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Abstract

Let n be an odd composite integer. In Solovay-Strassen primality test there are at
most p(n)/2 integers which say that n may be prime, where ¢ is Euler’s function. On
the other hand, there are at most o(n)/4 such integers in Miller-Rabin test. In this paper
we show examples of n such that there are just ¢(n)/2 such integers in Solovay-Strassen
test and just p(n)/4 such integers in Miller-Rabin test. Since the author is not an expert
of this area, we try to give a proof that Miller-Rabin test is better than Solovay-Strassen
test even if it is well known. Moreover we will try to prove Rabin’s theorem.

1 Preface

Let n > 1 be an odd integer. Let £, = {1, 2, ...,n—1} and G, = {a € E, | (a, n) = 1},
where (a, n) denotes the greatest common divisor of ¢ and n. Then G,, is a multiplicative
group of order ¢(n), where ¢ is Euler’s function. Let (%) be Legendre’s symbol, where p is
an odd prime number and m € Z with (p, m) = 1. Suppose n = p{*pS?---ptr is a prime

factor decomposition of n, and put (2) = (pﬂl)el(pﬂz)ez . (pﬂ)er if (m, n) =1 and (£) =0 if

(m, n) # 1 (() is known as Jacobi’s symbol). Now put H, = {a € G, | " T = (£) (modn)}.
Then H, is a subgroup of G,. Solovay-Strassen’s theorem states that if n is a composite
number then |H,| < ¢(n)/2 (see [1] or [4] for the proof of this and see [1] or any textbook of
an introduction to the theory of integers for properties of Legendre’s and Jacobi’s symbols).
In particular |H,| < (n — 1)/2. If we take a € E, arbitrarily the possibility that a is in
H, is at most % < % This is so-called Solovay-Strassen primality test. It should be
noted that if n is prime then E, = G, = H, holds. In the case of n being composite
if we take aq, as in E, arbitrarily then the probability that both ai, as are in H, is less

than %JHT"_IE—I < %H:T% < 71; Like this if we take k elements of FE, arbitrarily then the
probability (say P) that all of them are in H, is less than 51;; It should be noted that 1 — P
is the probability that there appears an witness that n is a composite integer. If n > 1 is
an odd composite integer, the author expects that there does not occur as a real case that
P < 51;; < 10% because 1 — P > 0.999999999999999999999999999999. Then we can say that
n is a prime number. In this case how is k? Since 2% > 10%°, k > 30/log;, 2 > 99. Therefore
if we take a; € E,, (i =1, 2, ..., 100) arbitrarily and assume a; € H,, for all i then we can say
that n is a prime number. One sometimes says that P is the probability of n being a composite
number. Thus one also says that 1 — P is the probability of n being a prime number. These
are not correct usage.


https://core.ac.uk/display/141878967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Koichiro OHTAKE

Now suppose n — 1 = 2°m, where m is odd. Let S, = {a€ E,|a™ =1 (modn)or3i (0 <
i < e)such thata®™ = —1 (modn)} and T,, = {a € E, |a"* # 1 (modn) or 3i (1 <i <
e) such that 1 < (¢ ™ — 1, n) < n}. Then Rabin [3] proved that |T,,| < 3(n —1)/4 if n is
composite. This means |S,| < (n —1)/4, too. It is known that S, < H,. This fact implies
that Miller-Rabin primality test is better than Solovay-Strassn’s test.

In this paper we give a proof of Rabin’s theorem and a proof of the fact that S,, is a subset
of H,. Moreover we give examples of n such that |H,| = ¢(n)/2 and |S,| = ¢(n)/4 hold.

2 Rabin’s theorem

Let » > 1 be an odd integer, E, = {1, 2, ...,n — 1} and n — 1 = 2°m, where (2, m) = 1.
Put

S, ={acE,|a™ =1 (modn) or 3 (0 < i < e) such that a>™ = —1 (modn)} and
1

T, ={a€ E,|a" ' 1 (modn) or 3i (1 <i < e)suchthat 1 < (a2 ™ —1,n) <n}.

Lemma 2.1 The following equalities hold.
(1) Sﬂ N Tn = ®¢
(2) E,=58,0T,.

Proof (1) Suppose S, nT, # &. Then there exists a € S, N T,. Since a € Sp,, a" ! =
1 (modn) holds. On the other hand a € T,, implies that 3i (1 < i <€) such that 1 < (a® ™ —
1, n) < n. By puttingd = (a® '™ —=1,n), a® '™ =1 (modd) holds. Butn| (a* '™ —1)
implies a® ™ 2 1 (modn). In particular a™ # 1 (modn). Since a € S,,3j (0 < j <
€) such that a*™ = —1 (modn). Ifj < i—1 then a®* ™ = 1 (modn) holds. This is a
contradiction. Ifi — 1 < j then a®™ = 1 (modd) since a® ™ =1 (modd). But a?™ =
—1 (modn) implies a?™ = —1 (modd). This is impossible since d > 1 is an odd integer.
Therefore S, nT,, = & holds.

(2) Take anya€ E,. Ifa™ ! # 1 (modn) then a € T,,. Hence suppose a”~! = 1 (modn).
Let i be the smallest integer of j such that a®™ = 1 (modn) with (0 < j < e). Such an
integer j exists sincen—1 = 2°m. Ifi =0 then a € S, since a™ = 1 (modn). Suppose i > 0.
Then a?™—1= (a2 ™—1)(a® "™ +1) = 0 (mod n) holds. Besides a® ™ —12 0 (modn)
by the property of i. Thus (a® ™ —1,n) <n holds. Ifa* '™ + 1= 0 (modn) then a € S,.
Ifa® '™ 4+ 1 0 (modn) then 1 < (a2 '™ —1,n) < n, for if (a® ™ —1,n) = 1 then
n|a2 '™ 41, which contradicts to a® ™ +1 2 0 (modn). Therefore1 < (a® '™ —1,n) <n
holds. Hence a € T,,. Thus in any case a € S, or a € Ty, holds. This completes the proof.

Let G, = {a € E,,, | (a, m) = 1}, where m is a positive integer. When a € Z let @ denote
the element of {0, 1, ..., m — 1} such that @ = a (modm). For the rest of this paper unless
otherwise specified let n > 1 be an odd composite integer.

Lemma 2.2 Assume m; |n (1 <i<k) and (m;, m;) =1 (1<i<j<k). Let
fiGn— Gy X Gy X -+ X G, be as fa) = (@, ..., a).
Then f is an epimorphism.

Proof Clearly my---my |n. When we consider the prime factor decomposition of n we can
find the decomposition n = mimy - --mymy ., withm;[m; (1 <i<k), (mj, m;)=1(1<i<
j < k+1). By Chinese Remainder Theorem the natural homomorphism ¢ : G, — Gy X -0+ X
Gy, 15 an isomorphism. Since 7; : Gy — Gm, (mi(a) =a@) (1 < i< k) are epimorphisms,
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g: Gy x - x G — Gy X -+ X Gy, defined by g(a1, ..., axy1) = (a1, ..., x) is an

Mi+41
epimorphism, too. Therefore f is an epimorphism since f = go ¢.

For a finite set S, let |S| denote the cardinality of S.

Corollary 2.3 Let f be the same as in Lemma 2.2. Then |f~(a1, ..., ax)| = |Ker f| for
any (a1, ..., ag) € Gy X -+ X Gy, .

Let U, = {a€ E,|a" ! =1 (modn)}. Then clearly S, < U, < G, H, < U, and U,, is a
subgroup of G,,.

Lemma 2.4 ([3, Lemma 3]) Let py, ps be distinct odd primes and g; = pf" (ki=1,i=1,2).
Suppose qiqa |n. Put t; = (p(gi),n — 1), m; = ©(g;)/t: (i = 1,2). Then the following
inequalities hold.

) o] < 22
mima
(2) Ifty orty is even then |S,| < #(n) )
2mime

Proof The proof is the same as [3]. But we write it here for the sake of self-contained-
ness. Let f: Gy, — Gg x Gy, be the canonical epimorphism.

(1) Let a; be a primitive root mod g; (¢ =1, 2). Take any be U, and let b= a;" (modg;) (¢
=1,2). Since a;"" V) =1 (modg), o(¢)|ri(n —1). The facts that t;m;|ri(n — 1) and
(my, (n=1)/t;) = 1 implym; | r;. Thus there exist h; (i = 1, 2) such that b = a;"™ (mod ¢;) (1
< hi < p(q;)/mi). If we fix (hi, ha) the number of b such that f(b) = (a;™™1, ax2™2)
is |Ker f| by Corollary 2.8. Since U, <= f~1({(a1"™, ag"2™2) € Gy, x G,y |1 < by <
o(g)/mi (i =1,2)}), |Un| < "’(ql q2 |Ker f| holds. On the other hand, since G,/Ker f ~
Gq, X Ggy, p(n) = <p(q1) (q2)|Kerf| holds. Therefore |Uy| < @(n)/mims holds.

(2) Let t; = 2°t) (e1 = 1), to = 2°%t, (e1x = e2), where t, t, are odd integers. Since
n—1=2°m,e>e andt)|m (i =1, 2) hold. Take any be U,. Using the same symbols as
in (1), let b= a;"™ (mod g;) (z =1, 2)

(i) Whene; = es. C’learly proarT = =q; i et (mod g;) (¢ =1, 2). Sincet;

}(26';% (szmzlarly tz Semer 51 and tg)(W), if h1 1s even and ho is odd then bze—a1¥T 25 =

1 (mod ¢1) and pre et =%£1 (mod g2). This implies 1 < (bze ST 1,n) <n. Hencebe T, in
this case. Similarly if hy is odd and hs is even then b € T,,. If both of hy and ho are even or odd
we cannot say be S, or beT,. The number of h; which are even (or odd) is ¢(g;)/2m; (i =
1, 2). Thus the number of (h1, he) such that (hy, hay) = (even, odd) or (odd, even) is ‘g(ql)

Se—er e1 and t1

Gt x 2 = SR Hence [Un 0 Ty| > SRS Ker f| = 555, Therefore |S,| =
(n) (n) _ _o(n)
|Un| |U ﬂT |< nflm.z - 2::.1!712 - 2::;1"12

(i) When ey > e. Then tay| 2=, t1) 7= L. Since 50((]2) | homo =%, bres =1 (mod go)
holds. On the other hand (q1) | himi2=, iff t1 | hise=x, iff 2°1 |22y and iff 2507 | hy.

Thus if hy = 2¢17°2R!, there are —-2%)_ of o> ham G, (since 1 < B < =24

o 2¢1—21m, 281__Efml ’
and in this case bzet—"2 =1 (mod q1), thus b€ S,, may happen. If 2°17°2 | hy then bz*1—°2 =
1 (modq). This means b€ T,. Therefore |S,| < =24 . qz) | Ker f] = =20 <

2¢1—€2m,q 2¢1=€2mqimo
w(n)
2m1m2 ‘

This completes the proof.

n—1
4

Theorem 2.5 (c.f. [3, Theorem 1]) Letn > 1 be an odd composite integer. Then |Sy| <



Koichiro OHTAKE

holds. Moreover if n # 9 then |S,| < ( ) holds.

Proof The process of the proof is the same as [3]. The proof is divided to three cases (1) ~
(3). (3) is also divided to three cases.

(1) When n is a power of a prime. Let p be an odd prime and n = p* (k = 2). Then
n—1=pF-1=(p=1)(1+p+---+p" ") and p(p*) = p* ' (p—1). Hence (p(p*), n—1) = p—1.
Let a be a primitive root mod p*. Take any b€ U,, and let b = a” (modp*). Then p*~(p —
D|rip=1)(14+p+---+p*1) since b~ = a1 =1 (mod p*). Thus p*= |r, which implies

r = hp*~! for some h (0 < h < p—2). Conversely it is obvious that (ahpkfl)”_l =1 (modn)
for any h. Hence U, = {a"" |0 < h <p—2}, and as a result |U,| = p— 1 holds. On the
other hand, "X — (p —1) = (v —p)(letp gy (p o )REdpt 8 5 g (L p > 3),
Therefore | Sy | < |Up| < . Next suppose n # 9. Thenp >3 orp =3 with k = 3. In this
case p*=1 > 4. So M — ( -1 =(p-— 1)(— —-1)>0. Therefore if n# 9 then |S,| < “0(4")
holds. Whenn =9, s = {1, 8} 1. Thus |S,| =2> 20 = 6 pyt|S,| < 2L = 2 holds.

(2) Letn = p{'ps?---pS (r = 2), where p; (1 < i < r) are different pmmes, and suppose
€1
oY) (n—1). Then my = “p(pll ) > 2 since t; = (p(P$), n— 1) < @(p$'). And t1 is clearly

even. Hence by Lemma 2.4, |S,| < %n)m < e <o) o noi

(3) Letn = p{'ps?---per (r = 2) be the sanie as (2 )4 and séppose @) | (n—1) for all i.
Since p;f (n—1), e, =1 for alli. Thusn=pips---pr and (p;—1)|(n—1) (i=1,2,..., 7).
Suppose py < pa. Ifn =p1p2 thenn—1=pipo—1 =p1(p2—1)+ (p1 —1) and (p2—1) | (n—1)
imply (p2 — 1) | (p1 — 1), which contradicts po —1 > py — 1. Thus v = 3 must hold. Let us put
p; — 1 =25y, (2}{&, t=1,2,..., 7). Then f; < e and £;|m hold for all i.

(3-1) When f1 = fo = f3. C’learly e = f1 = 1 holds. Let a; be a primitive root modp; (1 <
it <r). Take any b € U, and let b = a;' (modp;). Let ¥ : G, — Gp, x Gp, x G, be

2

the canonical epimorphism. Since Pirl = #Mﬁ_lm and p; — 1f 2h71m (i = 1, 2, 3),

p2iTim = affrlm” = 1 (modp;) iff 2|r;. For example, suppose 1 is even and 7o is odd.
Then since b2 '™ = a%flilrlm =1 (modpy), p1 | (¥2" "™ — 1, n). Similarly since b2 "™
a2”7'm L1 (modps), paf (0¥ —1,n). Thus 1 < (b2 —1,n) < n holds, and
b e T,. This implies that b € S,, may occur only when all of r1, r2, r3 are simultaneously
even or odd. The number of b such that all of r1, r2, r3 are simultaneously even (or odd) is
p12_1 . p22_1 . p32_1 - |Kervy| = %. Therefore |Sy,| < @ + @ = @.

(3-2) When f1 = fo < f3. Note that 251 | 2517 m and p; — 1] 2/t"'m hold. Letbe G, and
suppose b = a3® (modps). Then p2iTIm = a%flilm”‘ (modps). Thus b**~'™ =1 (mod ps),
iff ps — 1 = 27343 | 251 =Yg, iff 273 | 21" 1pg and iff 273 =f2+1 | r3. Thus the number of r3 such
that b = az® (modps) (0 < r3 < p(ps) — 1) and p2 M = (mod p3) is fo(% On the

other hand, fori = 1,2, b¥'7'm = anl "™ =1 (modp;) iff r; is even. Thus b € S, may

occur only when ry, ro are even and 2f3 fatl |73 orry, ro are odd and 2fs— f2+1)( r3. Therefore

1S,| < 90(51) . 90(52) fo f2+1 | Ker| + 90(101) w(pz)(¢(p3) _ fo%) \Ker | = ( )

(3-3) When fi < fo < f3 (ie. f1 < fo = fz or f1 < fo < f3). In this case p221 =
2f2=1p, | 2727, py — 1) 2/2=2m hold. On the other hand p; —1 = 27141 | 22=1m holds. Let b

and a; (i =1, 2, 3) be the same as (3-2). Then since p2 -l =1 (modpy), be S, may occur

IThis is calculated by the following Mathematica program.
For[i = 2,1 < 8,i++,For[j = 0,j < 2, j++,If[mod[i* j,9] == 8, Print[i,“ ”,5,“ *,mod[i*3,9]]11]
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= a7 =1 (modp) (i = 2, 3)

(p2)
2

only when b2 ™ =1 (mod p;) (i = 2, 3) hold. b2 '™
hold only when T4 is even and 273~/2+1|rs. Thus the numbers of such ro and r3 are

©(p1)- W(pZ) gffg?z)ﬂ |Ker| = SF3—Fat? (f2)+2 S%'

and Ffz)ﬂ, respectively. Therefore |S,| <
This completes the proof.

3 The relation between Solovey-Strassen’s primality test
and Miller-Rabin’s test

First we prove the following.
Theorem 3.1 Letn > 1 be an odd integer. Then S, < H, holds.

Proof Ifn is prime then S, = H, = U, = G, holds. So let n be a composite integer and
n = pip2---Pr @ prime factor decomposition, where p; = p; s allowed even if © # j. Let
n—1=2°m, p;—1=2"m; (i=1,2,..., k), wherem and m; (i = 1,2, ..., k) are odd.
First note that:
n—1 =pi(p2--pr—1)+p—1
= pi(p2(ps--pk—1) +p2—1) +p1 — 1
= p1p2(Ps - pr — 1) + pr1(p2 — 1) +p1 — 1

=p1—Ll+pip2— 1)+ +p1-pr-1(pe — 1)
We may assume that ey is the smallest among {e1, ez, ..., ex} by re-arranging the ordering
of P1, D2y « -5 Pk- S0 2°m = 2°1(my + 2°27%mg + - -+ 4+ 2677 Cpy - pp_1my) tmplies e; < e.
Let us put f =mq1 +2%2 " mo +---+2°"py---pr_1my. Let Ybe S,. Let a; be a primitive
root mod p; and b= a;* (modp;).
(1) When b™ =1 (modn). ;""" =1 (modp;) implies p; — 1 = 2%m; | mr;. Since m is odd,
2% | r;. In particular r; is even. Thus (p%) =1(i=1,2,..., k), which implies () = 1. On

the other hand, b™ =b>"'™ = (b™)2"" =1 (modn). Therefore be H,. _
(2) When b™ = 1 (modn). Since b € Sy, there exists j(0 < j < e) such that o=

—1 (modn). This implies a2 M= —1 (modp;) (1 = 1,2,..., k). Thus there exist odd
integers u; such that 2mr; = p‘Q_lui =2¢"Imuu; (i =1,2,..., k). Letr; = 2%s;, where
a; = 0 and s; are odd integers. Then j+o; =e;— 1, 4e. e, =J+a;+1 (i=1,2,...,k)
hold.

(2-1) When oy =0. Theney =j+1. Ife; =ey thena; =0 since j+a;+1=¢; =e; = j+1.
Thus r; is odd, and (p—bl) =—1. Ife; >e; thena; >0 since j+a; +1=¢; >a; =5+ 1.

Thus (p%) =1 in this case.
(2-1-1) When j = e — 1. Then ey = e and 2°m = 2%m, which imply m = f. So f is odd.

k
Thus the number of i such that e; = e is odd. Therefore (2) = H(pi) = (1) x 1 = —1.

=1
On the other hand b™ = b2 '™ = bp?’™ = _1 (modn). Thus be H,.
(2-1-2) When j <e—1. Sinceer = j+1 < e, f =2°%m is even. Thus the number
of i such that e; = e is even. Therefore (£) = (=1)®**" x 1 = 1. On the other hand

n
b =52 m = (B¥m)2 7 = (=1)2 7’ =1 (modn). Thusbe H,.
(2-2) When oy = 1. Sincee; =j+a1+1, e, =7+a; +1=e1 =j+ a; + 1, which implies
oz ar (=1, 2, J k). Thusoy 2 a1 21 (i =1, 2, , k). Thereforery ro, ..., T are all
even, and (%) = 1 On the other hand e = e; = j +a1 + 1 >3j+2. hencee—1—j=1. Thus
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1—4

bt = p2TIm = (b2jm)26_ 7= (=1)2""7 =1 (modn). Therefore be H,. This completes

the proof.

If n > 1 is an odd composite integer then H, is a proper subgroup of G,. Since |H,|
divides |Gy, we can say |Hj,| < @. If we calculate several examples, |H,| is much smaller
than @. The author expected |H,| < “”—(4“2. Since the proof that H, is a proper subgroup
of G,, is very simple and beautiful, it is expected that Solovey-Strassen’s primality test has
the same value as Miller-Rabin’s one.

Before to show examples it is useful to remind a Carmichael number. Let n = py -+ - p be
a product of distinct primes, and suppose p; —1|n —1 for all . Then n is called a Carmichael

number. In order to find an example of an odd composite number n such that |H,| = @, it
is enough to check Carmichael numbers by the following lemma.

w(n)

Lemma 3.2 Let n > 1 be an odd composite integer such that |H,| = =5~. Then n is a
Carmichael number.

Proof Letn = pi'---pi* be a prime factor decomposition with e; =1 (i =1, ..., k). Note
that G, ~ prl X o0 X Gka. If some e; > 1, then there exists an a € G, such that the
order of a is p;. Then a ¢ H, since p;| n— 1. Moreover H,, aH,, ..., aP"*H,, are distinct
residue classes in Gn/H,. Thus |G, : Hy| = p; = 3 holds. Hence |H,| < @ < @.
This contradicts to the hypothesis. Therefore ey = --- = e, = 1 holds. If p; —1/n—1 for

some i, there exists an odd prime q such that ¢ |p; — 1 and qfn — 1. Like the above argument
there exists an a € G, such that the order of a is q. Then a ¢ H, since q¢ /n — 1. Moreover
H,,aH, ..., a? 'H, are distinct residue classes in G,/H, like the above. This is also a
contradiction. Therefore n must be a Carmichael number.

In order to find an example of an odd composite number such that |S,| = “0—(4nl, we have to
re-check the proof of Theorem 2.5. From (1) in the proof we get |S,,| # #. So the possibility

that |S,| = @ holds comes from (2) and (3). (3) is a case of Carmichael numbers. The
author does not know if there is an example from (2). Anyway it is enough to check Carmichael
numbers. We got the following examples.

Example 3.1 When n = 2465 = 5-17-29, ¢(n) = 1792, |H,| = 896 = ©(n)/2. On the other
hand, |S,| = 70 < p(n)/25.

Example 3.2 When n = 8911 =7-19-67, p(n) = 7128, |S,| = 1782 = p(n)/4 = |Hy|.

In Example 3.1 |S,,| does not divide ¢(n). Thus S, is not a subgroup of G,,. But S, has
the following property.

Proposition 3.3 If a € S, then <a>c S, holds, where <a > denotes the cyclic group
generated by a.

Proof Remind that n — 1 = 2°m. Let k = 0 be an integer. If a™ = 1 (modn) then
obviously (a*)™ = 1 (modn). Thus a* € S,. Suppose there exists i (0 < i < e) such that

a®™ = —1 (modn). Let k = 2, where £ > 0 and t is odd. If £ =i then (a*)™ = (a2™)t =
(=1)* = =1 (modn). If £ > i then (aF)™ = (aTm)QE_zt = ((—1)2e_1)t =1 (modn). If ¢ < i
then (a*)2" '™ = (a2™)t = (1)t = —1 (modn). Therefore in any case a¥ € S,,.

For the rest of this paper we show Mathematica programs to calculate above examples.
In the following programs the module beki[ ] is very important to calculate a® (modn). The
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idea is found in [1, Appendix 2]. Fist we show the program to compute Solovey-Strassen’s
case.

beki[a_, e_, n_]:=Module[{b, p, ¢},
b=a;p=1Llc=¢
While[e > 0,
IffMod[c, 2] == 0,¢c = ¢/2,
» = Mod[bp, nJ;
c=(c—1)/2];
b = Mod[b"2,n]];
Returnp]];
jacob[a_,n_]:=Module[{ec, d, r},
c=a;d=mn;
jeob = [GCDJe, d] > 1, 0; Goto[end], 1];
While[e > 1,
¢ = Mod][e, d];
IffMod[e, 2] == 0,r = Mod[(d*2 — 1)/8, 2]; jeob*=(—1)"r; c = ¢/2,
r = Mod[(c —1)(d — 1)/4,2];
jeob*=(—=1)*r;tmp = ¢;¢ = d;d = tmp]];
Label[end]];
sls[a_, n_]:=Module[{}, (*Solovay-Strassen’s primality test*)
j = beki[a, (n — 1)/2,n];
jacobla, n]];
k = 0;n = 8911; For[i = 1,i < n, i-++, sls[i, n];
If[Mod[j — jeob,n] == 0, k++]];
Print[k]
1782
Next we show the Miller-Rabin’s case.
beki[a_, e_,n_](This is the same as the above module beki)
miller[a_, n_]:=Module[{k, ¢}, (*Miller-Rabin’s primality test*)

k=0;g=n-1;
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While[Mod[q, 2] == 0,

/=2 k+=1];

i = 0;r = beki[a, ¢,n];

Label[repeat);

If[ (i == 0&&r == 1)||(i = 0&&r==n — 1), Goto[end],
i+=1;7 = Mod[r*2,n];

If[i < k, Goto[repeat]]];

Label[end]];

j =0;n = 8911;For[a = 1, a < n,a++, miller[a, n];
If[ (i == 0&&r == 1)||(i > 0&&r == n — 1), j++]];
Print[7]

1782

Remark. In the above programs beki can be replaced by PowerMod.
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