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Abstract—An accurate sales forecasting has indispensable
effects on the supply chain management as this input is essential
in the decision making process. Macroeconomic leading indicators
can provide early indications of global changing economic dynam-
ics. By including this external information, the global tactical sales
forecasting can be improved. This paper wants to quantify the
impact on inventory level, where decisions are typically taken on
an individual product base. For this, the high-level forecast needs
to be disaggregated to the product level. Techniques that make
use of the hierarchical structure present can benefit from pooling
individual forecasts on different hierarchical levels. We propose
an empirical technique to reconcile the forecast distributions of
different aggregation levels in a hierarchical structure. We focus
on the first and second moment of the forecasting distribution,
the mean and variance. We evaluate our proposed method on
inventory and service level via inventory simulations.

I. INTRODUCTION

Recent research has shown that macroeconomic leading
indicators have the potential to detect early warning signals
from economic activity. Furthermore, [13] shows that this
information can improve tactical sales forecasting. The tactical
level is typically formulated on a global scale, where the
economic dynamics are expected as well. The sales forecasts
steer the business decision process on global budget, global
capacity pooling, as well as on production planning and
inventory management. The latter typically happens on an
operational level. In the studied case in this research, inventory
management is done on production plant level, which are
geographically distributed. Furthermore, inventory decisions
are taken on Stock-Keeping-Units (SKU) level, as each product
or material has an individual stock.

The methodology proposed in [12] avoids to forecast
the macroeconomic indicators individually by shifting these
indicators in time prior to insert them in the sales forecasting
model. As the forecast model uses then the already realised
values of the indicators, this would bring less uncertainty to
the calculated point forecast. As a consequence, the prediction
interval around the point forecast is more narrow on a tactical
level. In this research, we investigate whether the formulation
of more narrow prediction intervals around the point forecast
on global level can be beneficial for the lower levels of
forecasting. Our paper aims to link the tactical forecast to its

impact on inventory level. This is in line with the literature
in sales forecasting that argues for evaluation of forecast
models where they are used [2], [9], [17]. As the forecasting
models are used for inventory management, the evaluation
should also occur on inventory performance. However, in-
ventory performance is largely impacted by the shape of the
demand distribution [19]. Here, inventory simulation models
are proposed to quantify the impact of different forecasting
models [15].

In order to quantify the impact on inventory, it is neces-
sary to address the first and second moment of the forecast
distribution. This means that both the mean and the variance
of the high-level forecast need to be disaggregated to the
lower levels. This is in contrast with traditional techniques
for disaggregating, as these focus mainly on the calculated
mean of the forecast [5]. Here, we use hierarchical forecasting
via reconciling to link all levels of the company structure.
This approach was first proposed by [7], who found that
reconciliation can improve the forecast accuracy on several
levels of the hierarchical structure. Here, all the time series are
forecasted independently at all levels of the hierarchy. Next,
these forecasts are combined and reconciled using a regression
model. This approach allows to combine extrapolations of
patterns in historical sales on lower levels with forecasts on
highest level that are augmented with exogenous indicators. In
this way, information of all levels is addressed.

We propose to reconcile the uncertainties on different hi-
erarchical levels through an empirical method. By reconciling
the prediction intervals across different hierarchical levels, we
investigate whether more narrow prediction intervals on high
level can result in lower stock in inventory management on
SKU level. For this, the reconciled prediction intervals on SKU
level are used as input for an inventory simulation with real
case data.

II. LITERATURE REVIEW

There are different strategies to handle time series with
several levels of aggregation [10]. The most simple approach
ignores the structure completely and generates a direct forecast.
[4] gives an overview of direct versus aggregation derived
forecasts. He concludes that forecasting via aggregation results
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in superior forecast performances in a majority of the research,
even if an information loss may exist by summing product time
series. Forecasting approaches that account for this hierarchical
structure can be divided in four categories. First, top-down
forecasting calculates a direct forecast at the top level time
series and generates lower level forecasts by dividing the top
level forecast proportional to the lower level sales volume.
Alternatively, the volume of the sales forecast on the lower
level can be used to disaggregate the top level forecast. Second,
a sales forecast is formulated for each of the lowest level time
series and the top level forecast is obtained by simply summing
these forecasts. This is known as bottom-up forecasting. There
is clear trade-off between these two approaches, noted by
[18]. Top series may be easier to forecast, but more univariate
patterns can be captured on low level series. Third, a combina-
tion of both top-down and bottom-up can be used, sometimes
called middle-out. This approach is often used in practice [5].
Here, a direct forecast is calculated on an intermediate level,
and higher and lower levels are calculated using aggregation
and disaggregation. Fourth, combinatorial forecasting creates a
direct forecast at all levels of the hierarchy and combines them.
[1] proposes a new approach for this combination process,
by reconciling the individually formulated forecasts using a
regression model. This combination process allows for to alter
the individual forecasts on all levels of the hierarchical struc-
ture. Alternatively, the forecasts on all hierarchical contribute
to the final forecast. Furthermore, forecast reconciliation is
flexible, as it can be used across multiple hierarchies, such
as product, geographic or customer hierarchies [14].

Most of the literature focusses on the point forecasts in
these hierarchical time series. However, [7] notes the the-
oretical formulation to formulate prediction intervals of the
reconciled forecasts and defers the optimisation of this formula
to future work. In this paper, we propose an approach to rec-
oncile the empirical prediction intervals across the hierarchical
structure in a similar matter as the reconciliation takes place
for the point forecast.

III. METHODOLOGY

In our methodology, the exogenous macroeconomic indi-
cators are identified on a high aggregation level of the sales,
as we do not expect an individual product to have the same
dynamics as the global or national economy. However, the
impact of the forecasting models happens on the product level,
in terms of the inventory control for this product. Therefore it
is essential that the tactical forecasts on high level are linked
to the lower levels of the hierarchical structure. Furthermore,
the top levels do not exhibit any low level historical pattern,
such as product-specific seasonality. This type of information
will be captured by low level models. As both levels can add
information to the final forecast, hierarchical reconciliation
is used as an approach to combine the different hierarchical
levels. Next, the performance on the product level is evaluated
via production simulation and inventory performance.

A. Macroeconomic indicators selection and forecasting model

On a global level, the sales forecast is modelled using
the external information of macroeconomic indicators. These
are selected using the methodology described by [13] that is
based on the Least Absolute Shrinkage and Selection Operator

(LASSO) [16]. For the aggregated time series on top level,
univariate information such as seasonality and auto-regressive
process are combined with external indicators. The relevant
indicators are selected in a fully automatic way, simultaneously
with their leading effect. This means that the optimal shift in
time is determined for each indicator separately. Furthermore,
the used framework is set up to formulate unconditional
forecasts. By design, the indicators are only used when their
leading effect is higher than or equal to the forecast horizon.
While this complicates the computation as for each forecast
horizon an individual LASSO model needs to be formulated,
it makes the application in practice extremely relevant.

The amount of potential indicators p is very large, while the
number of historical data point n is typically limited, creating
a p � n problem. This problem expands even further as for
each indicator, the optimal leading effect needs to be addressed
as well. [13] shows that LASSO in this context was capable
to retain useful and relevant indicators automatically.

The prediction interval around the point forecasts is formu-
lated empirically for the h-step ahead forecasts by Ŷh ± kσ̂h,
where k is the appropriate percentile point of the standard
normal distribution. Here, we assume that the error has a
Gaussian distribution with zero mean and standard deviation
σ. The estimation σ̂h is done via the Root Mean Squared Error
(RMSE) on the historical sales. For the univariate models, we
re-estimate the RMSE for each forecast horizon, while for
the LASSO model a different model is formulated for each
forecast horizon already.

B. Hierarchical reconciliation

Once the individual forecasts are formulated, these can be
combined across the hierarchical structure. Naturally, bottom-
up aggregation cannot benefit from the leading indicator fore-
casts as this approach generates higher time series forecasts
by summing up the lower levels. [14] notes that traditional
techniques for aggregation often have weak performance. For
example, top-down disaggregation yields often good forecasts
at higher aggregation levels, but worse forecast performance
at lower levels. In this research, we combine the forecasts
on different aggregation levels, via hierarchical reconciliation.
Using a linear regression on the different individual time series,
we obtain the coherent reconciled forecasts for the product
hierarchy. The weights for this linear combination can be
derived from the structure of the hierarchy, as discussed by [7].
This work argues that the optimal combination is independent
of the data, and that the weight of an aggregated forecast is
set equal to the amount of lower level series.

C. Inventory simulation

The designed simulation allows to simulate the production
and inventory build-up, based on the sales forecasts and their
prediction intervals. The product forecasts with their respective
prediction intervals are an central input in this. These are
the reconciled forecasts at the lowest level of the hierarchical
structure. Here, we assume all products to be produced via
a Make-to-Stock policy. In the inventory simulation is as
follows: at the end of each month, the actual realised sales
is taken into account, and the remaining stock is reviewed.
The inventory is controlled by how much of each product
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should be produced in the upcoming month that is planned.
To approximate the real world inventory management, the
simulation enforces a production stand-off of 5 months. This
condition makes that the planned amount to produce in the
month after the production stand-off is equal to the total sales
in the next 6 months, reduced with the production of the next
5 months and the current inventory of that product.

To be more specific, we considering one product time series
at time t. Let It be the inventory at the end of period t, Pt
the amount of items produced in a month t, and Ŷt+h the
forecasted demand for horizon t + h. The inventory position
at time t+ h can then be estimated as

Ît+h = It +
h∑
i=1

(Pt+i − Ŷt+i) . (1)

The demand at t+ h will be satisfied entirely whenever

It+h−1 + Pt+h > Yt+h . (2)

If we choose to produce Pt+h items at time t + h, the
probability that the demand in period t + h is not entirely
satisfied can be estimated as

α̂(Pt+h) = Prob
[
Ît+h−1 + Pt+h < Ŷt+h

]
(3)

Given the (continuous) distribution function

F ∗
t+h(x) = Prob

[
h∑
i=1

Ŷt+i ≤ x

]
, (4)

of the summed forecasted demand and a certain acceptable
shortage probability αt+h for period t + h, the production
quantity Pt+h in that period can be allocated as

Pt+h = F ∗−1
t+h (1 − αt+h) − It −

h−1∑
i=1

Pt+i , (5)

The production is determined in the simulation via (5). This
equation takes into account the inventory on-hand and the
allocated production up to h− 1 (due to the production stand-
off). Furthermore, it accounts via (4) for the estimated demand
up to period h and the related shortage probability, shown in
(3), over the period 1 to h. As a consequence, the simulation
allows for a certain acceptable shortage, which is evaluated by
the fill rate at product level.

IV. PERFORMANCE MEASURES

In order to evaluate the effect of the empirical formulated
prediction intervals in the hierarchical structure of the sales,
we will analyse the forecast results at each stage of our
methodology.

We compare the forecasting performance from an accuracy
standpoint using the Mean Absolute Percentage Error (MAPE)
in (6), as is widely used in practice and relevant to the case
company.

MAPEh =
1

n

n∑
t=1

∣∣∣Yt+h − Ŷt+h

∣∣∣
Yt+h

, (6)

where Yt+h is the actual product demand and Ŷt+h is the
forecast for time period t+ h.

The uncertainty around the point forecast is evaluated via
σ̂h, as this is the key element of the prediction interval. We
define AvgRelσ̂h as:

AvgRelσ̂h = m

√√√√ m∏
p=1

(
σ̂Ah
σ̂Bh

)
, (7)

where σ̂Ah refers to the evaluated forecast via hierarchical
reconciliation and σ̂Bh to the benchmark model on low level
with purely historical data. In literature, the σ̂h is traditionally
obtained by multiplying the estimated demand variance by the
length of the forecast horizon. [11] notes that this approach is
flawed, as forecast errors for different periods of the forecast
horizon are positively correlated. In contrast to the traditional
methods, we determine the σ̂h on all levels of the hierarchical
structure empirically.

Finally, we display the effect of the proposed method and
the univariate benchmark on inventory management via an
inventory simulation. To judge how well a forecasting model
performs on product j, we use average on-hand inventory Ī+(j)

α

and the fill rate FR
(j)

α (FR) achieved over the test periods
as performance metrics. Here α is a tuning parameter in the
decision of the production quantity. The fill rate refers to the
fraction of demanded items which can be obtained immedi-
ately from stock without backordering. To assess inventory
performance, a weighted average is taken across the different
products:

Ī+α =
14∑
j=1

wj Ī
+(j) , and FRα =

14∑
j=1

wjFR
(j) , (8)

with weights according to the actual demanded volumes per
product j

wj =

∑n+T
t=n+1 Y

(j)
t∑m

j=1

∑n+T
t=n+1 Y

(j)
t

. (9)

V. RESULTS

The dataset for the company case contains one business
unit from a tire manufacturer for the period 2005–2015.
This experiment considers three hierarchical levels from the
business unit structure. The highest level is the overall sales
for the business unit. The intermediate level is the plant level,
which consists of 5 manufacturing plants. The lowest level
differentiate all the customers that are served from this plant.
The customers are Business-to-Business users and typically
order only one material from an individual plant. The lowest
level consists of 14 different time series of customer–product
combination. In our experiment, we have omitted the cus-
tomers who do not order frequently, as these customers result
in intermittent demand patterns.

Figure 1 shows a generic hierarchical structure of three
levels. The top level is the aggregated sales of the business
unit. The intermediate level are the individual manufacturing
plants and the lowest levels are the individual customers that
are served from each plant. Customers who order from several
plants are shown multiple times on the lowest level, as the
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Fig. 1. Hierarchical structure that exists of three levels: Business Unit (BU),
Manufacturing Plant (P) and Customer level (C)

time series on this level represent an unique combination of
product and customer.

The models are trained in the period 2005:01-2012:12 and
their performance is tested in the period 2013:01-2014:12 over
a rolling origin experiment. The design of our experiment is
as follows: the sales forecasts are generated for the next 6
months to allow to plan production. However, the planning
decisions are made with a production stand-off of 5 months.
The benchmark on the lowest level is exponential smoothing
(ETS) as proposed by [6].

TABLE I. MAPE FOR FORECASTING SETUP

1 2 3 4 5 6
ETS 31.2 33.2 33.6 33.9 33.9 37.4
Hierarchical 30.2 31.4 31.8 31.7 31.7 35.3

Table I compares the individual forecasts on each ag-
gregation level with the reconciled forecasts. The MAPE
for each horizon h is aggregated across forecasts from 13
origins and 14 products to form the MAPE displayed. The
hierarchical reconciled forecasting method that makes use of
external data outperforms the benchmark technique on the
product level. Here, the forecast horizon h = 6 is of special
interest for the inventory simulation. For this horizon, we see
that the reconciled forecast outperforms the benchmark model
substantially.

TABLE II. EVALUATING FORECAST UNCERTAINTY VIA AvgRelσ̂h

1 2 3 4 5 6
Hierarchical 1.9 1.7 1.6 1.5 1.4 1.3
ETS 1 1 1 1 1 1

Table II exhibits the AvgRelσ̂h for each forecast horizon,
aggregated via the geometric mean across time series and
rolling origins. The demand forecast on the top level that is
formulated with macroeconomic indicators, has a more narrow
prediction interval than the benchmark model ETS. This is
intuitive as these formulated forecasts use realised values of
the indicators. As a consequence, the empirical reconciled
AvgRelσ̂h is expected to decrease via the reconciliation.
However, the results in table II suggest the opposite. A crucial
point in the hierarchical reconciliation is the weighting scheme
in the linear combination of the different aggregation levels.
The modelling technique of LASSO differs substantially of
the nature benchmark, which has an impact on traditional
weighting scheme for hierarchical reconciliation as proposed
by [7].

The inventory simulation performs the final evaluation
on product-customer level for the different forecasting mod-
els. Figure 2 exhibits the simulation results for one specific
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Fig. 2. Production simulation for ETS and LASSO over a rolling origin with
the actual demand (black), the point forecasts (red), 20% and 80% quantiles
of the forecast (orange), the production quantities (green) and the inventory
position (purple). Production stand-off h = 4 and parameter α = 0.05.
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Fig. 3. Results of production simulation for LASSO (solid line) and ETS
(dotted) for both h = 0 (light) and h = 4 (dark). On each line, the parameter
α for the production allocation decreases from 0.5 (top left) to 0.001 (bottom
right). The vertical axis is 1− FRα, and on the horizontal axis is the average
on-hand inventory Ī+α .

product. In this figure, the black line represents the actual
demand. The green bars indicate the allocated production, and
the purple line is the inventory position for this product. In
red, the consecutive forecasts are shown, with their respective
prediction intervals in orange.

Figure 3 shows the resulting performance curves from the
inventory simulation. Given a desired fill rate, the average on-
hand inventory is lower for the reconciled forecasts on the
lowest levels, compared to univariate models. We can see
that the hierarchical reconciliation method outperforms the
benchmark technique for a given service level of the fill-rate.

VI. CONCLUSION

Incorporating exogenous information in top level sales
forecasts can improve these forecasts. In our methodology,
we select macroeconomic indicators and their leading effect
fully automatic from a large pool of indicators. We found that
the forecasting accuracy is improved and that the prediction
intervals are more narrow on the top level. However, supply
chain decision are often taken on a lower level of aggregation.
It is interesting to quantify the difference of this exogenous
information on an operational level, such as inventory manage-
ment. For this, it is essential to link the top level to the lowest
individual product level, as inventory stock is kept at this
level. Dealing with hierarchical structures in sales forecasting
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is described in literature [5], [7], but is mainly focussed on the
point forecast. For inventory decision, the uncertainty around
this point forecast (prediction intervals) is equally important. In
this paper, we propose a new empirical approach to reconcile
prediction intervals in a hierarchical structure.

We evaluate our proposed approach on each stage of our
methodology. The results of the reconciled forecasts and pre-
diction intervals show the following: (i) the forecast accuracy
on the product level improves by reconciling the different
hierarchical levels. (ii) while we expect the prediction inter-
vals to become more narrow by reconciling across different
hierarchical levels this is not the case, and (iii) The inventory
simulation exhibits lower stock levels for the same fill rate.
Whereas the LASSO prediction intervals on the top level
produce more narrow prediction intervals, this improvement
does not translate to lower levels of aggregation. A key aspect
here is that the weighting of reconciliation occurs via the MSE
on the train sample. As the LASSO technique has a different
cost function, it is questionable if this weighting scheme is
appropriate. Investigating other weighting schemes for this
purpose is put as further research.

REFERENCES

[1] G. Athanasopoulos, R. A. Ahmed and R. J. Hyndman, Hierarchical
forecasts for Australian domestic tourism, International Journal of Fore-
casting, Volume 25, Issue 1, 2009, Pages 146-166

[2] M. Babai, M. Ali, J. Boylan, and A. Syntetos, Forecasting and inventory
performance in a two-stage supply chain with ARIMA(0,1,1) demand:
Theory and empirical analysis, International Journal of Production Eco-
nomics, Volume 143, Issue 2, 2013, Pages 463–471

[3] A. Chen, J. Blue, Performance analysis of demand planning approaches
for aggregating, forecasting and disaggregating interrelated demands,
International Journal of Production Economics, Volume 128, Issue 2,
2010, Pages 586-602

[4] G. Fliedner, An investigation of aggregate variable time series forecast
strategies with specific subaggregate time series statistical correlation,
Computers & Operations Research, Volume 26, Issue 10, 1999, Pages
1133–1149

[5] G. Fliedner, Hierarchical forecasting: issues and use guidelines, Indus-
trial Management & Data Systems, Volume 101, Issue 1, 2001, Pages
5–12

[6] R. Hyndman, A. B. Koehler, J. K. Ord and R. D. Snyder, Forecasting
with exponential smoothing: the state space approach, Springer Science
& Business Media, 2008

[7] R. J. Hyndman, R. A. Ahmed, G. Athanasopoulos, and H. L. Shang, Op-
timal combination forecasts for hierarchical time series, Computational
Statistics & Data Analysis, Volume 55, Issue 9, 2011, Pages 2579–2589

[8] A. Kerkknen, J. Korpela and J. Huiskonen, Demand forecasting errors
in industrial context: Measurement and impacts, International Journal of
Production Economics, Volume 118, Issue 1, March 2009, Pages 43–48,
ISSN 0925-5273

[9] N. Kourentzes, Intermittent demand forecasts with neural networks,
International Journal of Production Economics, Volume 143, Issue 1,
2013, Pages 198–206

[10] S. Moon, C. Hicks and A. Simpson, The development of a hierarchical
forecasting method for predicting spare parts demand in the South Ko-
rean Navy - A case study, International Journal of Production Economics,
Volume 140, Issue 2, 2012, Pages 794–802

[11] D. Prak, R. Teunter, A. Syntetos, On the calculation of safety stocks
when demand is forecasted, European Journal of Operational Research,
Volume 256, Issue 2, 2017, Pages 454–461

[12] Y. R. Sagaert, E.-H. Aghezzaf, N. Kourentzes and B. Desmet, Tactical
sales forecasting using a very large set of macroeconomic indicators,
European Journal of Operational Research, 2017

[13] Y. R. Sagaert, E.-H. Aghezzaf, N. Kourentzes and B. Desmet, Temporal
Big Data for Tactical Sales Forecasting in the Tire Industry, Interfaces,
2017

[14] A. A. Syntetos, Z. Babai, J. E. Boylan, S. Kolassa, K. Nikolopoulos,
Supply chain forecasting: Theory, practice, their gap and the future,
European Journal of Operational Research, Volume 252, Issue 1, 2016,
Pages 1-26

[15] L. Tiacci and S. Saetta, An approach to evaluate the impact of inter-
action between demand forecasting method and stock control policy on
the inventory system performances, International Journal of Production
Economics, Volume 118, Issue 1, March 2009, Pages 63–71

[16] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal
of the Royal Statistical Society Series B (Methodological), 1996, Pages
267–288

[17] X. Wang and F. Petropoulos, To select or to combine? The inventory
performance of model and expert forecasts, International Journal of
Production Research, Volume 54, Issue 17, 2016, Pages 5271–5282

[18] G. Zotteri, M. Kalchschmidt and F. Caniato, The impact of aggregation
level on forecasting performance, International Journal of Production
Economics, Volume 93, 2005, Pages 479-491

[19] G. Zotteri The impact of distributions of uncertain lumpy demand on
inventories, Production Planning & Control, Volume 11, Issue 1, 2000,
Pages 32–43

79




