that $\hat{\beta}$ must be an orthogonal matrix satisfying the condition.

$$
\begin{equation*}
\underset{j}{\grave{j}} \beta\left(j \mid j^{\prime}\right) \beta\left(j \mid j^{\prime \prime}\right)=\delta_{j^{\prime} l^{\prime \prime}} \tag{16}
\end{equation*}
$$

The matrix $\dot{\Lambda}$ for isotope defects can be written in the form

$$
\hat{\Lambda}=\left[\begin{array}{lll}
\hat{S} & \hat{o} & \hat{o} \\
\hat{o} & \hat{S} & \hat{o} \\
\hat{O} & \hat{o} & \hat{S}
\end{array}\right]
$$

where \hat{S} is a $N \times N$ dagonal submatrix. Using equation (16) and the fiuct that \hat{S} eommutes with each of the submatrices of \hat{P} (wnich are diagonal), it is easily shown that for this model

$$
\begin{equation*}
\hat{P} \hat{\Lambda} \hat{P}^{-1}=\hat{\Lambda} \tag{18}
\end{equation*}
$$

Therefore, if we perform a similarity transformation with respeet to \hat{P} on equation (3), we obtain

$$
\begin{equation*}
|\hat{I}+\hat{G}(x) \hat{S}||\hat{I}+\hat{G}(y) \hat{S}||\hat{I}+\hat{G}(z) \hat{S}|-0 \tag{19}
\end{equation*}
$$

where all matrices are now $N \times N$, and

$$
\begin{align*}
& \hat{G}(x)=\left[x \hat{C}-\hat{I}\left(\omega^{2}\right]^{-1}\right. \\
& \hat{G}(y)=\left[y \hat{C}-I_{()^{2}}\right]^{-1} \\
& \hat{G}(z)=\left[z \hat{C}-\hat{I} \omega^{2}\right)^{-1} \tag{20}
\end{align*}
$$

From equation (19) it is apparent that in a monatome lattice satisfying the oriterion of equation (10), the effect of isotope defects on each trequency branch is independent of the other branches.

With a single isotope defect, equation (19) reduces to the three equations

$$
\begin{align*}
& 1+\frac{\epsilon \omega^{2}}{(2 \pi)^{3}} \int_{V^{*}} \frac{d^{3} k}{\omega^{2} \frac{x^{2}(k) \cdots \omega^{2}}{}=0} \tag{21a}\\
& 1+\frac{c \omega^{2}}{(2 \pi)^{3}} \int_{V^{*}} \frac{d^{3} k}{\omega^{2}(\bar{k})-\omega^{2}}=0 \tag{2lb}\\
& 1+\frac{\epsilon \omega^{2}}{(2 \pi)^{3}} \int_{V^{*}} \frac{d^{3} k}{\omega^{2}(k)-\omega^{2}}=0 \tag{21c}
\end{align*}
$$

An example

As a simple example of a physical latice model satisfying the criterion of equation (I0), we consider the case of a linear whain with nearest neighbour interantions and three degrees of freedom per atom If $u_{n} \exp (\imath \omega t), v_{n} \exp (i \omega t)$, and $w_{n} \exp (i, i t)$ denote the two transverse and one longitudinal eomponents respec. tively of the n-th atom from equilibrum, the equations of motion can bo written in the form

$$
\begin{align*}
& m \omega^{2} u_{n}-\gamma_{1}\left(2 u_{n}-u_{n-1}-u_{n+1}\right)+\gamma_{2}\left(2 v_{n}-v_{n-1}-v_{n+1}\right)+\gamma_{3}\left(2 u_{n}-w_{n-1}-w_{n+1}\right) ; \\
& m \omega^{2} v_{n}=\gamma_{2}\left(2 \cdot u_{n}-u_{n-1} \cdots u_{n+1}\right)+\gamma_{1}\left(2 v_{n}-v_{n-1}-v_{n+1}\right)+\gamma_{3}\left(2 w_{n}-w_{n-1}-w_{n+1}\right), \\
& m \omega^{2} w_{n}=\gamma_{: 3}\left(2 u_{n}-u_{n-1}-u_{n-1}\right)+\gamma_{3}\left(2 v_{n}-v_{n-1}-v_{n+1}\right) \mid \cdot \gamma_{4}\left(2 u_{n}-u_{n-1}-w_{n+1}\right) ; \tag{22}
\end{align*}
$$

Here γ_{a} ss the couphing between 4 and v components, and γ_{9} is the coupling betweon u and w or between v and w emmponents rospacively.

The matrix $\hat{\alpha}$ in this case is of the form

$$
\hat{\alpha}=\left[\begin{array}{llll}
& & & \tag{23}\\
\gamma_{1} & \gamma_{2} & \gamma_{3} & \\
m & m & m & \\
& & & \\
& \gamma_{2} & \gamma_{1} & \gamma_{3} \\
m & m & m \\
& & & \\
& \gamma_{3} & \underline{\gamma_{3}} & \gamma_{1} \\
m & m & m & -
\end{array}\right]
$$

and the $N \times N$ matrix \hat{C} is of the form

$$
\widehat{C}-\left[\begin{array}{rrrrrrrr}
2 & -1 & 0 & 0 & \ldots & \ldots & 0 & -1 \tag{25}\\
-1 & 2 & -1 & 0 & \ldots & \ldots & 0 & 0 \\
0 & -1 & 2 & -1 & \ldots & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & & & \vdots & \vdots \\
-1 & 0 & 0 & 0 & & & -1 & 2
\end{array}\right]
$$

The throe eigenvalues of $\hat{\alpha}$, which we denote as before by x, y, and z, are easily obtained and are given by the equations

$$
x={ }_{m}^{1}-\left(\gamma_{1}-\gamma_{2}\right)
$$

Discrete Frequencies in a Lattice Perturbed by Isotope, etc. 133

$$
\begin{align*}
& \left.y=\frac{1}{2 m}\left[\gamma_{1}+\gamma_{2}+\gamma_{4}\right)+\sqrt{ }\left(\gamma_{1}+-\gamma_{2}-\gamma_{4}\right)^{2}+8 \gamma_{1}^{2}\right] \\
& z=\frac{1}{2 m}\left[\left(\gamma_{1}+\gamma_{2}+-\gamma_{4}\right)-\sqrt{ }\left(\gamma_{1}+\gamma_{2}^{\prime}-\overline{\gamma_{4}}\right)^{2} \mid \overline{-8 \gamma_{3}^{2}}\right] \tag{25}
\end{align*}
$$

The eigenfrequencee in the varous luanches as functions of k (wherd is it one dimensiomal veetor in this ease) is obtamed by taking the Fou ier transform of \hat{B} in accordance with the formulit of equation (7);

$$
\begin{align*}
& \omega^{2} x(k)-2 x(1-\cos k) \\
& \omega^{2} y(k)-2 y(1-\cos k) \\
& \omega_{2}^{2}(k)=2 z(1-\cos k) \tag{26}
\end{align*}
$$

We will disens the equation for the diserete frequency genorated from one of the branches only. Equation (2lit) can be writien in the following form by substiduting for the denominator of the mbagriand from equation (26);

$$
\begin{equation*}
1+\frac{\epsilon\left(\omega^{2}\right)^{2 \pi}}{2 \pi}-2 \bar{x}\left(1-\frac{d k}{\cos } \overline{k)}-\bar{\omega}\right)^{2}=0 \tag{27}
\end{equation*}
$$

For discrote frequencies we are interested in the region $\omega^{2}>\omega^{2}{ }_{\imath L}$, where $\omega^{2}{ }_{x_{L}}-4 x$, the maximmm frequency of that branch. In this region equation (27) reduces to the form

$$
\begin{equation*}
1-\frac{\epsilon \omega}{\sqrt{\omega^{2}-\omega^{2}} \cdot x L}=0 \tag{28}
\end{equation*}
$$

A solution of this equation for $\omega>\omega_{r L}$ can exist only for positive ϵ, i.e., for a hghter isotope defeet, and thes solution is

$$
\begin{equation*}
\omega_{x o}=\frac{\omega_{x} \underline{L}}{\sqrt{\overline{1}-c^{2}}} \tag{29}
\end{equation*}
$$

The treatment of the other two somar eguations procoeds along identacal lines.
Thas, in this example, is sungle lighter isotope defect generates three discreto frequencos, one from each of the acoustie brunches. However, for small c the physical observable discrete frequency is the one, which is above the maxnnum frequeney of the stiffost branch, since the other two diserete frequencios will lie submerged among the quasicontmum of frequencies of the staffest branch.

A LINEAR LATTICE WJTIT LONG RANGE 1NTERAUTIONS

In a linear lattice with long range interactions, the equations of motion can be writton in the form (with infinite number of atoms)

$$
\begin{array}{r}
m \omega^{2} u_{n}=\sum_{p}\left[\Gamma_{p}^{\left(u,,^{\prime \prime}\right)}\left(2 u_{n}-u_{n-p}-u_{n+p}\right)+\Gamma_{p}{ }^{(u, v)}\left(2 v_{n}-v_{n-p}-v_{n-p}\right)\right. \\
\left.+\Gamma_{p}{ }^{(u, w)}\left(2 w_{n}-w_{n-p}-w_{n+p}\right)\right] ; \tag{30}
\end{array}
$$

with two simuliar equations for the other two components. Here $\mathrm{I}_{p}{ }^{(\mu, r)}{ }^{(s)}$ is the eouplong eonstant beween the "-displacement of an atom and the v-displacement of its p-th neighlour.
Λ phymenly reasonable assumption to make on the properties of the eompling constants is that they all depend on the distance of separation of the interacting atoms in aerordaner with the same law. In that case one can write

$$
\begin{equation*}
\Gamma_{p}^{\left(1, v^{\prime}\right)}=\gamma^{(u, v)} f(p) \tag{31}
\end{equation*}
$$

where the function $f(p)$ suitably describes the dependence of the couplang constants on the distance of separation of the atoms.

This model satisfics the criterion of equation (10). The matrix \hat{x} will have the same form as in equation (23), if we use the follosing equivalences,

$$
\begin{aligned}
& \gamma^{\left(u,{ }^{u \prime}\right)}=\gamma^{(0, r)}=\gamma_{1}, \quad \gamma^{\left(u,,^{u}\right)}=\gamma^{(v, u)}=\gamma_{2} ; \\
& \gamma^{(u, w)}=\gamma^{(w, u)}=\gamma^{\left(v,,^{(u)}\right.}=\gamma^{(u, v)}=\gamma_{3} ; \quad \gamma^{(w, w)}=\gamma_{4} .
\end{aligned}
$$

The matrix \hat{C} is now of the form

$$
\hat{O}=\left|\begin{array}{cccc}
2{\underset{p}{p}}^{f} f(p) & -f(1) & -f(2) & \cdots \cdots \\
-f(1) & 2{\underset{p}{p}}_{\Sigma} f(p) & -f(1) & \cdots \\
-f(2) & -f(1) & 2 \underset{p}{\Sigma} f(p) & \cdots \cdots \\
-f(3) & -f(2) & -f(1) & \cdots \cdots \\
\cdot & \cdot & . & \\
. & . & . &
\end{array}\right|
$$

The eigenfrequencies of the various branches are

$$
\begin{equation*}
\omega_{x}^{2}(k)=2 x\left[\sum_{p=1}^{\infty} f(p)-\sum_{p=1}^{\infty} f(p) \cos p / c\right] \tag{33}
\end{equation*}
$$

with two similar equations for the other two branches. The maximum frequency of the branch is evidently $4 x\left[\sum_{\nu=0}^{\infty} f\left(2_{p} p+1\right)\right]$. As before, we will evaluate the discrete frequeney generated from one of the branches only. The secular equation is

$$
\begin{equation*}
1+\frac{\epsilon \omega^{\mathrm{I}}}{2 \pi} \int_{0}^{\infty} \frac{d k}{2 x[{\underset{p}{p}}\{f(p)-f(p) \cos p k\}]-\omega^{2}}=0 \tag{34}
\end{equation*}
$$

Discrete Frequencies in a Lattice Perturbed by Isotope, etc.

The integral in equation (34) can be done exactly for several assumed forms of $f(p)$. We give below the results lor the discrete frequency arising outside the bund in a few cases.
(1)

$$
J(p)=\exp (-p \sigma)
$$

The integral in equation (34) can be done exactly for $\omega^{2}>\omega_{, ~ a L}^{2}$, and in terms of a variable $\theta=\cosh ^{-1} \omega / \omega_{x L}$, the descrete frequency is the root of the equation

$$
\begin{equation*}
\operatorname{coth}\left(\theta+\frac{\sigma}{2}\right)=\frac{1}{i} \tanh \theta \tag{35}
\end{equation*}
$$

It is casy to show grapheally and otherwise that for values of 6 , in the range $0<c<1$ a solution of this transcendental equation must exist, wad hence a discrete frecuency must arise. For very small values of $'$, the discrete frequency is

$$
\omega_{x 0} \simeq \omega_{x L}\left(\begin{array}{rrr}
1+t^{2} & \operatorname{coth}^{2} \sigma \tag{36}\\
2 & 2
\end{array}\right)
$$

(ii)

$$
f(p)=(p)^{-2 r} ; r=\text { Integer. }
$$

The series oedormg in the denominator of the integrand in equation (34) can be summed exactly in accordance with the formulae (Teffreys and Jeffreys, 1956),

$$
\sum_{p-1}^{\infty}(p)^{-2 r} \cos p k=\frac{(-1)^{r-1}}{2}-\left(4 \pi^{2}\right)^{r}\left[P_{2 r}\binom{k}{2 \pi}+b_{2 r}\right]
$$

and

$$
\underset{p \cdot 1}{\Sigma}(p)^{-2 r}=\zeta(*)
$$

where $l_{2 r}$ and $b_{y r}$ are respectively the Bernoulli polynomial and the Bernoulli number of order $2 r$ respectively, and $\zeta(2 r)$ is the Remann Zeta function. $\zeta(2 r)$ is related to $b_{2 r}$ through the equation

$$
\zeta(2 r)=\frac{(-1)^{r-1}}{2}\left(4 \pi^{2}\right)^{r} b_{2 r}
$$

The finst few Bernoulli polynomals are

$$
\begin{aligned}
& P_{2}(x)=\frac{1}{2}\left(x^{2}--x\right) ; \quad P_{4}(x)=\frac{1}{24}\left(x^{1}-2 x^{3}+x^{2}\right) ; \\
& P_{6}(x)=\frac{1}{720}\left(x^{6}-3 x^{6}+\frac{5}{2} x^{4}-\frac{1}{2} x^{2}\right) ; \\
& P_{8}(x)=\frac{1}{403 \overline{20}}\left(x^{8}-4 x^{7}+\frac{14}{3} x^{6}-\frac{7}{3} x^{4}+\frac{2}{3} x^{2}\right) .
\end{aligned}
$$

The first, few Bornoulli numbors aro

$$
b_{2}=\frac{1}{12} ; \quad b_{4}-\frac{1}{720} ; \quad b_{6}-\frac{1}{30240} ; \quad b_{\mathrm{y}}=-\frac{1}{1209600}
$$

The oquation tor the discrete trequency for $r=1$ is $\left(\right.$ with $\eta=\frac{0}{\omega_{x_{L}}}$

$$
\begin{array}{cc}
\eta^{2} \tag{37}\\
\sqrt{ } \eta^{2}-1 & \sin ^{-1} \frac{1}{\eta}=1
\end{array}
$$

A solution of this equation will always exist for $0<c<1$, and for $c \ll 1$, the discrete frequency is

$$
\begin{equation*}
\omega_{x 0} \simeq \omega_{x L}\left(1+\frac{\epsilon^{4} \pi^{2}}{S}\right) \tag{38}
\end{equation*}
$$

For $r=2$, the equation for the discrete fiequency is

$$
\begin{equation*}
\frac{\eta}{4 \sqrt{ } 1+\eta} \log \frac{\sqrt{1} \frac{\mid \eta+1}{\sqrt{1+\eta}-1}+\frac{1}{2 \sqrt{ } \eta-1}}{} \sin ^{-1} \frac{1}{\eta}=\frac{1}{c} \tag{39}
\end{equation*}
$$

In this ease also, a solution will always exist for $0<c<1$, and for $c \ll 1$ the diserete frequoncy is given by

$$
\omega_{x_{0}} \cong \omega_{x_{L}}\left(\begin{array}{c}
1+\frac{r^{2} \pi^{2}}{16} \tag{40}
\end{array}\right)
$$

CON(LUSHON

If the condition described in equation (IO) does not hold for any given lattice model, the perturbation due to the sotope defoct mixes up the various frequency branches, so that it may not be possible to find a one to one corresponclence between. the discrote frequences ind the unperturbed froquency branohes. The models discussed here are one dimensional, but there is no essontial complication in the case of two and three dimensional crystals as long as they satisfy the eriteron of equation (10). For three dumensional crystals the evaluation of the integrals in equation (2I) cin be done numerically if one knows the frequency dishribution function of the unperturbed lattice. Whother any actual arystals can be adequately represonted by a morlel satistying the criterion of equation (10) must remain all open question.

Discrete Frequencies in a Lattice Perturbed by Isotope, etc. 137

We have seen that the difference leetween the discrete frequency and the maximum frequency of any branch depends on c^{2}. This property is related to the exstence of the square root singularity in the froqueney distribution function of a linear lattice. A simple proof of the fact that for small c one can expect the diserece frequoncy to depend on ϵ^{2} irrespective of the dotails of the law of intoraction between the atoms in a linear lattice is given in the Appendix.

APPEND1X

When ϵ is very small, a solution of equation (34) would exist only if ω is slightly greator than $\omega_{x L}$. Let

$$
\sum_{p=1}^{\mathbf{\sum}}[f(p) \cdots f(p) \cos p k]=F(k) .
$$

$F(k)$ has a maximum at $k=\pi$, and evidently

$$
\omega^{2} x_{L}=2 x F(\pi) .
$$

In the noighbourhood of this maximum wo can expand $F^{\prime}(k)$ in a power scries in $k^{\prime}=k-\pi$. Remombering that most of the contribution to the intogral comes from the neighbourhond of $k^{\prime} \cong 0$, we can w'te the integral in equation (34) in the form

$$
-\int_{-\infty}^{\infty} \frac{d k^{\prime}}{\left(\omega^{2}-\omega^{2} x_{L}\right) \cdot 1-x F^{\prime \prime \prime}(\pi)} \sqrt[k^{\prime 2}]{ }=\cdots \quad \pi \quad \frac{1}{x F^{\prime \prime \prime}(\pi)} \sqrt{\sqrt{\omega^{2}-\omega^{2}}=}
$$

We thus get the following approximate secular equation for the discrete frequency for small ϵ;

$$
1-\frac{\varepsilon \omega^{2}}{2 \sqrt{x F^{\prime \prime}(\pi)}} \frac{1}{\sqrt{\omega^{2}}-\omega^{2}} \cong 0
$$

The solution of this equation is

$$
\omega_{x 0}=\omega_{x L}\left[1+\frac{F(\pi)}{4 F^{\prime \prime \prime}(\pi)} \epsilon^{2}\right]
$$

ACKNOWLUDGMENT

One of the authors (R.K.S.) is indebted to the unthorities of the Punjab University for tho award of a research scholarship.

REFERTACES

Juffeys, 1F. and Joffreys, B, S, 1950, Methods of Mathomaticul Physica, (Cambridge Unversity Piesa), p. 388.
Lafishutz, I M., 1943a, J. Phy/s. USSR , 7, 21 .
Lafahıtz, T. M., I94i3lb, J. Phys. USSSP., 7, 240.
lafilı1\%, 1, M, 1914, J. Plıys. USS'R, 8, 89. 4, 716.
Moniroll, R. W'., aud Potts, R B, 1955, Phys. Rev, 100, 52.i.
Montroll, E. W. and Potin, R. B., I956, l'hys, Rev., 102, 72.
Nardollt, (i F., 1960, Dymames of Clubir Gryatal Lattices Peiturbod by a Local Change of Mass, (Toch JRop., Inalitute of Plystce, University of Milanı).

[^0]: *In the cquation the voctor h is normalised in such a way that the volume V* equals $(2 \pi)^{3}$.

