
Embedded Real-Time Object Detection for a UAV Warning System

Nils Tijtgat1, Wiebe Van Ranst2, Bruno Volckaert1, Toon Goedemé2 and Filip De Turck1

1Universiteit Gent
Technologiepark-Zwijnaarde 15, 9052 Gent, Belgium

nils.tijtgat@ugent.be, bruno.volckaert@ugent.be, filip.deturck@ugent.be

2KU Leuven
Technologiecampus DE NAYER, KU Leuven, Jan de Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium

wiebe.vanranst@kuleuven.be, toon.goedeme@kuleuven.be

Abstract

In this paper, we demonstrate and evaluate a method to

perform real-time object detection on-board a UAV using

the state of the art YOLOv2 object detection algorithm run-

ning on an NVIDIA Jetson TX2, an GPU platform targeted

at power constrained mobile applications that use neural

networks under the hood. This, as a result of comparing

several cutting edge object detection algorithms. Multiple

evaluations we present provide insights that help choose the

optimal object detection configuration given certain frame

rate and detection accuracy requirements. We propose how

this setup running on-board a UAV can be used to process

a video feed during emergencies in real-time, and feed a

decision support warning system using the generated de-

tections.

1. Introduction

Unmanned Aerial Vehicles (UAVs) have recently evolved

from nice to have gadgets to full-fledged industrial

grade workhorses in many domains. Precision agricul-

ture [2] [23], industrial inspection [15] and package delivery

service of the future [8] are only a few examples of the many

domains where UAVs can prove their worth. UAV sales have

as such immensely increased these past few years, and re-

ports indicate this growth will continue well into the second

decade of this century [7]. This fast growing market has

sparked investments and advancements in UAV technology,

and economy of scale has brought the cost down. Recent

consumer devices display an impressive set of specifica-

tions and features at an affordable price. Industrial UAVs

are meanwhile equipped with high-resolution sensor arrays

to perform a very diverse set of applications, and are rugged

enough for all-weather outdoor operation. Parallel to UAV

technology advancing, small form factor computing boards

for embedded applications have become integrated power-

houses that enable edge computing on mobile devices. Run-

ning convolutional neural networks on embedded systems

has become a reality. Combining the technological novel-

ties from both the UAV and embedded computing domain

allows for some very interesting new approaches, which we

will apply in this paper from an emergency operation man-

agement perspective. UAVs can provide invaluable visual

information during incidents and help rescue workers and

coordinators better tackle the situation at hand. Aerial im-

agery can indicate possible entry-points during a fire, help

locate missing persons during a search & rescue operation,

locate possible dangerous containers on-site, etc. This is the

issue we will address in this paper: how can we perform ac-

curate real-time object detection on-board a UAV, and inte-

grate that into an emergency situation warning system? We

specifically choose UAV on-board object detection, as a ro-

bust wireless link during an emergency is not always guar-

anteed, or the link lacks the bandwidth or availability to reli-

ably support a video stream. As features and application do-

main evolve at high pace, the major current UAV technology

Achilles’ heel remains the limited flight time. Even though

lithium-ion battery technology is rapidly advancing, future

technological improvements promise evolution rather than

revolution when it comes to maximum energy capacity. Pe-

ripheral hardware weight and power consumption on-board

our UAV should therefore always be carefully considered

and kept as low as possible, limiting the available perfor-

mance for our object detection algorithm.

2. Approach

The context in which we report the findings of this paper,

is that of a UAV platform capable of arriving at an emer-

gency scene on very short notice to provide increased situa-

tional awareness for emergency response coordination. The

UAV could be stationed on top of the fire station or a re-

gional launch site and depart as soon as a distress call rolls

in. Using a combination of a ‘straight as the crow flies’

2110



path and predefined paths at specific heights to avoid known

obstacles in the area, the UAV can ignore traffic and au-

tonomously arrive on scene faster than emergency respon-

ders can. Once on-site, it helps decision makers assess the

situation more efficiently and coordinate the operation with

greater ease as would normally be the case. The UAV should

have a high degree of autonomy and accept high level com-

mands to perform in-depth inspections of the area (includ-

ing e.g. capturing additional imagery of heavily impacted

areas, monitoring operational progress). An on-board high

resolution optical camera offers decision makers a thorough

view on the situation. To assist operators even more dur-

ing stressful situations (where information overload can oc-

cur at any given time), an automated decision support sys-

tem notifies of ongoing relevant events. As an example:

if a rescue worker approaches a dangerous situation (high

pressure gas pipe, burning gas tank) a warning is generated

to alert those involved of the potentially imminent danger.

One vital module of this decision support system, is the ob-

ject detection algorithm that looks for predefined items and

passes this detection on to the decision engine. In this en-

gine, the location of the detected object is estimated so that

reasoning can take place in correlation with different ob-

jects present (distance of a fire truck to a burning barrel for

instance). This paper focuses on the on-board object detec-

tion algorithm and integration with risk assessment. People,

emergency responders, vehicles, dangerous goods contain-

ers, gas tanks, are some examples of the predefined objects

we want our model to detect.

3. Related work

3.1. Object Detection

Traditionally, before the rise of convolutional neural net-

works (CNN), object detection (and by extension person

detection), was done using hand crafted features. The Vi-

ola and Jones [27] face detector proved that is was possi-

ble to get really good performance for face detection using

integral images in combination with an AdaBoost classi-

fier. Other detectors like Histograms of Oriented Gradients

(HOG) [3], Internal Channel Features (ICF) [5], Aggregated

Channel Features (ACF) [4] and Deformable Parts Model

(DPM) [6] make use of histograms of oriented gradients

which have proven to get really good results for pedestrian

detection and object detection in general. These detectors

use features that are engineered and use classical machine

learning approaches like decision trees / AdaBoost (ACF,

ICF, V&J) or support vector machines (SVMs) (HOG, DPM).

They generally use a sliding window approach, which eval-

uates a fixed size window at all positions in the image at

different scales to get detection results for the entire image.

Many of these methods can easily run in real-time on

embedded platforms as was demonstrated by [9] for use on

drones. For some time now however, deep learning meth-

ods offer better accuracy at the cost of speed. Until recently

it was not feasible to get them to run real-time on embedded

platforms as the neural nets they are built on require a lot of

GPU computational power. Recent developments have im-

proved this, as deep learning methods are now catching up

in terms of speed. In what follows, we will analyze the ac-

Figure 1. Comparison of different object detection algorithms tested on Pascal VOC2007 data (trained on VOC2007 and VOC2012). Image

courteously provided by AlexeyAB from his darknet GitHub repository (https://github.com/AlexeyAB/darknet).

2111

https://github.com/AlexeyAB/darknet


curacy/speed trade-off of both of these methods. We com-

pare the ACF hand crafted features detector which is still

close to state of the art, to the YOLOv2 and TinyYOLO de-

tector that offer a good trade-off in terms of accuracy/speed

on the deep learning side.

Deep convolutional neural networks form the current

cutting edge technology when it comes to object detection.

Recent literature provides ample examples of CNNs being

used for a wide range of detection tasks [12, 22, 24, 14].

Only a selection of the proposed approaches qualifies

as a real-time algorithm, a crucial requirement for our

application. These are mostly single stage methods, as a

two stage approach is computationally expensive. A first

single stage approach is SSD [14]. It is surpassed in most

of its configurations however by YOLOv2 [20] proposed by

Redmon & Farhadi in both detection speed and detection

accuracy. YOLOv2 is the successor of YOLO [19] and

runs on the open source C Darknet neural net [18] by the

same authors. A very interesting extra model running on

this same underlying Darknet neural net is the TinyYOLO

detector. It has a slightly lower detection accuracy, but

the attainable frame rate is 4 times higher than YOLOv2

can achieve1. Single stage detectors often struggle to keep

detection accuracy up to par when compared with two stage

approaches, but Ren et al. [21] prove recent advances can

even outperform the latter.

Looking at other CNNs that were designed with an embed-

ded application in mind, we find LCDet [26] among others.

Inspired by the YOLO architecture, LCDet presents a Ten-

sorFlow [1] implementation focused on keeping the neu-

ral net small: it features a 4-fold reduced memory usage

and improved performance with only a minor drop in de-

tection accuracy. The paper presents a benchmark where

LCDet proves to be more accurate than the first generation

YOLO, but the authors state YOLOv2 should empirically be

more accurate than LCDet. Another approach to greatly re-

duce the CNN footprint is SqueezeDet [28], mainly focusing

on autonomous driving. A final proposal by Kim et al. to

implement lightweight neural networks for real-time object

detection is PVANET+ [11]. Figure 1 is a graphical com-

parison of most of the previously mentioned models that

plots the frame rate versus the mean average precision. The

frame rates indicated are attained using a powerful Titan X

(GM200) GPU and far greater than we will be able to attain,

but still provide a great comparison between the algorithms.

3.2. Embedded platform

When it comes to choosing a UAV on-board embedded sys-

tem for image detection, Hulens et al. [10] present a sur-

vey of different platforms with their respective computing

power and influence on system battery life. The paper men-

tions the Jetson TK1 (predecessor of our Jetson TX2) and

rates its CPU performance below average. This makes per-

1https://pjreddie.com/darknet/yolo/

fect sense: the Jetson is a powerful GPU embedded plat-

form and the benchmarking algorithm used is CPU-based.

The main algorithm we will be running is GPU based. The

paper hence does not directly show us what GPU platform

to choose, but the ideas and effects on battery lifetime of

different embedded platforms remain valid and relevant.

3.3. Object positioning algorithm

Once our embedded system has detected objects of interest,

we determine their position to feed this information to the

decision support system. Preferably we want a solution that

doesn’t require a complex on-board setup (LiDAR or other

expensive and/or heavy imaging system) to minimize cost

and maximize flight time. Tijtgat et al. [25] present a solu-

tion that matches this requirement and provides a positional

accuracy of <1.5m. The work presented in [13] proposes

a vision-based UAV approach and landing scenario. This

could serve as inspiration, with the limiting factor that the

UAV would have to hover over the detected object’s location

to determine its position.

4. Architecture

The current architecture is the result of a set of design de-

cisions upon which we will elaborate in the following sub-

sections. As an example, Figure 2 illustrates what the ar-

chitecture looks like for our use case. An autonomous UAV

captures video data that the on-board hardware processes.

In the example, a ’Firefighter’ and two ’Barrel’ instances

are detected and their position is calculated. This informa-

tion is relayed to the decision support system, that gener-

ates an alert if the firefighter gets too close to the dangerous

products.

4.1. Object detection algorithm

The object detection algorithm we choose will have a major

influence on the performance and battery life of our applica-

tion. Many recent implementations are available, each hav-

ing their merit. We compare the YOLOv2 [20], TinyYOLO

and ACF [4] algorithms because of their excellent balance

between frame rate and detection accuracy. Both YOLO al-

gorithms run in the same Darknet framework, which allows

us to easily run two different configurations and compare

results. For ACF we use our own C++ implementation and

also evaluate an experimental GPU port.

4.2. GPU implementation of ACF

In order to evaluate the performance of the ACF detector on

an embedded GPU platform like the Jetson TX2, we also

evaluate an embedded GPU implementation of the ACF de-

tector. Porting the detector to GPU consists of two different

stages: first we calculate the ACF features, after which we

evaluate these features using a decision tree that was learned

by the AdaBoost algorithm. Fast real-time performance is a

requirement, so only evaluation time is important. Training

is kept on the CPU (apart from hard negatives mining).

2112

https://pjreddie.com/darknet/yolo/


Figure 2. System architecture of a UAV-based decision support system for emergency response

To calculate the different ACF features on GPU we use the

NVIDIA performance primitives (NPP) library that contains

many standard image processing functions like color con-

version, gradient calculation, rescaling etc. In fact, most of

the operations used to calculate ACF features can be found

in this library. To calculate the HoG from the gradient for

histogram binning, we created our own CUDA implementa-

tion.

We tried many different approaches for the evaluation.

An obvious place where parallelism can be found in the

ACF algorithm is in the sliding window stage. Many win-

dows (one window for every position in the image) have to

be evaluated. As there are no data dependencies between

windows, this can easily be done in parallel. We call this

approach the window parallel approach.

Another place where we find parallelism in the algo-

rithm, is in the evaluation of different decision trees for each

window. ACF uses a series of weak classifier to create one

strong classifier that outputs a score that is the sum of all the

previous weak classifiers. The big advantage of this scheme

is that it is not required to evaluate every classifier for each

window. From the moment we determine that the first weak

classifiers return a weak score for a window, we can rule out

the window and stop evaluation early. This speeds up the

evaluation tremendously. On GPU however, stopping early

with the evaluation of decision trees creates control diver-

gence, and reading many sparsely populated values from

memory also gives disappointing memory performance on

an already memory bound problem.

To get rid of the control divergence we can also evaluate

decision trees in parallel. We call this the stage parallel ap-

proach, as we evaluate weak classifiers in parallel. We take

groups of k (for instance k = 128) decision trees, evalu-

ate them in parallel, calculate the global score (sum of all

k classifiers) and if we are still above the predetermined

threshold launch the next batch of k classifiers.

In the end we choose a hybrid implementation inspired

by [17] (for Viola and Jones classifiers) that uses both of

these approaches. We first evaluate each window in the im-

age in a window parallel approach, after which we use dy-

namic parallelism to launch additional kernels that take a

stage parallel approach. The results of our GPU implemen-

tation can be found in section 5.3.

4.3. Embedded GPU processing platform

Since YOLOv2 heavily relies on the CUDA toolkit, we need

to find a powerful GPU platform that is both constrained

in weight, dimensions and power consumption. Modern

desktop GPUs require big amounts of power to run under

full load (NVIDIA GTX 1080Ti has a TDP of 250W) but de-

liver high amounts of floating point operations per second

(TFLOPS) in exchange (11.3TFLOPS in the example of the

GTX 1080Ti). While the raw power of this type of GPU is

perfect during the offline and unconstrained training phase,

it is clear that we need a completely different approach to

meet our requirements (minimal power consumption, lim-

ited onboard processing power, minimal weight) for the in-

ference phase on-board the UAV.

To determine if weight or power consumption should be

the key parameter to consider when choosing our embedded

platform, let’s have a look at equation (1)2. This equation

describes the power P (in Watts) required to hover an air-

craft of mass m (in kg) with a propeller of radius r (in me-

ters). K depends on the air density Qair as defined in equa-

tion (2) and g is the gravitational acceleration with a con-

ventional standard value of exactly 9.80665 m/s2. At 20◦C

and a pressure of 1atm, K has a value of 0.363562254.

P = K ·

(m · g)3/2

r
(1)

K =

√

1

2π ·Qair
(2)

2http://www.starlino.com/power2thrust.html

2113

http://www.starlino.com/power2thrust.html


As an example, a commercially readily-available DJI

Phantom 4 weighs in at 1380g total takeoff weight and has

a propeller radius of 12cm. According to equation (1), it

requires just over 150.83W of power divided over its four

propellers to hover. This theoretical result does not take

into account the power required to operate the flight con-

troller and other on-board electronics and sensors. It’s clear

that the m3/2 factor in (1) progressively penalizes every

bit of added weight. Adding 100g of weight (+7.2%) to

previous example increases the power required by 16.69W

(11.1%). The weight of most relevant embedded computing

platforms ranges from 40g (Raspberry Pi 3) to about 180g

(Intel NUC Board NUC5I3MYBE).

Let’s have a look at the power consumption of embedded

computing platforms to determine if this influences the to-

tal UAV power consumption more than adding extra weight

or not. Typical computing platforms intended for embed-

ded applications tend to not use more than 15W under load

(Intel NUC Board NUC5I3MYBE for instance), many even

settle with a lot less (RaspBerry Pi 3 under load uses about

6.7W). Taking into account the previous thoughts and the

fact that we need as much CUDA power as we can get in an

embedded package, the choice for the NVIDIA Jetson TX2

was quickly made. At 85 grams (without expansion board

or cooling fan) it presents 256 CUDA cores (1.5TFLOPS) and

runs at either 7.5W (peak efficiency) or 15W (peak per-

formance). It is twice as efficient as its predecessor (Jet-

son TX1) and features specifications that are currently un-

matched in developer boards.

4.4. Decision support system

The automated decision support system’s role is to decrease

the information load decision makers and actors on scene

face during emergencies. In stressful and volatile situations

details are easily overlooked, or there simply isn’t enough

time to assess the full context of the incident. The deci-

sion support system can provide helpful insights based on

information gathered by the UAV or other data sources. An

example of how this could look like can be found in Fig-

ure 3. The bold red line represents an underground gas pipe,

the location of which can be acquired from an online API,

or an offline cached database. A slightly transparent red

area represents a security perimeter around the gas pipe that

should be kept clear during incidents and the green marker

represents an emergency responder, located by the detection

setup running on our autonomous UAV. The event-based

decision support engine reasons that a person is inside a re-

stricted area and generates a warning to notify whoever is

coordinating the operation of this incident. Many other in-

cidents can be defined and processed in the same fashion:

the UAV could autonomously search for wounded persons

in the area, track the location of rescue workers and rescue

vehicles on site etc. An evaluation of the decision support

system is out of the scope of this paper, in what follows we

focus on achieving a real-time object detection on-board the

UAV.

5. Evaluation

As the viewpoint of a low-altitude UAV distinctly differs

from a traditional ground perspective, it makes sense to

evaluate the different YOLO configurations using appropri-

ate image and video material. The UAV123 data set [16]

provides exactly that. 123 partially annotated (only one

person is annotated, we filter out sequences where multiple

people are visible to calculate precision) video sequences in

16:9 format (1280x720) captured from a UAV provide the

perfect benchmark material. The following subsections dis-

cuss the various parameters we have analyzed.

5.1. Input resolution

The input resolution of the Darknet neural network YOLOv2

uses defaults to 416x416. Every image subject to training

or inference is resized to this raster. Increasing these dimen-

Figure 3. Example decision support interface

2114



Figure 4. Input resolution compared to accuracy

sions will increase the time required for inference, but also

results in a greater detection accuracy. This allows us to de-

fine either a low frame rate, high accuracy system, a high

frame rate, lower accuracy system or anything in between,

depending on the application. As every image or video

frame needs to be resized to the defined input resolution,

the dimensions of the input frame relative to the raster will

have a major impact on the attainable frame rate. Figure 4

illustrates the increasing detection accuracy with increasing

input resolution. From the figure, it follows that for YOLOv2

the accuracy goes up only marginally if the width is main-

tained, but the height increased to form a square input raster.

This can be explained by the fact that the source images are

all in 16:9 format. Resizing a rectangular image to a square

raster introduces irrelevant information (YOLOv2 does not

crop while resizing) that doesn’t help detection accuracy.

This deduction is not valid for TinyYOLO however, as a

rectangular input resolution of 416x256 or 608x320 gravely

harms the mAP.

Increasing the detection accuracy by means of a larger

input raster comes at a hefty price as Figure 5 illustrates.

Comparing the lowest accuracy (83.67% @ 416x256) to

the best value (97.67% @ 1216x1216), we see the YOLOv2

frame rate drop from 6fps to 0.497fps, a 12-fold decrease.

The Jetson TX2’s limited memory prevented us from run-

ning TinyYOLO at a 1216x1216 resolution, but looking

at the other results we see a comparable decrease from

11.80fps (416x256) to 1.67fps (1280x736).

Combining results from both previous plots yields an in-

teresting conclusion: the frame rate difference between an

input resolution of 608x320 and 416x416 is smaller than be-

tween 608x320 and 608x608, while the detection accuracy

of 608x320 over 416x416 is greatly increased and there is

almost no difference between 608x320 and 608x608. As

such, when configuring a YOLOv2 detector it is advised to

set the aspect ratio of the input raster to that of the images

or video stream the network will process, in order to obtain

Figure 5. Influence of input resolution on detection frame rate

an optimal frame rate and detection accuracy. In the case

for TinyYOLO, a rectangular input raster should be chosen.

5.2. Video input dimensions

To evaluate the exact effects the input video dimensions

have on the frame rate, we chose a NASA 4K video3

(3480x2160, 24 frames per second, 20.71Mbps bit rate,

Public Domain Mark 1.0) named ’Red Lettuce’, as it dis-

plays multiple categories we can detect using the default

COCO and VOC trained models for YOLOv2 and TinyYOLO.

We have subsequently downscaled this video to other 16:9

formats using ffmpeg and let both YOLOv2 and TinyYOLO

process this batch. The input resolution was configured at

416x416 for every run. Figure 6 illustrates the results of this

evaluation.

A first obvious conclusion we can draw, is that the frame

rate goes down as the input video resolution goes up. This

effect is not the same for YOLOv2 and TinyYOLO how-

ever: TinyYOLO is affected by this in a greater way. The

TinyYOLO COCO frame rate drops from 14.87fps (256x144)

to 4.91fps (3840x2160) a 66.98% decrease, while YOLOv2

COCO goes from 6.97fps (256x144) to 4.25fps, represent-

ing a 39.02% decrease. A second observation shows that

the inference time greatly depends on the model size. Com-

paring the VOC (20 categories), COCO (80 categories) and

YOLO9000 (9142 categories) models for YOLOv2, we see

that as the amount of detectable categories increases, more

time is required to perform the detection. As the amount

of detectable categories in our use case will be well below

100, this will not pose a major influence.

5.3. ACF compared to Yolo

To see how YOLO compares to traditional detection meth-

ods, we compare the different configurations of YOLO and

3https://archive.org/details/

NASA-Ultra-High-Definition

2115

https://archive.org/details/NASA-Ultra-High-Definition
https://archive.org/details/NASA-Ultra-High-Definition


Figure 6. Influence of video dimensions on detection frame rate

0 20 40 60 80 100
Recall (%)

0

20

40

60

80

100

Pr
ec

isi
on

 (%
)

yolo 416x416 (ap = 73.74%)
yolo 416x256 (ap = 74.01%)
yolo 608x608 (ap = 85.94%)
yolo 608x320 (ap = 86.2%)
yolo 1216x1216 (ap = 97.71%)
yolo 1280x736 (ap = 98.19%)
tiny 416x416 (ap = 57.94%)
tiny 416x256 (ap = 35.6%)
tiny 608x608 (ap = 73.22%)
tiny 608x320 (ap = 47.3%)
tiny 1280x736 (ap = 78.91%)
acf min 100 (ap = 62.43%)
acf min 60 (ap = 77.48%)
acf min 40 (ap = 79.77%)
acf min 20 (ap = 78.35%)

PR Curves of different runs (Tiny yolo vs. Normal)

Figure 7. Comparison of the ACF detector to YOLO

TinyYOLO in this section to the aggregate channel features

(ACF) detector proposed by Dollár et al. [4]. We used our

own implementation of ACF which was ported from Matlab

to C++ for better performance. We also created an experi-

mental GPU implementation of the ACF detector which can

currently only evaluate features at a single layer in the fea-

ture pyramid, but can still give us an idea about how well

ACF would scale to GPU.

The results in terms of detection accuracy can be seen in

Figure 7. ACF (evaluated with a minimum detection scale

of 20 pixels) shows similar performance to TinyYOLO eval-

uated at a resolution of 1280x736 pixels and YOLOv2 using

an input resolution that lies between 416x256 and 608x320

pixels.

Figure 8 compares the speed of different detectors. The

CPU multi scale ACF detector with minimum detection

height of 100px is about as fast as YOLOv2 with a resolu-

yo
lo

v2
 4

16
x2

56
yo

lo
v2

 4
16

x4
16

yo
lo

v2
 6

08
x3

20
yo

lo
v2

 6
08

x6
08

yo
lo

v2
 1

21
6x

12
16

yo
lo

v2
 1

28
0x

73
6

tin
y 

41
6x

25
6

tin
y 

41
6x

41
6

tin
y 

60
8x

32
0

tin
y 

60
8x

60
8

tin
y 

12
80

x7
36

ac
f c

pu
 m

ul
ti 

m
in

 1
00

ac
f c

pu
 m

ul
ti 

m
in

 6
0

ac
f c

pu
 m

ul
ti 

m
in

 4
0

ac
f c

pu
 m

ul
ti 

m
in

 2
0

ac
f g

pu
 o

ne
 sc

al
e

ac
f c

pu
 o

ne
 sc

al
e

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
te

ct
io

n 
sp

ee
d 

(fp
s)

Comparison of different detectors

Figure 8. Comparison of different detectors in terms of speed

tion of 608x608. Looking at the accuracy of both detectors,

it follows that YOLOv2 outperforms ACF with an average

accuracy of 85.9% vs. 62.4% suggesting that at least com-

pared to the CPU version of ACF, YOLOv2 performs better

at the same frame rate. Also note that the YOLO 608x320

variant attains about the same accuracy and is faster. Low-

ering the minimum height to 40px gives us the best ac-

curacy for the ACF detector (ap = 79.7%), the closest

corresponding YOLO detectors are YOLOv2 608x320 and

YOLOv2 416x256 with an average precision of 86.2% and

74.0% respectively. The ACF detector reaches a mean frame

rate of 0.54 fps while the YOLO detectors reach a frame rate

of 4.53 and 9.57 fps respectively.

2116



Figure 9. Mean Average Precision vs. frame rate for the discussed object detection algorithms running on an NVIDIA Jetson TX2

yolo 416x416 yolo 416x256

yolo 608x320 tiny 608x608

tiny 1280x736 acf one scale 117 (no results)

acf min 100 (no results) acf min 40

Figure 10. Visual comparison a selection of detector on a single

frame of the UAV123 dataset.

Previous results did not run on a GPU, which is a really pow-

erful component on the Jetson TX2 when compared with the

ARM CPU. To get equivalent results as YOLOv2, a GPU ACF

implementation would need a speedup of at least 10× com-

pared to CPU. Comparing the one scale implementation of

ACF suggests that with the current implementation we can

get a speedup of 2.5×. The biggest bottleneck here is the

traversal of decision trees, which is a memory bound prob-

lem and thus hard to speed up on GPU. An additional speed

increase in ACF could consist of the addition of scene con-

straints by using the height and orientation of the drone,

and assuming a flat surface underneath. We can vastly nar-

row down the amount of scales that need to be searched

and thus speed up the detector even more. Figure 7 shows

the accuracy of the ACF detector at one scale, where we set

the scale to 117 pixels (the average height of a person in

the UAV123 dataset). The poor performance shows that it

is indeed necessary to detect on multiple scales when us-

ing the ACF detection. Alternatively, with the knowledge

of the earlier drone measurements we can greatly increase

this accuracy by detecting on the correct scale. Of the cur-

rently evaluated detectors, the YOLOv2 detector seems to

bring the best accuracy combined with the highest frame

rate. Figure 10 shows a visual comparison of a selection of

the evaluated detectors.

6. Conclusion

We have presented and evaluated our approach for a real-

time object detection system on-board an autonomous UAV.

Multiple configurations are available, depending on the

frame rate and detection accuracy the final application re-

quires. The presented evaluations can help configure future

applications and demonstrate what is currently feasible us-

ing off-the-shelf hardware. The modern, neural net based

YOLOv2 algorithm attains higher frame rates and detection

accuracy results than leading CPU based algorithms. Fig-

ure 9 presents a concluding view of how the different al-

gorithms perform under varying conditions on an NVIDIA

Jetson TX2, comparable to how Figure 1 did for several al-

gorithms running on an NVIDIA Titan X (GM200).

2117



References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv:1603.04467, 2016.

[2] S. Candiago, F. Remondino, M. De Giglio, M. Dubbini, and

M. Gattelli. Evaluating multispectral images and vegetation

indices for precision farming applications from uav images.

Remote Sensing, 7(4):4026–4047, 2015.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In Computer Vision and Pattern Recogni-

tion, 2005. CVPR 2005. IEEE Computer Society Conference

on, volume 1, pages 886–893. IEEE, 2005.

[4] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature

pyramids for object detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2014.

[5] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel

features. 2009.

[6] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-

criminatively trained, multiscale, deformable part model.

In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[7] A. Glaser. Dji is running away with the drone mar-

ket. https://www.recode.net/2017/4/14/14690576/drone-

market-share-growth-charts-dji-forecast, 2017. [Online; ac-

cessed 14-04-2017].

[8] I. Hong, M. Kuby, and A. Murray. A deviation flow refu-

eling location model for continuous space: A commercial

drone delivery system for urban areas. In Advances in Geo-

computation, pages 125–132. Springer, 2017.

[9] D. Hulens and T. Goedemé. Autonomous flying cameraman

with embedded person detection and tracking while applying

cinematographic rules. In Proceedings CRV 2017, 2017.

[10] D. Hulens, J. Verbeke, and T. Goedemé. Choosing the best

embedded processing platform for on-board uav image pro-

cessing. In VISIGRAPP, pages 455–472. Springer, 2015.

[11] K.-H. Kim, S. Hong, B. Roh, Y. Cheon, and M. Park. Pvanet:

Deep but lightweight neural networks for real-time object de-

tection. arXiv preprint arXiv:1608.08021, 2016.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[13] S. Lange, N. Sunderhauf, and P. Protzel. A vision based on-

board approach for landing and position control of an au-

tonomous multirotor uav in gps-denied environments. In

Advanced Robotics, 2009. ICAR 2009. International Confer-

ence on, pages 1–6. IEEE, 2009.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

arXiv preprint arXiv:1512.02325, 2015.

[15] L. F. Luque-Vega, B. Castillo-Toledo, A. Loukianov, and

L. E. Gonzalez-Jimenez. Power line inspection via an un-

manned aerial system based on the quadrotor helicopter. In

MELECON, 2014 17th IEEE, pages 393–397. IEEE, 2014.

[16] M. Mueller, N. Smith, and B. Ghanem. A benchmark and

simulator for uav tracking. In European Conference on Com-

puter Vision, pages 445–461. Springer, 2016.

[17] A. Obukhov. Haar classifiers for object detection with cuda.

GPU Computing Gems Emerald Edition, pages 517–544,

2011.

[18] J. Redmon. Darknet: Open source neural networks in c. h

ttp://pjreddie. com/darknet, 2016, 2013.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 779–788, 2016.

[20] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.

arXiv preprint arXiv:1612.08242, 2016.

[21] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai,

and L. Xu. Accurate single stage detector using recurrent

rolling convolution. arXiv:1704.05776, 2017.

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, 2015.

[23] G. Sona, D. Passoni, L. Pinto, D. Pagliari, D. Masseroni,

B. Ortuani, and A. Facchi. Uav multispectral survey to map

soil and crop for precision farming applications. Internation

Archives Of The Photogrammetry, Remote Sensing And Spa-

tial Information Sciences, 41:1023–1029, 2016.

[24] C. Szegedy, S. Reed, D. Erhan, D. Anguelov, and S. Ioffe.

Scalable, high-quality object detection. arXiv preprint

arXiv:1412.1441, 2014.

[25] N. Tijtgat, B. Volckaert, and F. De Turck. Real-time haz-

ard symbol detection and localization using uav imagery.

In 2017 IEEE 86th Vehicular Technology Conference (VTC-

Fall), pages 1469–1474. IEEE, 2017.

[26] S. Tripathi, G. Dane, B. Kang, V. Bhaskaran, and T. Nguyen.

Lcdet: Low-complexity fully-convolutional neural networks

for object detection in embedded systems. arXiv preprint

arXiv:1705.05922, 2017.

[27] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians

using patterns of motion and appearance. In null, page 734.

IEEE, 2003.

[28] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet:

Unified, small, low power fully convolutional neural net-

works for real-time object detection for autonomous driving.

arXiv preprint arXiv:1612.01051, 2016.

2118


