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Perceptual Video Hashing for Content Identification
and Authentication

Fouad Khelifi, Member, IEEE, and Ahmed Bouridane, Senior Member, IEEE

Abstract—Perceptual hashing has been broadly used in the
literature to identify similar contents for video copy detection. It
has also been adopted to detect malicious manipulations for video
authentication. However, targeting both applications with a single
system using the same hash would be highly desirable as this saves
the storage space and reduces the computational complexity.
This paper proposes a perceptual video hashing system for
content identification and authentication. The objective is to
design a hash extraction technique that can withstand signal
processing operations on one hand and detect malicious attacks
on the other hand. The proposed system relies on a new signal
calibration technique for extracting the hash using the discrete
cosine transform (DCT) and the discrete sine transform (DST).
This consists of determining the number of samples, called the
normalizing shift, that is required for shifting a digital signal
so that the shifted version matches a certain pattern according
to DCT/DST coefficients. The rationale for the calibration idea
is that the normalizing shift resists signal processing operations
while it exhibits sensitivity to local tampering (i.e., replacing a
small portion of the signal with a different one). While the same
hash serves both applications, two different similarity measures
have been proposed for video identification and authentication,
respectively. Through intensive experiments with various types
of video distortions and manipulations, the proposed system has
been shown to outperform related state-of-the art video hashing
techniques in terms of identification and authentication with the
advantageous ability to locate tampered regions.

Index Terms—Video hashing, Robustness, Identification, Au-
thentication, Forgery detection.

I. INTRODUCTION

THE field of perceptual image and video hashing (also
referred to as fingerprinting) has witnessed an impressive

growth over the last decade. This is mainly attributed to
the increasing amount of visual data being easily conveyed,
broadcast or browsed via digital devices. Perceptual hashing
has emerged as an effective way to verify the authenticity
of digital data [1][2] and this keeps attracting developers
with interest in monitoring multimedia websites and detecting
copied or pirated videos over the internet [3]. In addition
to security related applications, perceptual hashing also finds
applications in image registration and retrieval [4][5]. This
paper is concerned with perceptual video hashing where the
design requires that two completely different videos provide
uncorrelated hashes while two visually similar videos give
highly correlated hashes. It is meant here by two visually
similar videos that one video is derived from another via
commonly used video processing operations including low
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pass filtering, lossy compression, noise addition, contrast in-
creasing/decreasing, minor geometric alterations and temporal
distortions. It is however worth noting that in the case of video
authentication, which is also considered in this paper, the hash
should be sensitive to forgery and malicious manipulations [6].

In the literature, there has been a growing body of re-
search on robust video hashing. Oostveen et al. have used
the spatiotemporal Haar filters on block means to extract
the hash for video identification [7]. The same authors have
proposed a video fingerprinting technique which extracts the
hash from differential luminance block means in both the
spatial and temporal directions [8]. In [9], an image hashing
technique based on radial projections has been proposed.
It has then been extended to video data where the hash
is extracted from key-frames. Coskun et al. have proposed
two 3-D transform-based video hashing techniques [10]. The
authors have investigated the randomness and robustness of
the proposed techniques through experimental analysis and
have shown that 3-D DCT-based video hashing is more robust
when compared to video hashing based on the 3-D random
bases transform. However, this comes at the expense of lower
security. In [11], a robust video fingerprinting scheme has been
proposed for video identification. The fingerprint is extracted
from each frame by using the centroid of gradient orientations
computed from non-overlapping blocks. An improved version
of the technique using the orientation of luminance centroids
has been proposed in [12]. Key frames have also been used
in [13] to extract robust features for duplicate and similar
video copy detection. Speeded up robust feature points have
been adopted in [14] and [15] for video fingerprinting. In
another related work [16], the Hessian-Affine region detector
and the SIFT descriptor have been used to extract robust
features from the key frames of the video. In [17], the problem
of detecting a query video segment in a database under
different spatio-temporal variations is formulated as a partial
matching problem in a probabilistic model. In [18], a feature
selection algorithm called Symmetric Pairwise Boosting (SPB)
has been proposed for robust fingerprinting. It mainly selects
appropriate filters and quantifiers from a class of candidate
filters and quantifiers in such a way that perceptually similar
pairs of video clips are correctly classified. Xu et al. have
proposed a video copy detection scheme where the selected
low and middle frequency DCT-coefficients of each key-frame
are used as a signature [19]. More recently, Esmaeili et al. have
formed temporally informative representative images from
the video sequence, referred to as TIRIs, in order to extract
a binary fingerprint from the features that can be obtained
in the DCT domain of the overlapping blocks of the TIRI
frames [20]. In [21], an idea for generating weights for a given
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hash based on visual saliency has been proposed for efficient
matching. Li and Monga have used multi-linear subspace
projections with a reduced rank factorization to extract the
fingerprint as a summarized version of the video [22]. In a
more recent paper, the authors have proposed to use structural
graphical models to encode the temporal evolution of the video
content [23]. The real-valued hash is then projected onto a
randomly generated space whose components are drawn i.i.d.
from a normal N(0, 1) distribution. Finally, a 1-bit adaptive
quantizer [24] has been adopted to obtain the final hash in
the binary form. The technique has been shown to outperform
recent hashing systems when the bit budget of the fingerprint
is low. In [25] the authors have presented a solution to the
problem of temporal de-synchronization which occurs when
the positions of deleted and/or inserted frames in a video are
unknown. In [26], sparse coding is adopted to represent non-
overlapping blocks in each frame of the normalized video
where the matching pursuit decomposition method is used
to extract edge and texture features. However, because of
the large features size, the authors applied the SVD in two
stages to reduce the feature space dimensionality and obtain
the fingerprint. In [27], each set of frames, determined by a
central key frame, is clustered into two categories depending
on their temporal relationships with the central key frame.
The grouped surrounding frames are then used to generate a
binary code describing the temporal context of the key frame.
In [28], the authors substituted the orientation gradient in the
Weber Local Descriptor (WLD) by a local textural descriptor,
namely Binarized Statistical Image Features (BSIF) to create a
histogram-based fingerprint of the video. The technique, which
was referred to as Weber Binarized Statistical Image Features
(WBSIF), has been shown to outperform other textural features
such as WLD, the Local Binary Patterns (LBP), and the
Local Phase Quantization (LPQ). More recently, the authors
in [29] presented a framework in which the video is viewed
as a high-order tensor consisting of different features. Then,
a comprehensive feature that results from fusing the video
features is constructed via the Tucker model to form the video
fingerprint.

Since the common approach for digital content authentica-
tion consists of watermarking a signature at one end and an-
alyzing the retrieved signature at the other end, little research
has been devoted to video authentication with perceptual hash-
ing. The aforementioned systems are particulary suitable for
content-based video identification and video copy detection.
In fact, the design of such systems is inspired by the idea
of representing the input video by a short data string which
makes it difficult to detect small object insertions/removals
because such video distortions cause the same effect on the
hash as other tolerated changes do (i.e., compression, noise,
filtering, etc.). This has motivated researchers to develop
hashing-based video authentication systems with the primary
aim to detect and locate malicious attacks. For example,
the video fingerprinting system proposed in [30] is meant
to authenticate MPEG-4 surveillance videos. Su et al. have
proposed in [6] a video authentication scheme sensitive to
malicious visual changes and robust to H.264 video compres-
sion. To generate the authentication code, the authors adopted

a vector quantization method to encode textured blocks and
a scalar quantization method to encode uniform blocks for
each frame. In [31], a combination of robust fingerprinting and
cryptographic hashing has been adopted. The proposed video
authentication system has been shown to withstand transcoding
and transrating operations. However, the evaluation of the
system’s performance on maliciously manipulated videos was
not considered. More recently, Kroputaponchai and Suvon-
vorn [32] proposed an authentication scheme based on a two-
dimensional (2D) version of the Histogram of Gradient (HOG)
by further considering the temporal dimension as an extension
of the conventional HOG. This was, however, tested on a few
videos only.

To the best of our knowledge, there has not been any
established research conducted on perceptual video hashing
to target both the applications of content identification and
authentication with a single system. We acknowledge a re-
lated work on still images using feature points [33] where
the system has been shown to deliver better authentication
results when compared to transform-based hashing techniques
(DWT and DCT). The identification results, however, have
been outperformed by other techniques, including the wavelet-
based hashing technique, as demonstrated in [34] on attacked
images. Furthermore, the system assumes that the tampered
regions provide a mismatch of several extracted feature points.
However, if the tampering process consists of just replacing a
smooth image region with another1, the feature-point detector
may not find any points and therefore such manipulations
cannot be detected. Our objective here is to design a hashing
system that can withstand signal processing operations and
small geometric distortions on one hand, and detect and
locate malicious attacks on the other hand. Here, by malicious
attacks it is meant manipulations that aim to alter the semantic
content of the video via object insertion and/or removal. The
authentication process should however tolerate transcoding
operations such as lossy compression (transrating) and frame
resolution change (transsizing).

This paper develops a robust video hashing system for
content identification and authentication. We propose a new
hash extraction technique based on a signal calibration idea
using the discrete cosine transform (DCT) and the discrete sine
transform (DST). The idea consists of determining the number
of samples, called the normalizing shift, that is required for
shifting a digital signal so that the shifted version matches a
certain pattern according to DCT/DST coefficients. The reason
behind the calibration idea is that the normalizing shift does
not vary significantly under signal processing operations such
as filtering, compression and noise addition while it exhibits
sensitivity to local tampering (i.e., replacing a small portion
of the signal with a different one). The contributions of this
work can be summarized as follows. (i) Unlike the traditional
approach where hashing systems are designed to target a
specific application, our system serves in both video content
identification and authentication by using the same hash. (ii)
A new shift-based signal calibration technique upon which

1The feature point-based technique extracts the 64 most robust features
representing corners and edges.
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the hash extraction stage is based. As will be illustrated, the
proposed hash exhibits robustness against signal processing
attacks on one hand and sensitivity to malicious manipula-
tions on the other hand. These two aspects make the system
suitable for video content identification and authentication. It
is worth noting here that the proposed calibration idea can
also be used in other applications such as image registration
and signal alignment. (iii) A new similarity measure for the
proposed hash-based video content identification. This enables
the system to overcome the issue of synchronization caused by
temporal distortions. (iv) A new segment-based video authenti-
cation measure. This exploits the temporal redundancy of ma-
licious manipulations and enables the system to differentiate
transcoded videos from forged ones. (v) The proposed video
hashing system has been shown to outperform recent state-
of-the-art techniques specifically designed for video content
identification. On the other hand, the superiority of the sys-
tem over related work in authenticating videos and detecting
forgeries has been demonstrated.

The rest of the paper is structured as follows. In sec-
tion II, the problem of video identification and authentication
is described. Section III describes the proposed video hash-
ing scheme. Section IV discusses a matching methodology
adopted for identification and authentication. Section V pro-
vides an experimental evaluation of the system in comparison
with recent and related techniques. Section VI summarizes and
concludes the paper.

II. PROBLEM FORMULATION

Let Υi and Υj be two digital videos, respectively. Denote
by Ω the hash function that maps the video Υi to a hash
hi, i.e., hi = Ω(Υi). For content-based video identification,
the following requirements are normally considered in the
literature.

(i) ∀ Υi,Υj ; if Υi ≀Υj then D(hi, hj) ≥ Tid

(ii) ∀ Υi,Υj ; if Υi ≈ Υj then D(hi, hj) < Tid

where ≀ stands for visually different. On one hand, the first
requirement suggests that the distance D between two hashes
corresponding to any two completely different videos Υi and
Υj should be larger than a certain identification threshold Tid.
This basically ensures the capability of differentiating between
two videos that are distinct visually. On the other hand, (ii)
ensures that two visually similar videos produce close hashes
hi and hj where the identification distance is less than Tid.

For video authentication, let us denote by Υ̃i a transcoded
version of Υi whereas Ῡi represents its forged version. It is
meant here by video forgery the process of locally inserting
or removing an object from frames as well as the substitu-
tion of a number of frames in the video by different ones.
Hashing-based authentication systems consider the following
requirements.

(iii) ∀ Υi ; D(hi, h̄i) ≥ Tauth

(iv) ∀ Υi ; D(hi, h̃i) < Tauth

In (iii), the distance between two hashes corresponding to
a video Υi and its forged version Ῡi should be larger than
a certain authentication threshold Tauth. This guarantees the
detection of forgeries and malicious manipulations. As for (iv),

it ensures the robustness of the system against transcoding
operations. It is worth mentioning here that both (ii) and
(iv) are in favor of the robustness property. Practically, most
existing hashing-based video identification schemes meet (i)
and (ii) to some extent whereas hashing-based authentication
schemes meet (iii) and (iv). The main challenge, however, re-
sides in meeting all the requirements simultaneously because,
visually speaking, forged videos look similar to the original
ones and this conflicts with (ii). To overcome this issue, our
work relies on two main and complementary contributions.
The first contribution consists of a new hash function that is
robust against signal processing operations on one hand and
sensitive to malicious attacks on the other hand. In the second
contribution, the identification distance is made different from
the authentication distance to take into account the difference
between the concept of dissimilarity in identification and
that in authentication. The proposed requirements become as
follows.

(i) ∀ Υi,Υj ; if Υi ≀Υj then Did(hi, hj) ≥ Tid

(ii) ∀ Υi,Υj ; if Υi ≈ Υj then Did(hi, hj) < Tid

(iii) ∀ Υi ; Dauth(hi, h̄i) ≥ Tauth

(iv) ∀ Υi ; Dauth(hi, h̃i) < Tauth

where Did and Dauth represent the identification and au-
thentication distances, respectively. Finally, it is worth noting
that learning-based hashing, which has been widely used in
image retrieval and object tracking applications [35][36][37],
differs from the hashing considered here in terms of design
requirements and objectives.

III. PROPOSED VIDEO HASHING SCHEME

The proposed system for generating a video hash is com-
posed of three main stages as illustrated by Fig 1. First,
the input video is pre-processed to reduce the effect of
temporal distortions and color changes. The differences of
luminance block means are then computed to describe the
video information in each direction. Finally, a new shift-based
signal calibration technique is used to obtain the final hash.
Note that two similarity measures are introduced for content
identification and authentication.

Pre-processing

Difference of 

luminance 

means

3D Horizontal data

3D Vertical data

3D Temporal data

Video Signal 

calibration

2D Horizontal data

2D Vertical data

2D Temporal data

Concatenation
Hash

Hash extractionFeature extraction

(a)

Did

Hash1 Hash2

Did > Tid

NoYes

Similar 

content

Dissimilar

Dauth

Hash1 Hash2

Dauth > Tauth

NoYes

AuthenticUnauthentic

Tampered 

regions

(b) (c)
Fig. 1. Proposed Video hashing scheme for content identification and
authentication. (a) Hash generation. (b) Identification. (c) Authentication.
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A. Pre-processing

To eliminate sensitivity to color manipulations, the lumi-
nance component is extracted from the input video. One of
the straightforward pre-processing techniques to reduce the
effect of temporal distortions consists of re-sampling the video
at a small frame rate [10][12][20]. In the proposed system,
the video is re-sampled at 5 frames per second. However,
if the video undergoes significant temporal translations, this
might not be sufficient and, hence, a new similarity measure
is presented later.

B. Feature extraction

In order to extract robust features, the idea of extracting
Differential Luminance Block Means (DLBM) in the spatial
domain is borrowed from [8]. However, our technique differs
from [8] in that DLBM are also extracted in vertical and
temporal directions. The use of these features is justified by
their efficiency in representing textured areas including edges
and contours at low computational cost. Indeed, the derivation
of DLBM can be thought of as a process of calculating the
gradient of a down-scaled version of the original image. It is
worth noting that this paper is concerned with the perceptual
hashing of short clips (clips of a few seconds long) and hence
the hashing of long videos can just be an extension of this work
with a further consideration of optimized similarity search
techniques in high dimensional databases. As this is beyond
the scope of this paper, the reader can be acquainted with more
details by referring to [8][20][38].

First, a three-dimensional (3-D) array is formed by com-
puting the mean of non-overlapping blocks in each frame.
The size of the blocks is set so that each frame is split into
M ×N blocks. Denote by A(i, j, k) the obtained array with
0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1, and 0 ≤ k ≤ K − 1 where
K is the number of frames in the pre-processed video. Next,
three (3-D) arrays of the same size are derived from A by
calculating the differences in the horizontal (H), vertical (V)
and temporal (T) directions, respectively as

H(i, j, k) =

{
A(i, j + 1, k)−A(i, j, k) if j < N − 1
A(i, 0, k)−A(i, j, k) if j = N − 1 .

(1)

V (i, j, k) =

{
A(i+ 1, j, k)−A(i, j, k) if i < M − 1
A(0, j, k)−A(i, j, k) if i = M − 1 .

(2)

T (i, j, k) =

{
A(i, j, k + 1)−A(i, j, k) if k < K − 1
A(i, j, 0)−A(i, j, k) if k = K − 1 .

(3)

C. Hash extraction

Once the horizontal, vertical and temporal features are
computed as described in the previous section, a new signal
calibration technique is used to extract the hash. We first
propose a shift invariant signal normalization method upon
which the calibration idea is based.

1) DCT/DST-based Signal Normalization: Denote by x(n)
with n = 0, 1, · · · , L − 1 a signal obtained by traversing
one of the previous 3-D arrays in one direction (as will be
explained in subsection III-C2). Let us first define the family

of transforms which will be used in this work. The DCT of
x(n) is given by

XC(m) =
L−1∑
n=0

x(n) cos

(
πm(n+ 1

2 )

L

)
; (4)

m,n = 0, 1, · · · , L− 1.

The DST of x(n) is expressed as

XS(m) =

L−1∑
n=0

x(n) sin

(
π(m+ 1)(n+ 1

2 )

L

)
; (5)

m,n = 0, 1, · · · , L− 1.

We first propose a normalization technique which provides
the same sequence even if the input sequence has undergone
a circular translation. Consider the sequence of samples

x0 = {x(0), x(1), · · · , x(L− 1)} , (6)

and its shifted version by one sample

x1 = {x(1), x(2), · · · , x(L− 1), x(0)} . (7)

It can be shown that [39]

XC
1 (m) = cos

(πm
L

)
XC

0 (m)

+ sin
(πm

L

)
XS

0 (m− 1)

+x(0) cos
(πm
2L

)
((−1)m − 1) , (8)

and

XS
1 (m− 1) = − sin

(πm
L

)
XC

0 (m)

+ cos
(πm

L

)
XS

0 (m− 1)

+x(0) sin
(πm
2L

)
(1− (−1)m) . (9)

In this work, only even values of m (m = 2, 4, 6, · · · , 2p) are
considered2. It follows

XC
1 (m) = cos

(πm
L

)
XC

0 (m)

+ sin
(πm

L

)
XS

0 (m− 1) , (10)

and

XS
1 (m− 1) = − sin

(πm
L

)
XC

0 (m)

+ cos
(πm

L

)
XS

0 (m− 1) . (11)

Hence, the DCT and DST coefficients of a shifted sequence
by one sample can be expressed as a function of the DCT
and DST coefficients of the original sequence. Let w = πm

L .
For i = 0, 1, · · · , L − 1, we obtain the following recursive
equations

XC
i+1(m) = cos (w)XC

i (m) + sin (w)XS
i (m− 1) (12)

and

XS
i+1(m−1) = − sin (w)XC

i (m)+cos (w)XS
i (m−1) (13)

2Note that odd values of m cannot lead to the findings of this work.
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Observe that(
XC

0 (m)
)2

+
(
XS

0 (m− 1)
)2

=
(
XC

1 (m)
)2

+
(
XS

1 (m− 1)
)2

· · · =
(
XC

L−1(m)
)2

+
(
XS

L−1(m− 1)
)2

. (14)

This describes the shift invariance property of the magnitude
of the Discrete Fourier Transform (DFT). In view of (12) and
(13), it can be shown that the DCT and DST coefficients
of a shifted sequence by i samples can be expressed using
the DCT and DST coefficients of the original sequence (see
Appendix A) as

XC
i (m) =

√
(XC

0 (m))
2
+ (XS

0 (m− 1))
2

× cos

(
w i− arctan

(
XS

0 (m− 1)

XC
0 (m)

))
, (15)

and

XS
i (m− 1) =

√
(XC

0 (m))
2
+ (XS

0 (m− 1))
2

× cos

(
w i− arctan

(
− XC

0 (m)

XS
0 (m− 1)

))
=

√
(XC

0 (m))
2
+ (XS

0 (m− 1))
2

× cos

(
w i− arctan

(
XS

0 (m− 1)

XC
0 (m)

)
+

π

2

)
.

(16)

That is, the DCT and DST coefficients of repetitively shifted
versions of x0 follow a cosine function with the same mag-
nitude. From (15) and (16), one can deduce that the DCT
and DST coefficients of a shifted sequence reappear at a
shifting rate equal to 2L

m . For m = 2, there is only one period
of the cosine function against the variable i in [0, L − 1]
which means that the pair of coefficients (XC

i (2), XS
i (1))

occurs only once in [0, L − 1]. In the rest of the paper,
m is set to 2. The proposed normalization idea consists of
determining an amount of samples by which the signal can
be shifted to provide the same DCT/DST coefficients. To
elaborate more, the problem is described as follows. There
are L possible sequences shifted from each other by one
sample where each sequence corresponds to a unique pair
of coefficients (XC

i (2), XS
i (1)). Given a pair of coefficients

(XC
i∗(2), X

S
i∗(1)), the problem can simply be thought of as

finding the corresponding sequence which is referred to as the
normalized one. In view of (15), this can be obtained by using
a reference angle α in [0, 2π[ so that the normalizing shift i∗

can be found as(
w i∗ − arctan

(
XS

0 (m− 1)

XC
0 (m)

))
= α . (17)

With m = 2, it follows

2π

L
i∗ = arctan

(
XS

0 (1)

XC
0 (2)

)
+ α . (18)

Finally,

i∗ =

L arctan
(

XS
0 (1)

XC
0 (2)

)
+ Lα

2π

 mod L . (19)

It is worth noting that arctan
(

XS
0 (1)

XC
0 (2)

)
takes its value in [0, 2π[

depending on the sign of XS
0 (1) and XC

0 (2). This makes
the normalized sequence unique with a single normalizing
shift in [0, L− 1]. Also, observe that the normalizing shift i∗

requires only the calculation of one DCT coefficient XC
0 (2)

and one DST coefficient XS
0 (1). Once the normalizing shift

is obtained, the new sequence is nothing but a shifted version
of the input sequence by i∗

xi∗ = {x(i∗), x(i∗ + 1), · · · , x(L− 1), x(0), · · · , x(i∗ − 1)} .
(20)

Regardless of the input sequence, the normalized sequence
corresponds to the unique pair of coefficients

XC
i∗(2) =

√(
XC

0 (2)
)2

+
(
XS

0 (1)
)2

cos(α) , (21)

and

XS
i∗(1) =

√(
XC

0 (2)
)2

+
(
XS

0 (1)
)2

cos(α+
π

2
) . (22)

The algorithm of shift invariant normalization can be summa-
rized as follows

(i) Input original sequence (see (6)).
(ii) Set α in [0, 2π[ .
(iii) Calculate XC

0 (2) and XS
0 (1) using (4) and (5).

(iv) Determine the normalizing shift i∗ using (19).
(v) Output normalized sequence using (20).

Fig. 2 illustrates an example of signal normalization with
α = π

3 . Fig. 2(a) shows an original signal. In Fig. 2(b), the
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Fig. 2. (a) Original. (b) Shifted. (c) Normalized signal from (a) and (b).

original signal has undergone a circular shift distortion; both
of these signals yield the same normalized sequence as shown
in Fig. 2(c).

2) Signal calibration: Given a pre-defined value of α,
signal calibration in this work consists of determining the
normalizing shift for a digital signal. This represents the
number of samples by which the signal can be shifted so
that the shifted version follows a certain pattern by satisfy-
ing (17). Recall from (1), (2) and (3) that three 3-D arrays are
constructed by DLBM in the horizontal, vertical and temporal
directions. Next, each array is used to create a 2-D matrix of
normalizing shifts by calibrating individual signals obtained in
each corresponding direction. That is, the horizonal array is
traversed horizontally, the vertical array is traversed vertically
and the temporal array is traversed temporally (see Fig. 3).
This is motivated by the fact that the information in each
3-D array captures the video content in the direction that
DLBM are computed. The aim of the signal calibration idea
is threefold. First, reducing the size of the feature vector
since one feature only will be extracted from each DLBM
signal. Second, increasing the robustness of the features when
compared to complete DLBM signals as will be illustrated
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Fig. 3. Calibration of 3-D arrays. (a) Horizontal calibration. (b) Vertical calibration. (c) Temporal calibration.

later in experiments. Third, creating a hash that is sensitive
to video tampering. The obtained 2-D arrays are denoted by
H2D, V2D, and T2D, respectively as

H2D(i, k) =

L arctan

(
DST{Hi,k}(1)

DCT{Hi,k}(2)

)
+Nα

2π

 mod N .

(23)

V2D(j, k) =

L arctan

(
DST{Vj,k}(1)

DCT{Vj,k}(2)

)
+Mα

2π

 mod M .

(24)

T2D(i, j) =

L arctan
(

DST{Ti,j}(1)

DCT{Ti,j}(2)

)
+Kα

2π

 mod K .

(25)
where Hi,k = {H(i, 0, k), · · · ,H(i,N − 1, k)},
Vj,k = {V (0, j, k), · · · , V (M − 1, j, k)}, and
Ti,j = {T (i, j, 0), · · · , T (i, j,K − 1)} while DCT{ϑ}(·) and
DST{ϑ}(·) represent the DCT and DST of ϑ, respectively.
The concatenation of these arrays constitute the final hash.
Let x(n) be one of the aforementioned DLBM signals
(supposedly of length L) in {Hi,k, Vj,k, Ti,j} and x

′
(n) be

its distorted version. That is

x
′
(n) = x(n) + d(n) . (26)

In view of (19), the linearity of the DCT suggests that the
normalizing shift for x′(n) becomes

i
′∗ =

L arctan
(

DSTx(1)+DSTd(1)
DCTx(2)+DCTd(2)

)
+ Lα

2π

 mod L .

(27)
Note that a significant change in DSTd(1) and/or DCTd(2)
plays a key role in the change of the normalizing shift. To
illustrate the rationale for using the normalizing shift as a
feature being robust against transcoding operations on one
hand and sensitive to tampering on the other hand, Fig. 4
shows a signal and its altered versions with the respective
normalizing shift denoted by i∗ and displayed accordingly
for each sequence with α = π

3 . As can be seen, the nor-
malizing shift does not get affected by the addition of the
white Gaussian noise considered in the example whereas the
replacement of a portion of the signal with a different pattern
leads to a clear change in the normalizing shift although the
Signal-to-Noise Ratio (SNR) is larger. This can be justified
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Fig. 4. Normalizing shift. (a) noise addition with SNR=20.77 dB. (b)
Tampering with the signal by replacing a small portion with another pattern
SNR=22.20 dB.

by the following analysis. According to (27), if the distortion
is rich in frequency (i.e., a noise-like pattern), its energy
is normally spread over the full range of frequencies. On
the other hand, if the distortion is of low frequency content
(e.g., due to content replacement), its energy is mostly packed
in a few low-frequency DCT/DST coefficients. As a result,
the low-frequency DCT/DST coefficients of the noise, in
particular DSTd(1) and DCTd(2), tend to be smaller in
magnitude when compared to those of a distortion caused
by malicious manipulations. For the sake of demonstration,
DLBM signals have also been analyzed on a test video that
has undergone tampering as well as transcoding operations
as depicted in Fig. 5. Fig. 6 shows the magnitude of the
DCT/DST coefficients of a DLBM signal (corresponding to
Vj,k with (j, k) = (1, 1)) as well as those of distortions due
to tampering and transcoding. As can be seen, both the DLBM
signal and the distortion due to tampering are of low frequency
content whereas transcoding distortions are rich in frequency
since the corresponding DCT and DST coefficients are spread
over the full range of frequencies. This makes DSTd(1) and
DCTd(2) in (27) more significant in the case of content
tampering when compared to the transcoding operations (i.e.,
compression and resizing). Consequently, the normalizing shift
undergoes a smaller change under transcoding than that caused
by malicious manipulation.

It is worth mentioning that for m > 2, the normalizing
shift becomes less robust since it would depend on a higher
frequency content of DLBM. Furthermore, for each DLBM
signal, there would be at least two normalizing shifts cor-
responding to the same reference angle α in the full signal
length. Hence, to ensure that a unique normalizing shift can
be obtained, only a fraction of the signal length should be
used. As a result, the discriminative power of the hash would
be significantly reduced.

Finally, in view of (23), (24), and (25), note that the
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(a) (b) (c) (d)
Fig. 5. Original video and its distorted versions. (a) Original video with 480×854, 30 fps. (b) Forged. (c) Compressed by MPEG-4 at 128 kbps. (d) Resized
to 240× 320, 30 fps.
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Fig. 6. DCT/DST coefficients of the original DLBM signal and transcoding
distortions. (a) Original signal. (b) Forgery distortion. (c) Distortion due to
compression. (d) Distortion due to resizing.

properties of the hash do not depend on the value of the
reference angle α as long as it is used as a constant parameter
in the system. The proposed video hashing process is a low
computational complexity algorithm and can be summarized
as follows.

Input: Video.
Output: Hash.
Parameters:Reference angle α, the number of vertical splits M ,

and the number of horizontal splits N .
1. Re-sample the video at 5 fps. K is the number of frames

in the re-sampled video.
2. Extract 3D DLBM arrays in three directions using (1), (2),

and (3), respectively.
3. Compute the normalizing shift for each signal in all 3D

directional DLBM arrays using (23), (24), and (25). This
gives three 2D normalizing shift arrays.

4. Concatenate the normalizing shift arrays to form the final
hash. This results in a hash length of M N+M K+N K.

The computational complexity can be analyzed in three steps.
For a color video with η pixels, the color to grey-level
conversion requires 3 multiplications and 2 additions per pixel
whereas the re-sampling involves a few multiplications and
additions per pixel depending on the length of the low pass
filter used. As a result, the pre-processing stage requires O(η).
The computation of DLBM in each of the three directions can
be performed in O(η + η

MNK ). Finally, the hash extraction
stage has a complexity of O(MNK).

IV. HASH MATCHING

At the matching stage, the hash is assumed to be in the
form of three 2-D arrays prior to concatenation; i.e., h =
{H2D, V2D, T2D}. This can be easily obtained by just revers-
ing the process of concatenation. Recall that the values in each
matrix are bounded since they represent the normalizing shifts.
That is, 0 ≤ H2D(i, j) ≤ N − 1, 0 ≤ V2D(i, j) ≤ M − 1, and
0 ≤ T2D(i, j) ≤ K − 1. Two similarity measures are defined:
identification measure and authentication measure.

A. Identification Measure

For content identification purposes, the similarity measure
must be as small as possible if two videos Υ1 and Υ2 are
derived from each other. Denote by {H1

2D, V 1
2D, T 1

2D} and
{H2

2D, V 2
2D, T 2

2D} their corresponding hashes, respectively.
Because the normalizing shifts are determined in a forward
direction only, one should consider the case where a change
in the video slips the normalizing shift to the beginning of
the sequence as it exceeds the boundary. Hence, we define a
distance D as

D =

M−1∑
i=0

K−1∑
j=0

min{|H1
2D(i, j)−H2

2D(i, j)|,

|H1
2D(i, j)−H2

2D(i, j)−N |, |H1
2D(i, j)−H2

2D(i, j) +N |}

+

N−1∑
i=0

K−1∑
j=0

min{|V 1
2D(i, j)− V 2

2D(i, j)|,

|V 1
2D(i, j)− V 2

2D(i, j)−M |, |V 1
2D(i, j)− V 2

2D(i, j) +M |}

+

M−1∑
i=0

N−1∑
j=0

min{|T 1
2D(i, j)− T 2

2D(i, j)|,

|T 1
2D(i, j)− T 2

2D(i, j)−K|, |T 1
2D(i, j)− T 2

2D(i, j) +K|}(28)

It is expected that the use of blocks to compute DLBM
makes the normalizing shifts robust to small rotations and
spatial translations. However, in view of (28), the hash remains
sensitive to temporal translations. Indeed, a shift of Υ1 in
the temporal direction will produce a video Υ2 with a hash
corresponding to horizontally translated versions of H1

2D and
V 1
2D in addition to an increase/decrease of the values in T 1

2D by
the same amount of translation. To overcome this limitation,
a full search among the possible shifted versions of H2

2D and
V 2
2D with the corresponding increase/decrease of T 2

2D would
accurately determine the shift that minimizes D. However, this
is computationally expensive as it requires K computations of
D for each video comparison. To address this issue, we use
only two rows from each of the horizontal and vertical arrays
(H1

2D, V 1
2D, H2

2D, V 2
2D) to estimate a shift q∗ ∈ [0,K − 1]



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. , NO. , 8

that minimizes the difference as follows.

q∗ = argmin
q

{dH1
2D,H2

2D
(q) + dV 1

2D,V 2
2D

(q)} , (29)

where

dH1
2D

,H2
2D

(q) =

K−1∑
j=0

∣∣H1
2D(⌊M/2⌋ , j)−H2

2D(⌊M/2⌋ , (j − q) mod K)
∣∣

+

K−1∑
j=0

∣∣H1
2D(⌊M/2⌋+ 1, j)−H2

2D(⌊M/2⌋+ 1, (j − q) mod K)
∣∣ ,
(30)

and

dV 1
2D

,V 2
2D

(q) =

K−1∑
j=0

∣∣V 1
2D(⌊N/2⌋ , j)− V 2

2D(⌊N/2⌋ , (j − q) mod K)
∣∣

+

K−1∑
j=0

∣∣V 1
2D(⌊N/2⌋+ 1, j)− V 2

2D(⌊N/2⌋+ 1, (j − q) mod K)
∣∣ .

(31)

Then, the proposed identification distance becomes

Did=

M−1∑
i=0

K−1∑
j=0

min{|H1
2D(i, j)−H2

2D(i, j − q∗)|,

|H1
2D(i, j)−H2

2D(i, j − q∗)−N |,
|H1

2D(i, j)−H2
2D(i, j − q∗) +N |}

+

N−1∑
i=0

K−1∑
j=0

min{|V 1
2D(i, j)− V 2

2D(i, j − q∗)|,

|V 1
2D(i, j)− V 2

2D(i, j − q∗)−M |,
|V 1

2D(i, j)− V 2
2D(i, j − q∗) +M |}

+

M−1∑
i=0

N−1∑
j=0

min{|T 1
2D(i, j)− T 2

2D(i, j)− q∗ +K|,

|T 1
2D(i, j)− T 2

2D(i, j)− q∗|,
|T 1

2D(i, j)− T 2
2D(i, j)− q∗ + 2K|} . (32)

In practice, two videos are said to be similar if Did does
not exceed a certain threshold Tid. Otherwise, the videos are
considered dissimilar. Tid can be found empirically by using
the Neyman-Pearson criterion such that the false negative
probability is minimized, subject to a fixed false positive
probability [40].

B. Authentication Measure
In content-based video authentication, the similarity mea-

sure should produce a sufficiently large distance when the
video undergoes forgery operations such as object insertion
or removal. On the other hand, the distance is expected to be
insignificant under common video transcoding operations in-
cluding transsizing and transrating. Let us define two matrices
Dh and Dv characterizing the spatial difference between two
videos Υ1 and Υ2 as

Dh(i, k)=|H1
2D(i, k)−H2

2D(i, k)| ;
i ∈ {0, · · · ,M − 1}, k ∈ {0, · · · ,K − 1} . (33)

and

Dv(j, k)=|V 1
2D(j, k)− V 2

2D(j, k)| ;
j ∈ {0, · · · , N − 1}, k ∈ {0, · · · ,K − 1} . (34)

If a video is maliciously manipulated, the corresponding
horizontal and vertical DLBM get affected in tampered regions
causing a change in horizontal and vertical normalizing shifts

(i.e., hash values) accordingly. Thus, both Dh and Dv are
likely to be different from zero at the location of tampered
regions. Let Φ be an array of size (M ×N ×K) and defined
as

Φ(i, j, k) =

{
1 if Dh(i, k) > 0

∧
Dv(j, k) > 0

0 Otherwise .
(35)

This can detect changes in individual frames k = 0, · · · ,K−1
but false detections could also occur under transcoding op-
erations. To overcome this issue, we propose a segment-
based forgery detection measure exploiting the redundancy of
distortions caused by object insertion and/or removal across
the temporal dimension. Note that it is unlikely that the
transcoding process creates such a uniform distortion, i.e., a
distortion with similar effect and location through successive
frames. Fig. 7 shows samples of the normalizing shifts ex-
tracted in the horizontal and vertical directions at the same
spatial location over time from a video at a resolution of
480 × 640 and its MPEG-4 compressed version at 256 kbps.
Observe that the variations of the normalizing shift over time
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Fig. 7. Temporal variation of the spatial hash values under MPEG-4
compression. (a) Horizontal normalizing shifts. (b) Vertical normalizing shifts.

are normally discontinued. On the other hand, the proposed
idea relies on the fact that, in digital forgery, tampered
regions should be visually observable in a video for a certain
period of time to change or influence the viewers’ perception.
Changing the viewer’s perception is actually the key objective
of the malicious attacker and, hence, inserted or removed
objects are not expected to move extremely fast unnoticeably.
Therefore, it is reasonable to assume, in forged videos, that the
malicious content is naturally observable as any other content
but its detection requires some kind of decision making in an
automated way. Each hash is therefore divided into Q short
segments in which the forgery detection is performed. Denote
by Φ′

q (q = 1, · · · , Q) the proposed segment-based forgery
detection measure corresponding to the qth segment as follows

Φ′
q(i, j) =

{
1 if

∑(q×s)−1

k=(q−1)×s Φ(i, j, k) = s

0 Otherwise .
(36)

where s is the length of the segment. Eq. (36) serves as a
measure to detect tampered regions in a video. In fact, without
loss of generality, let us assume that the original video size
is (M ′ × N ′ × K ′) where M ′, N ′, and K ′ are multiples of
M , N , and K, respectively 3. Each value in Φ′

q corresponds
to a cube of M ′

M × N ′

N × K′ s
K pixels in the video because of

the down-sampling process and the use of blocks to calculate
H2D and V2D. Obviously, the size of the cube represents the
precision of the system in locating tampered regions4. Finally,

3This is because of the downsampling process described in subsection III-B.
If M ′ and N ′ are not multiples of M and N respectively, the video frames
can be resized accordingly.

4It is worth noting here that the precision in locating tampered regions is
different from the authentication performance.
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the proposed segment-based authentication distance is given
by

Dauth(q) =
M−1∑
i=0

N−1∑
j=0

Φ′
q(i, j) . (37)

A threshold Tauth can be used to decide whether a video
segment is authentic, given the hash of the original video. This
can also be determined empirically via the Neyman-Pearson
criterion [40]. Now, because the videos are first resampled at
5 fps, the forged moving content should be detected except if
the distance between the initial and current position, recorded
in a short period of time equal to s/5, is larger than a certain
threshold. If s = 5, the time frame would correspond to one
second. Given the fact that the tampering takes place in a
reasonably large spatial region to attract the viewer’s attention,
such a motion speed could be considered high and unlikely
to occur. For the sake of illustration, Fig. 8 shows a moving
object (in red) in its initial position on left side and its next
position on the right side within a time frame t = s/5. Because

Fig. 8. Minimum distance traversed by an inserted/removed object in s/5
seconds so that tampering could not be detected by the system.

the calculation of DLBM involves two consecutive blocks in
each direction, the tampering can be missed by the system
only if distance between all the tampered blocks in the current
frame (colored in green) and those in the next one (colored in
blue) after t is more than the block size.

V. EXPERIMENTAL RESULTS

The performance of the proposed hashing technique has
been assessed by conducting a number of experiments on a
dataset of 200 various MPEG-2 color video clips with two
different frame rates 25 and 30 fps and seven frame resolutions
as depicted in Table I. Note that the dataset includes 170
Standard Definition (SD) videos and 30 High Definition (HD)
videos. These videos have been collected from academic and
public websites that cover the practically used video types
(i.e., format, resolution, frame rate, etc.). This consists of the
Open video Project [41], ReefVid [42], Youtube, and 30 HD
videos from the Videvo website [43]. Each video clip is 10
seconds long. The shift-invariant normalization algorithm has
been used with α = π

20 . The values of M and N have been
empirically set to 32 for a good trade off between identification
and authentication. With this setting, the hash for a 10 seconds
long video consists of (32+32)× 5× 10+ (32× 32) = 4224
integer values. Note that the horizontal and vertical shifts can
be encoded with only 5 bits each while the temporal shifts can
be encoded with 6 bits.

TABLE I
THE SET OF VIDEOS USED IN EXPERIMENTS.

Number of videos Type Resolution and frame rate
4 SD 288× 360, 25 fps
17 SD 288× 384, 25 fps
12 SD 288× 512, 25 fps
87 SD 480× 640, 25 fps
50 SD 480× 854, 30 fps
19 HD 1080× 1920, 30 fps
9 HD 1080× 1920, 25 fps
2 HD 720× 1280, 25 fps

A. Hash analysis

As discussed earlier, hash values consist of the normal-
izing shifts that are obtained in different directions of the
DLBM features. Ideally, these hash values should be equally
distributed over the full range of possible integers, i.e., cor-
responding to maximum information capacity in the hash, to
ensure the discriminative capability of the system [44]. This
is because the presence of hash values with higher probability
than others would increase the likelihood that two hashes of vi-
sually distinct videos match by chance. In our first experiment,
we have analyzed the distribution of the normalizing shifts
in each of the directions on the aforementioned set videos.
Note that the horizontal, vertical and temporal normalizing
shifts take values in {0, 1, · · · ,M−1}, {0, 1, · · · , N−1} and
{0, 1, · · · ,K − 1}, respectively. Fig. 9 shows the histogram
of actual data in each of the directions, respectively. It can
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Fig. 9. Distribution of the video hash values. (a) Horizontal hash extraction.
(b) Vertical hash extraction. (c) Temporal hash extraction.

be seen that the extracted hashes follow a uniform distribu-
tion. This gives us a good indication of the rich and well
balanced information contained within the extracted hashes for
representing digital videos. Recall from (32) that the proposed
identification distance is composed of three parts where each
captures information in one direction, i.e., horizontal, vertical
and temporal. Although the variables used for the hash and
distances are integers, one can use a theoretical analysis on
continuous data given the large number of features and video
samples in our experiments. If the compared hashes in (32)
correspond to two videos that are completely independent
and visually distinct, the terms |H1

2D(i, j)−H2
2D(i, j − q∗)|,

|H1
2D(i, j)−H2

2D(i, j−q∗)−N |, and |H1
2D(i, j)−H2

2D(i, j−
q∗)+N | follow a triangular distribution in {0, 1, · · · , N −1},
{1, 2, · · · , 2N−1}, and {1, 2, · · · , 2N−1}, respectively. This
is because they represent the absolute value of two independent
and uniformly distributed variables. However, the use of the
min function involving an adjustment with ±N will approxi-
mately produce a normally distributed variable in an interval
reduced to half of the original size, i.e., {0, 1, · · · , N/2}.
Consequently, under the assumption that the normalizing shifts
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are uncorrelated and according to the central limit theorem, the
horizontal part can be viewed as a sum of M×K independent
identically distributed variables and, hence, it follows a normal
distribution with mean M × K × N/4. Likewise, both the
vertical and temporal part follow a normal distribution with
mean N × K × M/4 and M × N × K/4, respectively.
Finally, one can deduce that the identification distance, which
is the sum of these three normal variables, follows a normal
distribution centered at µDid

that is given as

µDid
=

3MNK

4
(38)

Given 200 distinct videos, 19900 identification distances have
been computed using (32). The distribution of the distance
is illustrated by Fig. 10. As can be seen, the actual distance
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Fig. 10. Distribution of the proposed identification distance computed on
visually distinct videos.

follows a normal distribution. Given the setting of M = 32,
N = 32, and K = 50, the theoretical statistical mean is 3.84×
104 whereas the empirical mean is found to be 3.59×104. This
validates our theoretical analysis of the identification distance.

B. Identification performance

In this set of experiments, the ability of the proposed
system to identify videos of similar content is assessed. It is
also important to measure the system’s ability to differentiate
between the videos of different content. To this end, we have
adopted ROC curves which display the True Positive Rate
TPR (i.e., correct detection of similar video contents) against
the False Positive Rate FPR (i.e., false detection of similar
video contents). Ideally, these measures should correspond to
TPR = 1 and FPR = 0. To illustrate our contributions
in relation to video content identification, the following tests
have been conducted. (i) The entire DLBM features are used
as a fingerprint without the hash extraction stage5 to assess
the gain of the proposed hash extraction technique (i.e., the
signal calibration technique). (ii) The proposed hashing system
is also assessed using the Euclidean Distance (EC) as a
similarity measure to evaluate the gain offered by the proposed
identification distance Did (see (32)). This is denoted by
’Proposed/EC’. Note that theoretically speaking, Did differs
from EC in the sense that it addresses two adversary effects
on the hash when the video undergoes content-preserving
changes. First, Did takes into account the case where a change
in video content slips the normalizing shift to the beginning

5Note that DLBM as described in our paper cannot be used as a fingerprint
in practice because they are too large in size (153600 real valued features
for a 10 seconds video) and involve high computational complexity at the
matching stage.

of the sequence as it exceeds the boundary. Second, it com-
pensates the hash changes that may be caused by temporal
translations of the video. (iii) Recent state-of-the-art video
hashing systems have also been applied on the same test videos
for the purpose of comparison. Four well known techniques
have been adopted in our comparative study: Centroid of
Gradient Orientations (CGO) hashing [11], Temporally Infor-
mative Representative Images (TIRI) hashing [20], Weber Bi-
narized Statistical Image Features (WBSIF) hashing [28], and
Structural Graphical Models (SGM) based hashing [23]. We
have used our own implementation of [11], [28], and [20] and
the authors’ implementation of [23] which has been available
in [45]. The same parameters setting of the aforementioned
systems has been adopted here as suggested by their authors.
A number of content-preserving attacks have been considered
in order to compute TPR in the ROC curves. As depicted in
Table II, the attacks consist of spatial, geometric, and temporal
distortions. It is worth mentioning that these attacks have
been applied on the grey scale version of the videos because
the hashing systems are expected to withstand color changes.
Fig. 11 illustrates visual distortions caused by some spatial

TABLE II
DIFFERENT ATTACKS USED TO ASSESS THE IDENTIFICATION

PERFORMANCE.

Type Attack Parameters
Brightness increase adding 80% of the frame mean
Brightness decrease subtracting 80% of the frame mean

Spatial Contrast increase [60, 180] to [0, 255]
Contrast decrease [0, 255] to [60, 180]

AWGN σ = 56, µ = 0
Median filter (11× 11)

MPEG-4 compression SD videos: 128 kbps
HD videos: 500 kbps

Cropping and resizing 90% and 85%
Geometric Rotation 2 and 5 degrees

Shifting [5, 5] and [10, 10] pixels.
Frame dropping 50%.
Frame insertion 50% via interpolation.

Temporal Shifting Temporal Shift: 10% and 20% .
Shifting in time Circular shift: 20%

+ Content replacement + Replacement of shifted content.

and geometric attacks on a test video frame. The robustness
results of the proposed hashing system and the aforementioned
techniques are shown in Fig. 12-14. The results are in perfect
agreement with those reported in [23] in the sense that CGO
is significantly outperformed by the TIRI and SGM hashing
techniques. It can be seen that CGO cannot withstand the
applied attacks. Note that these attacks are more significant
than the ones reported in [11]. This suggests that CGO can
only be used when the videos undergo minor distortions. Like-
wise, WBSIF fails to provide good performance because most
attacks affect the differential excitation or the BSIF code which
are both used to extract the final hash. The results also show
that the proposed technique and TIRI perform equally well
under spatial signal processing attacks whereas SGM exhibits
a slightly lower performance (see Fig. 12). It has been reported
that the strength of SGM lies in its ability to identify the video
content when the bit budget of the hash is low [23]. However,
with sufficiently large fingerprints, TIRI seems to perform
slightly better than SGM according to our experimental results.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 11. Visual changes caused by different attacks (a) Original video. (b) brightness increase. (c) brightness decrease. (d) contrast increase. (e) contrast
decrease. (f) additive white Gaussian noise with σ = 56. (g) median filter (11 × 11). (h) cropping 85% of the central part and resizing. (i) rotation by 5
degrees. (j) Shifting by [10, 10].
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Fig. 12. Robustness results under spatial signal processing attacks. (a) Brightness increase. (b) Brightness decrease. (c) Contrast increase. (d) Contrast
decrease. (e) Additive White Gaussian noise. (f) 11× 11 Median filtering. (g) MPEG-4 compression.
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Fig. 13. Robustness results under geometric distortions. (a) Frame cropping by 90% and resizing. (b) Frame cropping by 85% and resizing. (c) Rotation by
2 degrees. (d) Rotation by 5 degrees. (e) Shifting [5, 5]. (f) Shifting [10, 10].
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Note that SGM uses a dimensionality reduction technique to
obtain an approximate of video segments in the spatial domain
prior to the feature extraction which is conducted in the pixel
domain too (a technique similar to K-means clustering). This
explains the lower performance under spatial signal processing
operations when compared to TIRI and our hashing system.
As expected, DLBM show robustness against attacks that tend
to maintain the low frequency content of the videos such as
the brightness change and low-pass filtering. The robustness of
the proposed system against spatial signal processing attacks
is mainly attributed to the efficiency of DLBM.

Our system performs reasonably well under small geometric
distortions such as rotation by 2 degrees, cropping by 90%
and spatial shifting (Fig. 13). This is partly attributed to the
use of block-based features at the feature extraction stage.
However, the performance deteriorates as the strength of such
attacks increases because of synchronization-related changes
in DLBM. Observe, however, that the hash extraction stage
brings significant improvements over DLBM when the pro-
posed identification distance is used. The justification for this
is twofold. First, the distortion caused by geometric attacks
corresponds to a noise-like pattern of DLBM changes, i.e., rich
in frequency whereas the difference between two dissimilar
videos represents a signal of low frequency content character-
izing the DLBM changes (see for instance sub-section III-C2
on resizing). This makes the hash more sensitive to video
content dissimilarity than small geometric distortions. Second,
the proposed identification distance deals with the problem
of synchronization efficiently as can be supported by the
lower performance of the system when the Euclidean distance
was used. This confirms the suitability of the identification
distance for this particular application. The reason that TIRI
exhibits good efficiency under geometric distortions is partly
due to the fact that the DCT-based features are extracted from
overlapping blocks which have been shown to offer more
robustness than non overlapping blocks in [34]. It can be seen
from Fig. 14 that the proposed hashing system outperforms
its competitors under temporal distortions. This is mainly
attributed to the efficient description of the video content by
the normalizing shifts as well as the identification distance
which takes into account any possible translations. In presence
of temporal distortions, the competing techniques suffer from a
synchronization problem. It is, however, worth mentioning that
SGM surpasses TIRI and CGO because it encodes the tempo-
ral information of the video efficiently using the normalized
cuts graph partitioning technique. The overall ROC curve for
all the aforementioned attacks is plotted in Fig. 14(f). As can
be seen, the proposed system outperforms all the competing
techniques for a TPR higher than 0.94. Beyond this range,
the system’s performance drops rapidly due to the effect of
geometric distortions on the overall performance. Note also
that SGM performs slightly better than TIRI according to the
overall results. Finally, the Equal Error Rate (EER) which
corresponds to the point where FPR is equal to the False
Negative Rate FPR= 1−TPR is depicted in Table III.

TABLE III
EER (%) FOR DIFFERENT SYSTEMS.

CGO SGM WBSIF TIRI DLBM Proposed/EC Proposed/Did

14.65 1.86 11.91 2.17 7.35 6.53 0.82

C. Authentication performance

In this subsection, the system’s performance is evaluated
in terms of authentication. A reliable authentication sys-
tem should detect video forgeries on one hand and tolerate
transcoding on the other hand. To this end, widely used
transcoding operations have been conducted on the test videos
as depicted in Table IV. In this experiment, 250 forged

TABLE IV
TRANSCODING OPERATIONS USED TO ASSESS THE AUTHENTICATION

PERFORMANCE.

Transcoding Description Parameter
operation

SD videos: 128 kbps
HD videos: 500 kbps

Transrating MPEG-4 compression SD videos: 256 kbps
HD videos: 1000 kbps
SD videos: 500 kbps

HD videos: 1500 kbps
Frame dropping 20%

Transsizing Resizing by MPEG-4 240× 320

videos have been created from the original ones. These forg-
eries include object insertion/removal and video embedding
(See Fig. 15). Although the tampered regions vary in size from
a video to another, it is worth mentioning that the tampering
process affects no more than 8% of the original videos. The
tampering was conducted using the ’Adobe After Effects’
software. In the first part of experiments, the hashing system
has been used with the proposed authentication distance Dauth

on video segments of different lengths (s = 2 · · · , 6). Here,
ROC curves display the correct forgery detection rate (TPR),
computed on forged videos, against the false forgery detection
rate (FPR) which is measured on transcoded videos. The
results are shown in Fig. 16. Note that the performance of the
system increases with the number of frames in the segment,
s ∈ {2, 3, · · · , 6}, up to s = 5, i.e., the longer the video seg-
ment, the better the detection. This clearly shows the advantage
of grouping individual frames by the proposed segment-based
authentication measure to exploit the redundancy of malicious
manipulations across the temporal dimension. For s = 6,
however, the performance drops slightly suggesting that the
tampered regions in some videos change position in a time
shorter than 6 frames of the re-sampled video. In the rest of
the paper, s = 5 is adopted.

Next, we include three video hashing techniques that have
been used in authentication, namely SVD-based hashing [6],
3D DCT hashing [10], and 2D HOG hashing [32]. Similar
to the previous identification experiments, the system has
also been used with the Euclidean distance to illustrate the
efficiency of the proposed authentication distance Dauth. The
SVD-based hashing technique down-samples each video frame
by calculating the average values of 4× 4 blocks. Then, sub-
blocks of size 4 × 4 are factorized with the Singular Value



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. , NO. , 13

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

CGO [11]
SGM [23]
WBSIF [28]
TIRI [20]
DLBM 
Proposed/EC
Proposed/D

id

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

CGO [11]
SGM [23]
WBSIF [28]
TIRI [20]
DLBM 
Proposed/EC
Proposed/D

id

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

CGO [11]
SGM [23]
WBSIF [28]
TIRI [20]
DLBM
Proposed/EC
Proposed/D

id

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

CGO [11]
SGM [23]
WBSIF [28]
TIRI [20]
DLBM 
Proposed/EC
Proposed/D

id

(a) (b) (c) (d)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

CGO [11]
SGM [23]
WBSIF [28]
TIRI [20]
DLBM
Proposed/EC
Proposed/D

id

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

CGO [11]

SGM [23]

WBSIF [28]

TIRI [20]

DLBM 

Proposed/DC

Proposed/D
id

(e) (f)

Fig. 14. Robustness results under temporal attacks and overall performance. (a) Temporal shifting by 10%. (b) Temporal shifting by 20%. (c) Frame
drop with 50%. (d) Frame insertion with 50%. (e) Temporal shifting by 20% and video content replacement (20%). (f) Overall performance with all the
aforementioned attacks.

Fig. 15. Samples of tampered test videos. First row: Original videos. Second row: Forged videos.
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Fig. 16. Authentication performance. (a) Compression: SD videos at 128 kbps and HD videos at 500 kbps. (b) Compression: SD videos at 256 kbps and
HD videos at 1000 kbps. (c) Compression: SD videos at 500 kbps and HD videos at 1500 kbps. (d) Transsizing.

Decomposition (SVD) where the first eigenvalue is used to
classify uniform and non-uniform blocks. Uniform blocks are
represented by Scalar Quantization (SQ) indices while Vector
Quantization (VQ) is used to encode the first left-singular
and right-singular vectors of non-uniform blocks [6]6. The
3D DCT hashing technique applies a Gaussian filter in all
directions (i.e., temporal and spatial directions) followed by a

6The codebook size has been set to 256 as this was shown to yield the
best performance in [6].

downsampling process and thresholding based on the median
value to get a compact binary hash [10]. Finally, the 2D HOG
hashing system resizes the video frames to 320 × 240 and
selects a DCT coefficient from each 8×8 block to form a new
smaller 3D array. Then, three directional gradient filters are
applied to create three gradient arrays from which the authors
calculate a magnitude and two angles at each sample location.
These magnitude and angle arrays will then serve to extract
the 2D HOG as a hash [32].

These techniques have been implemented in this work and



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. , NO. , 14

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

3D DCT [10]
2D HOG [32]
SVD−based [6]
Proposed/EC
Proposed/D

auth

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

3D DCT [10]
2D HOG [32]
SVD−based [6]
Proposed/EC
Proposed/D

auth

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

3D DCT [10]
2D HOG [32]
SVD−based [6]
Proposed/EC
Proposed/D

auth

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

3D DCT [10]
2D HOG [32]
SVD−based [6]
Proposed/EC
Proposed/D

auth

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

FPR

T
P

R

 

 

3D DCT [10]

2D HOG [32]

SVD−based [6]

Proposed/EC

Proposed/D
auth

(a) (b) (c) (d) (e)
Fig. 17. Performance comparison. (a) Compression: SD videos at 128 kbps and HD videos at 500 kbps. (b) Compression: SD videos at 256 kbps and HD
videos at 1000 kbps. (c) Compression: SD videos at 500 kbps and HD videos at 1500 kbps. (d) Transsizing. (e) Frame drop at a rate of 20%.

Fig. 18. Detection of tampered regions. First column: original videos. Second column: forged videos. Last column: detected tampering.

applied on the same test videos. It is worth mentioning that
the 3D DCT hashing technique was mainly designed for
video identification but its results were not reported earlier
because it has already been outperformed by TIRI according
to [20]. Unlike the proposed and other competing authenti-
cation techniques, the SVD-based hashing technique suffers
from a synchronization problem when the video undergoes
transsizing operations because it operates on individual frames
using a fixed block size. For the sake of comparison, however,
the transsized videos are resized back to their original size
before applying the SVD-based authentication technique. It
is also worth noting that the distortion caused by MPEG-4
compression is more significant than the one reported in [6]
since our test videos are larger in size. The results are shown
in Fig. 17. It can be seen that the proposed hashing system
outperforms its competitors significantly. The 3D DCT hashing
system completely fails to detect forged videos because its
main design relies on a 3D transform which tends to summa-
rize the video in a compact hash. As a result, tampered regions
that affect a small portion of the video do not cause significant

changes in the extracted hash. The other competing techniques
appear unable to tolerate video distortions caused by low bit-
rate compression while detecting video forgeries. Indeed, for
the SVD-based hashing technique, low bit-rate compression
seems to cause significant distortions in textured/edged blocks
affecting the corresponding left-singular and right-singular
vectors of the SVD and this leads to incorrect codeword
representations in the codebook. As expected, the 2D-HOG
technique produces a poor performance when transsizing was
used. This can be explained by the sensitivity of the gradient
orientation to resizing. Finally, one can clearly see that the
proposed authentication distance fits well in the overall system
when compared to the Euclidean distance. The results validate
our claim on the sensitivity of the proposed hash to mali-
cious manipulations on one hand and its robustness against
transcoding operations on the other hand. Fig. 18 illustrates the
detection of tampered regions in forged videos. The detected
regions take the form of rectangular blocks because of the
block-based locating process as described by (35). Finally, we
have conducted similar experiments using another video cod-
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ing standard, i.e., H264. This is to verify whether the format
change affects the performance of the aforementioned systems.
We show below the results of H.264 compression at the rate
of 500 kbps for SD videos and 1500 kbps for HD videos as
compared to the results of MPEG-4 compression at the same
rate. Fig. 19 illustrates the corresponding performance.
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Fig. 19. Authentication performance under MPEG-4 and H.246 compression
at the same bit-rate, respectively. (a) MPEG-4. (b) H.264.

Interestingly, the same observation can be made regarding
the performance of the systems with a slight enhancement of
accuracy due to the better video compression with H.264 when
compared to MPEG-4.

D. Complexity analysis

In the proposed hashing scheme, most of the computational
cost is caused by the pre-processing stage, i.e., the re-sampling
process. The computational complexity of the aforementioned
competing techniques is evaluated here for the sake of compar-
ison. The average run time on a 10 second test video with the
frame size of 480×854 and frame rate of 30 fps is measured.
All the source codes were implemented in MATLAB and run
on a platform of an Intel Core Duo i7− 4770 CPU 3.40GHz
with 16 GB of memory. Note that Matlab is a high level
programming language and the reported results could be sig-
nificantly improved using a low level programming language
such as C or C++. We used the authors’ implementation of
SGM [45] whereas our own implementation is used for other
techniques. The results in milliseconds (ms) are depicted in
Table V. The computational cost of the proposed hashing

TABLE V
RUN TIME IN MILLISECONDS (ms) OF THE HASHING AND MATCHING

STAGES WITH DIFFERENT TECHNIQUES.

Technique Hashing Matching stage
stage Identification Authentication

CGO 1153 0.0033 −−
SGM 1441 0.0024 −−

WBSIF 911 0.0027 −−
TIRI 887 0.0056 −−

Proposed 774 0.0261 2.375
3D DCT 5633 −− 0.0023
2D HOG 4720 −− 0.1195

SVD-based 73950 −− 18.16

system is low when compared to its competitors but the
identification stage requires a considerably higher cost than
that of other techniques. This is because the measure has been
adjusted with some extra calculations to take into account
the changes that might occur on the hash due to temporal
video operations. It is, however, worth mentioning that some

parallelism can explored to run the directional distances of
(32) (i.e., vertical, horizontal and temporal) simultaneously.
As for the authentication measure, the run time for our
technique is reasonably fast since this is a verification problem
involving only a one-to-one matching to reach the decision on
authenticity.

VI. CONCLUSION

A perceptual video hashing system has been presented in
this paper. The system exhibits an interesting feature in that
it can serve in both the applications of video content identifi-
cation and authentication using the same hash. Compared to
the traditional approach, i.e., using a separate system for each
application, this concept brings the advantage of reducing the
computational complexity and saving the storage space. The
key idea relies on a new shift-based signal calibration tech-
nique using DCT and DST coefficients. Through theoretical
and experimental analysis, this technique has been shown to
offer efficient hash information which can withstand signal
processing operations such as noise and low pass filtering
on one hand and detect malicious manipulations on the other
hand. The system has been experimentally assessed in the two
applications and its superiority over state-of-the-art techniques
has been demonstrated.

APPENDIX A
PROOF OF (15) AND (16)

Let x0 be a discrete time signal and x1 be its shifted
version as described by (6) and (7), respectively. The common
z-transform of x0 is given by

ZT (x0) =
L−1∑
n=0

x(n)z−n , (39)

where z is a complex number. It can be shown that

ZT (x1) = z × ZT (x0)− x(0)
(
z − z−(L−1)

)
. (40)

Now, recall that (12) and (13) can be expressed in a matrix
form. That is, for each value of m we have

Yi+1 = A Yi , (41)

where Yi is given by

Yi =

[
XC

i (m)
XS

i (m− 1)

]
, (42)

and A is described as

A =

[
cos(w) sin(w)
− sin(w)cos(w)

]
, (43)

where w = πm
L . The goal is to mathematically express Yi as a

discrete time function of variable i. In view of (40) and (41),
the z-transform gives

(z I −A) ZT (Y ) = I
(
z − z−(L−1)

)
Y0 , (44)

where I is the identity matrix of size 2× 2. It follows

ZT (Y ) = (z I −A)−1 I
(
z − z−(L−1)

)
Y0 . (45)
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We obtain

ZT (Y )=

(
z−cos(w)

1−2 cos(w)z+z2

sin(w)
1−2 cos(w)z+z2

− sin(w)
1−2 cos(w)z+z2

z−cos(w)
1−2 cos(w)z+z2

)
×(

z − z−(L−1)
)
Y0 . (46)

By applying the inverse z-transform on both terms of (46) and
by considering 0 ≤ i ≤ L− 1, Yi can be derived as

Yi =

[
XC

0 (m) cos(w i) +XS
0 (m− 1) sin(w i)

−XC
0 (m) sin(w i) +XS

0 (m− 1) cos(w i)

]
. (47)

Finally, (47) can be written as follows

Yi =


√(

XC
0 (m)

)2
+

(
XS

0 (m− 1)
)2

cos

(
w i− arctan

(
XS

0 (m−1)

XC
0 (m)

))
√(

XC
0 (m)

)2
+

(
XS

0 (m− 1)
)2

cos

(
w i− arctan

(
− XC

0 (m)

XS
0 (m−1)

))


(48)

APPENDIX B
DETERMINATION OF THE IDENTIFICATION AND

AUTHENTICATION THRESHOLDS

Given a random variable Did, the problem can be formu-
lated as a binary decision.

Did ≥ Tid ⇒ H0

< Tid ⇒ H1 ,

where H0 represents the hypothesis that the compared videos
are visually distinct whereas H1 is the hypothesis of visually
similar videos. As seen in subsection V-A, the identification
distance can be modeled by a normal distribution when the
videos are visually distinct. To obtain the threshold, the
Neyman-Pearson criterion is used in such a way that the
missed similarity detection probability is minimized, subject
to a fixed false alarm probability [40][46]

PFA=Prob(Did < Tid|H0) ,

=

∫ Tid

−∞
fDid

(t|H0)dt , (49)

where fDid
(t|H0) is the pdf of Did. Since Did follows a

normal distribution under H0, it follows

Tid =
√
2σ2

Did
erfc−1(2− 2PFA) + µDid

, (50)

where efrc is the complementary error function. σDid
and

µDid
are the statistical mean and standard deviation of the

identification distance, respectively. Likewise, one can deduce
the authentication threshold Tauth. Assume that H0 is the
hypothesis of genuine videos whereas H1 is the hypothesis
of forged videos. Hence, the decision is

Dauth ≤ Tauth ⇒ H0

> Tauth ⇒ H1 .

In this case, the false alarm probability can be represented as

PFA=Prob(Dauth > Tauth|H0) ,

=

∫ ∞

Tauth

fDauth
(t|H0)dt , (51)

where fDauth
(t|H0) is the pdf of Dauth under hypothesis

H0. Under the assumption that fDauth
(t|H0) follows a normal

distribution, we obtain

Tauth =
√
2σ2

Dauth
erfc−1(2PFA) + µDauth

, (52)

where σDauth
and µDauth

can be computed from the empirical
distance between the original videos and their transcoded
versions.
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