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Preface

This research has studied and proposed a novel Converter method for use
in spread-spectrum generation. Thanks to this method, one can select and
exclude certain spectrum bands from spreading spectrum.Proposed method
in this research is utilizable in advanced form of spread spectrum clock gen-
eration and also applicable to power circuits switching electromagnetic inter-
ference reduction/customization.

Built upon proposed algorithms and introduced convictions in this re-
search; an auto-configurable EMI exclusion method has also been intro-
duced.This method has capability of adaptively excluding certain band from
spreading spectrum in regards to detectable environmental signal functioning
frequencies. This innovation removes the need for circuit designer to choose
certain bands for exclusion; as it is done automatically and open their hands
to focus on their design only and not spending too much time considering
their circuits EMI effects on other surrounding circuit components.

The converter method is a unique algorithms to convert a Digital signal
to Analog in time domain called Digital-to-Time converter (abr. DTC). As
we show later DTC circuits proposed here are best fit to solve our problem
and any problem where time domain is concerned.

This method is essentially fast (reachable at high clock frequency) and
flexible (programmable) by taking full advantages of digital circuit simplicity.
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Chapter 1

Spread Spectrum Clock

Abstract: Spread Spectrum Clock generation is a commonly used algorithm
to suppress clocks electromagnetic interference noise, first introduced by a
printing company in 1970
Keywords: Clock, EMI, Spread Spectrum Clock Generation

1.1 Clock Signal

Electronics devices use clocks to synchronize data as they move from one
place to another place or spot, or measure occurrence of values in time. A
clock circuit is is usually a circuit utilizing the mechanical resonance of a
vibrating crystal of piezoelectric material to create an electrical signal with a
very precise square wave with 50% duty rate (Fig. 1.1) with fixed frequency.

Figure 1.1: Square Wave

It is a bold statement, but clock circuit is the most important compo-
nent of electronics circuits, in charge of synchronizations and adjuster which
circuits functionality and accuracy depends upon it.

A clock circuit essentially functions on a certain frequency and radiates
an energy that may interfere with other devices in vicinity. This radiation is
called electromagnetic interference or EMI in short.

5



6 CHAPTER 1. SPREAD SPECTRUM CLOCK

1.2 Electromagnetic Interference (EMI)

Electromagnetic interference or in short EMI is a noise that affects an
electrical circuit functionality by either electromagnetic induction or elec-
tromagnetic radiation, emitted from another source in vicinity. This dis-
turbance can lead to interruption, obstruction, and/or degrade the effective
performance of the original circuit. These effects can range from a simple
degradation of transmitting data in the circuit to a total loss of it. The source
we mentioned above could be any object, not necessarily electrical circuit,
that carries shifting currents; therefore even the Sun or the Northern Lights
can have EMI degradation effects (in fact both of these two aforementioned
objects have a extensive effect in degradation of Integrated circuits although
they are not matter of discussion in this research).

Clocks EMI can potentially affects the reception of AMFM radio, cell
phone, television or any form of wireless transfer of data, functioning in its
spectrum existence area.

There are many cures for EMI problem but the one we are interested in
and focus-on in this research is spread spectrum technique.

All communication watchdogs around the globe that regulate broadcast
emission such as in radio or TV (like Interstate Commerce Commission, FCC
in US) enforce a limit on EMI for all electronic equipment. Failing to fulfill
this requirement, called EMI compliance test , prevents manufacturers from
entering the market and/or causes delay of final products shipment; and
solving it is a very time consuming and costly task. Therefore assurance of
compliance with EMI limits starts at the very early stage of device manufac-
turing [[1]]. But staying below EMI limit is becoming more and more difficult
these days by high increase in clock functioning frequency. Spread spectrum
clock generator is a counter-measure which serves as a way to lower EMI
[[2]]. It slows down or slows up clock speed within a few percent of its target
frequency, thus hammering its EMI peak by spreading it across a range of
frequencies (Fig. 1.2).

1.3 Spread Spectrum

The vast majority of digital devices do not require a clock at a fixed,
constant frequency. As long as the minimum and maximum clock times
are respected (ref. 1.3), the time between clock edges can vary widely from
one edge to the next and back again. Such digital devices work just as
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well with a clock generator that dynamically changes its frequency, such as
spread-spectrum clock generation. Devices that use static logic do not even
have a maximum clock time; such devices can be slowed down and paused
indefinitely, then resumed at full clock speed at any later time.

Time 

Vo
lt
s 

Time 

Vo
lt
s 

Figure 1.3: Spread Spectrum generated Clock Vs. original clock length

Spread-spectrum clock generation (SSCG) is used in synchronous digital
circuits, to reduce the spectral density of the electromagnetic interference
(EMI) that these systems generate. A synchronous digital circuit is a circuit
that utilize a a clock signal and due its periodic nature, has a very sharp
frequency spectrum peak. In fact, a perfect clock signal would have all its
energy concentrated at a single frequency (the the functioning frequency plus
its harmonics) (fig. 1.4) .

Practical synchronous digital systems radiate electromagnetic energy on
a number of narrow bands spread on the clock frequency and its harmonics,
resulting in a frequency spectrum that, at certain frequencies, can exceed the
regulatory limits for electromagnetic interference (e.g. those of the FCC in
the United States, JEITA in Japan and the IEC in Europe). For instance in
case of Japan, consumer electronics and industrial equipments EMI limit is
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Figure 1.4: Ideal clock spectrum Vs. in Practice clock signal spectrum

slightly different but it is below 40 [dBμV/m] v.s. 50 [dBμV/m] up to 230
MHz frequency and 47 [dBμV/m] v.s. 57 [dBμV/m] above that) (Fig. 1.5)

　　Class A: Industrial 
　　Class B: Home 
 

Figure 1.5: EMI Regulation (CISPR22 ) in Japan

Spread-spectrum clocking avoids this problem by using one of the meth-
ods previously described to reduce the peak radiated energy, therefore its
electromagnetic emissions comply with electromagnetic compatibility (EMC)
regulations.(Fig. 1.6)
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Figure 1.6: Clock’s Spreaded spectrum

SSCG has become a common technique to gain regulatory approval be-
cause it requires only simple equipment modification. Because of faster clock
speed and increasing integration of circuits within portable devices and their
small size restraints, traditional and passive measures to reduce EMI, such
as capacitors or metal shielding have been excluded. With recent overload
in small and portable devices, SSCG method popularity is on the rise.

However, spread-spectrum clocking, like other kinds of dynamic frequency
change, can also create challenges for designers. Principal among these is
clock/data misalignment, or clock skew. It should be noticed that SSCG
does not reduce total radiated energy in fact it might add little bit to id,
and therefore systems are not necessarily less likely to cause interference.
Because of this the spreader EMI also can also cause trouble such as in case
of of external valuable weak radio signal presence in the spreaded spectrum
band (Fig. 1.7).

Distributing this same energy into a larger bandwidth prevents systems
from putting enough energy into any one narrow band to exceed the statutory
limits. The usefulness of this method as a means to reduce real-life interfer-
ence problems is often debated, since it is perceived that spread-spectrum
clocking hides rather than resolves higher radiated energy issues by simple ex-
ploitation of loopholes in EMC legislation or certification procedures. This
situation results in electronic equipment sensitive to narrow bandwidth(s)
experiencing much less interference, while those with broadband sensitivity,
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Figure 1.7: Spread spectrum Problem

or even operated at other frequencies (such as a radio receiver tuned to a
different station), will experience more interference.

1.4 Summary

In This chapter we introduced Electromagnetic Interference or EMI con-
cept and briefly talked about clocks EMI generation. we also explained and
explored spread spectrum clock generation technique benefits in clocks EMI
reduction and its usage drawbacks in the circuit.
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Chapter 2

Delta Sigma Digital to Time
Convertor

Abstract: Delta Sigma Digital to time converter is a unique circuit for con-
version of digital signal to time signal. in this chapter we’ll talk extensively
about delta sigma technique. converter circuit and method of bringing digi-
tal signal to time domain
Keywords: Delta-Sigma, Digital-to-Time, converter, time domain

2.1 converters

In Electronics, Digital electronics is a name of field where the represen-
tation of signal is a series of discontinues discrete values. digital electronics
has gained so much popularity in past several decades because it is easier
to manipulate and reproduce a number of known state values rather than
continues range of infinite values. To bring natural signal to/from digital
domain we need converters

2.1.1 ADC

An analog-to-digital converter is circuit to convert a continues data quan-
tity to a set of discrete numbers which usually involves sampling and quan-
tization process. Accuracy of a ADC converter is usually measured with
its sampling frequency,the number of times a continued value is measured in
one second and its resolution which determines with how many discrete value
the continues data is represented. ADCs other properties can be inferred or
calculated according to these characteristics.

13
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2.1.2 DAC

Most signal in the nature are Analog such as sound, temperature, light,
etc. To gather these data and use them efficiently in digital circuits and
digital electronic sub branches one need a fast and reliable way to convert the
signal from and to digital domain. These devices are called signal converter
and whether if its role is to change a an analog signal to digital signal or
analog signal its name changes. the latter is called digital-to-analog converter
or in short ADC or A/D and the later is called digital-to-analog converter or
DAC or D/A.

the main purpose of these two are essentially same. they both convert
the signal for easier comprehension, weather it is mathematically or compu-
tationally as it is the case for ADC or it is to make it easier for the end user
to actually feel the result as it is the case in DAC. In Electronics, a converter
is a circuit that converts a signal from or to Analog value.

2.2 Delta Sigma Method

Delta-Sigma (ΔΣ; or Sigma-Delta, ΣΔ) modulation is a digital signal
processing, or DSP method for encoding analog signals into digital signals as
found in an ADC. It is also used to transfer higher-resolution digital signals
into lower-resolution digital signals as part of the process to convert digital
signals into analog. In a conventional ADC, an analog signal is integrated, or
sampled, with a sampling frequency and subsequently quantized in a multi-
level quantizer into a digital signal. This process introduces quantization
error noise. The first step in a delta-sigma modulation is delta modulation.
In delta modulation the change in the signal (its delta) is encoded, rather
than the absolute value. The result is a stream of pulses, as opposed to
a stream of numbers as is the case with PCM. In delta-sigma modulation,
the accuracy of the modulation is improved by passing the digital output
through a 1-bit DAC and adding (sigma) the resulting analog signal to the
input signal, thereby reducing the error introduced by the delta-modulation.

This technique has found increasing use in modern electronic components
such as converters, frequency synthesizers, switched-mode power supplies and
motor controllers, primarily because of its cost efficiency and reduced circuit
complexity. Both analog-to-digital converters (ADCs) and digital-to-analog
converters (DACs) can employ delta-sigma modulation. A delta-sigma ADC
first encodes an analog signal using high-frequency delta-sigma modulation,
and then applies a digital filter to form a higher-resolution but lower sample-
frequency digital output. On the other hand, a delta-sigma DAC encodes a
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high-resolution digital input signal into a lower-resolution but higher sample-
frequency signal that is mapped to voltages, and then smoothed with an
analog filter. In both cases, the temporary use of a lower-resolution signal
simplifies circuit design and improves efficiency.

In brief, because it is very easy to regenerate pulses at the receiver into the
ideal form transmitted. The only part of the transmitted waveform required
at the receiver is the time at which the pulse occurred. Given the timing
information the transmitted waveform can be reconstructed electronically
with great precision. In contrast, without conversion to a pulse stream but
simply transmitting the analog signal directly, all noise in the system is added
to the analog signal, reducing its quality.

Each pulse is made up of a step up followed after a short interval by a step
down. It is possible, even in the presence of electronic noise, to recover the
timing of these steps and from that regenerate the transmitted pulse stream
almost noiselessly. Then the accuracy of the transmission process reduces to
the accuracy with which the transmitted pulse stream represents the input
waveform.

Delta-sigma modulation converts the analog voltage into a pulse fre-
quency and is alternatively known as Pulse Density modulation or Pulse Fre-
quency modulation. In general, frequency may vary smoothly in infinitesimal
steps, as may voltage, and both may serve as an analog of an infinitesimally
varying physical variable such as acoustic pressure, light intensity, etc. The
substitution of frequency for voltage is thus entirely natural and carries in
its train the transmission advantages of a pulse stream. The different names
for the modulation method are the result of pulse frequency modulation by
different electronic implementations, which all produce similar transmitted
waveforms.

The ADC converts the mean of an analog voltage into the mean of an
analog pulse frequency and counts the pulses in a known interval so that the
pulse count divided by the interval gives an accurate digital representation
of the mean analog voltage during the interval. This interval can be chosen
to give any desired resolution or accuracy. The method is cheaply produced
by modern methods; and it is widely used.

2.3 Digital-to-Time convertors

2.3.1 Intorduction to ΔΣ DTC

Traditionally, information has been processed and encoded in the voltage
domain; however, more recently information encoding in time domain has
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considerably gained popularity. Data conversion in theory is simply the pro-
cess of working with signals in different domains. The DTC is a converter
device which maps a digital value to a timing signal.

Digital ΔΣ  
Modulator 

1bit  
DAC 

Analog 
LPF 

Digital 
Input 1 or 0 

Pulse 
Density 
Analog 
Output 

Smoothed 
Analog 
Output 

(a) ∆Σ DAC configuration.

Digital ΔΣ  
Modulator 

1bit  
DTC 

Asynchronous 
Counter 

Digital 
Input 1 or 0 

One bit 
Resolution 

Timing 
Signal 

Multi-bit 
Resolution 

Timing 
Signal 

(b) ∆Σ DTC configuration.

Figure 2.1: ∆Σ DAC and ∆Σ DTC analogy.

Basic distinction between DTC and DAC is the domains where they func-
tion;the DTC operates in time domain, whereas the DAC operates in voltage
domain.

The process of converting signal from digital to analog (or vice verse)
usually involves many techniques including filtering and smoothing of the
signal before and after the conversion. In this regard, our proposed DTC is
in full compliance with its conventional methods. The DTC includes a digital
ΔΣconverter (Fig. 2.1), and there samples are interpolated with a low pass
filter (LPF). In time domain, a LPF is used to smooth the signal by cutting
high frequency components.

The delta-sigma DTC idea is - to our knowkedge - only used for very
recent work [13] which employs DTC driven phase signal conversion for au-
tomatic test equipment (ATE) applications. This work differs in two main
points from it; First, our proposed methods apply pulse cycle and width
modulation with some innovative ways in addition to phase modulation, and
also utilize an asynchronous counter to perform as a low pass filter in time
domain which -due to its digital nature- is very simple compared to PLL.
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DigitalΔΣ 
Modulator 

Phase 	
Modulation	
1bit DTC 

PLL 
Digital 
Input 1 or 0 

One bit 
Resolution 
Timing Signal 

Multi-bit 
Resolution 
Timing Signal 

Figure 2.2: Delta Sigma DTC Analogy.

2.3.2 ΔΣPCMDTC

We consider Pulse Cycle Modulation (PCM), which is a manipulation of
representing each timing signal pulse cycle (Figs. 2.3, 2.4).

τp 

Sout 

0 T 

Dout = 0 

0 T 2T 

τp 

Sout 

Dout = 1 

(a) Time signal representation for digital “1” & “0”.

Dout(0) = 1,    Dout(1)   = 0,    Dout(2) = 1,   Dout(3) = 1,  Dout(4) = 0 

0 T 2T 3T 4T 5T 6T 7T 8T 
Sout 

(b) Time signal of 10110 by represented by left time signals.

Figure 2.3: PCMDTC example.

For example, digital “0” is mapped to a time signal with cyclic period of
T while “1” is with 2T; then in case of digital input sequence D=10110, the
output signal is shown in Fig. 2.3. Block diagram of the ΔΣPCM DTC is
illustrated in Fig. 2.4.
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CLK 

＋ Σ PCM 
DTC 

Clock 	
Generator	

Digital Input 
Generation  

circuit 

Din 
Dout 

Sout 

(a) PCM∆ΣDTC block diagram.

Σ＋ 

Clock 
Generator 

 
Buffer 

 
Memory 

Din 

Dout 
PCM 
DTC 

Sout 

(b) Alternative PCM∆ΣDTC block diagram.

Figure 2.4: PCMDTC circuit block diagram.
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Because of unlimited variable periods which we can choose from fre-
quency, PCMDTC could be superior to other following methods in regard to
multi-bit modulation.

2.3.3 ΔΣPPMDTC

Pulse Position Modulation (PPM) ΔΣDTC encodes each digital signal
value by shifting output pulse signal beginning position (Figs. 2.5, 2.6). So
for instance, if we have output pulse with the frequency of f , digital “0” is
mapped to pulse with zero shifting position (phase= 0), and digital “1” is
mapped to pulse with shifting position of a constant C (where C ≤ T ). A
sample modulation of digital value similar to PCMDTC (10110) is shown in
Fig. 2.5.

Dout = 0 

φ = 0 

0 T

Sout 

τp 
Dout = 1 

0 T

Sout 

τp 

φ = C 

(a) Time signal representation for digital “1” & “0”.

Dout(1)=1,　Dout (2) =0,　Dout (3)=1,　Dout (4)=1,　Dout (5)=0 

 

0 T 2T 3T 4T 5T 
Sout 

(b) Time signal of 10110 represented by left time signals.

Figure 2.5: PPMDTC example.

Two major differences and benefits of PPMDTC compared to the previous
method are as follows: First, output signal length is independent of numbers



20 CHAPTER 2. DELTA SIGMA DIGITAL TO TIME CONVERTOR

of “0”’s and “1”’s. Second, it consists of only a delay element and digital
multiplexer (Fig. 2.6).

ΔΣ	  
Modulator	 MUX	

τ Clk 

clkout 

Digital 
Input 

Figure 2.6: PPMDTC circuit block diagram.

This circuit capability of handling high-frequency signal in digital circuit
might be game changer factor to choose it over other methods in applications.

2.3.4 ΔΣPWMDTC

Pulse Width Modulation (PWM) DTC changes the output signal width
based on digital input value (Figs. 2.7, 2.8).

Its implementation may be a little bit complex, but its benefits surface up
when it is used in conjuncture with other methods, which we will discuss
later in this section.

2.3.5 ΔΣPRJDTC

Our proposed Pseudo Random Jitter (PRJ) DTC is very similar to pulse
cycle modulator (PCM), because, like PCM, the major distinction between
two timing output signals for two distinct digital inputs are pulse frequency
(cycle period). However in PRJ, output signal frequency changes arbitrarily
(or pseudo randomly) between two (or more for multi-bit DTCs) constant
values (Fig. 2.9).
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Dout = 0 

0 T

Sout 

τp=α 
Dout = 1 

0 T

Sout 

τp=β 

(a) Time signal representation for digital “1” and “0”.

Dout(1)=1,　Dout (2) =0,　Dout (3)=1,　Dout (4)=1,　Dout (5)=0 

 

0 T 2T 3T 4T 5T 

Sout 
(b) Time signal of 10110 represented by left time signals.

Figure 2.7: PWMDTC example.

ΔΣ	  
Modulator	

Clk 

clkout 

Digital 
Input 

Figure 2.8: PWMDTC circuit block diagram.
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Clkout 

PRPG 
Pseudo Random 
Pulse Generator 

Clk 

Digital 
Input ΔΣ 

Modulator	
MUX	nτ	

mτ	

dτ	

Figure 2.9: PRJDTC circuit block diagram.

This technique can be achieved by randomly delaying output signal so that
it looks like a big jitter in output pulse. Fig. 2.10 shows a sample output of
PRJ DTC for a digital input sequence of 10110.

2.3.6 Other ΔΣDTC methods

We can extend our proposed DTC methods by combining of PCM, PPM,
PWM or randomly changing any of three main characteristics (cycle, position
and width) for more effective SSCGs.

2.4 Summary

Digital to time converter is a method to convert a digital value to timing
signal, meaning it brings a digital high and digital low value where they are
identified by their voltage height regardless of their timing, to time domain
signal where pulses height only holds meaning when we look at its timing.
In this chapter we introduced several technique to achieve this such as PCM,
PPM, PWM, PRJ,... . we also went into these methods configuration and
illustrated our point with easy to follow examples
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0 T 

τp 

Sout 

Dout = 0 Dout = 1 

0 T 2T 

τp 

Sout 

0 T 2T 

τp 

Sout 

3T 

(a) Time signal representation for digital “high” and “low”.

Dout(0) = 1,    Dout(1)   = 0,    Dout(2) = 1,   Dout(3) = 1,  Dout(4) = 0 

0 T 2T 3T 4T 5T 6T 7T 8T 
Sout 

(b) Time signal of 10110 represented by left time signals.

Figure 2.10: PRJDTC example.
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Chapter 3

SSCG with ΔΣDTC

Abstract: Here we talk about the design of our proposed Delta-Sigma
Digital-to-Time converter and its result in simulations.

Keywords: PCMΔΣDTC, PPMΔΣDTC, PWMΔΣDTC, PRJΔΣDTC,
compound ΔΣDTC

3.1 Spread Spectrum using various DTCs

3.1.1 SSCG Simulation Methodology

Sine wave with frequency of fs/N , sampled in N points with sampling
frequency fs is fed to DTC as digital input.

After being noise-shaped by a first-order delta-sigma converter, output
has been digital-to-time modulated according to the relevant method. Origi-
nal clock (without sigma-delta DTC modulation) signal base peak power and
its harmonics reach to 66dB (Fig. 3.1).

3.1.2 PCMΔΣDTC Results

Spread spectrum with PCM DTC suppresses spectrum peak significantly
and also creates notches at some locations.

The power spectrum of previously introduced signal by various DTC has
been presented in Figs. 3.2, 3.3, 3.4, 3.5, where we derive those notch locations
by Eq. (3.1). Here we assume that periods TH and TL corresponding to digital

25
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(66)

66 dB 

f 
Figure 3.1: Base peak power without DTC modulation.

signals “1” and “0” are integer (nH , nL) multiple of constant minimum base
period (TC), respectively.

fnotch =
K × (nH + nL)

2|nH − nL|
fs. (3.1)

Here K = |nH − nL| − 1, |nH − nL| − 2, · · · , 1 and
nH and nL are positive integers, defined as nH = TH/TC , nL = TL/TC .

Notice that this equation, as well as other methods’ equations, has been extracted
by observing statistical probability of notch locations in experimented simulation
results.
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Figure 3.2: TH = 6
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Figure 3.3: TH = 7
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Figure 3.4: TH = 8
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Figure 3.5: TH = 9
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3.1.3 PPMΔΣDTC Results

Spread spectrum power of the PPM DTC method is illustrated in Figs. 3.6, 3.7, 3.8, 3.9.
If we assume that each pulse period (TH , TL ) is integer (nH , nL) multiple of base
period TC and each pulse phase (φH , φL corresponding to digital signals “1”, “0”
respectively) is integer (qH , qL) multiples of constant minimum base period (TC),
then we observe that PPM DTC has capability to lower noise in particular band-
width given by Eq. (3.2), although PPM DTC influence on signals peaks may not
be sufficient.

fnotch =
K

|qH − qL|
fs. (3.2)

Here K = |qH − qL| − 1, |qH − qL| − 2, · · · , 1 and
qH and qH are positive integers, defined as qH = nH(φH/2π), qL =

nL(φL/2π).

(64)
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Figure 3.6: qH = 1
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Figure 3.7: qH = 2

3.1.4 PWMΔΣDTC Results

Fig. 3.10 to Fig. 3.13 shows the demonstration of PWM method; in the same
manner as PPM DTC, PWM may not have any notable performance on peak
reduction, but it creates deep notches in certain bands pretty well, whose locations
are given by Eq. (3.3).

fnotch =
K

|mH −mL|
fs. (3.3)

Here K = |mH −mL| − 1, |mH −mL| − 2, · · · , 1 and
mH and mL are positive integers, defined as mH = τH

TC
, mL = τL

TC
.
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Figure 3.8: qH = 3

3.1.5 PRJΔΣ DTC Results

Finally, Fig. 3.14 through Fig. 3.17(a) illustrates sample signal of generated/-
modulated PRJDTC. We observe that this method is very effective in lowering
system signals peaks and yields notch if carefully designed. Set the pulse period
corresponding to digital “0” to be TL which is integer (nL) multiples of constant
minimum base period (TC), and also design so that the pulse period correspond-
ing to digital value “1” arbitrarily alters between TH1 and TH2, which are integer
(nH1 , nH2) multiple of TC . Then we found that the notch frequency locations are
determined by Eq. (3.4).

fnotch ' K(
4nL + p+ q

4G
)fs. (3.4)

Here K = G− 1, G− 2, · · · , 1 and
G is the greatest common divisor between p and q and p = |nH1 − nL|,

q = |nH2 − nL|.
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Figure 3.9: qH = 4
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Figure 3.10: τH = 2
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Figure 3.11: τH = 3
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Figure 3.12: τH = 4
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Figure 3.13: τH = 5

3.1.6 Compound ΔΣ DTC Results

For the matter of completeness in Fig. 3.18, 3.19, a compound method of
PWMDTC + PRJDTC is shown. We notice the affect of PWM DTC in hammering
signal high in side bands of the notches in Figs. 3.18.

3.2 Summary

In this chapter we showed previous chapter methods simulation results and we
introduced numerically derived notch location equations. Based on this equation
circuit designer can easily choose a certain band and use a DTC converter in the
circuit to exclude a certain band from spreading spectrum in desired circuit.



3.2. SUMMARY 35

(52)

51 dB 

0 1 

TH=5 TL=5 
τH=1 τL=1 

J=2, 3, 4 

f 

Figure 3.14: J = 2, 4
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(a) J = 3, 6
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(a) J = 4, 8
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(a) J = 5, 10
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Figure 3.18: J = 2, 4 & τH = 5

0 1 

TH=5 TL=5 
τH=7 τL=1 

J=3, 4, 5, 6 

(65)

51[dB] 

-41 dB 

f 

Figure 3.19: J = 3, 6 & τH = 7



Chapter 4

Adaptive DTC Technology

4.1 Adaptive DTC Idea

In our research we find out that SSCG technique we have introduced previously
[9] is a perfect match (or by some means the only available solution) for adaptive
clock spread spectrum as it is a simple digitally implementable method to convert a
clock based on digital values and is functional at high frequencies, implementable
fully with digital circuit. With a delta-sigma DTC algorithm implemented in
programmatically configurable digital circuit, location of the required exclusion
spectrum bands can be sensed (by a switch or other measures) and DTC algorithm
parameters can change automatically and output clocks shape can change on the
fly (Fig. 4.1).

Adaptive SSCG can utilize only one form of many delta sigma DTCs proposed
such as PCM or PPM or it can utilize multi methods and choose the method
dynamically base on set conditions. (Fig. 4.2).

For instance, in case of PCMDTC, based on external factor 1 to 3, PCM config-
uration changes adaptively and in result notch relocates accordingly (Fig. 4.3). In
contrast to formerly introduced SSCG, delta-sigma DTC methods, it dynamically
computes output pulse timing signals characteristics and shifts the DTC method
internally without affecting overall circuit design architecture.

39
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Figure 4.1: Spread Spectrum Problem
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Figure 4.2: Adaptive Spread Spectrum analogy
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Figure 4.3: Factor 1 in Programmable DTC and its Spread Spectrum bands

4.2 Summary

In this research we have introduced the recent development in time domain
signal analysis and current situating in its usage in DTCs. Then we talk about a
method built over introduced SSCG with exclusive noise band to adaptively and
dynamically change output pulses characteristics in order to tailor-out or exclude
certain bandwidth from spreading.

Offered method opens up broad range of opportunities for circuit designer to
prioritize their task of passing EMI compliance test for their unit without worrying
too much about its later usage and effects on other surrounding electrical circuit
equipment’s.

The feasibility of current method has been verified by numerical analysis and
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its real world bench marking is in process of implementation in FPGA.
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Appendix B

Simulation Settings

All programs in this research have been constructed using Scilab, an open
source, cross-platform numerical computational package and a high-level, numeri-
cally oriented programming language developed by Scilab Enterprises and instan-
tiated back in 1990s by French Institute for Research in Computer Science and
Automation (INRIA) and Ecole des Ponts ParisTech.

Simulation results in this research were produced using following codes with
Scilab version 5.5.1 and simulation tool box (PC) configurations as follow.

Model IMac(21.5-inch, Late 2009)
OS Yosemite (Version 10.10.2)
Processor 3.06 GHz Intel core 2 Duo
Memory 8 GB 1067 MHz DDR3
Graphics NVIDIA GeForce 9400 256 MB

B.1 Digital-to-Time Converter logic

//DTC.sci

function [DTCPall]=RandDTC(DigiDec, N, M, Phi, jitter)

Leng = length(DigiDec);

// all DTC Time output for each input signal

s = 1

jit1= jitter(1)

jit2= jitter(2)

DTCPall = zeros(1,Leng*(N(2)+jit2));

for i=1:Leng ;

//index for current value

curvalidx = DigiDec(i)+1;

47
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n = N(curvalidx);

m = M(curvalidx);

ph = Phi(curvalidx);

//total length= N

//high length = M

//start zero length = phi

//end zero length = N-(phi+M) + random jitter for HIGH and LOW

endzerolength = n-(ph+m)

//if jitte is here endzerolength = endzerolength + random jitter

if (jit2 > jit1+1) then

if curvalidx==1 then

if rand()>=0.5 then

endzerolength = endzerolength + jit1;

end

elseif curvalidx==2

if rand()>=0.5 then

endzerolength = endzerolength + jit2;

end

end

end

curvalidx

//temp

tempDTC = [zeros(1,ph) ones(1,m) zeros(1,endzerolength)];

tempDTClen = length(tempDTC);

DTCPall(s:s+tempDTClen-1) = tempDTC;

s= s+tempDTClen

end

DTCPall = DTCPall(1,1:s-1);

endfunction

B.2 Delta Sigma

// Kobayashi Labratory - Gunma University

// Ramin Khatami

// Feb 2015

//---Delta Sigma function---//

//here we dont use order and integrator

function [out, Dout, DigiDec]=DelSig(sig)
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Vref=1;

Vlow=0;

//delta sigma parameters

err = 0;

a = 0;

//Delta Sigma analog output

out = zeros(1,length(sig));

//Delta Sigma Digital output

Dout = zeros(1,length(sig));

//decimal representation of Delta Sigma Digital Output

DigiDec = zeros(1,length(sig));

for i=2:length(sig)

// error is newly input signal - previously output signal

err(i) = sig(i)-out(i-1);

a(i) = err(i)+a(i-1);

//quantization

if( a(i) >= 0) then

out(i) = 1;

DigiDec(i) = 1;

Dout(i)= 1;

else

out(i) = -1;

DigiDec(i) = 0;

Dout(i)= 0;

end

end

endfunction

B.3 Plotter Source code

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//plots

function [aa]=Stylize(subject,xTitle,yTitle,Auto,bounds)
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title(subject,"color","black","fontsize",5);

xlabel(xTitle,"fontsize",6,"color","black");

ylabel(yTitle,"fontsize",6,"color","black");

xset("font",1,6);

//change font

xgrid(1);

aa = gca();

aa.children.children.thickness =2;

aa.parent.background= -2;

a = gcf()

a.figure_size = [1280 920];

//a.figure_size = [800 600];

sleep(100)

if(Auto==1)

BB = aa.data_bounds;

xmin=BB(1,1);

ymin=BB(1,2)+BB(1,2)/20;

xmax=BB(2,1);

ymax=(BB(2,2)+BB(2,2)/20);

bounds= [xmin,ymin;xmax, ymax];

end

aa.data_bounds=bounds;

endfunction

function []=SaveThis(fileName)

//EPS export

sleep(200);

xs2jpg(gcf(), fileName+’.jpg’);

endfunction

//plot signal

function [f]=plotSig(t,sig,alone)

if(alone)

f = figure();

else

f = gca();

end

plot2d(t,sig);

endfunction

function [f]=plotDelSigOut(out,alone)

if(alone)
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f = figure();

else

f = gca();

end

plot2d2(0:length(out)-1, out);

endfunction

//plot Average Del Sig out

function [f]=plotDAOut(out,alone)

if(alone)

f = figure();

else

f = gca();

end

DA = [];

for i=1:length(out)

DA(i)= [mean(out(1:i))];

end

plot2d(0:length(DA)-1,DA);

endfunction

//plot digital quantized signal

function [f]=plotDigi(DigiDec,alone)

if(alone)

f = figure();

else

f = gca();

end

Qn = (max(DigiDec)+1)^(1/2);

plot2d2(0:length(DigiDec)-1, DigiDec);

aa = gca();

aa.y_ticks =

tlist([’ticks’,’locations’,’labels’],0:1:Qn+1,string(dec2bin(0:1:Qn+1)));

endfunction

//plot DTC signal
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function [f]=plotDTC(DTCPall,alone)

if(alone)

f = figure();

else

f = gca();

end

plot2d2(0:length(DTCPall)-1, DTCPall);

endfunction

//fft and log10 of fft

function [f]=plotFFT(DTCFFT, alone)

if(alone)

f = figure();

else

f = gca();

end

//[imax jmax]= max(DTCPallFFTAbslog);

//[imax2 jmax2]= max(DTCPallFFTAbslog(2:($/4)+1));

//temperoraily fftN = ceil((length(DTCPallFFTAbslog)+1)/2);

//temperoraily plot2d(0:fftN-1,DTCPallFFTAbslog(1:fftN));

//plot2d(DTCPallFFTAbslog);

plot2d2(0:length(DTCFFT)-1,DTCFFT);

[imax jmax]= max(DTCFFT(10:$));

xstring(jmax+5,imax+5,msprintf(’(%.f)’, imax));

txt = gce();

txt.font_size = 4;

txt.font_style = 0;

txt.font_color = 5;

[imin jmin]= min(DTCFFT(10:$));

xstring(jmin+10,imin-5,msprintf(’(%.f)’, imin));

txt = gce();

txt.font_size = 4;

txt.font_style = 0;

txt.font_color = 2;

//xstring(jmax2+10,imax2-10,msprintf(’(%.f)’, imax2));

endfunction
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B.4 Additional Functionality

//looper

function [bi] = dec2bi(de, biNum)

bi = strtod(strsplit(string(dec2bin(de,biNum))));

endfunction

function [dec] = bi2dec(bi)

dec = bin2dec(strcat(string(bi(1:$)),’’));

endfunction

B.5 GUI Program

s = [];

out = [];

dout = [];

digidec = [];

dtcpal = [];

dtcfft = [];

function update_plot(update_idx)

global manu_ui_el VALUES notch_method_list

VALUES_STATUS = zeros(1,length(VALUES));

for k = update_idx

VALUES_STATUS(k) = 1

end

manu_ui_el(11).string= "Computing...";

for i=find(VALUES_STATUS==1)

if i >1 then

VALUES(i) = strtod(strsplit(manu_ui_el(i).string,","));

end

end

//if all zero value has changed

if manu_ui_el(1).value ==1 then

manu_ui_el(2:10).enable = "off";

notch_method_list.enable = "off";

manu_ui_el(4).enable = "on";

notallzero = 0;

else
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manu_ui_el(2:10).enable = "on";

notch_method_list.enable = "on";

notallzero = 1;

end

//if sampling freqhas changed

sig_chg_flg = 1;

if (VALUES_STATUS(2)==1 | VALUES_STATUS(3)==1 |

VALUES_STATUS(8)==1) then

fsamp = VALUES(8);

T=1/fsamp;

t = (0:T:1);

F = VALUES(2);

A = VALUES(3);

if(A==0)

sig = A*ones(1,length(t));

else

sig = A*sin(2*%pi*F*t);

end

//recalculte delta sigma

[Out, Dout, DigiDec]= DelSig(sig);

sig_chg_flg = 1;

else

sig = s;

Out = out;

Dout = dout;

DigiDec = digidec;

sig_chg_flg = 0;

end

//if signal or dtc parameter has changed calculate dtc and

redraw graph

if (sig_chg_flg==1 | VALUES_STATUS(4) | VALUES_STATUS(5) |

VALUES_STATUS(6) | VALUES_STATUS(7)) then

DTCPall = RandDTC(notallzero*DigiDec, VALUES(4), VALUES(5),

VALUES(6), VALUES(7));

DTCFFT = 20*log10(2*abs(fft(DTCPall)+1.e-6));

//////

// wait untill computation is done so that

drawlater();

//get a handel of second graph on screen if it exists,

creat it if not

graph_fig = scf(1);
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//delete former data

if (graph_fig.children~=[]) then

delete(graph_fig.children);

end

graph_fig.figure_position = [430 0];

//draw fft plot

plotFFT(DTCFFT,0);

Stylize("a", "", "$Power \,

[db]$",0,[0,-100;length(DTCFFT), max(DTCFFT)+5]);

drawnow();

else

DTCPall = dtcpal;

DTCFFT = dtcfft;

end

//reset values update status

for i=find(VALUES_STATUS==1)

VALUES_STATUS(i) = 0;

end

manu_ui_el(11).string= "Finished.";

[s, out, dout, digidec, dtcpal, dtcfft]= resume(sig, Out, Dout,

DigiDec, DTCPall, DTCFFT);

endfunction

function save_plot()

global VALUES NAMES manu_ui_el

//define file name

fileName = "";

if (manu_ui_el(1).value ==1) then

fileName= "all_Zero";

else

//create a string from values

for i= 2:size(NAMES,"*")

fileName =

fileName+NAMES(i)+strcat(string(VALUES(i)),’_’)+"_"

end

end

dt=getdate();

//dircetory name in YYYY_MM_DD_HH

saveDir =

srcHome+"/img/"+string(dt(1))+"_"+string(dt(2))+"_"+string(dt(6))+"_"+string(dt(7))+"/";

//create directory if it does not exist
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if(~isdir(saveDir))

mkdir(saveDir);

end

//save file as eps

xs2pdf(gcf(), saveDir+fileName+’.pdf’);

endfunction

function selct_notch()

global manu_ui_el VALUES notch_method_list

f = VALUES(8)+1

fnotch = VALUES(9)

if notch_method_list.value ==1 then

nH = VALUES(4)(1)

nL = VALUES(4)(2)

end

for i=find(VALUES_STATUS==1)

VALUES_STATUS(i) = 0;

end

endfunction

B.6 GUI Programs Logic

// Kobayashi Labratory - Gunma University

// Ramin Khatami

// Feb 2015

//---cleaning and setting requirments--//

//clear concole screen

clc;

//clear variables in memory

clear;

//delete showing windows

xdel(winsid());

//raise scilab memory size to the max size

stacksize("max")

// show numbers in normal formats

format ’v’;

// set present working directory as the srcHome for use in saving

images, etc

srcHome = pwd();
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//---bring external source files---//

exec( srcHome+’/add_func_v3.sci’);

exec( srcHome+’/delsig_v3.sci’);

exec( srcHome+’/dtc_v3.sci’);

exec( srcHome+’/plotter_v3.sci’);

exec( srcHome+’/gui_func_v3.sci’);

global manu_ui_el VALUES notch_method_list

//---initial setting for the GUI program---//

//---dtc configuration--//

// array of string defining each value names to show in the program

NAMES = ["All Zero","Fsig", "A", "N","M", "φin", "Jitter",’Fsamp’,

’notch’];

// placholder for dtc configurations value

VALUES = list()

//all zero value

VALUES(1)=0;

//Fs : sinusoid signal frequency: Integer(ex. 1)

VALUES(2)=1;

//A: sinusoid signal Amplitude: Integer(ex. 1)

VALUES(3)=1;

//N: mutiplee of constant width for each pulse period: Integer

array(ex. 5[for 0 in 1 bit dtc], 5[for 1 in 1 bit dtc])

VALUES(4)=[5 5]; //floor(4*rand(1,(2^VALUES(7).entries)-2))+5];

//M: mutiplee of constant width for each pulse high status length,

it shoudl be lower than N: Integer array(ex. 0[for digital LOW

in 1 bit dtc], 1[for digital HIGH in 1 bit dtc])

VALUES(5)=[1 1]//ones(1,2^VALUES(7).entries);

//φin: mutiplee of constant width for each pulse staritng high

delay, it shoudl be lower than N+m: Integer array(ex. 0[for

digital LOW in 1 bit dtc], 1[for digital HIGH in 1 bit dtc])

VALUES(6)=[0 0];

//random Jitter: similar to φin except φin varies randomely for

defined status over 0: Integer array(ex. 0,0)

VALUES(7)=[0 0]; //no jitter
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//[Hz]sampling frequency

VALUES(8)=2^10-1;

//notch: nothc location frequency: Integer (ex. 1025)

VALUES(9)=1025;

//if a function has been redifned do not throw error

funcprot(0);

//---draw graphical user interface---//

//get monitor screen size in pixel ex: [1,1,(width)1920, (height)

1080]

screen_size = get(0,"screensize_px");

//screen size width

size_x = screen_size(3);

//screen size hight

size_y = screen_size(4);

//distance from top of the screen in gui app

top_offset = 0*size_y/100;

//distance between text inputs in the gui app

dist1 =6*size_y/100;

//define first window,; it is a place where dtc configurations are

changed

//variable for text input boxes to show to the user and get the

user inpout in gui app

manu_ui_el=[];

// variable for tag of text inputs

text_tag = [];

h_graph = figure( ...

"dockable" , "off",...

"infobar_visible" , "off",...

"toolbar" , "none",...

"menubar_visible" , "off",...

"menubar" , "none",...

"default_axes" , "off",...

"layout" , "gridbag",...

"visible" , "on");

//this window is as high as the screen size and 300px wide
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h_graph.figure_size = [430 600];

//it takes a while for scilab to draw the window, there for wait

100ms to go to next step

sleep(100)

// position config window to the left top side of the screen

h_graph.figure_position = [0 0];

//Create the constraint for nested uicontrols

c = createConstraints(...

"gridbag",[1, 1, 1, 1], ...

[1, 1], ...

"both", "center", ...

[0, 0], [50, 50]);

pos_y = 1;

c.grid= = [1 ,pos_y ,4,1];

manu_ui_el(1) = uicontrol(h_graph, ...

"style","checkbox", ...

"Min",0, ...

"Max",1, ...

"string",NAMES(1), ...

"fontsize",16, ...

"value", 1, ...

"callback","update_plot(1);", ...

"constraints", c);

//put control buttons label on screen

for i =2:size(NAMES,"*")

pos_y = pos_y + 1;

c.grid = [1,pos_y,1,1];

text_tag(i) = uicontrol(h_graph, ...

"style","text", ...

"string", NAMES(i), ...

"fontsize", 16, ...

"constraints", c);

c.grid = [2,pos_y,4,1];

c.weight = [10,1];

manu_ui_el(i) = uicontrol(h_graph, ...

"style","edit", ...

"Enable", "off", ...

"string",strcat(string(VALUES(i)),’, ’), ...

"fontsize",16, ...
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"callback","update_plot("+string(i)+");", ...

"constraints", c);

end

//enable M text box to change output pulse width

manu_ui_el(3).enable = "on";

manu_ui_el(9).callback = "selct_notch()"

pos_y = pos_y + 1;

c.grid = [1,pos_y,5,1];

//notch creation mehtod chose

notch_method_list = uicontrol(h_graph, ’style’,’listbox’,

"callback" , "selct_notch()","Enable","off",’constraints’, c);

set(notch_method_list,’string’, "PCM|PPM|PWM|PRJ")

// fill the list

set(notch_method_list, ’value’, 1);

//calculate

pos_y = pos_y + 1;

c.grid = [1,pos_y,1,1];

manu_ui_el(10) = uicontrol(h_graph, ...

"style","pushbutton", ...

"string", ’Compute’, ...

"Enable", "off", ...

"fontsize",16, ...

"callback","update_plot([1,2,3,4,5,6,7,8,9,10]);", ...

"constraints", c);

//save graph

c.grid = [3,pos_y,1,1];

h_Save = uicontrol(h_graph, ...

"style","pushbutton", ...

"string", "Save", ...

"fontsize",16, ...

"callback","save_plot()", ...

"constraints", c);

// stop simulation and exit

c.grid = [5,pos_y,1,1];

h_Stop = uicontrol(h_graph, ...

"style","pushbutton", ...

"string", "Stop", ...
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"fontsize",16, ...

"callback","xdel(0)", ...

"constraints", c);

//show what is going on

pos_y = pos_y +1;

c.grid = [1, pos_y, 5, 1];

manu_ui_el(11) = uicontrol(h_graph, ...

"style","text", ...

"string","Finished.", ...

"fontsize",16, ...

"constraints", c);

update_plot([1,2,3,4,5,6,7,8,9,10]);
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