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Abstract

This work focuses on efficient full-wave solutions of multiscale electromagnetic

problems in the time domain. Three local implicitization techniques are pro-

posed and carefully analyzed in order to relax the traditional time step limit

of the Finite-Difference Time-Domain (FDTD) method on a nonuniform, stag-

gered, tensor product grid: Newmark, Crank-Nicolson (CN) and Alternating-

Direction-Implicit (ADI) implicitization. All of them are applied in preferable

directions, alike Hybrid Implicit-Explicit (HIE) methods, as to limit the rank of

the sparse linear systems. Both exponential and linear stability are rigorously

investigated for arbitrary grid spacings and arbitrary inhomogeneous, possibly

lossy, isotropic media. Numerical examples confirm the conservation of energy

inside a cavity for a million iterations if the time step is chosen below the pro-

posed, relaxed limit. Apart from the theoretical contributions, new accomplish-

ments such as the development of the leapfrog Alternating-Direction-Hybrid-

Implicit-Explicit (ADHIE) FDTD method and a less stringent Courant-like time

step limit for the conventional, fully explicit FDTD method on a nonuniform

grid, have immediate practical applications.

Keywords: Finite-Difference Time-Domain (FDTD), stability, nonuniform,

Newmark, Crank-Nicolson (CN), Alternating-Direction-Implicit (ADI), Hybrid

Implicit-Explicit (HIE), Alternating-Direction-Hybrid-Implicit-Explicit

(ADHIE)

Preprint submitted to Journal of Computational Physics August 28, 2017



1. Introduction

The Finite-Difference Time-Domain (FDTD) method is one of the prevalent

numerical techniques to predict electromagnetic behavior by solving Maxwell’s

equations in the time domain. It discretizes the electric and magnetic fields on a

cubic lattice in a staggered fashion such that the approximation of derivatives by

central differences yields second-order accurate, explicit update equations. The

algorithm marches on in time by alternately updating the electric and magnetic

fields, which is also called leapfrog time stepping. This particular discretization,

illustrated in Fig. 1, was pioneered by Kane Yee in 1966 [1]. Since then, the

core of the algorithm has virtually remained unchanged and still persists in most

commercial and academic FDTD packages. Often, the second-order accuracy is

locally given up in favor of nonuniform grids, which preserve the tensor product

nature but have step sizes that vary along the associated axis (e.g. ∆x varies

along the x-axis). These nonuniform grids offer more flexibility, allowing to fit

material boundaries with a smaller number of cells. One of the major drawbacks

of FDTD, however, is the stability limit imposed on the time step, also known

as the Courant limit, which for uniform grids reads

∆t <
1

c0
√

1
∆x2 + 1

∆y2 + 1
∆z2

, (1)

with c0 the speed of light in vacuum. Various implicit and semi-implicit tech-

niques have been proposed to sidestep (1) such that fewer time iterations are

needed at the cost of more expensive computations per iteration. Generally,

these techniques are applied throughout the whole grid because little is known

about their influence on the stability limit if they would be applied locally.

The main goal of this paper is to put the stability of the FDTD method on

nonuniform tensor product grids, as well as its combination with several local

implicitization techniques, on a firm mathematical footing. Nowadays, with

random memory access being far slower than the actual FDTD computations,

direct matrix factorizations or iterative matrix inversions no longer pose a CPU-

time limitation problem, especially if the occurring matrices are sparse and scale
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Figure 1: The traditional Yee cell. The electric field components (red) are discretized

along the edges of the primary grid (full line). The magnetic field components (blue)

are discretized along the edges of the dual grid (not shown). Electric and magnetic

fields differ half a time step.

with only one out of three dimensions. The proposed techniques seek to meet

this last requirement by allowing implicitization in preferable directions as to

end up with low-rank, banded matrices. The typical configurations that will be

tackled are illustrated in Fig. 2. If a thin layer or thin wire needs to be modeled,

the nonuniform grid is locally much more dense. It will be demonstrated, both

analytically and numerically, that the proposed local implicitization techniques

allow to eliminate the small step sizes enforced by the thin object from the

stability limit.

The remainder of this paper first lays out the update equations of each of

the three proposed local implicitization techniques: Newmark, Crank-Nicolson

(CN) and Alternating-Direction-Implicit (ADI) implicitization. Next, in Sec-

tion 3, the stability of each technique is discussed. Two types of stability anal-

yses are put forward: one based on z-transform theory and one extending the

state-space-based method described in [2]. The Newmark implicitization tech-

nique is meticulously analyzed using the first approach. As a bonus, it leads to

an explicit Courant-like time step limit for conventional FDTD on nonuniform

grids that is less stringent than the one found in [3]. This new relaxed time step

limit is directly applicable in classical FDTD software that leverages nonuni-

3
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Figure 2: 3D representation of a nonuniform tensor product grid obtained by pro-

jecting the primary-grid edges on each of the three coordinate planes for (a) a thin

plate and (b) a thin wire.

form gridding. The ADI implicitization technique is handled by the state-space

approach, whereas the CN implicitization method is concisely analyzed using

both approaches. In Section 4, the analytical results are numerically validated

using the example of Fig. 2a. The paper concludes with a summary of the pros

and cons of each local implicitization technique.

2. Update equations

2.1. Continuous-time discrete-space system

All proposed FDTD techniques use the same spatial discretization. More

specifically, the electric and magnetic fields are discretized on a nonuniform

tensor product grid comprising nx × ny × nz Yee cells. To investigate the sta-

bility under harsh conditions, the grid is terminated by perfectly electrically

conducting (PEC) boundary conditions. The considered medium is isotropic,

inhomogeneous and possibly lossy. The corresponding continuous-time discrete-
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space Maxwell equations are

Dε
∂

∂t
e(t) +Dσe e(t) + je(t) = Ch h(t) (2)

Dµ
∂

∂t
h(t) +Dσm h(t) + jm(t) = −Ce e(t) (3)

with row-major vectorized field unknowns and associated sources

e =

[
ex
ey
ez

]
h =

[
hx
hy
hz

]
je =

[
je,x
je,y
je,z

]
jm =

[
jm,x
jm,y
jm,z

]
. (4)

The total lengths of e and je are

ne = nx (ny − 1) (nz − 1) + (nx − 1)ny (nz − 1) + (nx − 1) (ny − 1)nz , (5)

whereas the total lengths of h and jm are

nh = (nx − 1)ny nz + nx (ny − 1)nz + nx ny (nz − 1) . (6)

Dε, Dµ, Dσe and Dσm are the diagonal permittivity, permeability, electric con-

ductivity and magnetic conductivity matrices respectively, which, from physical

considerations, satisfy

[Dε]ii > 0 [Dσe ]ii ≥ 0 i = 1, ..., ne (7)

[Dµ]jj > 0 [Dσm ]jj ≥ 0 j = 1, ..., nh (8)

The curl operators can be factorized as follows

Ch = V̂ C Ŵ Ce = V CTW (9)

with metric-free curl stencil C ∈ Rne×nh given by

C =

 0 −Inx⊗Iny−1⊗Dnz Inx⊗Dny⊗Inz−1

Inx−1⊗Iny⊗Dnz 0 −Dnx⊗Iny⊗Inz−1

−Inx−1⊗Dny⊗Inz Dnx⊗Iny−1⊗Inz 0

 , (10)

where ‘⊗’ denotes the Kronecker product, In the n-dimensional identity matrix,

and Dnu ∈ R(nu−1)×nu the discrete differentiator defined as

Dnu =

−1 1
−1 1

. . .
−1 1

 . (11)
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The metric of the grid is included in

V =

[
Inx−1⊗δ−1

y ⊗δ
−1
z

δ−1
x ⊗Iny−1⊗δ−1

z

δ−1
x ⊗δ

−1
y ⊗Inz−1

]
(12)

W =

[
δx⊗Iny−1⊗Inz−1

Inx−1⊗δy⊗Inz−1

Inx−1⊗Iny−1⊗δz

]
(13)

V̂ =

[
Inx⊗δ̂

−1
y ⊗δ̂

−1
z

δ̂−1
x ⊗Iny⊗δ̂

−1
z

δ̂−1
x ⊗δ̂

−1
y ⊗Inz

]
(14)

Ŵ =

[
δ̂x⊗Iny⊗Inz

Inx⊗δ̂y⊗Inz
Inx⊗Iny⊗δ̂z

]
, (15)

with δu and δ̂u diagonal matrices containing the nu and nu − 1 spatial incre-

ments in the u-dimension of the primary and dual grid respectively. Dual-grid

operators are highlighted by a hat superscript. Recall that the electric and

magnetic fields are discretized along primary- and dual-grid edges respectively.

2.2. Discrete-time discrete-space system

We summarize the update equations for each of the three implicitization

techniques, where we choose to implicitize electric fields. A dual scheme, im-

plicitizing the magnetic fields, of course, exists as well.

2.2.1. Newmark implicitization

The Newmark-β technique is frequently used in Finite-Element Time-Domain

(FETD) simulations (e.g. [4]), but is only recently investigated in the FDTD

context. In one variant [5], both curls are time averaged as prescribed by the

Newmark-β scheme, whereas in another variant [6] only a single one is. Indeed,

the unconditionally stable technique proposed in [6] is in fact the Newmark-β

time integration method with β = 0.25, perceived as a dispersive background

medium, which allows to interpret partial implicitization in one instead of two

directions as a manifestation of anisotropy. Here, the unconditionally stable

technique of [6] is extended to 3D and applied locally, which gives rise to the
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update scheme[
1

∆tDε+
1
2Dσe −Ch

1
4Ce(Ine−P) 1

∆tDµ+ 1
2Dσm

]
x|n+2

=

[
1

∆tDε−
1
2Dσe 0

− 1
2Ce(Ine+P) 1

∆tDµ−
1
2Dσm

]
x|n+1 +

[
0 0

− 1
4Ce(Ine−P) 0

]
x|n + s|n+1

(16)

with

x|n =

[
e(n∆t)

h((n−0.5)∆t)

]
s|n =

[
je(n∆t)

jm((n−0.5)∆t)

]
(17)

and P the ne-dimensional diagonal matrix with elements

[P]i,i =

1 if ei is updated explicitly

0 if ei is updated implicitly
. (18)

2.3. CN implicitization

The Crank-Nicolson (CN) method is well-known in the FDTD community

(e.g. [7]). If applied locally, its update scheme is[
1

∆tDε+
1
2Dσe − 1

2 (Ine+P)Ch
1
2Ce(Ine−P) 1

∆tDµ+ 1
2Dσm

]
x|n+1 =

[
1

∆tDε−
1
2Dσe

1
2 (Ine−P)Ch

− 1
2Ce(Ine+P) 1

∆tDµ−
1
2Dσm

]
x|n + s|n

(19)

with

x|n =

[P e(n∆t)+(Ine−P) e((n−0.5) ∆t)

h((n−0.5)∆t)

]
(20)

and P given by (18). The time discretization of the implicitized electric fields is

identical to that of the magnetic fields. A similar time discretization holds for

the sources.

2.4. ADI implicitization

Although the original Alternating-Direction-Implicit (ADI) FDTD method

was a split-step method where additional field variables were needed at inter-

mediate time instances, it has evolved to a one-step leapfrog update scheme

with the same dispersion and stability properties but improved computation

time and memory requirements [8]. Both the split-step and the leapfrog ADI
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method split the entire curl into two parts, e.g. Ce = C1
e + C2

e for the electric-

field curl, and this in a clever way as to end up with tridiagonal matrices that

scale with the number of cells in only one dimension (either nx, ny or nz). In

the remainder of this manuscript, we will refer to this as complete curl split-

ting as opposed to incomplete curl splitting, which will be presented here for

the first time (see Section 3.3.2). Our new curl splitting technique generalizes

the traditional leapfrog ADI method, which is fully implicit and uncondition-

ally stable, to a so-called Hybrid Implicit-Explicit (HIE) ADI method, named

“leapfrog ADHIE-FDTD method”, which is only partially implicit and weakly

conditionally stable. Without going into the details yet, both the traditional

leapfrog ADI and the newly proposed leapfrog ADHIE update scheme can be

cast as:[
1

∆tDε+
1
2Dσe+ ∆t

4α2 Ch1D
−1
µ Ce1 −Ch

0 1
∆tDµ+ 1

2Dσm+ ∆t
4α2 Ce2D

−1
ε Ch2

]
x|n+1

=

[
1

∆tDε−
1
2Dσe+ ∆t

4α2 Ch1D
−1
µ Ce1 0

−Ce 1
∆tDµ−

1
2Dσm+ ∆t

4α2 Ce2D
−1
ε Ch2

]
x|n + s|n

(21)

where x|n and s|n are given by (17). The scalar α is a tunable parameter

that has to be chosen in the interval ]0, 1[ for incomplete curl splitting and

equals one for complete curl splitting. The curl parts Ce1, Ch1, Ce2 and Ch2

will be defined in Section 3.3. Note that, if they were zero, (21) would reduce

to the conventional, fully explicit FDTD method. Hence, they constitute a

perturbation, which results in the so-called ADI splitting error [9, eq. 11]. This

leads to non-negligible numerical errors for time steps considerably exceeding

the Courant limit (1) and for electromagnetic fields with large spatial gradients.
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3. Stability

3.1. Newmark implicitization

3.1.1. Exponential stability

The discrete-time system (16) is transformed to the z-domain, for the most

delicate case where all energy is trapped inside a lossless cavity, resulting in the

linear system

Ax− s = 0 , (22)

where

x =

∞∑
n=0

x|n z−n s =

∞∑
n=0

s|n z−n , (23)

with initial conditions

x|0 = x|1 = s|0 = 0 , (24)

and system matrix

A =

[
(z−1)∆t−1Dε −z

(
V̂ C Ŵ

)
(
V CTW

)
I (z−1)∆t−1Dµ

]
. (25)

The diagonal matrix I ∈ Cne×ne , occurring in (25), has elements

[I]i,i =

1 if ei is updated explicitly

(z + 1)2/(4z) if ei is updated implicitly
(26)

Exponentially growing instabilities are excluded if the poles of the transfer func-

tion matrix belonging to (22), which are the solutions for z fulfilling det(A) = 0,

do not lie outside the unit disk [10]. Note that these solutions do not change

upon replacement of A with

Ã = Q−1R−1AQ =

[
(z−1)∆t−1Ine −z C̃

C̃T I (z−1)∆t−1Inh

]
, (27)

with regular matrices

R =
[
Dε

Dµ

]
Q =

[
D−1/2
ε V̂1/2W−1/2

D−1/2
µ V1/2 Ŵ−1/2

]
, (28)

and modified curl operator

C̃ = D−1/2
ε V̂1/2W1/2 CD−1/2

µ V1/2 Ŵ1/2 . (29)
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We used the fact that all matrices occurring in (28) are diagonal and regular,

and that I is diagonal as well. The remainder of this stability analysis focuses

on the matrix Ã, which has “more symmetry” than the original matrix A.

Similarly to [4, 11], we need to distinguish between the static modes with

z = 1 and the dynamic modes with z 6= 1. The former obviously have unit-

circle-bounded z and reside in the null space of the system matrix (25) with

insertion of z = 1. Using the symmetry-introducing transformation (27), they

can also be found upon inspection of the nullspace of

Ãz=1 =

[
0 −C̃

C̃T 0

]
. (30)

For the dynamic modes, the block matrices on the diagonal of (27) are nonsin-

gular and the stability analysis amounts to locating the roots of

det(Ãz 6=1)

= det
(
(z − 1) ∆t−1Ine

)
det
(
(z − 1) ∆t−1Inh + z(z − 1)−1∆t C̃TI C̃

)
=
(
(z − 1)∆t−1

)ne+nh det
(
Inh + z(z − 1)−2∆t2 C̃TI C̃

)
, (31)

where all roots are those of the remaining determinant. Along the lines of [12],

substituting the bilinear transformation

z =
ζ − 1

ζ + 1
, (32)

which projects the unit disk in z-space to the right half-plane in ζ-space, yields

det
(
Inh +

∆t2

4
C̃T
(
ζ2Ine − P

)
C̃
)

= 0 , (33)

with P given by (18). Searching the roots of (33) is equivalent to solving the

generalized eigenvalue problem

ζ2 C̃T C̃ v =
(
C̃TP C̃ − 4∆t−2Inh

)
v . (34)

The zero eigenvalues of the curl-curl matrix in the l.h.s. of (34) give rise to

so-called infinite eigenvalues ζ2 = ∞ of the generalized eigenvalue problem,

which are doubly mapped to z = 1. They correspond to static modes, which
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have already been treated above and which were not allowed in the derivation

of (31). Therefore, we only consider the finite eigenvalues of (34), which corre-

spond to the dynamic modes, and we determine their location in the complex

plane. Left-multiplying (34) by the hermitian transpose of v and subsequently

subtracting/adding the hermitian-transposed equation, yields respectively

Im(ζ2) ‖C̃ v‖22 = 0 ∀ v 6= 0 (35)

Re(ζ2) ‖C̃ v‖22 = ‖P C̃ v‖22 − 4∆t−2‖v‖22 ∀ v 6= 0 , (36)

where we readily replaced the occurring inner products by vector 2-norms and

used the fact that P = PTP. Now, recall that exponentially growing instabilities

are excluded by demanding that |z| ≤ 1, which is, via the bilinear transforma-

tion (32), translated to Re(ζ) ≥ 0. From (35), we conclude that Im(ζ2) = 0,

such that any solution ζ2 yields either two real or two purely imaginary values

for ±ζ. Since the first scenario always implies that one of the two values ±ζ re-

sides on the negative real axis, the only way both ±ζ satisfy Re(ζ) ≥ 0 is the case

where they are purely imaginary. These purely imaginary values for ±ζ yield

two complex conjugate roots z lying on the unit circle. From a physical per-

spective, this is exactly what we expect from a passive, lossless electromagnetic

system; no energy is created, nor is there energy lost. In conclusion, stability

is guaranteed if Re(ζ2) ≤ 0, which is satisfied if and only if the r.h.s. of (36)

cannot become positive. This determines an upper bound on the time step

∆t ≤ 2

‖P C̃‖2
, (37)

with the matrix 2-norm defined as [13, p. 476]

‖P C̃‖2 = max
v 6=0

‖P C̃ v‖2
‖v‖2

= σmax

(
P C̃
)

=
√
λmax

(
C̃TP C̃

)
. (38)

The functions σmax() and λmax() denote the largest singular value and eigen-

value respectively. For a uniform grid that is homogeneously filled with vacuum

and for which we fully explicitly advance in time, i.e. P = Ine , this upper

bound is identical to the one found in [2], apart from the strict inequality. In

Section 3.1.4, it will be shown that thoughtful implicitization, which eliminates
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all small spatial steps beneath a certain threshold from the r.h.s. of (37) by

selecting the pertinent [P]i,i to be zero, can considerably reduce the time step

limit for configurations with strongly varying spatial step sizes.

3.1.2. Linear stability

Up till now, we only discussed exponential stability, meaning that the fields

cannot diverge exponentially, which is achieved by the condition |z| ≤ 1. As

pointed out in [14], however, unit circle boundedness of z does not fully guaran-

tee Lyapunov stability [13, p. 670], which simply means that the fields cannot

diverge to infinity in any kind of fashion (exponentially, polynomially,...). In

addition, the poles located on the unit circle should be semisimple. In other

words, they should have equal algebraic and geometric multiplicities [15, p.296],

which is identical to the corresponding eigenvectors being linearly independent

or, equivalently, to the corresponding matrix being diagonalizable. For a two-

level update scheme x|n+1 = M x|n, a violation of this condition manifests itself

in a subtle linear growth of x because the amplification matrix M then has at

least one Jordan block of the form [
λ 1

0 λ

]
, (39)

with |λ| = 1, which is clearly unbounded upon self-multiplication. The same rea-

soning holds for higher-level schemes, as it is always possible to reduce them to a

two-level scheme via a proper change of variables, e.g. companion linearization.

In [4], the FETD method with Newmark-β time integration of the second-order

wave equation is shown to be prone to this type of late-time instability.

We will show now that our proposed Newmark implicitization method, and

by extension also the conventional FDTD method, is free of linear instabilities.

Therefore, note that there are 2(ne +nh) poles z that satisfy det(A) = 0, which

can be essentially categorized into four types:

• complex conjugate pole pairs (z, z∗) with |z| = 1, yielding dynamic modes

• the repeated pole z = 1, yielding static modes
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• the repeated pole z = −1, yielding “almost unstable” dynamic modes

• the non-physical repeated pole z = 0

First, we discuss the last category, which in our scheme only appears as an

algebraic artefact due to the linearization of the three-level Newmark scheme

(16). If we shortly write (16) as

M2 x|n+2 = M1 x|n+1 +M0 x|n + sn+1 , (40)

then the companion linearization is[
M2 0

0 Ine+nh

] [
x|n+2

x|n+1

]
=

[
M1 M0

Ine+nh
0

] [
x|n+1

x|n

]
+

[
s|n+1

0

]
. (41)

The block structure of the matrix in the r.h.s. of (41) is given by
Bne×ne 0 0 0

Bnh×ne Bnh×nh Bnh×ne 0

Bne×ne 0 0 0

0 Bnh×nh 0 0

 , (42)

where Bn1×n2
denotes an arbitrary block of size n1 × n2 that has at least one

non-zero element. A block permutation of the second and third row followed

by a block permutation of the second and third column reveals that this matrix

has at least ne + nh zero eigenvalues or, equivalently, that the transfer function

has a pole z = 0 with multiplicity ne + nh or more. This pole would also have

been found in the analysis of Section 3.1.1, if the source in (16) was shifted

one step back in time; s|n instead of s|n+1. Anyway, since z = 0 lies inside

the unit disk, it is harmless. However, this zero pole, which originates from

the sparsity of the matrix M0, poses a fundamental difference between our pro-

posed Newmark implicitization technique and the Newmark FETD method [4],

because the linearized system (41) only requires ne+nh instead of 2(ne+nh) lin-

early independent modes. For this reason, it is very likely that the Newmark-β

FDTD method described in [5] suffers from linearly growing non-physical fields

analogous to [4].

We will now prove that the remaining ne + nh poles belong to one of the

above three mentioned categories on the unit circle and we will propose a suf-

ficient condition such that they are guaranteed to be semisimple. The poles
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from the first category give rise to linearly independent dynamic modes in the

ζ2-domain due to Lemma 1 (see Appendix). Since every ζ2 is, in a one-to-one

sense, mapped to a complex conjugate pair (z, z∗) with z 6= z∗, this linear in-

dependence is preserved in the z-domain. Thus, the first category of poles is

semisimple. A similar reasoning could be repeated for the second category, but

since z = z∗ = −1, linear independence of the dynamic modes in the z-domain

cannot be guaranteed. This is, however, easily remedied by imposing a strict

inequality

∆t <
2

‖P C̃‖2
(43)

instead of (37). Now, we must show that the third category of poles, corre-

sponding to the static modes, is semisimple. Since these modes are known to

span the nullspace of the skew-symmetric matrix (30), the number of linearly

independent static modes is given by

nstat = null
(
C̃
)

+ null
(
C̃T
)
, (44)

where null() denotes the nullity, i.e. the dimension of the nullspace. It now

suffices to show that these static modes together with the dynamic modes span

the entire space R(ne+nh)×(ne+nh). From (34), it is found that the number of

dynamic modes is

ndyn = 2
(
nh − null

(
C̃T C̃

))
. (45)

Since from [15, p. 96],

null
(
C̃T C̃

)
= null

(
C̃
)
, (46)

we obtain

nstat + ndyn = 2nh − null
(
C̃) + null

(
C̃T ) = ne + nh , (47)

where the last equality is indeed true because, e.g. for the given PEC boundary

conditions, which imply that nh > ne, we have

null
(
C̃) = nh − ne + null

(
C̃T ) . (48)

In conclusion, Lyapunov stability, which encompasses both linear and exponen-

tial stability, is guaranteed if the time step satisfies (43). For uniform grids with
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explicit time stepping (P = Ine), this agrees with [16], where the strict inequality

(43) is found to be a necessary and sufficient condition for Lyapunov stability,

and agrees with [17], where the linear instability is numerically observed for

a one-dimensional conventional FDTD simulation running at the “magic time

step”, i.e. , corresponding to an equality sign in (43).

As a last remark, note that for a fully implicit grid (P = 0) holds that

det(Ãz=−1) 6= 0, such that the Newmark FDTD method (16) is free of linear

instability.

3.1.3. A Courant-like stability limit for fully explicit, nonuniform grids

To obtain a more transparent expression for the maximum allowed time step,

we first derive an upper bound for the denominator of (43) in the simplified case

that P = Ine . In other words, we consider a conventional FDTD scheme with

explicit leapfrog time stepping in each point of the grid. It is helpful to introduce

the matrix

K =

 0 −Inx⊗Iny−1⊗Kz Inx⊗Ky⊗Inz−1

Inx−1⊗Iny⊗Kz 0 −Kx⊗Iny⊗Inz−1

−Inx−1⊗Ky⊗Inz Kx⊗Iny−1⊗Inz 0

 , (49)

with

Ku = δ̂−1/2
u Dnu δ−1/2

u . (50)

As proven in [2, eq. 44], a matrix of this particular form has the property

‖K‖22 = ‖Kx‖22 + ‖Ky‖22 + ‖Kz‖22 . (51)

Now note that

C̃ = D−1/2
ε KD−1/2

µ . (52)

Using submultiplicativity of the matrix 2-norm [15, p. 550], yields

‖C̃‖22 ≤
‖K‖22

εmin µmin
, (53)

with εmin and µmin the lowest permittivity and permeability among all cells,

which are often those of vacuum. A similar reasoning shows that

‖Ku‖22 ≤
‖Dnu‖22
δmin
u δ̂min

u

, (54)
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with δmin
u and δ̂min

u the smallest spatial u-step present in the primary and dual

grid respectively, and [2, eq. 50]

‖Dnu‖2 = 2 cos

(
π

2nu

)
. (55)

So, if no implicitization is applied, (51) together with (53)–(55) substituted into

(43) yields the time step limit

∆t <
1√

1
εmin µmin

1√
cos2( π

2nx
)

δmin
x δ̂min

x

+
cos2( π

2ny
)

δmin
y δ̂min

y

+
cos2( π

2nz
)

δmin
z δ̂min

z

, (56)

which is a generalization of the conventional Courant limit to nonuniform grids.

Note that (56) provides a tighter upper bound than the one proposed in [3].

3.1.4. Local implicitization to relax the stability limit

Now, we elaborate on how local implicitization affects the explicit stability

limit (56) and, more importantly, how P can be tuned to get a more loose

constraint. Suppose δ̂min
x = δ̂x,i, then we could implicitize all ey and ez with

x-index i, which corresponds to

P =


Inx⊗Iny−1⊗Inz−1

Pinx−1⊗Iny⊗Inz−1

Pinx−1⊗Iny−1⊗Inz

 , (57)

where we used the notation Pkn to denote the diagonal projection matrix that

is constructed by setting the kth element of the n-dimensional identity matrix

to zero. Now, (53) changes to

‖P C̃‖22 ≤
‖P K‖22
εmin µmin

. (58)

Because of the specific structure of P, essentially being a projection matrix, one

can see that

P K = P


0 −Inx⊗Iny−1⊗Kz Inx⊗Ky⊗Inz−1

Inx−1⊗Iny⊗Kz 0 −Pinx−1Kx⊗Iny⊗Inz−1

−Inx−1⊗Ky⊗Inz Pinx−1Kx⊗Iny−1⊗Inz 0

 . (59)

Consequently, submultiplicativity implies that (51) gives rise to

‖P K‖22 ≤ ‖Pinx−1Kx‖22 + ‖Ky‖22 + ‖Kz‖22 . (60)
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h

Figure 3: A one-dimensional refinement scheme with coarse step ∆c, fine step ∆f

and average-sized transition step. The implicitized fields are highlighted by a yellow

box. The Courant limit solely depends on ∆c.

Since Pinx−1 directly acts on δ̂
−1/2
x , we succeeded in eliminating δ̂x,i from the

stability limit, and δ̂min
x in (56) is replaced by the smallest step amongst those

that were not eliminated via implicitization. If we would like to eliminate δx,i,

it suffices to implicitize all ey and ez with x-index i− 1 and i, because Dnx is

a bidiagonal matrix. This means that the one-dimensional refinement scheme

illustrated in Fig. 3 is stable under the Courant limit imposed by the coarse

step ∆c, if the yellow-boxed fields are implicitly updated.

3.2. CN implicitization

The conditional stability of the local application of Crank-Nicolson time

integration will be proven in two different ways. The first one is inspired by the

previous analysis for Newmark implicitization. The second one is built on the

insights of [2]. It forms the bridge to the third and last implicitization technique

which locally applies the leapfrog ADI method in preferable directions. Both

arrive at the same conclusion.

3.2.1. First stability analysis

The z-transform of the discrete-time system (19), again in the lossless case,

yields the system matrix

Acn =

[
(z−1) ∆t−1Dε −z I2

(
V̂ C Ŵ

)
(
V CTW

)
I1 (z−1) ∆t−1Dµ

]
, (61)
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where

[I1]i,i =

1

(z + 1)/2

[I2]i,i =

1 if ei is updated explicitly

(1 + z−1)/2 if ei is updated implicitly

(62)

The steps in Section 3.1.1 that led to (31), can be repeated yielding the char-

acteristic equation

det
(
Inh + z(z − 1)−2∆t2 C̃TI1I2 C̃

)
= 0 . (63)

Somewhat surprisingly, this characteristic equation is identical to the one of

Newmark implicitization since I1I2 = I. Hence, the exact same conclusions

can be drawn for the relaxation of the Courant limit using CN implicitization

as was the case for Newmark implicitization.

3.2.2. Second stability analysis

Using R and Q as defined in (28), we apply the symmetry-introducing trans-

formation as in (27) to (19), including losses but omitting the source term, which

yields

(Ecn + Fcn) x̃|n+1 = (Ecn − Fcn) x̃|n , (64)

with decomposed update matrices

Ecn =

[
1

∆t Ine − 1
2P C̃

− 1
2 C̃
TP 1

∆t Inh

]
Fcn =

[
1
2D

−1
ε Dσe − 1

2 C̃

1
2 C̃
T 1

2D
−1
µ Dσm

]
, (65)

rescaled field vectors

x̃|n =

[
D1/2
ε V̂−1/2W1/2 e|n

D1/2
µ V−1/2 Ŵ1/2 h|n

]
=

[
ẽ|n

h̃|n

]
, (66)

and the modified curl C̃ specified in (29). According to [2], stability is assured

if the matrix Ecn is positive definite and Fcn + FTcn is positive semi-definite.

The latter is trivially true recalling (7)–(8). Further, the theory exposed in

[2, eq. 22-30] shows that Ecn is positive definite if the time step satisfies (43).

Rather unexpectedly, losses do not alter the stability limit.
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Both stability analyses of CN implicitization lead to the same conclusion,

being that — similar as was the case for Newmark implicitization — proper

choices of I1 and I2 (Section 3.2.1) or P (Section 3.2.2), i.e. well-chosen implic-

itization, leads to a relaxation of the stability limit.

3.3. ADI implicitization

We start this section by presenting a rather atypical stability proof of the

traditional leapfrog ADI method, again inspired by [2]. Next, we use the ac-

quired insights to construct a leapfrog ADI formalism that allows implicitization

in preferable directions. Finally, the novel leapfrog ADHIE method is used for

local implicitization of the conventional FDTD method.

3.3.1. Stability analysis of leapfrog ADI-FDTD

The standard ADI method splits the curl (10) into a sum C = C1 + C2 with

the two contributions given by

C1 =

 0 0 Inx⊗Dny⊗Inz−1

Inx−1⊗Iny⊗Dnz 0 0

0 Dnx⊗Iny−1⊗Inz 0

 (67)

C2 =

 0 −Inx⊗Iny−1⊗Dnz 0

0 0 −Dnx⊗Iny⊗Inz−1

−Inx−1⊗Dny⊗Inz 0 0

 . (68)

We insert

Ch = V̂ C Ŵ Ce = V CTW

Ch1 = V̂ C1 Ŵ Ce1= V CT1W (69)

Ch2 = V̂ C2 Ŵ Ce2= V CT2W

into the update equations (21) without sources and with α = 1. Next, the

symmetry-introducing transformation matrices (28) are used again and both

sides of the equation are multiplied by the time step ∆t. This yields

(Eadi + Fadi) x̃|n+1 = (Eadi − Fadi) x̃|n , (70)
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with decomposed update matrices

Eadi =

[
Ine+ ∆t2

4 C̃1C̃
T
1 −∆t

2 (C̃1+C̃2)

−∆t
2 (C̃1+C̃2)T Inh+ ∆t2

4 C̃
T
2 C̃2

]
Fadi =

[
∆t
2 D

−1
ε Dσe −∆t

2 (C̃1+C̃2)

∆t
2 (C̃1+C̃2)T ∆t

2 D
−1
µ Dσm

]
.

(71)

and rescaled field vector x̃|n specified by (66). The curl parts have undergone

the same left- and right-multiplication as the total curl in (29). Since clearly

Fadi + FTadi is positive semi-definite, stability is guaranteed if Eadi is positive

definite. Note that Eadi can be factorized into Eadi = GTG with

G =

[
Ine −∆t

2 C̃2

−∆t
2 C̃

T
1 Inh

]
. (72)

Consequently,

vTEadi v = vTGTGv = ‖Gv‖22 ≥ 0 . (73)

In other words, Eadi is positive semi-definite. In theory, linear instability could

still occur for infelicitous time steps which render a singular matrix Eadi, cor-

responding to the pole z = −1. Even if this theoretical case exists, in practice,

it is very unlikely to exactly pick such an unstable time step within the range

of the machine precision. Therefore, as also reported in literature [8], the tradi-

tional leapfrog ADI-FDTD method may indeed be considered as unconditionally

stable.

3.3.2. Leapfrog ADHIE-FDTD to implicitize selected dimensions

Suppose that we want to implicitize the x-dimension but not the y- and

z-dimension, then we propose the following incomplete curl splitting

Cx1 =

[
0 0 0

0 0 0

0 Dnx⊗Iny−1⊗Inz 0

]
(74)

Cx2 =

[
0 0 0

0 0 −Dnx⊗Iny⊗Inz−1

0 0 0

]
(75)

Cyz =

 0 −Inx⊗Iny−1⊗Dnz Inx⊗Dny⊗Inz−1

Inx−1⊗Iny⊗Dnz 0 0

−Inx−1⊗Dny⊗Inz 0 0

 (76)
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such that the total curl is given by C = Cx1 + Cx2 + Cyz. Now, we insert

Ch = V̂ C Ŵ Ce = V CTW

Ch1 = V̂ Cx1 Ŵ Ce1= V CTx1W (77)

Ch2 = V̂ Cx2 Ŵ Ce2= V CTx2W

into (21) and proceed as in Section 3.3.1. The only change to (70), is a modified

matrix Eadi, given by

Eadi =

[
Ine+

(
∆t
2α

)2
C̃x1C̃Tx1 −∆t

2 (C̃x1+C̃x2+C̃yz)

−∆t
2 (C̃x1+C̃x2+C̃yz)T Inh+

(
∆t
2α

)2
C̃Tx2C̃x2

]

=

[
αIne −∆t

2α C̃x2

−∆t
2α C̃

T
x1 αInh

]T
︸ ︷︷ ︸

GTx

[
αIne −∆t

2α C̃x2

−∆t
2α C̃

T
x1 αInh

]
︸ ︷︷ ︸

Gx

+

[
(1−α2)Ine −∆t

2 C̃yz

−∆t
2 C̃

T
yz (1−α2)Inh

]
︸ ︷︷ ︸

Gyz

(78)

Analogous toGTG in Section 3.3.1, GTxGx is positive semi-definite. Consequently,

stability is ensured ifGyz is positive definite, which, along the lines of [2, eq. 22-30],

is found to be the case if

∆t < (1− α2)
2

‖C̃yz‖2
. (79)

This is the 2D Courant limit in the yz-plane reduced by a factor (1 − α2).

Based on the conventional leapfrog ADI scheme discussed in Section 3.3.1, the

most intuitive value for α would be one. In this case, however, (79) does not

yield a valid upper bound for the time step. The scalar α poses a trade-off:

the smaller α, the larger the maximum time step, but the more splitting error

is introduced into the ADHIE scheme. Compared to the splitting error of the

traditional split-step and one-step leapfrog ADI schemes [9, eq. 11], the overall

splitting error of our ADHIE scheme is heavily reduced due to the increased

sparsity of the split curl parts Ce1, Ch1, Ce2 and Ch2. Most importantly, (79)

shows that all x-dependence is eliminated from the stability limit.

3.3.3. ADHIE local implicitization to relax the stability limit

Suppose we want to locally refine our 3D grid in the x-direction. This implies

a tridiagonal solve for ez and hz in the refined region. In contrast to the above,
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the difficulty now is that Cx1 and Cx2 do not encompass the whole x-dimension

of the grid. Hence, we are dealing with yet another type of curl splitting:

Cx1 =

[ 0 0 0

0 0 0

0 (Inx−1−Px)Dnx⊗Iny−1⊗Inz 0

]
(80)

Cx2 =

[ 0 0 0

0 0 −(Inx−1−Px)Dnx⊗Iny⊗Inz−1

0 0 0

]
(81)

Cyz =

 0 −Inx⊗Iny−1⊗Dnz Inx⊗Dny⊗Inz−1

Inx−1⊗Iny⊗Dnz 0 −PxDnx⊗Iny⊗Inz−1

−Inx−1⊗Dny⊗Inz PxDnx⊗Iny−1⊗Inz 0

 (82)

Px is the diagonal projection matrix that is zero if the corresponding dual

step needs to be eliminated from the stability limit. It is readily observed that

stability is again guaranteed if (79) is satisfied, but this time with ‖C̃yz‖2 derived

from (82). Consequently, a proper choice of Px can lead to a relaxation of the

traditional Courant limit without having to implicitize the entire x-dimension.

4. Numerical validation

Consider the example depicted in Fig. 2a, where a grid with 8× 8× 8 cells

and main step size ∆ = 2.5 mm is locally refined in the x-dimension by a factor

ten as follows:

δx = ∆ diag
(

1, 1,
1

10
,

1

10
,

1

10
,

1

10
, 1, 1

)
(83)

δy = δz = ∆ diag(1, 1, 1, 1, 1, 1, 1, 1) (84)

The dual nodes are placed halfway the primary nodes, i.e.

δ̂x = ∆ diag
(

1,
11

20
,

1

10
,

1

10
,

1

10
,

11

20
, 1
)

(85)

δ̂y = δ̂z = ∆ diag(1, 1, 1, 1, 1, 1, 1) . (86)

The most delicate case where all energy is trapped inside a PEC cavity filled

with vacuum is analyzed. The cavity is excited by randomly initializing one of
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the electric field components to 1 V/m. Each simulation performs one million

iterations and records the discrete energy

q|n =
1

2

(
ẽ|n
)T (

ẽ|n
)

+
1

2

(
h̃|n
)T (

h̃|n
)
, (87)

with ẽ and h̃ defined in (66), but interpolated to the same time instance. The

goal of the proposed implicitization techniques is to arrive at an efficient and

flexible update scheme that preserves this energy function when the time step

equals the Courant limit of the coarse part of the grid, i.e.

∆tcoarse =
∆

c0
√

3
= 4.8145319 ps . (88)

4.1. Fully explicit

For conventional leapfrog time stepping, the explicit Courant-like limit (56)

and the numerically computed norm-based limit (37) are respectively given by

∆tfeexpl = 0.8418616 ps (89)

∆tfenum = 0.8890071 ps . (90)

As expected, the submultiplicativity (54) used to find (56) gives rise to a 5.6%

smaller maximum time step. Fig. 4 shows the discrete energy (87) normalized

to the initial energy qin for three different time steps close to ∆tfenum. Since the

energy function is not explicitly conserved from one iteration to the next, as was

also observed in e.g. [11], the initial energy qin does not necessarily equal the

average energy. This instantaneous non-conservative behavior can be ascribed

to the staggered nature of the Yee cell. For example, due to the staggered grid

and the choice of excitation, the initial energy qin has no magnetic energy con-

tribution, which is physically impossible in the continuum case, but may be true

in the discrete case because there does not exist a discrete magnetic field at the

location of the excitation. This explains why the initial energy qin is always

somewhat lower than the average energy in our numerical experiments. Fig. 4

confirms that (37) is the exact stability limit for nonuniform grids. Addition-

ally, the poles of the FDTD system are plotted in Fig. 4d. They are numerically
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Figure 4: Normalized discrete energy per iteration for conventional leapfrog time

stepping with ∆t = (1 + κ) ∆tfenum. (a) For κ = −10−6, the total amount of energy in

the cavity is conserved. (b) For κ = 0, the energy increases slower than exponentially.

(c) For κ = 10−6, the energy grows exponentially. (d) Location of the poles in the

complex plane, which is for the adopted zoom indistinguishable for the three chosen

values of κ.

determined by constructing the amplification matrix and computing its eigen-

values with Matlab’s built-in function eig. As expected, all poles of the lossless

cavity are located on the unit circle. The number of poles inside the disk with

center z = 1 and a radius of hundred times the machine precision is 854, which

is found to be in exact agreement with (44).

4.2. Newmark and CN implicitization

Due to the high degree of resemblance between the Newmark and the Crank-

Nicolson implicitization techniques, they are treated simultaneously in this sec-
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tion. Both techniques use a projection operator of the form (57) eliminating the

step sizes of (85) which are smaller than ∆. For our example, Pinx−1 in (57) is

given by

Px = diag
(

1, 0, 0, 0, 0, 0, 1
)
. (91)

Both implicitization techniques have an identical maximum time step specified

by (43), which is numerically determined to be

∆tcn
num = 5.3562296 ps . (92)

The late-time behavior of the normalized energy function is studied in Fig. 5

and Fig. 6 for small perturbations of (92) and confirms that this is indeed the

exact upper bound on the time step to guarantee Lyapunov stability. The en-

hanced stability of the simulations running at the exact time step limit (Fig. 5b

and Fig. 6b) could be explained by the fact that the fully implicit Newmark

(and CN) method cannot have poles z = −1, as discussed at the end of Sec-

tion 3.1.2. Hence, it is likely that for a locally implicitized scheme, the chance

of exciting an unstable mode with z = −1 is small. As a side note, the spectra

of both amplification matrices (Fig. 5d and Fig. 6d) are very similar, as could

be expected from our stability analysis in Section 3.2.1. They probably do not

exactly coincide due to the numerical error inherent to the eigenvalue compu-

tation. Compared to the conventional FDTD method (Fig. 4d), the dynamic

poles are pushed towards z = −1 due to the smaller time step. All three spec-

tra have the same number of static modes. In conclusion, both implicitization

techniques render a stable system for the pursued coarse time step (88).

4.3. ADI implicitization

We adopt the split curl stencil (80)–(82) with projection operator (91). For

this example, the leapfrog ADHIE update scheme employs α = 0.5. A numerical

estimation of the maximum time step (79) is then given by

∆tadi
num = 4.0171722 ps . (93)
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Figure 5: Normalized discrete energy per iteration for Newmark implicitization with

∆t = (1 + κ) ∆tcnnum. (a) For κ = −10−6, the total amount of energy in the cavity is

conserved. (b) For κ = 0, the energy is still conserved. (c) For κ = 10−6, the energy

grows exponentially. (d) Location of the poles in the complex plane, which is for the

adopted zoom indistinguishable for the three chosen values of κ. The non-physical zero

pole of the quadratic eigenvalue problem, which has multiplicity ne + nh, is omitted.
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Figure 6: Normalized discrete energy per iteration for Crank-Nicolson implicitization

with ∆t = (1 + κ) ∆tcnnum. (a) For κ = −10−6, the total amount of energy in the

cavity is conserved. (b) For κ = 0, the energy is still conserved but shows large

fluctuations, indicating nearly unstable behavior. (c) For κ = 10−6, the energy grows

exponentially. (d) Location of the poles in the complex plane, which is for the adopted

zoom indistinguishable for the three chosen values of κ.

27



0 2 4 6 8 10
number of iterations

×105

0.6

0.8

1

1.2

1.4
n
o
rm

a
li
ze
d
en

er
g
y
q/
q i

n
∆t=∆t

num

∆t= 1.31 ∆t
num

(a)

0 200 400 600 800 1000
number of iterations

100

10100

10200

n
o
rm

a
li
ze
d
en

er
g
y
q/
q i

n

∆t=1.32 ∆t
num

(b)

Figure 7: Normalized discrete energy per iteration for ADI implicitization with dif-

ferent time steps (relative to ∆tadinum).

The small steps are clearly eliminated from the time step since (93) is five times

larger than (90), but unfortunately (93) is smaller than the desired time step

(88). Fig. 7 confirms that the local implicitization technique is stable, but also

shows that the upper bound (79) is not the exact upper bound. Numerical

experiments to determine the actual upper bound reveal that, for this case, the

upper bound (93) is underestimated by a factor 1.31. Consequently, the system

also remains stable for the desired time step (88). This can be explained as fol-

lows. The maximum time step allowed by (79) corresponds to λmin(Gyz) = 0 but

not necessarily to λmin(GTxGx) = 0. There is additional margin hidden in the

latter, since it is known that λmin(E) ≥ λmin(GTxGx) + λmin(Gyz) [15, p. 428].

5. Conclusion

The stability of three different local implicitization techniques was rigorously

proven for nonuniform tensor product grids with isotropic, inhomogeneous, pos-

sibly lossy media enclosed in a PEC box. This resulted in an exact norm-based

upper bound for the time step in case of Newmark and CN implicitization, and a

more loose upper bound for ADI implicitization. Also, an explicit, Courant-like

maximum time step was determined for fully explicit, nonuniform grids. Among

the proposed methods, Newmark implicitization is the most computationally ex-

pensive technique, as it has a three-level update scheme. The ADI implicitiza-
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tion method is the most efficient one, because, no matter how many dimensions

are implicitized, the occurring matrices are tridiagonal and scale with only one

dimension. However, it suffers from a splitting error. Fortunately, for the newly

proposed leapfrog ADHIE-FDTD method, this splitting error is heavily reduced

compared to the traditional (leapfrog) ADI-FDTD method since the split curl

parts are more sparse.

Future work includes the extension of the stability analysis to perfectly

matched layers (PMLs). By means of a final, short discussion on this mat-

ter, it is worth mentioning that our z-domain stability analysis is well-suited

to analyze the convolutional PML as the discrete convolution is transformed

to a simple multiplication in the z-domain. Multiplying the step sizes by the

z-domain stretching factors, our stability analysis can be repeated up to formula

(34), but then the z-dependence of the step size matrices inside the modified

curl operator (29) gives rise to a nonlinear eigenvalue problem with complex

(instead of real) symmetry, which strongly impedes further conclusions about

the location of z (or ζ) in the complex plane.

6. Appendix

Lemma 1. If A, B ∈ Cn×n are hermitian and A is regular, then there exist n

linearly independent vectors v ∈ Cn×1 satisfying Av = λBv.

Proof. Since the matrices A and B are hermitian, all eigenvalues λ reside in

R∪{∞}. We will prove the existence of a full linear independent set of eigenvec-

tors by ruling out the existence of non-trivial Jordan blocks in the Weierstrass

canonical form. First, suppose that the finite eigenvalue λr ∈ R gives rise to a

Jordan block of size k > 1, then there must exist a Jordan chain [18, p. 4065]

(A− λrB) v1 = 0 (94)

(A− λrB) vi = B vi−1 i = 2, ..., k . (95)

Consequently,

vH1 B v1 = vH2 (A− λrB)Hv1 = vH2 (A− λrB) v1 = 0 , (96)
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where the first equality holds because of (95) with i = 2, the second equality

uses the hermitian symmetry of the matrix pencil (A − λrB), and the third

equality uses (94). Since λr is finite, v1 cannot reside in the null space of B.

Hence, (96) implies v1 = 0, which is in contradiction with the existence of the

Jordan block.

Second, suppose that ∞ is an eigenvalue corresponding to a Jordan block of

size k > 1, then there must exist a Jordan chain [18, p. 4065]

B v1 = 0 (97)

B vi = Avi−1 i = 2, ..., k (98)

Repeating the steps from (96), now yields

vH1 Av1 = 0 . (99)

Since A is regular, we conclude that v1 = 0, which rules out the existence of the

Jordan block. �
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