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Singlet oxygen-mediated one-pot chemoselective
peptide–peptide ligation†

Eirini AntonatouQ1 , Yentl Verleysen and Annemieke Madder *

We here describe a furan-oxidation based site-specific chemical ligation approach using unprotected

peptide segments. This approach involves two steps: after photooxidation of a furan-containing peptide,

ligation is achieved by reaction of the unmasked aldehyde with C- or N-terminal α-nucleophilic moieties

of the second peptide such as hydrazine or hydrazide to form a pyridazinium or pyrrolidinone linkage

respectively.

Peptide conjugates are useful tools in research for the con-
struction of multifunctional scaffolds, for the chemical syn-
thesis of proteins1,2 and in various cell applications.3

Chemoselective coupling reactions have been widely used
for the site-selective ligation of biomolecules under physio-
logical conditions.4–7 Recent advances include native
chemical ligation,2,8–15 Staudinger ligation,16–18 azide–alkyne
cycloaddition,19–22 thiol–ene coupling reactions,23 Diels–Alder
cycloaddition reactions,24–28 a photoclick tetrazole–alkene
cycloaddition,29 and olefin metathesis.30 Additionally, hydra-
zone and oxime condensations or thiazolidine reactions are
extensively utilized in the area of bioconjugation in view of the
high chemoselectivity of the reactions.31–35 Nonetheless, car-
bonyl ligations suffer from slow kinetics at neutral pH.36,37 To
address these issues, nucleophilic catalysts such as aniline
and derivatives have been employed to enhance hydrazone
ligation at neutral pH.38–40 Alternatively, it was shown that by
tuning the structure and reactivity of carbonyls and nucleo-
philes, fast and catalyst-free hydrazone ligations could be
achieved at biological pH.41,42

Despite the great advancements, there is still need for
simple and chemoselective methods for ligating peptides into
larger constructs for diverse applications. In line with our pre-
viously established methodology,43 where furan peptides could
be efficiently labeled with various fluorescent moieties using
α-effect nucleophiles, we envisaged to expand our method-
ology towards the ligation of unprotected peptide fragments
carrying bioorthogonal handles. In this way, a mild and
efficient coupling reaction has been developed where unpro-
tected furan peptides are ligated with unprotected hydrazine
peptides through a pyridazinium or pyrrolidinone linkage

(Scheme 1). Important advantages of this strategy include the
easy preparation of peptides containing furan at different posi-
tions as well as nucleophilic peptides using commercially
available building blocks and the respectable conversions that
can be attained with minimum excess of reagents. Photo-
initiated furan-hydrazine reaction can be triggered in aqueous
solution under physiological conditions by white light
irradiation. A furan peptide, when irradiated with white light
in presence of rose bengal, forms a reactive 1,4-enedione
in situ which is further intercepted by α-effect nucleophilic
peptides to yield pyridazinium or pyrrolidinone conjugates
(Scheme 1). In previous work, the exact type of linkage formed
between the oxidized furan moiety and the α-effect nucleo-
philes, was characterized by extensive NMR analysis.43

Our foray began with the reaction between model peptides
Ac-Ile-Glu-Lys-Phe-Lys-Fua-NH2 (1a) and α-hydrazinoacetyl-Gly-
Arg-Gly-Asp-Ser-NH2 (2).44 Fua is the three-letter code used
here for Fmoc-L-furylalanine residue. The ligation procedure
consists of two steps that are carried out in a one-pot fashion.

Scheme 1 Singlet oxygen-mediated ligation of furan peptides with
either hydrazine or hydrazide peptides to form pyridazinium or pyrrolidi-
none conjugates respectively.

†Electronic supplementary information (ESI) available. See DOI: 10.1039/
c7ob02245j
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In a first step the furan peptide (0.5 mM) is photooxidised in
presence of rose bengal (10 μM) for 40 min in water (pH 4.5).
Subsequently the hydrazine peptide is added from its stock
solution and the reaction is monitored for 30 min to 18 hours
at room temperature. In search for the optimal conditions for
coupling a keto–enol-peptide with a hydrazine-containing
peptide, it was found that the pH of the stock solution of
hydrazine peptide influences the reaction kinetics in that near
neutral conditions prompt higher reaction rates. Preliminary
experiments where hydrazine peptide 2 (1.0 equiv.) was added
from its acidic solution in water (pH 2.9, Scheme 2b), demon-
strated low conversion to the conjugate with oxidation and lig-
ation intermediates still remaining after 18 h. Increasing the
pH (from 2.9 to 7.2), gradually increased the reaction rate and
conversion. Specifically, when hydrazine-peptide was added
from a solution at pH 7.2 (1.0 M phosphate buffer), conju-
gation reached high conversion in only 30 min (Scheme 2b

and c). Therefore, the one-pot reactions were all performed at
pH 7.2 and rt in subsequent experiments.

It is worth mentioning that during HPLC analysis for-
mation of a small amount of side-product could be detected
(absorbing only at 254 nm, Fig. 37, ESI†), the mass of which
reveals the intramolecular reaction of oxidized furan with the
C-terminal amide.45,46 This side reaction could be circum-
vented when excess of peptide 2 was added (5.0 equiv.) or
when reaction was performed in an all-in-one fashion by
photooxidation of furan peptide 1a in presence of 10 µM of RB
and 5.0 equiv. of hydrazine peptide at pH 7.2 (Fig. 44, ESI†).
The photooxidation was virtually complete after 15 min of
irradiation with the instant formation of ligated product 3a.
Conversion was virtually quantitative after 6 h. Although this
all-in-one ligation procedure exhibits practicality, we pro-
ceeded with the sequential optimized conditions to allow
better evaluation of and control over all aspects of the entire
reaction process.

Additionally, MALDI-TOF analysis confirmed the success of
obtaining the desired conjugate, yet also showed the formation
of pyridazinium and pyridazine fragmentation adducts,
formed during the ionization process.47 This led us to evaluate
the stability of the formed conjugate. In this way, potential
intermolecular reaction of the conjugate with exogenously
added nucleophilic species was evaluated by adding an excess
of glutathione (GSH). Following the optimized protocol, i.e.
photooxidation of 1a in water and reaction for 30 min with
equimolar peptide 2 added from a stock solution of pH 7.2,
GSH (10.0 equiv.) was added to the reaction mixture. No
obvious degradation of the ligated product was observed after
72 h of incubation. Furthermore, we evaluated the pH sensi-
tivity of the formed conjugate by incubating isolated conjugate
3a in medium of different pH values of 3, 4, 8 and 9 over time.
Interestingly, the resulting conjugate was found to be stable in
water at pH 4 and 8, whereas some degradation was observed
at pH 3 and 9 respectively (Fig. 46, ESI†). With the optimized
conditions in hand, we examined the scope of the ligation of
C-terminal furan peptides by varying the identity of the preced-
ing amino acid (Ac-Ile-Glu-Lys-Phe-Xaa-Fua-NH2, Table 1). As
prolonged irradiation time can cause damage of peptides, thus
affecting successful ligation, we herein also present the opti-
mised oxidation time for each peptide. Gratifyingly, in all but
one case, the ligation proved efficient and chemoselective. In
particular, Table 1 shows that unprotected nucleophilic resi-
dues adjacent to Fua such as Lys, Arg, Ser and Glu are well
compatible with the ligation, while Cys led to the formation of
a complicated mixture of oxidised species and conjugates
(Fig. 61, ESI†). Protecting the cysteine side chain either by di-
sulfide formation or with a stable protecting groups is advisa-
ble.48 A hydrophobic Ala neighbouring residue as well as a
sterically hindered Val residue allowed relatively good conver-
sion. Regarding the sensitive amino acids, a Trp containing-
peptide could be efficiently ligated to peptide 2 (Fig. 57, ESI†),
while reaction with Met-peptide resulted in the formation of
the corresponding sulfoxide conjugate. These results suggest
that the singlet oxygen-mediated ligation of peptides can toler-

Scheme 2 (a) One-pot pyridazinium-based ligation of furan peptide 1a
with hydrazine peptide 2. (b) HPLC profiles (λ = 214 nm) for the reaction
of oxidised furan 1a with equimolar peptide 2 added from stock solution
of different pH values. Peptide 2 in H2O: pH 2.9. Buffers used: 0.1 mM
acetate buffer pH 4.7 and 1.0 M phosphate buffer pH 5.8 and 7.2. (*) indi-
cates ligation intermediates and (#) oxidized species. (c) HPLC and
MALDI-TOF analysis verifying the formation of the ligated peptide 3a in
30 min at pH 7.2 (obs: 1383.98; calc.: 1383.71).
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ate a broad range of amino acids thus demonstrating the
general applicability of the present methodology.

Subsequently, a positional scan of the furan moiety in
diverse peptides was carried out (Table 2). At the outset,
internally incorporated furan was tested. When only 1.0 equi-
valent of peptide 2 was added to the oxidized peptide 4a, con-
current formation of the intramolecular side-product was
observed after 1 h of reaction and no further transformation to
the desired conjugate was observed even after 24 h, presum-
ably due to sterical hindrance. However using a slight excess of
the hydrazine peptide (5.0 equiv.) drove the reaction to quasi
completion in 30 min (Table 2, entries 1–3). Next, we incorpor-
ated furylalanine at the N-terminal position to test the conju-
gation efficiency. Likewise, slight excess of the hydrazine
peptide (5.0 equiv.) led to the fast and efficient formation of
the desired conjugates in 30 min (Table 2, entries 4 and 5).

After extensive exploration of ligation reactions with
N-terminal hydrazines, we wished to explore the possibility of

performing coupling of the furan peptides with a C-terminal
nucleophilic peptide. To the best of our knowledge, the intro-
duction of a hydrazine moiety at the peptide C-terminus
through solid phase synthesis has not yet been described, in
contrast with C-terminal hydrazides which are widely
employed.49,50 Based on our previous study,43 it was antici-
pated that reacting with a hydrazide peptide would not lead to
the formation of pyridazinium products, but to the corres-
ponding pyrrolidinones of type E (Scheme 3a). C-Terminal
furan-peptide Ac-Ile-Glu-Lys-Phe-Arg-Fua-NH2 (1b) was photo-
oxidised in water followed by addition of C-terminal benzoic
hydrazide 8 (2.0 equiv.) added from a stock solution at pH 4.7
where hydrazone reactions are fastest (Scheme 3b).37,39 The
ligation product 9 was almost completely formed in 2 h, however
the reaction was left for 18 h to ensure complete transform-
ation of ligation intermediates. Further successful illustration
of our methodology was provided when a peptide bearing a
semicarbazide moiety at the N-terminus,51,52 was incorporated
into the cascade reaction sequence. Accordingly, peptide 1b
was efficiently ligated with semicarbazide 10 under the same
conditions (2.0 equiv., pH 4.7, Scheme 3b).

In summary, we have developed an expedient and site-
specific methodology for the singlet oxygen-mediated ligation
of furan and nitrogen-nucleophilic peptides. Reactions
proceed smoothly under physiological conditions with satisfac-
tory conversions. The procedure was found to be suitable for a
range of peptides featuring different amino acids next to the
C-terminal furan moiety. The possibility of incorporating furan
at any desired position within a peptide and ligating it with
hydrazine peptides offers flexibility in the developed method-
ology. Additionally, pyrrolidinone-based peptides could be
efficiently obtained by using peptide hydrazides, providing
alternative routes for ligation with furan peptides. It is thus
envisioned that singlet oxygen-mediated furan bioconjugation

Table 1 Scope of the ligation of C-terminal furan peptides with
N-terminal hydrazine peptide 2

Entry Xaa
Oxidation
time (min)

Conversiona

(%)

1 Lys 40 62
2 Arg 40 99
3 Ser 40 79
4 Glu 40 72
5 Ala 30 86
6 Val 40 61
7 Trp 30 95
8 Met 15 99
9 Cys 30 n.d.b

a Conversion was quantified by HPLC as consumption of oxidized
species. b Conversion not defined due to complicated mixture of pro-
ducts (Fig. 61–63, ESI).

Table 2 Pyridazinium-based ligation of internal and N-terminal furan
peptides with N-terminal hydrazine peptide 2a

Entry Furan peptides Conversionb (%)

1 Ac-Ile-Glu-Lys-Phe-Fua-Gly-NH2 (4a) 62 (6a)
2 Ac-Ile-Glu-Lys-Gly-Fua-Gly-NH2 (4b) 73 (6b)
3 Ac-Ile-Glu-Lys-His-Fua-Lys-NH2 (4c) 77 (6c)
4 Ac-Fua-Ile-Glu-Lys-Phe-Gly-NH2 (5a) 87 (7a)
5 Ac-Fua-Gly-Glu-Lys-Phe-Gly-NH2 (5b) 63 (7b)

a All peptides were photooxidised for 40 min followed by addition of
5.0 equiv. of hydrazine peptide 2. Peptide 2 was dissolved in 1.0 M
phosphate buffer pH 7.2. b Conversion was quantified by HPLC as con-
sumption of oxidized species after 30 min of reaction.

Scheme 3 (a) General concept for the formation of pyrrolidinone-
based conjugates. (b) Pyrrolidinone-based conjugation of a C-terminal
furan-peptide to a C-terminal benzoic hydrazide peptide and to an
N-terminal semicarbazide peptide.
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reactions could be useful for the fast and efficient construction
of multi-functional and branched peptide-conjugates for
various biochemical studies and applications.
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