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DIMENSIONAL AND STRUCTURAL CHANGES 
DURING DENATURATION OF HELICAL 

TYPE MACROMOLECULES
A V, TOBOLSK.Y* anj. Y, TJ OUPTA**

U tririm l. Viim nlifi 37. limit)

ABSTRACT A ihouiy for quaiUitulivo done upturn ui loviiiHihlc liolix-i'oil typo ])iiuse 

(niusitjoii in m.u'iojiiolefular syslains is Tlio tiansillou is clmracliM'iml by (l)Uifi
fiaction of liolu'nl ('mitout, (2) McrjutMU'o longtii of llio a-ystalliiic ivgmus, (3) sufpioiu'i'b^iigUi 
of tlio amoiphouh logioiis. and (+) moan squai’c c'ud-to-oiid diHUmoo 'Hu' iohuIIh foi ]ioi cent 
iiolioal oi (■1‘yslallmo coulout aioi (‘omjiaiod with oxjioiimonlal valiu's for polyboiizyl 

glulamato am) olignadeiiylio aoid

I N 'r H 0  \) r  (' T I 0  N

Certain niadroiiiolediiles siidi as synthetic polypiqitules, proteins, syntlietic 
pnlymideotides and deoxynhuniicleio acid (J.)NA) and riho-nndeK acid (JiNA) 
undergo a leversihle jiliase transition as the tcnipeiatiiio is raised. Foi tlu‘ natural 
proteins and niieleic acids, this diffuse phase transition has freiiiientlv heon 
termed deiiatiuation For isolated synthetic linear polyjiejitides in solution 
this phase change has been identified as a transition from a lielical (crystalline) 
state to a randomly coiled amorphous state, and has been denoted as the helix- 
coil transition (Dotj  ̂ et ul, 1954-57). This transition oeeiirs foi single strand 
helical maeromoleeulcs and also for multiple strand helical inaeronioleciilcs.

The piirjiose of this paper is to give a (piantitativ^e di'scription of this transition. 
In jiartieular wo wish to characterize the macromoleiade tlirough the region 
oi transition hy the following paiaiiieters (a) pcir cent helical or cTystalline content, 
(b) sequence length of the ciystalline regions, (e) sequencer length of the amorphous 
regions, and (d) mean squai’e end-to-end distanee of the macromolecules

To achieve these pui’iioses we utilize tivo theoretie.al developments. The 
first is a statistical thermodynamic treatment of the phase transition. The 
second is a theory of chain dimensions of crystalline maoroinolecules.
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S T A T I S T I C A L  H E  ft M O D Y  N A M I  C T  R E  A ' r M E  N T  . Z I  M M ^
B R A G U T II KO RY

The pi’ototype theory lor the phaae transition for linear polypeptides is the 
theory ol Ziinm and Bragg (1958). The authors considered the sequence of amide 
residues in a linear ])oJypeptjde chani. The oxygen atomolaity given amide residue 
IS eitlier hydrogen-bonded to tJie hydrogen atom of the tliird preceding residui' or 
it IS not The first three amide residues are considered unbonded The nota­
tion zero is assigned to an unbonded amide residue (segment) and the notation, 
unity is assigned to a bonded residue. A particular configuration oi‘ tlie cliain 
theiefore, would lie

0 0 0  1 I 1 0 0 0  0 1 1. ( 1 )  \

The following statistical weights were assigned to the various residue pairs

(1 ) the quantity .s* for the residue pair 1 I,
(2 ) the quantity fr.s for the residin' pair 0 I,
(II) the quantity I for the residue pair 0 0,
( 1 ) the quantity 1  lor the residue pair I 0

The abovi' assuiiqitions correspond to the simplest form ol the Zimvi-Bragg 
treatiiient. rr is a cpiantity much smaller than unity and exjiresses the dillieulty 
of till'transition from a non-bonded segment to a bondefl segment in a sequence 
such as (1 ) T’he quantity s wliic,h is larger than unity when the helix is favoured 
t'xpresses thi'- tendency loi bonded segments to follow bonded segments.

Zimin and Bi'agg used the matrix method to derive the ])artition function for 
the polypcjitide chain and an expression lor the Iraction of bonded segments as 
a function of’-*? and a Their matrix can be expressed as follows, (we have exchanged 
roAvs with eohimns in their notation for consistency lAutli our further discussion)

M
()-> 1  0 -> 1 

] _ y  0  1 1

I
... (2 )

The partition function for a chain of n segments is related to the maximum

-  (3)
where

... (4 )

The fraction of bonded segments 6 is equal to

dlnX,ne  =  '
dins (6 )
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A G E N E H  A L I Z  A T I U N  () E  T H E  K T A T  I S T  I C A 1. T H E R M O -  D  y  A  M ] 0  T  H  V: A T M  E  N T
A inodiliojitioii and generalization ol tlio Zimm-Bragg tieiitiiieiit lias licen 

presented liy Tobolsky (In Pi(‘ss), One reinterprets tlic partially lielieal luaero- 
molecnle as being a seipicnee of segnunits ^̂ 'lnell are eitlier in ainorplions regions 
(randomly eoilod) and denoted as r or as segments Avliicli are in (‘lystalline 
(helieal) regions and denoted as h. A maeromolecule can be wiitbni. theielbre, as

r r r h h h h h r r h h h r  r.. (6)

The question of hy(b*ogen bonded versus non-liydrogen bonded residues 
IS only a special case for tlie abov(‘ way ol conceptualizing the (‘li.nn IA)i a single' 
strand lielieal maeromolecule the crystalbzatioii lias to be intramoleeiilar some­
times aided by hydrogen bonding Imt not lu'cessarily so Eoi a double (jr multiple 
strand helical maeromolecule, tlû  crystallization v\ill have to be at least jia-rtially 
inteinioleciilar We may even imagine that the seqinmee ((>) iclers to a macro- 
molecule which IS part of a semi-crystalline macromolecular system as in bulk 
])oly-ethylene. Here the crystallization is mainly intermolec.iilar

We also generalize the notation to de\elo]) a 2 x 2 matux, analogous to the 
Zimm and Bragg matrix .

(1 ) a segment pair r r  is as,signed the .segment ]»air partition tmudjon

(2 ) a segment ]iair r h is assigned the segmeni. ]>air partition fune.tion

(3 ) a segment pair h r is assigned the partition function

(4 ) a segment pair h/i is assigned the partition function

The matrix corresponding to (b) can be uTitten as

r—► h
M =

fr r  ./ rh

1 Jh r  fht,
{ )̂

The mathematical treatment is idemtical with tlu' Zimm and Bragg treatment 
if the following identification is made ■

f r r  = -  1

fh h  ^

frh ,fk r  =

(«)

One can utilize this matrix to develop expressions for the average sc*quence 
size in the crystalline regions, the average sequence size in the amorphous regions, 
etc.

It is very helpful, however, to solve the problem in an alternate manner 
through the use of segment partition functions j'ather than segment pair jnirtition
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luiictions, Tins requires a rcwTitiiig ol‘ tlie scM̂ uence (6 ) and redesignating the 
first HOgiii(‘nt of’ every erystalJmc se(]ucnee as k,

r r r k h h h h r r k h h t r... (9)

The segment paidition functions are takciu as /y, and / .̂ The soJiition of 
the pioblcni now involves the use of a matrix as shown by Tofiolsky (1962)

r —> 7 r—> k r-> h fr W 0
M — > r k -^ k k-^h  : A*/r‘ 0

h—̂ r /i—> k h-> k 0
...j (10)

Tlu‘ solutions ()[ this matrix are equivalent to the soliitions ol matrix (i  ̂ il ;
\

L  -  »

A .. ( 1 1 )

fk■ 'j- =  <TS 
Jr

At this poini the advantage* of this loimulation ajipears. Inasmuch as 
we use segnumt paitition 1 unctions, we can easily inteiqiret these* quantities in 
the following manner ’

f r  fJr

fk ^  t

( 12)

Tn e((uation ( 1 2 ) (jj. is the statistical weight of an r segment, g}̂  is the statistical 
weight of an h segment, and A7// is the heat of fusion from the crystalline to the 
amorphous state The partilion tunetion/;[; of the k segments winch represent the 
boundary hotweem amoiphous and crystalline legions is taken to he temperature 
independent (an ajiiiroximation) and very small, to represent the difficulty ol 
entering svich a boundary region

The following results ensue from equations (10) and (12)

Rln
(13)

^Sf =  Rhi ^  
{h
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In equation (13) Tf is iUo transition temperature and A if?/ is the entropy of 
fusion.

TJio results for fracitional crystallinity 0 as a function of temperature, for 
the average sequem o Icuiglh h in the crystalline regions and the av(‘rage Hetpience 
length r in th(‘, amor|ihouH regions, hotli as functions of tenqjerature, are -wTitten 
below.

l-O  = -

AFf
R T   ̂ -h-

1 - C  + 2

(V

(\-pltT i-V [ f - RT  _ 0  -i 4

 ̂ h
^fr

\2  f - 1 ] -j-4'^

f =
o Jk 

fr

+ 1 ,

k )
f r i

... (14)

... (15)

RT

h =

^Ff
R T

> Jl
' J r

h

-J +1. (16 )

(17)

Here

^Ff =  . ... (18)

The expression for 0 is essentially equivalent to that given by Zimin and

Bragg. Wo also present explicit equations for h and f. The quantity given
n

in equation (17) is the ratio of the number of crystalline sequences to the total 
number of segments.

Ecpiaiions (14)-(10) are exa(;t equations dcnluced from the formulae of refer­
ence (4). Simple approximate equations were given also in (4) but, for the purposes 
of the exact cahnilations (tarried out in the sidisequent xiortions of this pajier, it 
was desirable to use the exact equations and machine f;omjiutations

C H A I N  D I M E N S I O N S  D U R I N G  T H E  P H A S E  
T R A N S I T I O N

Tobolsky and Gupta (1962) have developed a theory for the end-to-end dimen­
sions of seiTii-crystalline luacromoloculcs in terms of two probability parameiers.
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When sLatLstical thcnnodynamio equilibrium obtains, these parameters can be 
related to tlie partition functions ff, ff̂ , and/;^ introduced in the previous section. 
An extremely .simple approximate formula re.sults ■

^  [ i  (2A+l)^ (1 -  0)'^nl\ . .. (19)

where 0 and h can be identified with equations (14) and (1/5).

b](|uation (19), howevei, applies only to the simplest ease Avliere the unit 
cell of the lielix i.s .such tliat the comph'tely helical form of the molecule is c.̂ sen- 
tially a ri<ri(l rod. In otlier words, wi' aie not considering hero the eases Arbere 
tJiere is eomiilox eoilmg witliin tlie unit cell, as oeeurs in globular proteins, por 
do AÂe consider here tlu' efleets whiiih may h(' produced hy long rangî  loldnig 
within tlie (Tystallib(\s. Alllumgli modirniatioiis of cijuation (19) to eneomj)a\ss 
these phimomena huAu* been given (Toholsky, I9(i2; Toholsky pI. fd, 19(i2) we feel 
that it is jnematme to oxamine these more eomiilex formulae Aiuthout more 
expi'rimental (‘A’idenee tlian is now aAmilahle

(laleiilations based o]i equation (19) ai‘(‘ ne\mrth(doss valuable Ix'cause in certain 
easi's the completely lieheal macromolcmdes do a[)x)eai‘ to approximate rigul rods

(
A 1' V L T C A T  J O N T O K X  V K H T M K N T A 1. D A 'V A 

Ln this paper \vc apply the thcond-ical results to three luOix-coil transitions

(1 ) Th(‘ liidix-coil transition of polyhen/yl glntaiiiate in a dichloroacctic 
acid-efliylene dicliloridc mixture Tins is a rpvprw transition, i tlie helix is 
Stable at higli temperatures. This case has been treated by Ziimn, T)oty and 
Iso (1959) using the inetliod of Zinim and -Bragg. These authors obtain the expres­
sion for 0 as a function of T  by choosing a xiroxier value of o* and A//. AVo repeat

the.se calculations in our notation and in addition present results for h, f,
M

and R“.
(2) Scliellman jiostulated that the heat of hydrogen bonding, stabilizing 

the helix in linear xiolyxieptides is A /f — — 1500 caloncs/mole In our notation

this means that Affy =  1500 calorics/mole. We coiuiiute 0, h, r, , and

for the normal helix-coil transition for this type of polyxieptido assuming the 
same cr, and the same transition tcmxierature as in case (1). (The Zimni, Doty 
and Iso case)

(3) Vrof. J . 11. Fresco has made available to ns preliminary data of Fresco, 
Dlake and Doty for the hclix-coil transdion of the double atrandeci hoax of oligo-

adenylic acid AVe compute o, r, h, and for AHy =  — 1336 oal/mole and

different values of tr.
(1 ) Helix-Coil Transitiov For Polyhenzyl Glutamate
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2 inim, Poty and Iso have explained the transiljoii in polybenzyl glutamate 
m a dichloroaeotie aeid-cthylcne dicliloride mixturt' using the folloA\ing values for 
the quantities that appear in the Znum-Bragg trentnuMit ■

dlnS
dT

1

<r =  2  X 1 0 “  ̂ — =  cl<jj. (in our notation),

~  + S !)0 eiil. — — (m our notation), 

ly ^  n  .8°C, eal/deg.,

S‘U) t:i.l27>

Using these values in equations (M) (15), (l(i), (17), and (IS) Ave evaluated 

0, f, h, , and /f- as functions to tempiu'aturc  ̂ using a Bendix ((I-151)) type

computer. The lesults are shown grajilncallv in Figures 1-4. The (.oiiijm' 
tations for R~ are purely liyiMhlieLical based on the assumption that the liebcal 
form of the polypeptide is a rigid rod. We know that this i.su’t tru(‘ in this (aise, 
since mtrinsie. viscosity measureuuuits in this system slmw remarkably little 
change tlnough the tempt'rature region of the helix-(!oil trairsilioii

We would like to emphasize that the reverse transition treati'd by Zinun, 
Doty and Tso as an application of th(‘ Ziinm-Hragg theory in fact introfluces some 
grave coiuieptual difficulties for any statistical therniodynamii; moflel of the tyiies 
rliscus.sed here Tluvse authors correctly stat.eil that the positive value, of A// 
(a negative AH f in  our notation) can be explaimsl only by solvent efleiits. How­
ever, a negative AHf also means a negative ASf and i( is e-ei tainly difficult to con­
ceive of the ordered helical state as having a higher cntiopy than the randomly 
coiled .state.

Tem poraturo, °C
Fig, 1. CryatalUmty versus Tom peral urc curve for Poly benzyl G lulam ate 

(Zimm, D oty and Iso  case).
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F .g , 2

I

Fig. .3.
Temperature, ^C.

Number of Soquoncoa Versus Temperature for PolybeozyJ Glutamate
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Tomporai-urp, "C.
Fig. 4 Varm tion of Iho Expocled Squiuo of tlio f0rul-tO‘Ji]ftd D istance willi 

Tom porataio for l^olybcnzyl Glutumato.

(2 ) SchelbncuL casa

iScliclliiiim (11)55) [)()stulat(nl that, the heal of dissooialKm of t))c* hydrogen 
bond IS 1-150U cal/niol(' J ji oUicr vvoids, tlie heat of hydrogen ijonding ritabiliziiig 
the helix in linear polyijejitides la —1500 eal/mole We use the lolloAving values

of the various parameters which occur in the expressions for 0 , f, h, and i?*.
n

(Schellnian’s notation) =  —A H f (our notation),

A H f^  -f-1500 cal/mole

For the sake of delinibenê JS in our calculations, ato assume that a particular 
fSchellman polypeiitido has the same Tj and the same cr as used Zimm, Doty 
and Iso.

(T =  2 x  1 0 ~̂  =  fijfr =  ejfjr (in our notation)

A*Sy =  5.2668

AFj =  M Ij-T A S f =  i m - T A S j ,

The cjalculations are made for the normal helix-,coil transition for this type of 
polypeptide and the results are shoAm graphically in-Figures-5-S.
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Tciiiiieraiure '’C.
F ig . n iy a ta llm i-y  Verbiis 'ri'iiip ern tiire  C uivo f(jr L in eur Polyppplidos 

(SclieU m an Caso).

T e m p e ra tu re  ’ C.
F ig  6. C urve show ing V a r ia tio n  o f S oqu en  -o L e n g th s  in  th e  Cryafcalline and 

A m orphous ;[%egioa9 w ith  T o m p era tu ie  fo r  ta n o a r T o ly p ep tid es.
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Tem ))oratm o '“'C
7 Niimbor of SB(|iioric'os Versus Tem peraturo for Linear Poly])epl/ido,

Temporftl/uro “(X
Fig. 8. Variation, o f the Expooted Square of the End-lo-K nd D istance with 

Tem perature fo r L in ear Polypeptide’S.

(3) Helix-Coil Transition for Oligoadenylic Acid {Poly A)

We iiiilizo in this instance some preliminary cxpi'.riniental data on crystal­
linity versus temperature for a series of oligonucleotides of adenylic acid of vary­
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ing degrees of polymerization including data on 0 versus T  for a very high mole­
cular weight Poly A. The data were kindly supplied to ua in advance of publi­
cation by Prof. J .  II. Fresco (private communication).

The Poly A polymers exist in aqueous solution at low temperatures as double 
stranded helices. At higher temperatures they undergo a giadual helix-coi] 
transition. The primary experimental data consisted of values for Tf versus 
tlie degree of polymerization P  We eomijute the values of from the formula 
(Flory. 1957). i

I
T,

1 li
A h

- In 1 -- l(20)

In equation (2 0 ) Tf^  i.s tlic) melting temperature for the polymer oF “infmAe” 
molecular weight and Tj is the melting temjicralme foi Hu' ])olymer of degree 
of polymerizatum P  A plot ol I v e i s u s  b/.(l--2/7^) gave a straight line from 
whose slo])o W (‘ obtained a value of A H j  1152 c al/nioI(‘ Tlie data m Table 1 
were kindly siipyiliiMl by Piofessor t) P  Fres(io,

The data for 0 versus T  for the “infinite” molcenlar weight poly A were also 
supplied by Professor Fresco using the optical density method.

The value of rr — f\Jf̂  whii'h gave the best fit Avith tlu‘ exjierimental 0 versus 
T  data i.s 1 .5 X 10' With this value r)F a avo them (‘.omyaited 0, f  and h Tin* 
results are given in Table IT.

TABLE I

Tf versus P  for Oligo and Polynucleotides of Adenylic Acid in a Sodium 
Citrate Buffered Solution at — 4.0.

2 -

•1 . . .

4 —

5 14

6 26

7 —

n 4 4 .5

(1 4 8 .5

10 6 8 .5

11 G1

infin ite 112
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T A B L E  11
Coiiipulatum ot 6 , f  tuicl h lor Poly .1

ifkif, ---- o()()oir>)

637

0 ^  0
'IVinjim nl ui n 

('
( J']k])o h - 
ni('iitul)

(Tliroi (1- t ii*al) ' h

09 J 0 995 18 5 8800
102 :i 97 991 20 2500
105 90 98 89 1900
100 9.') 97 50 1500
108 :i 92 9-1 71 SOU
109 7 80 .88 100 050
1110 75 7:i 1 (i5 150
I I I  0 09 01 220 8101 12 0 50 50 200 200
1 12 4 2.'{ to 810 240
1 12 8 0 28 400 205

l^xpi'imiciilLil (Ijsi Missions oi tlu‘ lu*lix coil liaiisjlion in i)ol>' J  is f»;ivi'n in 
yarlinr |m|.)(‘is Iiy Pi(‘,sco and co-AVorkers (i!)57-50)

A “liypolliclical valm*" lor Jl- as a riinction oi liniipmalnn* could, of conrso 
he caleidixtcd Imin Tiihle FL and (.ainalion (IJ))

A V P K N n  1 X
A Fiindumvuial of the Zrmm Jhiujif Tht^on/

The Zimin Piagf  ̂ tlie<trv lias been jiiesniteil by its .lulhors a>s a Iheory loi- 
the ])hase (ihaiige oeiaiiriiig m linear [lolvjieptides (i e . the helix-eoil iiansil-ion). 
It IS our eonteiiiion that this theorv is not a true lln'ory ol jihase tiansitioii but 
lather a model foi difl'iise inelting

In  ordei to make our point clear, we first ionsuler a very simple model for 
tlie melting ol a simple iKpiid.

Consider a lattice cell model for Ihe liipiid state' in whicli all atoms have 
the partition lunetioii ck]){FjJR T), (onsider a laitiee iiiodt'l for llu*
solid state in Avhich all atoms have the partition function /', - <ĵ  (‘X]»(7i\/R7') 
and consider larger than gg. Oidy these t\i'o eonligiirations (or mierosiates) 
are alloAved for the system as a whole.

The partition lunction ol the assembly is 

A. I. < ^ = - / / l / y /
When/ a is larger than/^, only flu* first term eontiibutes to Q, u hen 

larger than /„ only the .second term eontributes to kk The melting condition 
occurs when/s equals/^. At that jioint 

A. 2. A£f fusion — Eĵ  -Eg
A/i? fusion — B  In {gĵ jgg)

J ’„ -  ^H|^H 
5
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If, on the other hand in our cell imKlel we allowed colls of partition func­
tion to mix indiscriminately with cells of partition hinction/* the partition 
functiim oi the assembly would be

A. 3. Q -- {fs \ - f i r

Kquation (3) shows no phase transition

Although equation ( 1) definitely shows a phase transition, it was put m there 
by the assumptions of the model, namely, that there arc only two configur^itions 
and that the partition functions t>f the colls are in one configuration anil /*. in 
the other. It is what the old text-boolis would call a “heuristic proof". \

The Zmiiii-Bragg model when cr equals zero is exactly the same as the ihodel 
represented by equation (I) The Ziinin-Bragg model tlien gives \
A. 4. Q =

We do not regard the Ziiiiin-Bragg treatment as a true theory of pliase transi­
tion, whether a  is zero or finite.

However, when cr is finite, we rcigard the Zimni-Bragg troatmeni' as an 
excellent model for diffuse melting. The introduction of finite (T introduces otbor 
suitably weighted intermediate configurations in addition to the two displayed 
in equations (1) and (4). It does not give the same weight to all configurations 
as was done in equation (3). The men* fact that we assign partition functions 
I and S  to segments in random and in helnjal configuTations means that wc! 
have preassiimed the existenije of the two phases The assignment of finite <r 
means we preassume a boundary phase This is not justifiable if we are 
considering this treatment as a fundamental theory of jiliasc transition. It is 
perfectly justifiable if wq regard the treatment as a mathematical model for 
diffuse melting.

The very interesting question arises for what jiroblems in diffuse melting 
can the Zimm-Bragg treatment be applied * Toholsky’s extension of the treat­
ment, including the generalization of the notation, liberates this model from restric­
tion to the helix coil transition in polypeptides. The effect of the hydrogen bonds, 
the particular structure of the alpha helix, ptr/mp.s’ even the one dmiensional aspect 
of the problem, no longer hawe central or unique roles.

What systems display diffuse melting '( Isolated polypeptides in solution, 
globular proteins which denature reversibly, double and triple strand helices 
such as poly A, DNA, et(5 Jt is perhaps an open question as to whether crystal­
line polymers in hulk, such as high molecular weight monodisperse polyethylene 
would show a sharp or diffuse melting under conditions of complete equilibrium. 
What about selenium, whose crystal structure displays long chains 1 Perhaps 
one requires very thin fibres of polyethylene or thin whiskers of selenium to bring 
out diffuse’! one dimensional melting. However, even in low molecular weight 
systems diffuse jueltings are sometimes known to occur. It woidd be interesting
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to know what inherent physical principle underlies diffuse melting (excluding trivial 
cases such as the effects of impurities). In response to our questionings Professor
P. R Eirich made the interesting suggestion tliiit the basic thing that might 
Lindorlio diffuse melting is anisotropy of the radial distribution function in the 
liquid state

The basic question is to what extent would a generalized Zimm-Bragg 
treatment, such as that presented by Tobolsky, be an apt model for diffuse 
melting in general ** The double sLiand helix of poly A may be a iTueial case. 
If the treatment presented in this paper is a good appioximation for poly 
A it might encourage further application of the concept to other cases of diffuse 

melting.
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