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DIMENSIONAL AND STRUCTURAL CHANGES
DURING DENATURATION OF HELICAL
TYPE MACROMOLECULES

A V. TOBOLSKY* anp Y. D GUPTA**

(Recerred, November 27, 1903)

ABSTRACT A theory for quantitative desciption of roversible hohx-coil {ype phase
trausibon 10 macromolecular systems s mven The transthon s chavaclerized by (1) the
fruetion of heheal eontent, (2) sequenco longth of the crystalline regions, (3) sequonce length
of the wmorphous 1ogrons. and (3) mown square end-to-ond distance  The results for per cent
helical or erystullime conlent e compured with oxpermmental values for  polyhonzyl
glutamute and oligoadenylic aeid

INTRODUCTION

Jertam macromolecules such as synthetic polypeptides, protems, synthetie
polynucleotides and deoxynbonucleie acid (DNA) and ribo-nuclerc neid (RNA)
undergo a 1eversible phase transition as the temperature 1s rawed.  For the natural
proteins and nuclew acds, this diffuse phase transition has frequently heen
termed  denaturation  For wolated synthetic linear polypeptides m solution
this phase change has been identified as a transition from a helical (crystalline)
stale to a randomly coiled amorphous state, and has heen denoted s the helix-
coil transiion (Doby et al, 1954-57). Tlus transition oceurs for smgle strand
helical macromolecules and also for multiple strand heheal macromolecules,

The purpose of this paper s to give a quantitative deseription of this transition.,
In particular wo wish to characterize the macromolecule through the region
of transition by the followiny parameters  (a) per eent helical or crystalline content,
(b) sequence length of the crystallme regions, (c) sequence length ot the amorphous
regions, and (d) mean square end-to-end distance of the macromolecules

To achieve these purposes we utilize two theoretical developments. The
first is a statistical thermodynamice treatment of the phase transition. The
second is a theory of chain dimensions of crystallme macromolecules.

* Departmont of Chemustry, Princeton University, Princeton, New Jersey.
** Department of Physics, University of Allahabud, Allahabad, Tndia.
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STATISTICAL THERMODYNAMIC TREATMENT.ZIMM-
BRAGU THEORY

The prototype theory for the phase transition for linear polypeptides 1s the
theory of Zimm and Bragg (1958). The authors considered the sequence of amide
residues in alinear polypeptide cham. The oxygen atom of any given amide residuc
18 either hydrogen-honded to the hydrogen atom of the third preceding residue or
it 1 not  The first three amide residues are considered unbonded  The nota-
tion zero 18 assigned to an unbonded amide residuc (segment) and the notation,
umty is assgned to a bonded residue. A particular configuration of the cham’
therefore, would be

000111000011, ... .o

The following statistical weights were assigned to the various residuce pairs

(1) the gquantity ¢ f[or the residue par 1 1,
(2) the quantity os for the residue pair 0 1,
(3) the quantity 1 for the residue pamr 00,
(1) the quantity 1 for the residue pair 10

The above assumptions correspond to the simplest torm of the Zmng-Bragg
treatinent. o is a quantity much smaller than unity and expresses the difliculty
of the transition from a non-bonded segment to a bonded segment m a sequence
such as (1) The quantity ¢ which is larger than unity when the helix is favoured
expresses the tendency for bonded segments to follow bonded segients.

Zimm and Bragg used the matrix method to derive the partition function for
the polypeptade cham and an expression {or the fraction of bonded segments as
w funetion of sand o Their matrix ean be expressed as {ollows, (we have exchanged
rows with columns in their notation for consistency with our further discussion)

01 01 |1 o
M- = | @
150 11 i1 &

The partition function for a chamn of » segments 1 related to the maximum
TOOL Ayqy Of matrix M -

Q= A"mam - e (3)

where
maz =% {1484[(1 —38)24-4os]t). e (4)

The fraction of bonded segments f is equal to

f= %, . (B)
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A GENERALIZATION OF THE SBTATISTICAL THERMO-
DYNAMIC TREATMENT

A modification and generahization of the Zoum-Bragg treatment has been
presented by Tobolsky (In Press).  One reinterprets the partaally helical macro-
molecule as being a sequence of segments wlich are either m amorphous regions
(randomly coiled) and denoted as r or as scgments which are m eystalline
(hehcal) regions and denoted as A. A macromolecule can be wiitten. therefore, as

revhhhhhrerhhhror... (6)

The question of hydrogen honded versus non-hydrogen bonded residnes
15 only a speeial case for the above way ol coneeptualizang the cham  For a single
strand helical macromolecule the cerystallization has to he intramolecular some-
times axded by hydrogen bonding but not necessanly so For a double or multiple
strand helical macromolecule, the erystallization will have to be ab least: partially
intermolecular - We may even imagine that the sequence (6) refers to a macro-
molecule which 1 part of a semi-crystalbne macromolecular system as in bulk
poly-ethylenc. Here the crystallization i+ mainly mtermolecul

We also generahize the notation to develop a 2X 2 matin, analogous to the
Zimm and Bragg matnx .

(1) a negment paw » 7 s assigned the segment pair partition tunction fy,,
(2) u segment par 7 A is agsigned the segment pair partition function fpp,
(3) a segment pawr b7 18 assigued the parlition function f,,

(4) a segment pair hh is assigned the partition funclion fy,.

The matrix corresponding to (6) can be written as

i'r;" -;I' r— )’ f"‘ -.fﬂl

M= (7)

h—1 h— h 1 Tur frn

The mathematical treatment is identical with the Zimm and Bragg treatment
if the following identification is made

Sor
S = ¢ (8)
Jenfue = o9

One can utilize this matrix to develop expressions for the average sequence

size in the crystalline regions, the average sequence size in the amorphous regions,
etc.

]

1

It is very helpful, however, to solve the problem in an alternate manner
through the wse of segment partition functions rather than segment par partition
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tunctions. This requires a rewriting ol the sequence (6) and vedesignating the
first segment of every erystalline sequence as k,

rerkhhhhrrikhhrr.. e (9)

The segment partition functions arve taken as f,, f; and f. The solution of
the problem now involves the use of a 33 matrix as shown by Tobolsky (1962)

=2 r=k roh feifit Tl 0
M= kor k>k koh -|filfd 0 St - (10)
hor hok hoh | fiif, 0 Satfad

The solutions of this matrix are equivalent to the solutions of matnx (2) o :

\

Jr=1
Ju = s (1)
ji‘:crs

At this point the advantage of this {formulation appears. Inasmuch as
we use segment partition functions, we can casily mierpret these’ quantities in
the following mannor

fv:".r/r
Jn = gn exp(%,’) . . (12)
Je=c¢

Tn cquation (12) g, is the statistical weight of an » segment, g, is the statistical
weight of an k segment, and All; is the heat of fusion from the crystalline to the
amorphous state  The partition tunction fy, of the k segments wlich represent the
boundary hetween amm phous and erystallme regions s taken to be temperature
independent (an approxumation) and very small. to represent the difficulty of
entering such a houndary region

The tollowing results ensue from equations (10) and (12)
r, Al _ A

Rin 7r Ay
n

(13)

AS; = Rln ¥z
n
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In equation (13) 7 is the transition temperature and A8y 18 the entropy of
fusion.

The results for fractional crystallmity ¢ as a function of temperature, for
the average sequence length & in the erystalline regions and the average sequenco
length 7 in the amorphous regiony, hoth as functions of temperature, are written
below.

L)
l—0=— T S T

(\/_E t—"?ll'/ —1I ) ; 4;’ ) 211? 1 '\/(F;I;'j 4-4'—/:5

) (e
F= - Y L, )

7

¥ AFy ’\/ ALY —f ]
RI" RT R 3
e ¢ at 1 ) +4 ]

4 1.

fr
h= .. . 16
i (16)
Ir
Tueg _ 0.
. i e (A7)
Here
AF; = AH—TAS; . .. (18)

The cxpression for 6 is cssentially equivalent to that given by Zimm and
Bragg. We also present explicit equations tor i wnd 7. The quantity Taeq given
n

in equation (17) is the ratio of the number of crystalline sequences to the total
number of segments.

Equations (14)-(16) are exact equations deduced from the formulae of refer-
ence (4). Simple approximate equations were given also in (4) but, for the purposes
of the exact calenlations carried ont in the subsequent portions of this paper, it
was desirable to use the exact equations and machine computations

CIIAIN DIMENSIONS DURING THE PIASE
TRANSITION

Tobolsky and Gupta (1962) have developed a theory for the end-to-end dimen-

sions R? of semi-crystalline macromolecules in terms of two probalnlity parameters.
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When statistical thermodynamic equilibrium obtains, these paramoters can be
related to the partition functions f,, /3, and fi, mtroduced in the previous section,
An cxtremcly simple approximate formula results -

R = [g 2h+1)4 (l—())]nlﬂ,. . (19)

where 0 and & can he dentified with equations (14) and (15).

Bguation (19), however, applies only to the simplest case where the umt
cell of the helix is sueh that the completely helical form of the molecule is 0.+sen-
tially a rigid vod. T other words, we are not considering here the cases where
there 18 complex coilimg withm the umt cell, as oceurs m globular proteins, hor
do we consider here the effects which may he produced by long range Lolding
within the erystallites.  Although modifications of equation (19) to encompuigs
these phenomenan have been given (Toholsky, 1962; Tobolsky el al, 1962) we {eel
that 1l is premature to examine these more complex formulac without more
experinental evidence than is now available

Calenlations hased on equation (19) ave nevertheless valnahle because in certain

cases the completely helical macromolecules do appear to approximate rgwl rods
|

APPLTCATION T0 BXPERIMENTAL DATA 4
Ln thiy paper we apply the theorotical results to three helix-coil transitions
(1) "The hehx-coil transition of polyhenzyl glutamate in a  dichloroacetie
acid-cthylene dichlorrde mixture  This is a reverse transition, 1¢., the helix is
stable at Ingh temperatures. This case has been treated by Zimm, Doty and
Iso (1959) using the method of Zmmn and Bragg. Theseauthors oblain the expres-
sion for 7 as a function of 7' by choosing a proper value of o and AH.  Wo repeat

. . . iz N
these calculations in our notation and in addition present resalts for k, 7, ~21
n

and R
(2) Schelhnan postulated that the heat of hydrogen bonding, stabilizing

the helix in linear polypeptides is AH = —1500 calories/mole  In our notation
this means that AH; = 1500 ecalorics/mole. We compute 0, h, 7, 7—%’”, and R?

for the normal helix-coil transition for this type of polypeptide assuming the
same o, and the same transition temperature as in case (1). (The Zimm, Doty
and Tso casc)

(3) Prof. J. R. Fresco has made available to us preliminary data of Fresco,
Blake and Doty for the helix-coil transition of the double strandea henx of oligo-

adenylic acid  We compute g, 7. b, "’:L“’ , and R? for AH; =—1336 cal/mole and

different values ot o.
(1)  Helix-Coil Transition For Polybenzyl Glutamate
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Zimm, Doty and Iso have explained the transition m polybenzyl glutammate
m a dichloroacetic acid-cthylene dichlorde suxture using the folowing values for
the quantities that appear in the Zmmm-Bragg treatment

o =2x10"* = f;/fy = ¢/y, (m our notation),

dinS AH
(}TI‘T =g All = 4890 cal. — —AH; (in our notation),

Ty = 118°C, AS; = AU Ty = 312 cul/deg.,
AFy — AHp—TAS; -= ~890-4 3,127,
Usimg these values i equations (14) (15), (16), (17), and (18) we cvaluated
0,7 h. 1—1';{“ , and B? as functions to temperature, using a Bendix (G-16D) type

computer. The results are shown graplically m Figures 1-4. The compu-
tations for R* arc purely hypothetical Dhased on the assumption that the helieal
form of the polypeptide 1s a rigid rod.  We know thatl this isn’t true in this case,
since mtrmsic viscosity measurements in this system show vemarkably little
change through the temperature region of the helix-coil transition

We would hhke to emphasize that the reverse transibion treated by Zuoam,
Doty and Tso as an application of the Zimm-Bragg theory in fact introduces some
grave conceptual difficulties for any statistical thermodynamic model of the types
discussed here These anthors correetly stated that the positive value of Al
(a negative AH in our notation) can be explamned only by solvent effects.  How-
cver, a negative AHp also means a negative ASp aud 1l is certunly difficult to con-
ceive of the ordered helical state as having a lugher entropy than the randomly
cotled state.

Crystallimty (6}~

1 1 1 1 I J
o 0 20 30 40 50 * 60

Temperaturo, °C
Fig. 1. Crystalimty versus Tomperature curve for Polyhenzyl Glutamate
(Zimm, Doty end Iso case).
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Temperature, °C.

Fig, 2 Curve showing vuwintions of requonces Les gths mn the crystaine and
Amorphous Regions with Temperaturo for Polybenzyl Clutamato
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Fig. 3. Number of Soquonces Versus Toemperature for Polybenzyl Gluiamate
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Tomporature, “C.
Fig. 4 Varwtion of tho Expocted Squaro of tho End-to-Jind Distance wilh
Tomporatuie for I'olybenzyl Glutamate.

(2) Schellman case
Scehellman  (1955) postulated that the heat of dissociation of the hydrogen
bond 15 -F 1500 cal/mole  In other words, the heat of hydrogen honding stabilizing
the helix in Iincar polypeptides 1s —1500 cal/mole  We use the lollowing values

of the various parameters which oceur m the expressions for 0, 7, b, n;:,, ,and R?
AH, (Schellman’s notation) = —AH; (our notation),
AH; = 41500 cal/mole

For the sake of definiteness in our calculations, we assumne that a particular
Schellman polypeptido has the same Ty and the same o as used by Zunm, Doty
and Iso.

o = 2Xx10~* = f;/f, = €/g, (in our notation)
T, = 11.8°C, AS; = 5.2668
AF; = AH;—TAS; = 1500—TAS,.

The caleulations are made for the normal helix-goil transition for this type of
polypeptide .and the Tesults are-shown graphically in-Figures-5.8.
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Fig. 5. Crystallm'y Versus Temperature (‘urvo for Lineur Polypeptides
(Schellman Caso).
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Tig 6. Curve showing Variation of Sequen ‘o Lengths 1n the Crystalline and
Amorphous Regions with Temperature for Linear Polypeptides.
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No of Sequences (X10-3)
»
T

o} 10 20 30 40 50

Temperntmeo “C
T™g 7 Number of Sequoncos Versus Temperature for lancar Polypeptadeo,

300~

HYPOTHETICAL
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1 1
o 5 10 ] 20

Temporaturo °C.
Fig. 8. Vanation of the Expected Square of the End-to-Knd Distance with
Tomperature for Linear Polypeptides.

(3) Heliz-Coil Transition for Oligoudenylic Acid (Poly A)
We utilizc in this instance some preliminary experimental data on crystal-
Inity vorsus temperature for a series of oligonucleotides of adenylic acid of vary-
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ing degrees of polymerization including data on 0 versus 7' for a very high mole-
cular weight Poly 4. The data were kindly supplied to us m advance of publi-
cation by Prof. J. R. Fresco (private communication).

The Poly A polymers exwst in aqueous solution at low temperatures as donblo
stranded helices. At higher temperatures they undergo a gradual helix-coil
transition. The primary experimental date consisted of values for Ty versus
the dogree of polymerization P We compute the values of AH; from the formula
(Flory, 1957). i

;1!_ 1'17 _ AI;J,’ n (]__ if) \\(20)

\
In cquation (20) T 15 the melting temperalure for the polymer of “iuﬁm\lyc”
molecular weight and 7y is the melting temperature for the polymer of degree
of polymerization P A plot ol 1/T, versus Tu(l--2/P) gave a straight line {from
whose slope we obtained a value of All; = 1152 cal/mole The data m Table 1
were kindly supplied by Professor J R Fresco.

The data for 0 versus T for the “infinite” moleenlar weight poly A were also
supplied by Professor Tresco using the optical density method.

The value of & — fi/f, which gave the best fit with the experimental 0 versus
T data is 155105 With this value of & we then computed 0, 7 and k. The
rosults are given in Table IT.

TABLE I

T, versus P for Oligo and Polynucleotides of Adenylic Acid in a Sodium
Citrate Buffered Solntion at pH = 4.0.

P 7°C
2 -

4 =

4 —

b 14

6 26

7 _

R 44.5
0 48.5
10 568.5
11 G1

infinite 112
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TABLE 11
Cowmputation of §, 7 and & for Poly .{
(Jelf, = 000015)

Temporature  (Kxpen- (Theoro- ' h
« montal) tieal)
a4y ] o 996 I8 5 1800
102 3 97 491 26 2500
105 H6 98 39 1900
106 3 95 07 50 1500
108 3 92 A 71 KO0
109 7 86 .88 (0] G50
i o 7h ™ 165 160
o 69 Gl 220 3o
e o 50 40 2060 200
24 23 40 310 240
12 8 0 28 400 206

Expernuental discussions of the helix coll transttion i poly .4 15 given
carlier papers by Fresco and co-workers (1957-59)

A “hypothetical value™ for 22 as a function of temperature could, of course
be caleulated from Table TL and cquation (19)

APPENDIX
A Fundumental Critgue of the Zomm Bragy Theory

The Zumm Bragyg theory has heen presented by ats authors as a theory for
the phase change ocemring e hnear polypeptides (e . the helix-coil transition),
It 18 our contention that this theorv is not a true theory of phase transition hut
rather a model for diffuse melting

In order to make our point clear, we fivst consider a very simple model for
the melting of & stmple hquad.

Jonsider a lattice cell model for the Hguul state m which all atoms have
the partition {unction [, — ¢, exp(&,/RT), consider w lattice model for the
solid state 1 which all atoms have the partition fimetion [, - g, exp(f,/RT')
and consmder g, larger than g,.  Only these two conligurations (or nucrostales)
are allowed for the system as a whole,

The partition function of the assemblyv 1s

Al Q=1r" 11N
When f, is larger than [, only the first term contributes to @, when [, s
larger than f, only the gecond term contribhutes to . The meltmg condition
occurs when f; equals f;. At that poiut
A 2. AH fusion = I, -l
A8 tusion = Rn(g,/g,)
T, = AH|AS

(1]
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If, on the other hand in our cell model we allowed cells of partition fune-
tion f; to mx indiscriminately with cells of partition tunction f, the partition
function of the assembly would be

A. 3. Q = (fe ¥
Equation (3) shows no phase transition

Although equation (1) definitely shows a phase transition, 1t was put m there
by the assumptions of the model, namely. that there arc only two configurations
and that the partition {functions of the cells are f; 1 one configuration an{l fem
the other. 1t 18 what the old text-books would call & “heuristic proof™.

The Zmmm-Bragg model when o equals zero 18 exactly the same as the model
represented by cquation (1)  The Zinm-Bragg model then gives \
A 4. Q=1¥4+8¥ '
We do not regard the Zimm-Bragg treatment as a true theory of phase transi-
tion, whether o 18 zero or finite.

However, when o 18 finite, we regard the Zimmm-Bragg treatmment as an
excellent model for diffuse meltimg.  The introduction of finite o introduces other
suitably weighted intermediate configurations in addition to the two displayed
m equations (1) and (4). Tt does not give the same weight to all '(,Unﬁgumtiuns
us was done in equation (3). The mere fact that we assign partition functions
I and 8 to segmonts in random and in heheal configurations means that we
have preassumed the existence of the two phuses The assignment of fimte o
means we preassumne a boundary phase This s not justifiable if wo are
considering this treatment as a fundamental theory of phase transition. L4 1y
perfectly justifiable 1if we regard the troatment as a mathematical model for
diffuse melting.

The very interesting question arwes for what problems in diffuse melting
can the Zimm-Bragg treatment be applied ¢ Tobolsky's extension of the treat-
ment, meludmg the generahization of the notation, hiberates this model from restric-
tion to the helix coil transition in polypeptades.  The effect of the hydrogen bonds,
the particular structure of the alpha hehx, perhaps even the one diensional aspect
of the problem, no longer have central or umque roles.

What systemns display daffuse melting ¢ Isolated polypeptides in solution,
globular protemns which denature reversibly, double and triple strand helices
such as poly 4, DNA, ete 1t 1s perhaps an open quostion as to whether crystal-
Ime polymers in bulk, such as high molecular weight monodisperse polyethylene
would show a sharp or diffuse melting wnder conditions of complete equilibrium.
What about selemum, whose crystal structure diwsplays long chains ¢ Perhaps
one requires very thin fibres of polycthylene or thin whiskers of selenium to bring
oul, diffuse one dimensional melting. However, even i low molecular weight
systems diffuse meltings are sometunes known to oceur. It would be interesting
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to know what mherent physical principle underlies diffuse melting (excluding trivial
cases such as the effects of impunties). In response to our questiomngs Professor
F. R Einch made the interesting suggestion that the basic thg that might
underhe diffuse melting is anisotropy of the radial distribution funetion m the
hquid state

The basic question 18 to what extent would a generalized Zimm-Bragg
treatment, such as that presented by Tobolsky, be an apt wmodel for diffuse
melang in general # The double stiand helix of poly 4 may be s erucial case.
Tf the treatment presented i this paper is a good approximation for poly
A it might encourage turther apphcation of the concept to other cases of diffuse
melting.
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