34

A REINVESTIGATION OF THE DECAY OF Na-22*

M. K RAMASWAMY \dagger
Derartnent. of Physics, The Johns Hopkins University, Baltimore-18, Maryland (USA)
(Received for publication, May 14, 1959)

Abstract

The amount of positron emission in the decay of Na-22 has been determined to be 0.899 ± 0.003 using a 4π plastic beta scintillation spectrometer in conjunction with double and triple coincidence techniques. This leads to an $\varepsilon / \beta+$ ratio of 0.112 ± 0.004 which is slightly better than the best earlier result of Sherr and Miller. Comparison of the measured value with the theoretical ratio of 0.1135 ± 0.002 leads to a value for the Fierz interference term $b_{G T}=-0.004 \pm 0.012$, showing the extreme smallness of the cross term in allowed Gamow-Teller transitions. In the appendix a brief summary of the status of the Fierz term as revealed by our studies and other work is presented.

INTRODUCTION

2.6 year Na-22 decays by positron emission and electron-capture to the firs texcited state of Ne-22 at 1.28 MeV followed by a gamma ray of this energy to the ground state. The decay scheme is shown in figure 1. The spin of $\mathrm{Na}-22$ has been measured to be 3 (Mack, 1950). The spin of the 1.28 MeV state of Ne-22 is 2^{+}from systematics of even-even nuclei (Scharff-Goldhaber, 1953). Hence the transition $3^{+} \rightarrow 2^{+}$follows the selection rule $\Delta J=1$, No and is therefore pure Gamow-Teller. The electron-capture to positron branching ratio in the decay of $\mathrm{Na}-22$ has been extensively studied. A summary of previous work is given in a very recent paper by Konijn et al (1959). So far the best reported value is that of Sherr and Miller (1954) who obtained $\epsilon / \beta^{+}=0.110 \pm 0.006$ by an elegant experiment, and by comparing with the theoretical value of 0.1135 ± 0.0020 estimated the Fierz interference term to be $(-1 \pm 2) \%$. Since all the present interpretations of Fierz interference are based on this experiment we have been prompted to attempt a more precise determination of this ratio, if possible.

The principle of the present experiment is extremely simple. If we have a gamma counter which detects the 1.28 MeV gamma ray and a beta

[^0]counter which cletects the positrons, then assuming that all the positrons are counted we can write for the beta-1.28 coincidences
$$
N_{\beta}{ }^{+}, 12 \mathrm{y} ~=N_{0} f_{+} \sigma_{1 \cdot 2 \mathrm{~EB}}=a
$$
and for the gamma ray
$$
N_{1-28}=N_{0} \sigma_{1 \cdot 28}=b
$$
where N_{0} is the transition rate,
$f_{+}=$the fraction of decays bypositron emission
and $\sigma_{1 \cdot 28}=$ the efficiency for detecting thel 28 MeV gamma ray. The ratio of a to b then yields f_{+}, from which the c / β^{+}ratio can be computed. This is possible provided the entire positron sjectrum can be measured.

Fig. 1. Ducay Scheme of Na-22
We have employed a 4π plastic scintillation counter for detecting the positrons and a $\mathrm{NaI}(\mathrm{Tl})$ counter for the 1.28 MeV gamma ray. The gamma counter is biased to accept only the photopoak. The effertiveness of the 4π plastic scintillation counter for measuring the shapes of beta spectra has been demonstrated by the work of Johnson et al (1956) and more recently by Robinson and Langer (1958), and is substantiated by the present experiments.

A $\mathrm{Na}-22$ source from a HCl solution was evaporated on a $0.0001^{\prime \prime}$ mylar foll and covered with a similar foil. The 4π counter was formed in the following way. Two plastic cylindors, each 3 mm thick and 1 cm in diameter were chosen. One of the cylinders had a depression $1 / 2 \mathrm{~mm}$ deep and $1 / 2 \mathrm{~cm}$ in diametor. The $\mathrm{Na}-22$ sandwich was placod in the depression. The two cylunders were pressed
together to form the 4π counter. A cone-shaped light pipe $1-1 / 2^{\prime \prime}$ long having a well at the apex was mounted on a DuMont 6292 phototube. To the bottom of the well the 4π plastic scintillation crystal was cemented by means of Canada balsam. The sides of the well had been painted white to ensure good light collection. The top of the well had a thin alummium foil whitened inside. The gamma counter was a $2^{\prime \prime}$ cube $\mathrm{NaI}(\mathrm{Tl})$ crystal which had a resolution of 11% for 0661 MoV gamma ray of $\mathrm{Cs}-137$. The 4π counter had a resolution of 16% for the $0.624 \mathrm{MeV} K$-conversion lino of $\mathrm{Cs}-137$. The ontire assembly of crystal and counters was surrounded by $2^{\prime \prime}$ of lead at $4^{\prime \prime}$.

JXPERIMENTAL

The general features of the 4π counter were investigated by a P-32 source using plastic cylundors, each 5 mm thick and 1 cm in diameter. A Formi plot of

Fig. 2. Ferm plot of P-32 spoctrum taken with a 4π plastio scintillation spectrometor. Note the end-point at 1.72 MeV .
the spectrum is shown in figure 2. An end-point of 1.72 MeV is indicated, in good agreement with the value in the litorature (Kmg, 1954). Experimonts on $\mathrm{Na}-22$ were started with plastics of dimensions described in the Introduction The gamma counter was set on the photopeak of the 1.28 MoV gamma ray. The peak had a width of 3.5 volts at 35 volts. This was used to gate the 20 -channel analyzer. The positron spectrum coincident with the 1.28 MeV gamma ray is shown in figure 3. Energy calibration of the spectrometer was obtamed by using external gamma rays of $\mathrm{Na}-22(0.511 \mathrm{MeV}$), and $\mathrm{Cs}-137(0.661 \mathrm{Mev})$. The Compton edges located at $3 / 4$ of the maximum were used. The calibration is also shown in figure 3(c). The calibration curve intercepted the axis corresponding to zero pulse height at 18 KeV in agreement with similar observations by Johuson fl al (1956).

Because of the fact that the plastic chosen had dimensions somewhat greater than the range of positrons, one would expect that the observed beta spectrum

Fig. 3.
(a) Continuous curve-betia spectrum of $\mathrm{Na}-22$ in 4π plastic counter coincident with the 1.28 MoV gamma ray.
(b) Dotiod curve-bota spectrum of $\mathrm{Na}-22$ in triplo comedence with the 1.28 MeV gamma ray and the two annihilation quanta. Tho spectium is normalized to the doubles apeetruin (betarl 28*) above 50 KoV to $1 / 10 \%$.
(c) Enorgy onlibration of the 4π plastic counter using Compton edges of 0.511 ($\mathrm{Na}-22$) and 0.661 (Cs-137) MeV .
(d) Compton distribution of Na-22 gamina rays in 4π plastic counter (with positrons completely stopped by luote) concidont with the annululation radsation and the 1.28 MeV gammu ray.
may not be the correct one, but somewhat distorted by the simultaneous detection of a beta particle and its associated Compton electron. Thus the effect would be qualitatively to shift the spectrum lowards higher energy, without changing the area under the spectrum.

In order, therofore, to obtain the undistorted spectrum, the beta spectrum was measured in triple coincidence with the 1.28 MeV gamma ray and the two annuhilation quanta. Tho experimental arrangement and a functional diagram of the olectronce circuitry are shown in figure 4. Pulses from the two 0.511 MeV counters and the 1.28 MeV counter were fed to a triple coincidence circuit, whose output was used to gate the 20 -channel analyzer. The positron spectrum gated by the triples is shown also in figure 3, normalized to the doubles spectrum beyond 50 KeV . The statistical error for each point on the triples spectrum variod from 2 to $\mathbf{4} \%$. The doubles and the triples spectra are indeed displaced as expected. To obtain a quantitative justification for the spectral displacement, the positrons
were completely stopped in just enough lucite and the Compton distribution was obtained in comcidence with the anmuilation radiation and the 1.28 MeV gamma ray. The spectrum thus obtainod is shown as curve d in figure 3 and is seen to be similar to the one that is obtained using an extornal source oxeept for the absence of edge cffects.

Fig. 4. Block diagram of experimontal sot-up for Na-22 studios.
If the assertion that the effect of the Compton distribution due to annihilatoon raduation is simply to shift the doubles spectrum is indeod correct, then it must be possible to express the doubles spectrum $d(h)$ in terms of the triples spectrum $t\left(h^{\prime}\right)$, and the Compton distribution $C^{\prime}\left(h-h^{\prime}\right)$. In other words, we should be able to write

$$
d(h)=\sum^{n} t\left(h^{\prime}\right) C\left(h-h^{\prime}\right) h .
$$

A numorical calculation was carriod out to test this assumption. For an ussumed Compton of 6% the agreement from pomt to point was $3-4 \%$. The assumption of 6% is not inconsistent with the dimensions of the plastic and the Compton cross-section (the choice of 6% is not critical, sunce the triples spectrum itself was known to $2-4 \%$). The agreement thus obtained provides quantitative justification for the assertion made earlier.It must be pointed out in this connectuon that the effect of the inner bremsstrahlung is to displace the true spectrum in a direction opposite to that due to the Compton distribution but because of the weakness of the effect, the Compton effect predominates. The preservation of areas under the doubles and triples spoctra is indicated by the fact that the two areas could be normalized to within $1 / 10 \%$.

Since the lowest enorgy observed was around 40 KeV , an extrapolation of the spectrum to zero energy has to be made in order to obtain the area under the whole beta spectrum. To do this, the following procedure was adopted. The ideal

Fermi spectrum corrected for screening was plotted. The spectrum was distorted for finite resolution at various points of the spectrum by folding in a gaussian of the proper width. The assumption was made that the half-width varied as the square root of the energy over the entire energy range. Choosing various energies (designaterl as $h_{m ı n}$), the aroa to the right of $h_{m i n}$ was obtained. It was determinerl that below 50 KeV the area under the beta-spectrum with and without resolution correction differed only by $1 / 10 \%$ and amounted to 5.3% of the aroa under the beta-spectrum boyond 50 KeV . Thus the area under the ideal Fermi distribution was taken as the correct area. This when added to the area due to the romaining portion of the doubles spoctrum (which had been corrected by the Compton distribution to get the undisplaced spectrum) would give the total area.

In order to test for any possible systematic errors the ratio of aroa to the right of $h_{\text {mIn }}$ and the entire area from $50 \mathrm{~K} \theta \mathrm{~V}$ upto the maximum energy was plotted as a function of $h_{\text {min }}$ both for the ideal Fermi spectrum corrected for finite resolution, and the actual doubles beta spectrum corrected to the triples spectrum. Tho result is displayed in figure 5 . It is observed that the data of three different runs

Fig. б. Study of systematic errors in the Na-22 experiment.
are consistent within themselves to $1-1 / 2 \%$ and with the theoretical plot to within 1%. This may be taken as evidence for the absence of any systematic errors.

The experiments were repeated with and without shielding. The effect of channel width on the gamma ray side was next studied. A different source was
made and the experiments repeated. In each case consistent results were obtained. Throughout the course of the experiments the counters were periodically checked. The energy calibration of the beta spectrometer was carried out before and after cach run. The overall statistical error in the double run was $1 / 10$ to $2 / 10 \%$. Altogether seven runs wero made.

RISULTS

The data from six of the runs are assembled in Table I together with explanation. The average value of f_{+}is calculated to be 0.899 ± 0.003. 'This yields an average ϵ / β^{+}ratio of 0.112 ± 0.004.

Apart from statistical orror, the other uncertanty is due to the folding of the Compton distribution, and in the estimation of the areas under the beta and gamma spectrum. A calculation was made to see how much error would be introduced if the half-width of the gausstan curve deviated from obeying the $\sqrt{\boldsymbol{E}}$ law. Dependencos proportional to $E^{0.4}$ and $E^{0.6}$ werc investigated. From this it was concluded that the error introduced is less than $1 / 10 \%$ in the final result.

Finally an error in the determination of the end-pout of the positron spectrum would introduce an crror in the value of $h_{m n}$. Because of the assumed lmearity in energy scale, this would tend to introduce a lincar systematic error(as distingushod from any due to the apparatus itself). In Table 2 the end-points are tabulated for various runs together with uncertainties. From this table the systematic crror introduced in this way is estimated to be less than 1.2%. Thus allowing for this our ϵ / β^{+}ratio would at worst become

$$
\epsilon / \beta^{+}=0.112+0.005
$$

resulting in the Fierz term (see Discussion)

$$
b_{a}=-0.004 \pm 0.013
$$

DISCUSSION

The computed value of ϵ / β^{+}is somewhat better than that of Sherr and Miller. The theoretical value of $\epsilon / \beta^{\vdash}$ is 0.1135 ± 0.0020, when corrected for sereening and 6.5% L-capture (Rose and Jackson, 1949). The value of $\left\langle W^{-1}\right\rangle$ for W $=2.061$ for $\mathrm{Na}-22$ is 0.7 . The Fierz torm is computed from the expression

$$
b_{G T}=\frac{R / R_{0}-1}{2\left[1+R / R_{0}<W^{-1}>\right]}=-0.004 \pm 0.012 .
$$

Nr-22 is porhaps the ideal caso for determining the Fierz term because of the low Z involved. It is very unfortunate that the end-point of the positron spectrum is not known well enough to attempt any further refinement in experimental

TABLE I

Na^{22} (Data)

(a)
(b)
(c)
(d)

Run No. Conditions $\quad 1.28(>50 \mathrm{kov}) 128(>0 \mathrm{kov}) \quad N_{1.28} \mathrm{cps} \quad f_{+}=(\mathrm{b}) /(\mathrm{c})$

1. $2^{\prime \prime}$ of Pb shield at $\quad 6408 \pm 0.18 \quad 67.48 \pm 0.19 \quad 75.21 \pm 0.11 \quad 0.898 \pm 0.003$ 4". γ-ray ch. width $=3.5$ volla
Sourco
No. 1
2. No rhueld. ch. $\quad 6423 \pm 019 \quad 6763+0.20 \quad 75 \quad 24+0.15 \quad 0.900 \pm 0.003$ width -3.5 volth
3. No shueld ch. $\quad 57.8 \pm$ 上 $0.22 \quad 6088 \pm 0.23 \quad 67.76 \pm 0150.899 \pm 0.004$ width $=3$ volts
4. $2^{\prime \prime \prime}$ of Pb mheld at $\quad 48.31 \pm 0.14 \quad 50.87 \pm 0 \quad 15 \quad 56 \quad 52 \pm 0 \quad 10 \quad 0.900 \pm 0003$ $4^{\prime \prime}$. γ-ray ch. widihe $=3.5$ volts

No. $2 \quad 5$, No shueld oh. $\quad 48.07+0 \quad 17 \quad 50 \quad 62 \pm 0.18 \quad 5631+0.11 \quad 0899 \pm 0.004$ width-3.5 volis
6. No shueld ch. width $=3$ volis

$$
\begin{array}{ll}
\varepsilon=1-f_{+}=0.101 \pm 0.003 & \text { Average value of } \\
\therefore \varepsilon / \beta_{1}=\begin{array}{c}
0 / 899 \pm 0.003 \\
\hline=0.003 \\
=0.112 \pm 0.004
\end{array} & f_{1}=0809 \pm 0.003
\end{array}
$$

TABLE IJ
Eud-point energies of positron spectrum

Run No	Fnd-point (keV)
-1	546 ± 11
2	
3	
4	541 ± 10
5	
6	548 ± 11

TABLE III
Summary of results on Fierz term

Nuclous	'Iransition	W_{0}	$b_{G T}$	Reforence
Ga-68	$\mathbf{1}^{+} \rightarrow \mathbf{2}^{+}$	470	-0.03 ± 0.02	Ramaswamy, 1950
Co-58	$\mathbf{2}^{+} \rightarrow 2^{+}$	1.924	-0.004土0.014	1958
$\mathrm{Na}-22$	$\mathbf{3}^{+} \rightarrow 2^{+}$	2.061	-0 004 ± 0.012	prosent work

techniques to measure ϵ / β^{+}ratio. In any case it has been demonstrated that the plastic scintillation counter can be effectively used in the study of beta specira and precision results obtained if analyzed with caution.

CONCLUSIONS

A reinvestigation of the electron capture to positron branching ratio in the decay of $\mathrm{Na}-22$ has been made with somewhat greater precision than has been possible before, using a 4π plastic scintillator and a gamma counter in conjunction with double and triple coincidence techniques. The result for ϵ / β^{+}ratio is 0.112 ± 0.004. It is suggested that the beta spectrum end-point be measured with greator precision to make much more meaningful estimates of the Fierz term. It would le further of interest to measure K / β^{+}ratios in unique forbidden transitions allowed only by Gamow-Teller selection rules.

AOKNOWLEDGMENTS

The author wishes to thank Professor L. Madansky for valuable suggestions and illuminating discussions.

APPENDIX

かUMMARY OF FIERZ INTEJFERENCE IN IBETA DECAY
In this section the conclusions regarding the status of Fiorz interference in Gamow-Tellor transitions as indicated by our measurements reported here and elsowhere are summarised ('lable III).

Gerhart (Gerhart, 1958) has made an excellent analysis of Fierz interference m Fermi transitions and concludes $b_{F}=0.00-1-12$. A briof review of Fierz interference in beta-decay has been recently given by the author(Ramaswamy, 1959). From Table 3 one sees that the best evidence for the smallness of the Fierz term in G-T interaction comes from Na-22. Konijn et al have summarized data regarding the Fierz term as determined by the K / β^{+}ratio technique. They conclude that $b_{G r}=-0.007 \pm 0.010$.

From evidence presented above and from Gerhart's analysis one can conclude that the Fierz term in allowed transitions is practically zero. Before parity nonconservation was discovered the Fierz term in G-T transition could be expressed as

$$
b_{G T}=-\frac{C_{\Lambda}^{*} C_{T}}{\left|C_{A}\right|^{2}+\left|C_{T}\right|^{2}}
$$

The smallness of b could be interpreted as implying that C_{A} / C_{T} or C_{T} / C_{A} was small. With the discovery that parity is not conserved in beta-decay, the definition of b has acquired the extended form

$$
b_{T}=\frac{R e\left(C_{A} C_{T^{*}}{ }^{*}+C_{A}^{\prime} C^{\prime}{ }^{\prime *}\right)}{\left|C_{\boldsymbol{A}}^{-}\right|^{2}+\left|C_{\boldsymbol{T}}\right|^{2}+\left|C_{\boldsymbol{A}}\right|^{2}+\left|C_{\boldsymbol{T}^{\prime}}\right|^{2}}
$$

where
C_{A}, \boldsymbol{T}, are the parity conserving and
$O_{A}^{\prime}, r^{\prime}$ are the parity non-conserving coupling constants.
The ${ }^{\prime} s$ denote complex conjugation resulting from a possible violation of time reversal invariance.

With the new definition of b, the smallness of b moans

$$
\operatorname{Re}\left(C_{A} C_{T}{ }^{*}+C_{A}{ }^{\prime} C_{T}{ }^{\prime}{ }^{*}\right)=0 .
$$

This implies that

$$
\frac{C_{A}^{\prime}}{C_{A}^{\prime}}=-\frac{C_{T}^{\prime}{ }^{\prime *}}{C_{T}^{\prime}{ }^{*}}
$$

Nothing more can be said concerning the coupling constants unless the relation between the parity eonserving and non-conserving coupling constants is known. It is now established from electron polarization measurements on pure GamowTeller transitions that $C_{A} / C_{\Delta}^{\prime} \simeq-1$

Thus the parity conserving and non-conserving coupling constants soom to have about the same strength. The loss of definitiveness of the liorz term is one of the consequences of the discovory of parity non-conservation.

RTFERENCNS

Gerhart, J. B., 1958, Phys. Rev., 110, 897.
Gertrude Goldhabor, 1953, 90, 587.
Johnson, Johnson and Langer, 1956, Phys. Rev., 102, 1142.
King, R, W , 1954, Revs. Mod. Phys., 26, 327.
Konıjn, van Nooijon, Hagedoorn and Wapstra, 1959, Nuclear Phys., 9, 296.
Mack, J. E., 1950, Revs Mod. Phys., 2264.
Ramaswamy, M. K., 1959, Nuclear Physics 10, 205.
Ramaswamy, M. K., 1958, Bull. Am. Phys. Soc., 2, 3, 357.
Ph.D. Dissertation, Johns Hopkins University, 1959 (unpublishod).
Rumaswamy, M. K., 1959, submitted to Ourrent Science.
Robinson, R. L., and Langer, L. M., 1958, Phys. Rev., 109, 1255.
Rose, M. 1. and Jackson, J., 1949, Phys. Rev., 76, 1540.
Sherr, R. and Miller, R. H., 1954, 03, 1076.

[^0]: *Supported in part by the U. S. Atomic Energy Commission. \dagger On leave from the University of Mysore, India.

