
Received: 31 October 2016 Revised: 15 March 2017 Accepted: 17 March 2017

DOI: 10.1002/nem.1976

S P E C I A L I S S U E P A P E R

Data transformation as a means towards dynamic data storage
and polyglot persistence

Thomas Vanhove Merlijn Sebrechts Gregory Van Seghbroeck Tim Wauters

Bruno Volckaert Filip De Turck

Department of Information Technology,

Ghent University - imec, IDLab, Ghent,

Belgium

Correspondence
Thomas Vanhove, Department of

Information Technology, Ghent University -

imec, IDLab, Technologiepark-Zwijnaarde

15, B-9052 Ghent, Belgium.

Email: thomas.vanhove@intec.ugent.be

Funding information
iMinds SEQUOIA

Summary
Legacy applications have been built around the concept of storing their data in one

relational data store. However, with the current differentiation in data store technolo-

gies as a consequence of the NoSQL paradigm, new and possibly more performant

storage solutions are available to all applications. The concept of dynamic storage

makes sure that application data are always stored in the most optimal data store at

a given time to increase application performance. Additionally, polyglot persistence

aims to push this performance even further by storing each different data type of

an application in the data store technology best suited for it. To get legacy applica-

tions into dynamic storage and polyglot persistence, schema and data transformations

between data store technologies are needed. This usually infers application redesigns

as well to support the new data stores. This paper proposes such a transformation

approach through a canonical model. It is based on the Lambda architecture to ensure

no application downtime is needed during the transformation process, and after the

transformation, the application can continue to query in the original query language,

thus requiring no application code changes.

KEYWORDS
big data, data transformation, dynamic data storage, lambda architecture, polyglot persistence

1 INTRODUCTION

Relational data stores are an important building brick for

legacy applications in their data storage strategy. However,

with growing data sets in the age of big data analytics, appli-

cations’ demands have exceeded the capabilities of classic

relational database management systems (RDBMS). With

this new paradigm for large-scale processing, fast access to

the data is necessary. Many new systems have been designed

aimed to scale horizontally, providing read/write operations

distributed over many servers.1 Many of these new systems

can be categorized as NoSQL, which stands for “Not only

SQL.” Contrary to the classic relational databases, they pro-

vide easy scaling and performance advantages in specific

scenarios, depending on the chosen NoSQL data store.2 Addi-

tionally, they provide a more flexible or even schema-less

data model, allowing rapid changes in the model. The pop-

ularity of these data stores can be measured by the sheer

amount of solutions available. However, this does not mean

relational databases do not have a role to play in the big

data story.3 An example is Google's F1 hybrid database,4

a scalable distributed Structured Query Language (SQL)

database built on top of their globally distributed and syn-

chronously replicated database, Spanner.5 Google uses this

database to support their AdWords business, an ecosys-

tem with hundreds of concurrent applications and thou-

sands of users sharing the database, over 100TB in size

in 2013.

Int J Network Mgmt. 2017;27:e1976. wileyonlinelibrary.com/journal/nem Copyright © 2017 John Wiley & Sons, Ltd. 1 of 16
https://doi.org/10.1002/nem.1976

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/141880605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/nem.1976
http://orcid.org/0000-0002-2619-2739


2 of 16 VANHOVE ET AL.

The amount of possible solutions for data storage led to a

specialization of these data stores to distinguish themselves

from each other, making different data stores more suitable for

different types of data or for the different use of data. Thus, a

correct choice in data store is paramount for the optimal per-

formance of the application. However, as applications tend

to evolve with frequent updates and changing user numbers,

the optimal choice of data store may change over the course

of the application’s lifespan. The concept of dynamic storage

allows the stored data to be stored in the optimal format for the

application at all times, transforming the format when neces-

sary, ie, when certain requirements are no longer met. Along

with this, applications often work with different types of data,

eg, e-commerce platforms. Another interesting concept would

therefore be to have the application use multiple data stores

simultaneously, instead of forcing all data into one solution.

This is often referred to as polyglot persistence.3,6,7 In the case

of a network monitoring platform, device information can be

stored in a classic RDBMS, while logging data might be a

better fit for a document data store or a search server such as

ElasticSearch.

Introducing dynamic storage and/or polyglot persistence in

existing legacy applications requires a transformation of exist-

ing data stores or parts thereof. On the one hand, there is the

cost of transforming the data format, but on the other hand,

many application changes may be necessary as well to sup-

port the new format. Additionally, with applications having to

meet specific service-level agreements, this migration and/or

transformation has to occur with as limited downtime as pos-

sible, preferably eliminating the downtime entirely in a best

case scenario. This high migration and transformation cost

discourages application developers to change data stores in

live applications.

Based on the previous paragraphs, 3 main obstacles can be

defined that currently hamper dynamic storage and polyglot

persistence:

1. Migration of data to the cloud (or between clouds)

2. Transformation of data formats

3. Alteration of application code

This paper reports on advances that have been made into

overcoming these obstacles as well as contributing to a new

approach of data transformation in such a way that the

downtime of the applications is eliminated, without addi-

tional development and implementation effort.8 The proposed

solution aims to tackle the issues concerning polyglot per-

sistence, ie, enable applications to access and store data in

different data stores simultaneously and allow for dynamic

changeovers between supported data stores based on mon-

itoring information or the intervention of the customer or

administrator. The proposed solution makes use of a new

open source Platform-as-a-Service (PaaS) called Tengu.9 The

Tengu platform provides researchers a time-saving approach

for building big data analysis frameworks through automated

installation, configuration, and integration of big data analysis

and storage technologies.9,10

The remainder of this paper is structured as follows: Section

2 reviews related work in the different domains that already

contribute to the solution of the previously stated obstacles.

The approach and general workflow of the transformation are

discussed in Section 3, while Section 4 describes the trans-

formation algorithm. In Section 5, the implementation of the

algorithm and workflow on the Tengu platform are detailed.

Section 6 discusses the evaluation of the implementation

through performance testing. Finally, the paper is concluded

in Section 7 and offers several leads towards future work.

2 RELATED WORK

Early work on data transformation11,12 led into what are now

called extract-transform-load (ETL) processes. These soft-

ware processes are commonly used in data warehouses where

they extract data from often different data sources, trans-

form the data in the correct format, and load the transformed

data into the data warehouse. Research in ETL has focused

on modeling, efficiency, and facilitation of construction.12

While the approach and algorithm described in this paper

show several similarities to ETL processes, they are vastly dif-

ferent. Extract-transform-load facilitates data transformation

between 2 data points, data source and data warehouse, where

both data schemas are known. If a change is made in the data

schema of the data source or the data warehouse, changes will

need to be made in the ETL process. The proposed transfor-

mation in this paper works between 2 data points where only

one data schema is known, the source data store, which is

then transformed into a data schema representation of the new

data store.

For each of the ETL subprocesses (extract, transform,

and load), a research domain exists. Extract and load have

been heavily researched as part of data migration and has

become even more apparent with the complexity intro-

duced by clouds and big data.13 Data migration obstacles

have been solved in several ways using high-performance

networks,13 workload-aware strategies,14 and cost-minimizing

approaches.15 In this research domain, several solutions have

also been proposed for live data migration, ie, a migra-

tion where a live application needs to be supported with-

out downtime.16,17 Other migration tools allow data from an

RDBMS to be analyzed by big data processing tools, such

as Hadoop. Apache Sqoop provides a framework to transfer

data between an RDBMS and Hadoop.18 The RDBMS data

can thus be used in a big data analysis process after which the

results can be migrated back to the RDBMS.

Another important research domain related to data trans-

formation is that of schema matching and mapping.19,20 It is



VANHOVE ET AL. 3 of 16

TABLE 1 State of the art in the domain of migration, transformation, and alteration of application code as used at Amazon,

Google, and Microsoft

Amazon AWS Google Cloud Microsoft Azure

Migration (online) Database Migration Service Storage Transfer Service Azure Migration Wizard

Migration (offline) Amazon Snowball - AWS Import/Export Disk Third party support Import/Export service

Transformation Schema Conversion Tool X Limited
Alteration Schema Conversion Tool X X

a process that identifies if 2 data schemas are semantically

similar and describes the transformations for data to be rep-

resented in the other schema. This research domain is closely

related to ETL, as it aids in the creation of the transformation

subprocess. This work leverages the input of 2 data schema

and maps the transformation between them, contrary to the

work in this paper. Other work in the transformation research

focuses on data transformation, more specifically between

SQL and NoSQL data stores. However, compared to the work

in this paper, it is often limited in the support of data store

technologies (eg, only supporting column data stores).21,22

The transformation approach and algorithm in the paper is

aimed towards flexibility and extensibility, in theory able to

support any data store technology.

Finally, direct transformation tools between 2 specific data

store technologies exist as well, such as Mongify for SQL

to MongoDB.23 They are able to transform data stores from

one specific data technology to another. Compared to the

approach in this paper, these tools are limited, as they only

provide between 2 specific data stores with no easy way

of extending the support to other data store technologies.

Moreover, these tools are often built with custom code and

therefore do not scale well when working with legacy or pro-

duction data stores in general. Another example of a direct

transformation tool is present in Cassandra, using Apache

Sqoop.24 It capitalizes on the similarities between SQL and

Cassandra Querying Language (CQL) to import and export

data between Cassandra and a classic RDBMS. While techni-

cally transforming data between 2 different technologies, this

approach provides data migration functionality. In contrast to

the contributions in this paper, the Cassandra transformation

tool also does not provide any optimizations in its supported

technologies to decrease query latencies.

Several of the previously mentioned research topics have

already seen applications in the industry. Table 1 gives an

overview of how the major cloud providers, Amazon, Google,

and Microsoft, overcome the obstacles described in the previ-

ous section: migration of data, transformation of data, and if

alteration is required in the application code. The ‘X’ marks

that no tool is made available by the cloud provider for a

specific obstacle. At first sight, all providers supply tools for

the migration of data from and towards their platform, both

offline and online. Online tools allow for the migration of

data over the internet while offline tools are organized pro-

cesses of sending physical disks to the providers. Amazon

outperforms Google and Microsoft, as it provides not only

tools to overcome migration but transformation and alteration

as well. However, when taking a closer look at the schema

conversion tool offered by Amazon, it is mostly restricted

to data stores with SQL-like querying languages for both

transformation and the alteration of application code.* The

tool can tweak the SQL schema of a source data store and

alter the SQL query in the application code to reflect the

changes made to the schema. Compared to the work in this

paper, the AWS schema conversion tool is limited, as it only

supports SQL-related data stores. Furthermore, this trans-

formation still requires changes in the application, although

these are executed automatically by the tool. While Google

and Microsoft have no tools for a full transformation and

alteration, Microsoft Azure does provide a tool for schema

matching/mapping.

One of the goals of transformation in this paper is to support

polyglot persistence for legacy applications. A lot of research

has gone into solutions that shield the complexity of having

to deal with multiple query languages through abstract data

layers, such as Hibernate ORM/OGM25 and Apache Drill.26

These abstract data layers provide access to different data

stores without the need for the application or developer to

be aware of the complexities of the data store. Most of these

provide only limited or no support for the migration of data

between supported data stores but do allow applications to

store data in different parallel data stores depending on the

type of data. Many of these abstract data layers however

require applications to use the abstract data layer's query-

ing language, which in some cases is the SQL standard,

but in others a custom dialect (eg, Hibernate Query Lan-

guage). The abstract data layers effectively shield the data

store complexity of polyglot persistence, but only for new

applications. Legacy applications with big data sets still have

no out-of-the-box solution to help them benefit from these

new paradigms.

3 DATA TRANSFORMATION
FRAMEWORK

This section describes the approach and workflow of the data

transformation as a means to achieve dynamic storage and

*https://aws.amazon.com/dms

https://aws.amazon.com/dms


4 of 16 VANHOVE ET AL.

polyglot persistence for applications. First, an architecture for

the transformation is proposed that overcomes the aforemen-

tioned obstacles and avoids application downtime. Next, the

approach of the actual transformation is discussed. Finally, the

architectural principles for the data transformation are applied

in a practical workflow for the transformation process.

3.1 Architecture
A straightforward solution for the transformation would be

to take a snapshot of the source data store (Dsrc), trans-

form the snapshot, and load it into the transformed data

store (Dtrans). No queries would be allowed during the trans-

formation process, effectively shutting down any data store

operations by applications. However, in production environ-

ments, it is important that any live application supported by

the data store encounters no or minimal impact on their opera-

tions. Queries submitted by the application after the snapshot

of Dsrc was taken could still be executed on Dsrc, but in order

for Dtrans to contain the latest data and/or reflect the latest

changes to its data and structure, queries that insert new or

modify existing data need to be transformed as well. The

transformation process can therefore be divided in 2 parts:

the transformation of a snapshot of Dsrc and the transfor-

mation of the data inserted or modified by queries arriv-

ing after the snapshot of Dsrc was taken. The specific time

when the snapshot of Dsrc is taken is indicated by Tsnap.

Important to note is that all queries will still be executed

on Dsrc during the following transformation to support any

live applications.

Transforming the Dsrc snapshot into Dtrans can be regarded

as a batch job. It has access to the entire data set, ie, the snap-

shot of Dsrc, and processes the transformation of this entire

data set. Once this batch job is finished, Dtrans still requires

to be updated with the new and adjusted data that is con-

tained within the queries that arrived after Tsnap. An obvious

choice would be to rerun the batch job for these queries. How-

ever, during this second transformation, new queries would

possibly still arrive as well, requiring yet another run of

the batch job. Depending on the arrival rate of the queries,

the batch job would run on an ever-reducing set of queries,

decreasing the performance of these runs because of a static

overhead.27 In a worst case scenario, it would never reach a

consistent state. A better solution would be to use a stream-

ing analysis component, transforming the queries in parallel

to the batch transformation as soon as they arrive. The addi-

tional benefit of this streaming layer is the continuous query

transformation it can provide after the changeover to Dtrans
is complete. Continuous query transformation is a situation

where the application would be able to query Dtrans in the

query language of Dsrc through the live transformation in the

streaming layer. This effectively eliminates any changes to

the application.

FIGURE 1 General overview of the described architecture with a

batch layer and parallel streaming layer

Such a 2-layered hybrid solution is often referred to as the

Lambda architecture, a term coined by Nathan Marz.28 The

concept leverages the computing power of batch processing

with the responsiveness of a real-time computation system.

However, the solution described in this paper defers from this

concept in an important way. In the original Lambda architec-

ture, the batch layer continuously reanalyzes an increasing big

data set, whereas the proposed solution uses the batch layer

for one iteration only, ie, the transformation of the snapshot of

Dsrc. The Tengu platform provides a generic implementation

of the Lambda architecture, independent from the technolo-

gies used for the different layers.10 The solution described in

this paper will therefore be deployed on the Tengu platform.

Figure 1 shows a general overview of the proposed archi-

tecture. The batch layer uses a snapshot to transform the

structure and data present in Dsrc at Tsnap, while the stream-

ing layer transforms queries that add new data or transform

existing data or structure. The latter transformations are stored

in sequence until the batch layer is finished, after which the

queries are executed on the newly created Dtrans. Again, all

queries arriving after Tsnap are still being executed on Dsrc as

well, since the latest data needs to be readily available for the

application during the transformation. Once the batch layer is

finished and while the stored queries from the streaming layer

are executing on Dtrans, a changeover process is started. This

changeover process stops all queries from being sent to Dsrc
and completes the changeover to Dtrans. Figure 2 shows the

sequence diagram of all the architectural components.

3.2 Transformation approach
Two main approaches can be identified when looking at the

actual transformation of a data store: direct transformation

and transformation through a centralized data model. The first

is fairly straightforward as one data store is directly mapped

onto another. Unique properties of a certain data store can be

mapped onto specific traits of the other entirely. However, for

each new supported data model, this approach would require

a new implementation for transforming the new data model

into each of the already supported models. For example, when

a transformation is needed between SQL and Cassandra, a



VANHOVE ET AL. 5 of 16

FIGURE 2 Sequence diagram detailing the functionality of the

architectural components during the transformation

direct transformation can be implemented in both directions,

but when support for MongoDB is required, a transformation

also needs to be implemented for both SQL and Cassandra.

The amount of effort to support new data store technolo-

gies would only grow exponentially. Using a centralized data

model would solve this issue by first transforming the struc-

ture and data of each data store to the data model, after

which it is transformed into the new data store. Supporting

new data stores would then only require a transformation

towards and from the centralized data model. While this solu-

tion does support the extensibility of additional data stores

being added, it also has several drawbacks. Firstly, the solu-

tion requires an extra transformation for every conversion

between data stores introducing additional overhead. Sec-

ondly, while transforming to the centralized data model, it is

not possible to assume anything about the unique characteris-

tics of Dtrans as the destination data store is not yet known at

that point.

Within the centralized data model, 2 possibilities exist: an

abstract or a canonical model. An abstract model can repre-

sent the most common characteristics shared by several data

stores, while the canonical model aims to support every spe-

cific characteristic of each supported data store. Although the

abstract data model allows a general representation of the data

store's structure and data, not all unique characteristics of

the data stores can be supported and any related advantages

are also lost. With this in mind, the approach with a canoni-

cal model is preferred. The complexity in developing such a

solution is mostly contained in the first stage. Once the canon-

ical model is in place, adding support for new data stores

is significantly easier. Even if this approach performs worse

time wise, compared to a direct transformation, the architec-

ture proposed in Section 3.1 still allows for the application

to operate with minimal impact. That is, during the transfor-

mation, Dsrc is still the main data store, ie, it still processes

FIGURE 3 Canonical model for the structure of a data set

all the queries from the application, while the streaming

layer transforms any queries that update or insert data in the

data store.

The canonical model can be represented through a direc-

tional graph, clearly showing the relations between elements

of the data model. This graph representation also allows rea-

soning on the data model as it mimics the properties of

an ontology, a model describing a domain in classes with

properties and relations.29 The domain in this case is the

data model of Dsrc and the reasoning allows for insights

as the data model of Dtrans is built. Figure 3 represents an

example of a canonical model for the structure of a data set.

The central element in this canonical model is the Entity. It

represents a subject and is built up by different Attributes.

An Entity also keeps information about its identifiers and

Attributes through a relation HAS_ATTRIBUTE. Another

type of relation, EQUALS, indicates that 2 attributes contain

the same information. Relations between Entities can also

be represented with a specific type, such as ONE_TO_ONE,

MANY_TO_ONE, and MANY_TO_MANY. While the data is

not mentioned in Figure 3, it can be regarded as a combina-

tion of singular pieces of information, related to attributes as

part of an entity (eg, a row in an SQL table or a document in

MongoDB).

In a previous publication, the canonical model was rep-

resented in an extended entity relationship (EER)–like

model.8,30 This approach was however later found to be too

constricting for the canonical model. The current represen-

tation of the canonical model as a directional graph allows

for extensive reasoning similar to ontologies, which was not

possible with the EER-like model. This will aid in the detec-

tion of relationships in the data schema and the transformation

from the canonical model to Dtrans. Moreover, while there

is no way to prove the soundness and completeness of this

representation, it is based on the relational algebra and is

much easier to extend if a new type of relationship would

be needed.



6 of 16 VANHOVE ET AL.

3.3 Workflow
This section summarizes the typical workflow of a transfor-

mation by the framework. The transformation process can be

described in 4 steps:

1. Initiate transformation: The transformation is initi-

ated, based on monitoring data or by request. A snap-

shot is taken from Dsrc and passed on to the batch

layer. Until the handover, the final step, Dsrc, acts as

the main data store for the application(s), ie, all queries

are still passed on to this data store. However, all

queries that insert or update data in the data store are

also forwarded to the streaming layer as soon as the

snapshot is initiated. Currently, queries that alter the

schema of Dsrc are not allowed during the transformation

process.

2. Transform schema: Before the data can be transformed,

the batch layer transforms the structure or schema of Dsrc.

The streaming layer is only collecting queries, but not

yet transforming them, as information is needed about the

transformed schema of the data store.

3. Transform data: Based on the transformed schema of

Dsrc, a new data store, Dtrans, is set up. Data from the Dsrc
are transformed in the batch layer, while recent queries

that were collected in the streaming layer are transformed

as well. However, resulting transformed queries from

the streaming layer are only inserted in Dtrans after the

transformed data from the batch layer has been inserted

into Dtrans.

4. Handover: As soon as the data from the snap-

shot are transformed and put into Dtrans, the han-

dover is initiated. All queries are then redirected to

Dtrans with respect to any queries still in queue at the

streaming layer.

At this point, the application still queries in the language of

Dsrc, which leads to the following possible scenarios:

• The application maintains the original language and every

query is translated by the streaming layer. The applica-

tion thus remains dependant on the proposed architecture

with a minimal overhead introduced by the continuous

transformation.

• The application was prepared for this transformation and

changes its querying language to that of Dtrans.

• The application communicates to the data store through

an abstract data layer, such as Hibernate ORM/OGM,

PlayORM, or Apache Drill.

It is clear that to eliminate the need for the appli-

cation to change, the continuous transformation of the

queries is required. In practice, this translates to the trans-

formation of data retrieval queries, such as SELECT

queries in SQL. Section 4.3 details the transformation

of data retrieval queries to eliminate the need for

applications' redesigns.

4 TRANSFORMATION
ALGORITHM

4.1 Schema queries
An overview of the transformations to and from MySQL, Cas-

sandra, and MongoDB is given below. The transformations

of MySQL and Cassandra have been detailed in a previ-

ous paper,8 but since the canonical model has changed from

an EER-like model to graph representation, the implementa-

tion has been completely redone. However, the transformation

rules below are still valid and similar to the ones described in

Vanhove et al8; therefore, only a summary of the transforma-

tions for MySQL and Cassandra is given.

4.1.1 SQL transformations
The SQL31 is a language for managing relational databases

based on relational algebra. Structured Query Language is a

standard of both the American National Standards Institute

and the International Organization for Standardization.31 The

popularity of SQL has spawned many dialects for its differ-

ent implementations, such as MySQL, Microsoft SQL Server,

and PostgreSQL. The transformation detailed below only uses

elements from the SQL standard.

To canonical
The following schema shows how the different data structures

from SQL are mapped onto the canonical data model:

The first 2 transformations are straightforward: A table is a

collection of columns, similar to an entity with its attributes.

In SQL, the relationships are defined through foreign keys,

primary keys, and table use. Three types of relationships exist:

one-to-one, many-to-one, and many-to-many. The canonical

model has an explicit representation of these relationships,

therefore, the objective of the transformation is detecting the

context of the foreign keys as defined by the SQL standard31

and translating to the correct relation type.

From canonical
Similar to the transformation towards the canonical model,

entities are translated into tables with columns based on the

TABLE 2 Transformation schema from

SQL to canonical model

SQL Canonical

Table Entity

Column Attribute

Foreign keys Relations

Abbreviation: SQL, Structured Query Language.



VANHOVE ET AL. 7 of 16

attributes. These transformations are the exact opposite of

those listed in Table 2. The relations are implemented using

the foreign keys according to the SQL standard.31

4.1.2 Cassandra transformations
Cassandra is a column-oriented data store originally devel-

oped at Facebook.32 While showing many similarities with

classic databases, it does not support a full relational data

model. It is aimed at large-scale implementations across hun-

dreds of physical servers with high-availability services.

To canonical
Columns, grouped in column families, are the building blocks

of a Cassandra data store, similar to columns and tables in

SQL, respectively. This similarity is continued in the trans-

lation towards the canonical model, where column families

become entities and columns become attributes.

Important to note is that there is no explicit way to infer

relations from the Cassandra data model, due to the lack of

support for a relational data model. There are however sev-

eral indicators that relations are present in the Cassandra

data model: index column families. These column families

containduplicate columns from 2 or more column families

involved in the relationship and are identified by a primary

key that spans multiple columns, also referred to as a com-
posite key, containing the primary key data of the related

column families. This denormalization eliminates the need for

join-like queries (cf SQL) optimizing the data store for read

performance. While their presence is a good indicator, com-

posite keys are also used for other purposes, such as column

family sorting. This makes it significantly difficult to define a

generally automated way of detecting relations in Cassandra.

Currently, the automated detection of relations from Cassan-

dra is not supported unless the following naming is used for

the index column family “<entity x>_<entity y>_index”.

From canonical
Translating into Cassandra from the canonical data model,

entities are transformed into column families with columns

defined by the attributes. As mentioned before, the Cassan-

dra data model does not allow for the explicit representation

of relations, but it is possible to represent them through index

TABLE 3 Transformation schema from

Cassandra to canonical model

Cassandra Canonical

Column family Entity

Column Attribute

Index column families Relations

column families with composite keys. Relations in the canon-

ical model trigger the creation of these additional index col-

umn families containing data from the entities involved when

translating into Cassandra. The transformations in Table 3 are

the exact reverse.

4.1.3 MongoDB transformations
An additional NoSQL data store was added to the list of

supported data stores: MongoDB is a document-based data

store.33 It stores data as a key paired with a document con-

taining key-value pairs, key-array pairs, or even nested doc-

uments. MongoDB accepts JSON documents as data for

its collections, represented as binary-encoded JSON behind

the scenes.

Listing 1 shows an example of a JSON document with sev-

eral different elements. First and foremost, a document has

fields linked to values. A field can have a single value with

familiar data types, such as integers and strings, but also con-

tain an array of values (eg, “network info” in Listing 1) or

even embedded documents (eg, “device” in Listing 1). Mon-

goDB is praised for its flexibility as collections do not impose

any data model on the stored JSON documents. This lack of

data model has some significant effects on the complexity of

the transformation.

To canonical
In SQL and Cassandra, a dump of the data store includes the

schema or model, ie, every tuple (or row) of data is defined

by a certain amount of attributes (or columns). This means

the structure of the data is known without even looking at

the data itself. MongoDB has a flexible data schema in its

collections, ie, collections do not enforce document struc-

ture. It is therefore impossible to know all the attributes



8 of 16 VANHOVE ET AL.

TABLE 4 Transformation schema from MongoDB to canonical

model

MongoDB Canonical

Collection Entity

Document field Attribute

Embedded Document
One-to-one relation

Many-to-one relation

Document referral array One-to-many relation

Embedded document array Many-to-many relation

of the documents without looking at the documents them-

selves. To derive the canonical model from a MongoDB

data store, all data in the collections need to be checked.

For each document in each collection, a list of all the keys

needs to be made that represent the attributes of the entity

in the canonical model. It is clear that checking only one

document for each collection does not suffice as documents

may also include different keys within the same collection.

It is to be expected that iterating over the entire data set in

MongoDB as to acquire the canonical model will have neg-

ative impact on the transformation time compared to SQL or

CQL. The schema in Table 4 details the transformation to the

canonical model.

The flexible schema also limits the possibility of accu-

rately defining relations between documents and/or entities.

References to other documents can be made through doc-

ument referral, but this is not explicitly mentioned in the

document as is the case with foreign keys in SQL. There-

fore, there is no way to automatically detect a relation based

on a singular document reference in a field. Another way

of defining relations between collections however is through

embedded documents. If a field in a document contains an

embedded document, this can be indicative of a one-to-one

or a many-to-one relationship. Additionally, arrays in docu-

ments containing multiple references to other documents or

containing embedded documents can indicate one-to-many

or many-to-many relations. Note that both many-to-one and

one-to-many relations are mentioned here. The flexibility of

the data model allows us to represent this relationship in 2

ways: denormalized with redundant data stored for low read

query latency or through the array data structure for hierar-

chical data sets. It also becomes clear that a many-to-many

relation actually is 2 one-to-many relations between 2 entities

directly. Thanks to the array data structure in MongoDB, no

additional entity is needed to represent the relationship as is

the case in SQL.

From canonical
As for the transformation towards MongoDB, the flexible

data schema simplifies the process. Documents contain keys

based on a subset of the attributes defined in the canonical

model and are added to their collection based on the entity.

If a collection does not yet exist, one is made automatically

TABLE 5 Transformation schema from canonical model to

MongoDB

Canonical MongoDB

Entity Collection

Attribute Document field

One-to-one relation Document integration

One-to-one relation Document referral

Many-to-one relation Embedded document

One-to-many relation Document referral array

Many-to-many relation Embedded document array

in MongoDB. No schema transformation is therefore needed,

as all information is derived from the data. The data are

transformed in JSON documents and pushed in MongoDB.

As mentioned before, relations between documents and col-

lections cannot be explicitly expressed in MongoDB. Similar

to Cassandra, a denormalization of the canonical model can

be used to indicate these relations, or similar to SQL, ref-

erences can indicate a relation based on an id. Depending

on the application requirements, a choice can be made to

either normalize or denormalize the MongoDB data store.

For example, in a hierarchical data set, it would be wise to

normalize the data store and work with references, but, if

read performance is a nonfunctional requirement, embedding

subdocument information in documents yields less queries.

The schema in Table 5 details the transformation from the

canonical model.

It is important to note that previous subsections describe the

transformation to and from the canonical model for 3 specific

technologies, but that the algorithm is inherently technology

independent. If a new technology were to be supported, a

transformation similar to the ones above should be imple-

mented. Once this is done, transformations to and from each

already supported technology are possible.

4.2 Data insertion queries
The previous section discusses the transformation of the

schema of a data store, but the data in the snapshot of Dsrc and

new data received after Tsnap need to be transformed as well

based on the created canonical model. To maintain the flexi-

bility and extensibility of the implementation, data insertion

queries are transformed to an intermediate state called tuples.

These tuples contain all the key-value pairs contained within

the insertion queries. From these key-value pairs, queries are

made up for Dtrans. Below is an example for an INSERT query

from SQL (Dsrc) in Listing 2 transformed into MongoDB

(Dtrans) in Listing 3:

The data that is now injected into MongoDB may not

yet complete. The column “device_id” in SQL, and corre-

sponding document field in MongoDB, has been defined as



VANHOVE ET AL. 9 of 16

a foreign key as part of a many-to-one relationship. On the

one hand, if the goal is to create a hierarchical data store, a

document reference would be sufficient. On the other hand,

if query performance is the goal, a more thorough solution

would be to store the “device” information as an embedded

document. Listing 4 shows the query that updates the docu-

ment in the “log” collection with an embedded document.

As the aim of this paper is to decrease query latency for

legacy applications and data stores, the implementation of

the algorithm uses the embedding of documents instead of

document referral.

4.3 Data retrieval queries
As mentioned in Section 3.3, once the handover to Dtrans is

complete, the application is still querying in the language

of Dsrc. There are several solutions to resolve this, but this

paper’s premise is to eliminate application redesign. This

means that continuous transformation needs to be imple-

mented, ie, the continuous translations of queries in the query

language of Dsrc into queries of Dtrans. The data insertion

queries have been handled in Section 4.2, and in this section,

the data retrieval queries will be detailed. Listing 5 shows a

standard SELECT query in SQL.

Similar to all queries, a transformation is made towards

a generic representation. From this generic representation,

a data retrieval query is made for Dtrans (eg, MongoDB).

The complexity in these selections comes from the joins of

different entities, but Section 4.2 detailed that embedded doc-

uments were used for the representation of relations. The

corresponding MongoDB query is written in Listing 6.

Since the document is embedded, it is clear that less calcu-

lations are needed to reach the same results. Section 6 shows

the impact of the simplified querying.

5 IMPLEMENTATION DETAILS

5.1 Technology choice and motivation
As mentioned in Section 3.1, an implementation of the

Lambda architecture is used as part of the Tengu platform.10

As this implementation is technology independent concerning

the different layers, a decision needs to be made as to which

technologies are used.

The technology used for the batch layer needs to be able

to transform a data store from a legacy application effi-

ciently. The MapReduce model, introduced by Google,34 is

one of the best known programming models for Big Data

analysis with Hadoop as the implemented open source frame-

work. In the previous implementation of the transformation,

algorithm MapReduce on Hadoop was used.8 However, Spark

is considered to be the successor of Hadoop MapReduce with

execution times 10 up to 100 times faster through in-memory

computing.35

For the streaming layer, many of the previously mentioned

technologies for the batch layer have (near) real-time stream-

ing variants. Although many support streaming, for as many

this has never been the sole focus. Storm, on the other hand,

is an analysis framework entirely built around the idea of

(near) real-time analysis of streams. It was originally devel-

oped at Twitter and is now part of the Apache project. This

aside, implementing Storm as part of this proof-of-concept,

clearly shows that both layers can be entirely different and



10 of 16 VANHOVE ET AL.

FIGURE 4 Instantiation of the framework with all the implemented technologies

independent technologies. Both Spark and Storm use Java,

which means code is reusable across both layers.

An overview of all the integrated technologies is shown

in Figure 4. Aside from the aforementioned analysis tech-

nologies, several supporting technologies are mentioned as

well. The LimeDS framework allows for wiring different

data-driven services together in an easy way.36 In this imple-

mentation, it is responsible for directing queries to Dsrc and

the streaming layer. It also manages the synchronization

between the batch and streaming layers. A second support-

ing technology integrated in the implementation is Apache

Kafka.37 Kafka is a publish-subscribe messaging system

implemented as a distributed commit log. Storm and Kafka

naturally work well together, as both have strong guarantees

on message processing. Finally, the canonical model is stored

in a graph data store. In this particular implementation, Neo4j

was chosen for its maturity, extensive documentation, solid

performance, and supporting community.38

5.2 Transformation algorithm
The pseudocode in Algorithm 1 can be clearly divided in

2 parts: the schema transformation and the data transforma-

tion. During the schema transformation, schema queries from

the Dsrc snapshot are translated into the canonical model and

stored in Neo4j. From this representation, the schema is built

for Dtrans. Once the Dtrans schema is ready, the transformation

of the data in the Dsrc snapshot is started. All data queries

are first translated to a generic tuple representation based on

the canonical model and then matched on the Dtrans schema.

The additional step of translating to a generic representa-

tion is necessary for the data as well as to maintain code

independence between data store technologies.

The code also contains several for loops, but these loops are

distributed and executed across the entire Spark cluster in par-

allel. This is especially important for the transformation of the

data contained within the snapshot, as the schema informa-

tion in a snapshot is negligibly small in most cases compared

to the data. Each slave in the cluster gets a small subset of the

Dsrc snapshot and transforms this subset towards the canonical

model and on from the canonical model to Dtrans.

Parsing the query language of Dsrc in the transformation

to the canonical model is done through ANTLR.39 ANTLR

generates a parser/lexer in Java, based on a grammar file con-

taining a description of the structure of the language to be

parsed. In this paper, grammar files were used for MySQL

and the CQL. There is no grammar for MongoDB, as it uses

JSON to store the documents in its collections and no data

model is forced upon the documents.

6 EVALUATION

6.1 Experimental setup
The implemented instantiation of the architecture was

deployed on the Virtual Wall. The iLab.t Virtual Wall facil-

ity† is a generic test environment for advanced network,

distributed software, and service evaluation and supports

†http://ilabt.iminds.be/

http://ilabt.iminds.be/


VANHOVE ET AL. 11 of 16

FIGURE 5 Partial canonical model of the network logging data store

scalability research. The Virtual Wall contains 300 nodes with

varying hardware specifications. The server specifications in

these experiments were as follows: Dual CPU (Quad core)

with 12 GB of RAM and 1 × 225 GB disk. Four physical

nodes were used for a dedicated 3-worker Spark cluster, 2

nodes for the Apache Storm cluster, and single-node instances

for MySQL, MongoDB, Neo4j, and a Cassandra data store.

6.2 Use case description
This use case shows the application of the transformation

algorithm on a data store containing network logging infor-

mation. Currently, the network monitoring platform uses a

relational data store in MySQL to save information, but the

query performance is no longer sufficient, for real-time query-

ing and feedback as responses take several minutes. The aim

is to lower query latency by transforming the MySQL rela-

tional datastore (Dsrc) into one of the supported data store

technologies, whichever yields better results. As a reference,

Figure 5 shows a partial canonical model after the transfor-

mation from MySQL. Three entities can be identified: device,

network_info, and log. Device contains information about

a certain network device, such as a router, while network

info stores information about the logged package, containing

amongst others a source/destination ip and port and a proto-

col. An example of the log can be seen in Listing 1. The sizes

of the data sets used for the evaluation contain 100 000, 5

million, 10 million, and 15 million logs.

6.3 Results
Spark resource tuning
Spark has a large number of configuration parameters that

influence resource utilization with drastic results on execu-

tion performance. Figure 6 shows the execution times for the

transformation of the SQL snapshot described in Section 6.2

with varying data set sizes expressed as a number of logs

and for different configuration parameters. The impact of the

configuration parameters can be clearly seen in the graph. For

example, a snapshot containing 5 million logs is transformed

in around 2 hours (129 minutes) with 2 executors, each hav-

ing access to 6 GB of memory and 8 cores, while the same

snapshot only requires around 27 minutes of execution time

with 20 executors with 1 GB and 8 cores. Both executions

do however use the maximum memory resources available

in the entire cluster, taking into account the standard limita-

tions defined by the Spark cluster, but the distribution of the

resources also factors in. Spark thrives on in-memory comput-

ing, but for the computation of the transformation algorithm,

it clearly does not require 6 GB of memory per executor.

One gigabyte is enough for 20 parallel executors to outper-

form the previous configuration given the size of the snapshot.

Allocating too much memory to an executor often results

in excessive garbage collection delays, which can be clearly

FIGURE 6 Graph showing the transformation time of an SQL

snapshot data store to MongoDB for different Spark configuration

parameters. They express the amount of parallel executors that are used

and how much memory and how many cores are available to each

executor. SQL, Structured Query Language



12 of 16 VANHOVE ET AL.

seen in these results. Moreover, when working with a larger

number of executors, the standard deviation remains smaller

because delays in a specific executor can be easily caught by

the other remaining executors.

Additionally, the amount of cores also influences the paral-

lelism in Spark. When using Hadoop Distributed FileSystem

(HDFS) with Spark, it is recommended to not use more than

5 cores per executor, as HDFS does not deal well with exces-

sive amounts of concurrent threads.40 Limiting the amount of

cores per executor to 5 keeps the execution time at an aver-

age of around 27 minutes. So even though the parallelism is

decreased, the execution time remains the same. However,

when a larger number of logs is considered, eg, 15 million,

the 8 cores execution outperforms the 5 cores configuration.

For this data set size, it seems HDFS is still able to scale,

but with growing data sets, it is important to take account of

this parameter.

Decreasing the number of cores even further to only 1 core

per executor increases the transformation time back to around

1 hour (64 minutes) for 5 million logs as only a limited amount

of tasks are allowed to execute in parallel. Figure 6 clearly

shows the impact of Spark resource tuning on the transfor-

mation time. The influence of these parameters on memory

management in Spark has also been extensively researched

in previous papers.40,41] In general, increasing memory size

in a Spark cluster will lower the execution time linearly until

the entire data set is able to be loaded in memory. Increas-

ing the memory size further will introduce garbage collection

delays as seen in Figure 6. For the algorithm in this paper with

the described use case, a solid configuration was found for

20 executors each with 1 GB of memory and 8 cores. How-

ever, when scaling to larger data stores, these parameters need

to be optimized continuously to achieve the best performance.

Snapshot transformation performance
Figure 7 shows the execution times for the transformation

of the SQL snapshot described in Section 6.2 to MongoDB,

FIGURE 7 Graph showing the transformation time of an SQL

snapshot data store to MongoDB, Cassandra (CQL), and SQL with 20

Spark executors each with 1 GB of memory and 8 cores. CQL,

Cassandra Querying Language; SQL, Structured Query Language

Cassandra (CQL), and SQL with varying data set sizes

expressed as a number of logs. The transformation towards

SQL is used to check the correctness of the algorithm as we

expect to get an exact copy of the snapshot. All execution

times show a linear trend with the increasing data set size,

but the execution time of a transformation towards to Mon-

goDB is significantly smaller compared with SQL and CQL.

As described in Section 4.1.3, MongoDB is praised for its

flexibility because collections do not impose any data model

on the stored documents. While in a generic transformation,

information from the canonical model is used to construct a

data model for Dtrans and to make sure data adheres to this

data model, this is less so for MongoDB as no strict data

model is required. The canonical model is stored in Neo4j,

so to retrieve this information, a connection to this data store

is needed. MongoDB limits the number of connections that

are required during its transformation from the canonical

model, therefore lowering the total execution time. More-

over, the amount of queries generated while transforming to

CQL is higher compared with MongoDB and SQL because

of the denormalization of data stored in the index column

families representing the many-to-one relations as mentioned

in Section 4.1.

Query latency performance
The ultimate goal of the transformation is to reduce query

latency by transforming schema and data to a different data

store technology. Figure 8 shows the average query latency

for a JOIN

query in SQL requesting all the logs joined with the infor-

mation from the devices. This is a very expensive operation

in SQL causing an exponential growth of the execution time

with growing data sets. The JOIN query in SQL can however

be translated into a selection query in MongoDB, still return-

ing the same data, as all data from the many-to-one relation

is embedded in the documents. The denormalization that was

FIGURE 8 Query latency for JOIN-like query in different data

stores: SQL, Cassandra (CQL), and MongoDB. CQL, Cassandra

Querying Language; SQL, Structured Query Language



VANHOVE ET AL. 13 of 16

TABLE 6 Average execution time of different Storm bolts for the transformation of SQL queries,

through the SQLMapBolt, into MongoDB, Cassandra (CQL), and SQL

SQLMapBolt MongoReduceBolt CQLReduceBolt SQLReduceBolt

Execution time 37.568 ms 14.458 ms 80.133 ms 79.112 ms

Abbreviations: CQL, Cassandra Querying Language; SQl, Structured Query Language.

introduced by the transformation pays off in query latency

as only one entity of a data store technology needs to be

consulted to retrieve the same data. Similarly, in Cassandra,

the same data can be retrieved by querying the index column

family that represents the many-to-one relationship. However,

not using a partition key to retrieve data from a column fam-

ily is a heavy operation in Cassandra, eliminating it from

consideration for this use case.

Continuous transformation performance
After the transformation of the snapshot and the handover, the

application still queries in the language of Dsrc. Considering

the use case, while there is a significant time gain transform-

ing the data store to MongoDB or Cassandra, the overhead of

transforming queries from the application needs to be limited

to benefit from this transformation. The evaluation of the con-

tinuous transformation was performed on a 2-node Apache

Storm cluster with standard configuration where each bolt

was assigned a single worker in the cluster. Table 6 shows

the average transformation time of a single query in every

step of the transformation. For example, in a transformation

from SQL to MongoDB, a query would pass through the

SQLMapBolt, mapping the query onto the canonical model,

after which it will be reduced towards MongoDB by the Mon-

goReduceBolt. This yields a total overhead of 52.026 ms (37

and 14 ms, respectively). Considering the query performance

from Figure 8, it is clear that the results of the transformation

approach in this paper benefits the application's query latency,

increasing the general performance.

6.4 Discussion
The results in Section 6.3 clearly show the ability of the pro-

posed algorithm to transform schema and data of a data store

into a technology that yields better query latency performance

as well as support for continuous transformation of applica-

tion queries within a reasonable time frame. While several

limitations to the current system exist, this section discusses

those limitations and provides possible solutions on how to

mitigate them.

The approach of the proposed algorithm in this paper,

detailed in Section 3.2, is theoretically slower than the direct

approach, as it requires one additional transformation to or

from the canonical model. Direct transformations are how-

ever less extensible towards future technologies as support for

a new data store technology requires an entirely new imple-

mentation to transform to and from each existing technology.

The Schema Conversion Tool provided by Amazon, discussed

in Section 2, can be regarded as a bundle of direct transfor-

mations between dialects of SQL. This tool may achieve a

faster performance compared with the approach described in

this paper, but contrary to the proposed approached, only SQL

dialects are currently supported and extending the tool would

require an entirely new code base. Moreover, the additional

latency introduced by the described approach in this paper is

alleviated by the use of the Spark platform. Spark allows for

in-memory computing yielding faster execution times but its

clustered architecture also allows for scaling towards specific

time constraints with minimal effort.41

A second limitation is that relations between entities in the

canonical model are determined by the explicit and implicit

use of certain data structures in the data schema (eg, foreign

keys in SQL, composite keys in Cassandra, and arrays in Mon-

goDB). However, it is conceivable that the implicit use of

these data structures may not always be found, especially in

NoSQL data stores such as Cassandra and MongoDB. Given

that specific situation, the algorithm would currently only

detect the entities for its canonical model with no relations

between them. While still being able to transform these enti-

ties to another data store technology, it might not yield a

better query latency performance. An interesting extension of

the algorithm would therefore be an automated detection of

relations in the canonical model based on the read queries

effectively optimizing the data schema based on its use. For

example, SQL retrieval queries with JOIN operations indi-

cate a relationship even if foreign keys were not defined. For

NoSQL stores, this needs to be derived from the sequence of

queries that are often requested in succession. These chains

of queries indicate the potential existence of a relationship

between the entities. The extension of the algorithm to auto-

matically detect relationships in the canonical model based on

querying behavior is deferred to future work.

Finally, the current algorithm is not equipped to deal with

queries that alter the data schema of Dsrc while the transfor-

mation process is in progress. While creating the data schema

of Dtrans, any changes to the schema of Dsrc would potentially

create inconsistencies while adding the data to Dtrans. It was

therefore decided to deny any queries that alter the schema

until the handover is completed. The continuous transforma-

tion could then deal with the schema altering queries, which

will reflect in both Dtrans as in the canonical model.



14 of 16 VANHOVE ET AL.

7 CONCLUSION AND FUTURE
WORK

This paper introduces an approach and algorithm for schema

and data transformation as a means to support dynamic

data storage and polyglot persistence. The approach uses an

intermediate canonical model to ensure the flexibility and

extensibility of the implementation towards future supported

technologies. To support a new data store technology, one

only needs to implement a transformation towards and from

the canonical model. In previous work, support for SQL and

CQL was already discussed, but the implementation has been

revised as part of the newly changed canonical model. The

paper also introduces support for MongoDB, a NoSQL docu-

ment data store. The transformation algorithm is implemented

as a Lambda architecture with a batch and speed layer to sup-

port live applications without downtime and the need for code

changes. A network monitoring platform is considered as a

use case and shows a significant performance increase after

the transformations to both CQL and MongoDB. The over-

head introduced for the continuous transformation is limited

to a maximum of around 100 ms. The time to transform a

snapshot heavily depends on Dsrc and the chosen Dtrans and is

influenced by the strictness of the data models.

For future work, now, a transformation algorithm has been

defined and implemented, an interesting application would

be to fully support dynamic data storage regarding supported

implementations, ie, an automated system that stores data in

the most optimal format at any given time. Additionally, while

data relations are now inferred from defined uses of structures

in a data store technology (eg, foreign keys, composite keys,

and arrays), the best way to learn the relations in a data set is

through its use. Future work will also focus on detecting rela-

tions in the canonical model based on reading queries. These

changes will be reflected in the transformed data store with the

ultimate goal of increasing query performance even further.

ACKNOWLEDGEMENTS
The work in this paper has partly been funded by the iMinds

SEQUOIA research project.

REFERENCES
1. Cattell R. Scalable SQL and NoSQL data stores. SIGMOD Rec.

2011;39(4):12–27. https://doi.org/10.1145/1978915.1978919.

2. Li Y, Manoharan S. A performance comparison of SQL and NoSQL

databases. 2013 IEEE Pacific Rim Conference on Communica-
tions, Computers and Signal Processing (PACRIM), Victoria, B.C.,

Canada: IEEE; 2013:15–19.

3. Nance C, Losser T, Iype R, Harmon G. NoSQL vs RDBMS: Why

there is room for both. SAIS 2013 Proceedings, Savannah, Georgia,

USA; 2013.

4. Shute J, Vingralek R, Samwel B, et al. F1: A distributed sql database

that scales. Proc VLDB Endow. 2013;6(11): 1068–1079. https://doi.

org/10.14778/2536222.2536232

5. Corbett JC, Dean J, Epstein M, et al. Spanner: Googleś globally dis-

tributed database. ACM Trans Comput Syst. 2013;31(3):8:1–8:22.

https://doi.org/10.1145/2491245

6. Sadalage PJ, Fowler M. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. 1st ed. Boston, MA, USA:

Addison-Wesley Professional; 2012.

7. Sellami R, Defude B. Using multiple data stores in the cloud:

Challenges and solutions. In: Hameurlain A, Rahayu W, Taniar D,

eds. Data Management in Cloud, Grid and P2P Systems, Lecture

Notes in Computer Science, vol. 8059: Springer Berlin Heidelberg;

2013:87–98. https://doi.org/10.1007/978-3-642-40053-7_8.

8. Vanhove T, Van Seghbroeck G, Wauters T, De Turck F. Live

datastore transformation for optimizing big data applications in

cloud environments. 2015 IFIP/IEEE International Symposium
on Integrated Network Management (IM), Ottawa, Canada: IEEE;

2015:1–8.

9. Vanhove T, Van Seghbroeck G, Wauters T, De Turck F,

Vermeulen B, Demeester P. Tengu: An experimentation plat-

form for big data applications. ICDCS Workshops. IEEE;

2015:42–47. http://dblp.uni-trier.de/db/conf/icdcsw/icdcsw2015.

html#VanhoveSWTVD15. Accessed April 18, 2017

10. Vanhove T, Van Seghbroeck G, Wauters T, Volckaert B, De

Turck F. Managing the synchronization in the Lambda architec-

ture for optimized big data analysis. IEICE Trans. 2016;99-B(2):

297–306.

11. Shu NC, Housel BC, Taylor RW, Ghosh SP, Lum VY. Express: a

data extraction, processing, and restructuring system. ACM Trans
Database Syst (TODS). 1977;2(2):134–174.

12. Vassiliadis P. A survey of extract–transform–load technology. Int J
Data Warehous (IJDWM). 2009;5(3):1–27.

13. Settlemyer BW, Dobson JD, Hodson SW, Kuehn JA, Poole

SW, Ruwart TM. A technique for moving large data sets over

high-performance long distance networks. Proceedings of the
2011 IEEE 27th Symposium on Mass Storage Systems and
Technologies, MSST ’11. IEEE Computer Society, Washington,

DC, USA; 2011:1–6.

14. Zheng J, Ng TSE, Sripanidkulchai K. Workload-aware live storage

migration for clouds. SIGPLAN Not. 2011;46(7):133–144. https://

doi.org/10.1145/2007477.1952700

15. Zhang L, Wu C, Li Z, Guo C, Chen M, Lau FCM. Moving big data

to the cloud: an online cost-minimizing approach. IEEE J Sel Areas
Commun. 2013;31(12):2710–2721.

16. Das S, Nishimura S, Agrawal D, El Abbadi A. Albatross:

lightweight elasticity in shared storage databases for the cloud using

live data migration. Proc VLDB Endow. May 2011;4(8):494–505.

http://dl.acm.org/citation.cfm?id=2002974.2002977.

17. Elmore AJ, Das S, Agrawal D, El Abbadi A. Zephyr: live migra-

tion in shared nothing databases for elastic cloud platforms. Pro-
ceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD’11. ACM, New York, NY, USA;

2011:301–312. https://doi.org/10.1145/1989323.1989356

18. Ting K, Cecho JJ. Apache Sqoop Cookbook. Sebastopol, CA, USA:

O’Reilly Media, Inc.; 2013.

19. Rahm E, Bernstein PA. A survey of approaches to automatic schema

matching. VLDB J. 2001;10(4):334–350.

20. Bellahsene Z, Bonifati A, Rahm E, et al. Schema Matching and
Mapping, vol. 57. New York City, NY, USA: Springer; 2011.

21. Schildgen J, Lottermann T, Dessloch S. Cross-system NoSQL

data transformations with NotaQL. Proceedings of the 3rd ACM
SIGMOD Workshop on Algorithms and Systems for Mapre-
duce and Beyond, BeyondMR’16. ACM, New York, NY, USA;

2016:5:1–5:10. https://doi.org/10.1145/2926534.2926535.

22. Liao YT, Zhou J, Lu CH, et al. Data adapter for querying

and transformation between SQL and NoSQL database. Future

https://doi.org/10.1145/1978915.1978919
https://doi.org/10.14778/2536222.2536232
https://doi.org/10.14778/2536222.2536232
https://doi.org/10.1145/2491245
https://doi.org/10.1007/978-3-642-40053-7_8
http://dblp.uni-trier.de/db/conf/icdcsw/icdcsw2015.html#VanhoveSWTVD15
http://dblp.uni-trier.de/db/conf/icdcsw/icdcsw2015.html#VanhoveSWTVD15
https://doi.org/10.1145/2007477.1952700
https://doi.org/10.1145/2007477.1952700
http://dl.acm.org/citation.cfm?id=2002974.2002977
https://doi.org/10.1145/1989323.1989356
https://doi.org/10.1145/2926534.2926535


VANHOVE ET AL. 15 of 16

Gener Comput Syst. 2016;65:111–121. https://doi.org/10.1016/j.

future.2016.02.002. http://www.sciencedirect.com/science/article/

pii/S0167739X16300085, Special Issue on Big Data in the Cloud.

Accessed April 18, 2017

23. Mongify. http://mongify.com/ Accessed March 15, 2017.

24. Apache Sqoop. http://sqoop.apache.org/ Accessed March 15, 2016.

25. Leonard A. Hibernate OGM at work. Pro Hibernate and MongoDB.

New York City, NY, USA: Springer; 2013:51–120.

26. Hausenblas M, Nadeau J. Apache drill: interactive ad-hoc analysis

at scale. Big Data. 2013;1(2):100–104.

27. Marz N. The mathematics behind Hadoop-based systems. http://

nathanmarz.com/blog/the-mathematics-behind-hadoop-based-

systems.html Accessed March 15, 2017; 2009.

28. Marz N, Warren J. Big Data: Principles and Best Practices of
Scalable Realtime Data Systems. Greenwich, CT, USA: Manning

Publications Co.; 2014. (Early Access Program).

29. Gruber TR. A translation approach to portable ontology specifica-

tions. Knowl Acquis. 1993;5(2):199–220.

30. Chen PPS. The entity-relationship model—toward a unified view

of data. ACM Trans Database Syst. March 1976;1(1):9–36. https://

doi.org/10.1145/320434.320440.

31. ISO/IEC 9075-1:2011 Information technology – Database lan-

guages – SQL – Part 1: Framework (SQL/Framework). Technical

Report, ISO/IEC; 2011. http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=53681. Accessed

April 18, 2017

32. Lakshman A, Malik P. Cassandra: a decentralized structured

storage system. ACM SIGOPS Operating Syst Rev. 2010;44(2):

35–40.

33. Chodorow K. Mongodb: The Definitive Guide. Sebastopol, CA,

USA: O’Reilly Media, Inc.; 2013.

34. Dean J, Ghemawat S. Mapreduce: simplified data processing on

large clusters. Commun ACM. 2008;51(1):107–113. https://doi.org/

10.1145/1327452.1327492

35. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica

I. Spark: cluster computing with working sets. Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Comput-
ing, HotCloud’10. USENIX Association, Berkeley, CA, USA;

2010:10–10. http://dl.acm.org/citation.cfm?id=1863103.1863113.

Accessed April 18, 2017

36. LimeDS. http://limeds.intec.ugent.be/ Accessed March 15, 2017.

37. Kreps J, Narkhede N, Rao J. Kafka: a distributed messaging system

for log processing, NetDB; 2011.

38. Webber J. A programmatic introduction to neo4j. Proceedings
of the 3rd Annual Conference on Systems, Programming, and
Applications: Software for Humanity, Tucson, AZ, USA: ACM;

2012:217–218.

39. Parr TJ, Quong RW. ANTLR: a Predicated-LL(k) Parser Generator.

Softw Pract Exp. 1995;25(7):789–810.

40. Ryza S. How-to: Tune your apache spark jobs (part 2). http://

blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-

jobs-part-2/ Accessed March 15, 2017; 2015.

41. Zaharia M, Chowdhury M, Das T, et al. Resilient distributed

datasets: a fault-tolerant abstraction for in-memory cluster com-

puting. Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, San Jose, CA, USA: USENIX

Association; 2012:2–2.

Thomas Vanhove obtained his master's degree in

Computer Science from Ghent University, Belgium,

in July 2012. In August 2012, he started his PhD at

the Department of Information Technology (INTEC) at

Ghent University, researching data management solu-

tions in cloud environments. More specifically, he

has been looking into dynamic big data stores and

polyglot persistence. It was during that time he cre-

ated the Tengu platform for the simplified setup of big

data analysis and storage technologies on experimental

test beds.

Merlijn Sebrechts graduated in July 2015 as an Indus-

trial Engineer, Informatics, from Ghent University. In

August 2015, he joined the Information Technology

(INTEC) Department of Ghent University to pursue

his PhD. In his PhD, he focusses on cloud modelling

languages to solve big data challenges, while remain-

ing an active member of several large open source

communities.

Gregory Van Seghbroeck graduated at Ghent Univer-

sity in 2005. After a brief stop as an IT consultant,

he joined the Department of Information Technology

(INTEC) at Ghent University. On the 1st of January,

2007, he received a PhD grant from IWT, Institute for

the Support of Innovation through Science and Tech-

nology, to work on theoretical aspects of advanced

validation mechanism for distributed interaction proto-

cols and service choreographies. In 2011, he received

his PhD in Computer Science Engineering and con-

tinued to work at Ghent University as a postdoctoral

fellow.

Tim Wauters received his MSc degree in

electro-technical engineering in June 2001 from Ghent

University, Belgium. In January 2007, he obtained

the PhD degree in electro-technical engineering at the

same university. Since September 2001, he has been

working in the Department of Information Technology

(INTEC) at Ghent University and is now active as a

postdoctoral fellow of the F.W.O.-V. His main research

interests focus on network and service architectures

and management solutions for scalable multimedia

delivery services. His work has been published in about

70 scientific publications in international journals and

in the proceedings of international conferences.

Bruno Volckaert is a professor in the Department

of Information Technology (INTEC) at Ghent Uni-

versity. He obtained his Master of Computer Science

degree in 2001 from Ghent University, after which he

started work on his PhD on data intensive scheduling

and service management for Grid computing. His cur-

rent research deals with reliable and high-performance

distributed software systems and clouds.

https://doi.org/10.1016/j.future.2016.02.002
https://doi.org/10.1016/j.future.2016.02.002
http://www.sciencedirect.com/science/article/pii/S0167739X16300085
http://www.sciencedirect.com/science/article/pii/S0167739X16300085
http://mongify.com/
http://sqoop.apache.org/
http://nathanmarz.com/blog/the-mathematics-behind-hadoop-based-
http://nathanmarz.com/blog/the-mathematics-behind-hadoop-based-
systems.html
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://limeds.intec.ugent.be/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-
jobs-part-2/


16 of 16 VANHOVE ET AL.

Filip De Turck leads the network and service manage-

ment research group at the Department of Information

Technology of the Ghent University, Belgium and imec

(Interdisciplinary Research Institute in Flanders). He

(co)authored over 450 peer-reviewed papers, and his

research interests include telecommunication network

and service management, efficient big data process-

ing, and design of large-scale virtualized network sys-

tems. In this research area, he is involved in several

research projects with industry and academia, serves as

vice-chair of the IEEE Technical Committee on Net-

work Operations and Management (CNOM), chair of

the Future Internet Cluster of the European Commis-

sion, and is on the TPC of many network and service

management conferences and workshops and serves

in the editorial board of several network and service

management journals.

How to cite this article: Vanhove T, Sebrechts

M, Van Seghbroeck G, Wauters T, Volckaert B,

De Turck F. Data transformation as a means

towards dynamic data storage and polyglot per-

sistence. Int J Network Mgmt. 2017;27:e1976.

https://doi.org/10.1002/nem.1976

https://doi.org/10.1002/nem.1976

	Data transformation as a means towards dynamic data storage and polyglot persistence
	Abstract
	INTRODUCTION
	RELATED WORK
	DATA TRANSFORMATION FRAMEWORK
	Architecture
	Transformation approach
	Workflow

	TRANSFORMATION ALGORITHM
	Schema queries
	SQL transformations
	To canonical
	From canonical

	Cassandra transformations
	To canonical
	From canonical

	MongoDB transformations
	To canonical
	From canonical


	Data insertion queries
	Data retrieval queries

	IMPLEMENTATION DETAILS
	Technology choice and motivation
	Transformation algorithm

	EVALUATION
	Experimental setup
	Use case description
	Results
	Discussion

	CONCLUSION AND FUTURE WORK
	References


