
Evolutionary Algorithms for Solving
Multi-Objective Shortest Path
Problem
- Case Study of Vehicle Navigation Problems

学生: Umair Farooq Siddiqi (ウメル　ファロク　セデイキ)

学生番号: 10802273

先生: Prof. Wei Shu Gang and Prof. Yoichi Shiraishi

　　　　ウェイ先生、　白石先生

工学学部

群馬大学、日本

PhDの論文

1

Evolutionary Algorithms for Solving

Multi-Objective Shortest Path Problem

- Case Study of Vehicle Navigation Problems

Student: Umair Farooq Siddiqi
Student Id: 10802273

Supervisors: Prof. Wei Shu Gang and Prof. Yoichi Shiraishi
Faculty of Engineering

Gunma University, Japan

November 2012

Contents

1 Introduction 2

2 Existing Algorithms to Solve the MOSP Problem 6
2.1 Polynomial Time Approximation Algorithms (PTAAs) 6
2.2 Evolutionary Algorithms . 7

2.2.1 Single Solution based Algorithms 7
2.2.2 Population based Algorithms 8

3 Problem Description and Performance Measurement 10
3.1 Problem Description . 10
3.2 Performance Measurement . 11

4 Proposed Algorithms 14
4.1 Method to generate a random paths 14
4.2 Proposed StocE based Algorithm 14

4.2.1 Perturb Operation . 17
4.2.2 Mutation . 19
4.2.3 Store pareto-optimal solutions 20

4.3 Proposed Off-Storing Non-Storing GA 20
4.3.1 Initialization . 21
4.3.2 Mark Pareto-Optimal Solutions 21
4.3.3 Selection of the GA Operation 21
4.3.4 GA Operations . 23
4.3.5 Crossover Operation . 26
4.3.6 Mutation Operation . 26

4.4 Estimation of the Memory Requirements 26
4.5 Comparison of Memory Requirements with Some Typical Values 27
4.6 Summary . 27

5 Application of the Proposed Algorithms to the Vehicle Naviga-
tion Problem of Conventional Vehicles 29
5.1 Introduction . 29
5.2 Implementation of the existing algorithms 30
5.3 Proposed StocE based Algorithm 31
5.4 Proposed Off-Spring Non-Storing GA 32
5.5 Summary . 33

i

6 Application of the Proposed Algorithms to the Vehicle Naviga-
tion Problem of Battery Electric Vehicles 42
6.1 Introduction . 42
6.2 Proposed StocE Algorithm . 44
6.3 Proposed Off-Spring Non-Storing GA 45
6.4 Summary . 46

7 Generalization of the Proposed Algorithms 55
7.1 Proposed StocE-based Algorithms 56

7.1.1 Perturb Operation . 56
7.1.2 Mutation . 58

7.2 Off-Spring Non-Storing GA . 58
7.2.1 Selection of the GA Operation 58

7.3 Simulations . 59
7.3.1 Test Problems . 59
7.3.2 Algorithm Parameters . 60
7.3.3 Results of the Test Problems 61

7.4 Effect of Memory Size on the Solution Quality 63
7.5 Summary . 68

8 Congestion Awareness in case of Multi-Vehicles Problem 71
8.1 Problem Description . 72
8.2 Proposed Algorithm . 73
8.3 Simulation Results . 75
8.4 Summary . 77

9 Conclusion 78

ii

List of Figures

1.1 Illustration of types of components in EAs, PTAAs and PTEAs . 3
1.2 Illustration of types of EAs . 4

3.1 Illustration of the HV metric. 12

4.1 Method to find a random path: y = form path(s, d). 15
4.2 Proposed StocE based Algorithm 16
4.3 Function for the selection of a sub-path y = select subpath(S,Num,Pb). 18
4.4 Proposed Perturb operation S′ = Perturb(S,Num,Pb). 19
4.5 Mutation Operation. 19
4.6 Proposed GA based Algorithm 22
4.7 Method used to find if Pi has a feasible pair in the population

y = CheckCn(Pi, Population, s). 23
4.8 Method used to select a GA operation for the chromosome Pj ,

OPER = SelectOperation(Pj). 24
4.9 Procedure to select a feasible pair for Pj , i.e., y = findpair(Pj , Population, s) 24
4.10 Procedure to apply the crossover operation to particle Pj , i.e.,

c′ = Crossover(Pj , Population) 25
4.11 Mutation operation, i.e., c′ = mutation(Pj) 25

5.1 Results of the HV ratios for the proposed StocE-based algorithm
on the BAY road network. 34

5.2 Results of the HV ratios for the proposed StocE-based algorithm
on the COL road network. 35

5.3 Results of the HV ratios for the proposed StocE-based algorithm
on the NY road network. 36

5.4 Summary of the HV ratio results of the Proposed StocE-based
Algorithm. 37

5.5 Results of the HV ratios for the proposed Off-Spring Non-Storing
GA algorithm on the BAY road network. 38

5.6 Results of the HV ratios for the proposed Off-Spring Non-Storing
GA algorithm on the COL road network. 39

5.7 Results of the HV ratios for the proposed Off-Spring Non-Storing
GA algorithm on the NY road network. 40

5.8 Summary of the HV ratio results of the Proposed Off-Spring Non-
Storing GA Algorithm. 41

6.1 Function g1(Bini, P). 44

iii

6.2 Results of the HV ratios for the proposed StocE-based algorithm
on the BAY road network. 47

6.3 Results of the HV ratios for the proposed StocE-based algorithm
on the COL road network. 48

6.4 Results of the HV ratios for the proposed StocE-based algorithm
on the NY road network. 49

6.5 Summary of the HV ratio results of the Proposed StocE-based
Algorithm. 50

6.6 Results of the HV ratios for the Proposed Off-Spring Non-Storing
GA on the BAY road network. 51

6.7 Results of the HV ratios for the Proposed Off-Spring Non-Storing
GA on the COL road network. 52

6.8 Results of the HV ratios for the Proposed Off-Spring Non-Storing
GA on the NY road network. 53

6.9 Summary of the HV ratio results of the Proposed Off-Spring Non-
Storing GA Algorithm. 54

7.1 Proposed StocE-based algorithm for the general MOP problems. 57
7.2 Perturb Operation for the general MOP, SA = Perturb(S,Num) 58
7.3 Method to select a GA operation for the chromosome Pi, GAOper =

SelectGAOper(Pi) . 59
7.4 Results of the calculation of HVR, GD and IGD metrics on the

test problems for the experiments in Case I. 64
7.5 Summary of the results in Case I. 65
7.6 Results of the calculation of HVR, GD and IGD metrics on the

test problems for the experiments in Case II. 66
7.7 Summary of the results in Case II. 67
7.8 HVR, GD and IGD metric values of the Proposed StocE-based

algorithm at different memory sizes. 69
7.9 HVR, GD and IGD metric values of the Proposed Off-Spring

Non-Storing GA algorithm at different memory sizes. 70

8.1 Illustration of the proposed congestion minimization method. . . 74
8.2 Proposed algorithm for congestion minimization. 74
8.3 Method to initialize a random solution in U 75
8.4 Method to perform mutation operation on a strategy profile U . 75
8.5 Illustration of the gradual decrease in the congestion cost as it-

erations proceeds. 76

iv

List of Tables

3.1 Details of the Road Networks . 12
3.2 Variables representing the HV of the algorithms 12

4.1 Memory requirements of the algorithms 26
4.2 Memory requirements based on typical values 27

6.1 Charging rate of the BEVs using different types of CPTs 43

7.1 Description of test problems . 60
7.2 Number of variables (i.e., value of n) used in the experiments. . . 61
7.3 Values of parameters. 62
7.4 Parameter values and memory sizes. 68

8.1 Characteristics of graphs. 76
8.2 Results of the congestion reduction algorithm 76

v

Abstract

Finding Multi-objective shortest paths (MOSP) is an important problem in
computer and transportation networks. MOSP is an NP-hard problem when
it contains more than two objectives. MOSP problem can be efficiently solved
using the evolutionary algorithms (EAs). The existing EAs are of two types:
Population-based and single-solution-based. Population-based EAs are memory-
intensive and single-solution-based EAs cannot yield good quality solutions
within a small amount of time. We proposed two new EAs to solve the MOSP
problem and overcome the shortcomings of the existing EAs. The proposed EAs
require lesser memory and at the same time can also yield good quality solutions.
The first algorithm is based on Stochastic Evolution (StocE) and works on a
single solution. It considers different sub-paths in the solution as its character-
istics and eliminates bad sub-paths from generation to generation. The second
proposed algorithm is an off-spring non-storing GA which is memory-efficient
than the existing GAs and its variants. Unlike existing GA-based algorithms
it does not store children chromosomes in the memory. In the proposed GA-
based algorithm, the children chromosomes conditionally replace their parent
chromosomes and thus do not need to be stored at new memory locations. The
quality of the pareto-optimal sets of the proposed algorithms is determined by
using the Hypervolume metric. This works considers two applications in which
the MOSP problem occurs. The first problem is the selection of optimal paths
in the conventional vehicles and the second problem is the selection of optimal
paths in the electric vehicles. The proposed algorithm outperforms the exist-
ing single-solution-based EAs in solution quality and requires lesser memory
than the population-based algorithms. The proposed algorithms can also be
generalized to solve any multi-objective optimization problems. The proposed
algorithm can solve complicated test problems of multi-objective optimization
with a quality which is competitive to the existing popular EAs. The effect of
memory size on the solution quality is also studied. It is found that excessive
increase in the memory size does not improve the solution quality. The exper-
imental results show that the proposed StocE and GA based algorithms are
highly suitable to solve the MOSP problem in embedded systems.

Acknowledgements

First and foremost, I would like to praise Almighty Allah for His blessings and
help throughout my life.

I would like to express my sincere gratitude to my advisor Prof. Yoichi Shi-
raishi for his kind support and guidance throughout my PhD program. I would
also like to express my gratitude to the committee members: Prof. Wei Shu
Gang, Prof. Yoshikuni Onozato, Prof. Koichi Yamazaki and Prof. S. Mat-
sumura. I would also like to thanks my MS thesis advisor Prof. Sadiq Sait,
Department of Computer Engineering, King Fahd University of Petroleum &
Minerals, Dhahran, Saudi Arabia for his help in my research work.

I would also like to thanks other PhD and MS students in our laboratory,
specially, Dr. Mona Dahb for her guidance in different steps of the PhD course.
Acknowledgements are also due to KDDI Foundation, Japan for providing the
financial support.

I would also like to acknowledge my mother for her motivation and guid-
ance at every stage of my life. I would also like to thanks my wife, Amber and
daughter, Sireen for their patience. I would also like to acknowledge the moral
support of my siblings and friends in Pakistan.

Lastly, I would like to appreciate everyone who contributed in my PhD
studies and research.

1

Chapter 1

Introduction

The shortest path problem in its simplest form refers to finding a path between
any two nodes in a network, such that the sum of the weights of its edges is
minimized and the constraint on the sum of the weights of its edges is also
satisfied. When the edges have only one weight associated with them, then
the shortest path problem is called a single objective shortest path or simply
a shortest path problem and can be accurately solved using polynomial time
algorithms like Dijkstra’s Algorithm [1], etc. However, when the edges contain
two or more weights and the problem contains two or more objectives then the
problem of shortest path is called as Multi-Objective Shortest Path (MOSP)
problem.

MOSP problem is an important operation in transportation networks and
computer networks. Vehicles use the shortest paths to reach their destinations
in lesser amount of time and/or using lesser fuel. In computer networks, the
data transfer rate can be increased dramatically by using shortest paths between
the source and destination nodes.

MOSP is an NP-hard problem [8, 3] and its approximate solutions should be
determined using heuristics. MOSP problem can be solved using three different
types of algorithms:

* Evolutionary Algorithms (EAs)

* Polynomial Time Approximation Algorithms (PTAAs)

* Polynomial Time Exact Algorithms (PTEAs)

The EAs mimics the biological process of evolution in search for the optimum
solution. First and the most important advantage of solving any multi-objective
optimization problems (MOPs) with the EAs is that an EA that is developed to
solve any particular MOP remains useful for the other MOPs. The MOPs can
be entirely different from each other. The EAs are defined in terms of evolu-
tionary operators to produce useful results. The evolutionary operators consists
of functions or operations that are problem-specific. Therefore, the design of
the EA is not dependent on the problem. For instance, Non-dominated sorting
genetic algorithm-II (NSGA-II) [4] which is a popular EA was used to solve
many MOPs that include: Multi-objective Electromagnetic Optimization [5],
Service restoration in distribution systems [6], and optimal application map-
ping on NoC infrastructure[7]. Therefore, many problems or different versions

2

Evolutionary Algorithm (EA) that consists of three
different evolutionary operators (e.g. A, B, & C)

Evolutionary
Operator A

Evolutionary
Operator B

Evolutionary
Operator C

Functions and/or operations based on the problem

Polynomial Time Approximation Algorithm

Functions and/or operations based on the
problem

Polynomial Time Exact Algorithm

Functions and/or operations based on the
problem

(a) Evolutionary Algorithms (EAs) (b) Polynomial Time Approximation Algorithms (c) Polynomial Time Exact Algorithm

Figure 1.1: Illustration of types of components in EAs, PTAAs and PTEAs

of the same problem can be efficiently solved using a same EA. The efforts re-
quired to developed optimization algorithms for different problems also reduces
significantly. EAs also do not require any pre-computation and calculation in
any generation are independent from the previous generations. Therefore, they
are robust to dynamic changes in the network.

PTAAs aim to approximately solve the MOSP problem within the bounds
of the polynomial amount of time. PTAAs guaranteed to solve any MOP with
some solution quality. Most of the PTAAs are described in terms of functions
or operations that are based on the problem [8, 9]. Therefore, the FTAAs are
specific to one or certain problems. FTAAs require pre-computation of some
values. In case of dynamic changes in the network, the computation of the
optimal paths should be restarted. Therefore, they are not robust to dynamic
changes in the network.

PTEAs are suitable for small size networks only. In huge size networks, their
time complexity becomes impractical for most real-time operations. Martin’s
algorithm [13] is a PTEA to solve the MOSP problem. The Dijkstra’s Algorithm
can solve the shortest path problem in networks and has a time complexity
which is better than the other polynomial time exact algorithms. The authors
implemented the Dijkstras Algorithm on the nVIDA CUDA graphics processing
unit (GPU) and its execution time came out to be around 8 minutes on the road
network of the New York City. Gunichev et al. [12] also found the execution
time of the Dijkstra’s Algorithm to be eight minutes. Eight minutes is not
suitable for most of the real-time operations. Ahn, at al. [14] reported that the
time complexity of the Dijkstra’s Algorithm increases with the number of nodes
in the network. In huge size networks, Genetic Algorithm (GA) becomes faster
than the Dijkstra’s Algorithm.

The structure of the EAs, PTAAs and PTEAs is shown in Fig. 1.1. The EAs
comprises of evolutionary operators and therefore, their design is independent
from the specific properties of the problem. PTAAs and PTEAs on the other
hand, contains functions or operations that are based on the problem and can
change from problem to problem.

The MOSP problem occurs in many applications and may take different

3

Existing Evolutionary
Algorithms (EAs)

Population-based
Algorithms

Single-Solution
based Algorithms

· Memory intensive
· Yields good quality solutions
· Finds diverse solutions
· Specially useful in solving

MOPs with many objectives

· Memory efficient
· Require long computation

time. Otherwise, their
solution quality is lesser
than Population-based
algorithms.

Figure 1.2: Illustration of types of EAs

forms. Therefore, the objective functions and constraints can take different
forms. MOSP problem also occurs in emerging fields like electric vehicles, where
new enhancements are continue to happen. Therefore, the MOSP problem is
subject to further modification in the future. The EA approach is specially
suitable for such kind of problems because it can incorporate changes in the
objective function or constraints without effecting the top-level algorithm. The
EA approach also enables that the optimization algorithms to remain useful for
the other and unrelated optimization problems.

Many EAs exists to solve the MOPs. The existing EAs can be divided into
two types: The first type of EAs works on a single solution and are memory
efficient. Simulated Evolution (SimE) and Stochastic Evolution (StocE) [16, 17]
are examples of single-solution based EAs. Single solution EAs are suitable for
use in embedded systems that have limited memory and computational power.
The second type of EAs work on a population of solutions. They are memory
intensive but generally yields results better than the single solution based al-
gorithms. Genetic Algorithm (GA) [16] is an example of population based EA.

This thesis presents two new EAs to solve the MOSP problem. The new
EAs aims to be memory-efficient as well as yield quality solutions to the MOSP
problem. The two important properties of the proposed algorithms are as fol-
lows:

* Memory-efficient than the existing population-based EAs

* Achieves better quality than the existing single-solution based algorithms.

The first algorithm is based on Stochastic Evolution (StocE) algorithm.
StocE was first proposed by Youssef G. Saab and Vasant B. Rao [17] in 1990
for solving combinatorial optimization problems. StocE algorithm works on a
single solution and resembles a biological evolutionary process in which species
eliminate some of the bad characteristics of the older generation in order to pro-
duce a better new generation. The proposed StocE based algorithm considers

4

different sub-paths in a solution as its different characteristics and removes bad
sub-paths with new sub-paths from generation to generation.

The second algorithm is an off-spring non-storing GA algorithm. GAs was
first proposed by John Holland and his colleagues in the early 1970s [18]. GA
simulates the process of natural evolution based on Darwinian principles. The
conventional GA algorithms store children chromosomes in the memory and
require a total memory of size about twice the population size. The proposed
off-spring non-storing GA algorithm, on the other hand, conditionally store
children chromosomes in place of the parent chromosome. Therefore, it requires
memory almost equal to the size of the population. The memory-efficiency in
the proposed algorithms makes them suitable to solve the MOSP problem in
embedded systems.

The performances of the proposed algorithms were compared with some
famous MOO algorithms: (i) (1-1)-Pareto-Archived Evolution Strategy ((1-
1)- PAES) algorithm [20], (ii) Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [4], (iii) Micro-GA [21], (iv) Multi-objective Simulated Annealing
(MOSA) [22], and (v) A straight-forward StocE (std-StocE). NSGA-II was suc-
cessfully used in many applications like: multi-objective electromagnetic prob-
lem that consists of many conflicting objectives [5] and optimization problem in
distribution systems [6]. Micro-GA was also used to solve important problems
like optimization problem in Network-on-Chip (NoC) [7]. PAES was also suc-
cessfully used to perform optimization required by the AI (artificial intelligence)
in video games [23]. The comparison with Std-StocE shows the benefit of using
the proposed design of StocE over the standard StocE algorithm.

This dissertation is organized as follows: The second chapter describes some
popular multi-objective optimization algorithms. The third chapter describes
the MOSP problem in detail and a method of calculating and comparing the
performances of different multi-objective optimization algorithms. The fourth
chapter contains the description of the proposed algorithms. The fifth and sixth
chapters show the application of the proposed algorithms to solve the navigation
problem in conventional vehicles and battery electric vehicles. The seventh
chapter shows the general forms of the proposed StocE and GA-based algorithms
and their comparison with the existing algorithms on several test problems. The
eighth chapter discusses the problem of congestion that occurs due to a large
number of vehicles and a simple method to minimize the congestion. The last
chapter contains the conclusion.

5

Chapter 2

Existing Algorithms to
Solve the MOSP Problem

This chapter describes some existing algorithms to solve the MOSP problem.
Two types of algorithms are discussed that includes: evolutionary algorithms
and polynomial time approximation algorithms.

2.1 Polynomial Time Approximation Algorithms
(PTAAs)

Mandow et al. [9] presented initial results of extending the A* search algorithm
to the solution of MOSPs. The new algorithm is named MOA*, which is a
heuristic search algorithm used to find non-dominated solutions. The search
process in MOA* is guided by heuristic functions. When the guiding heuristic
does not meet a certain bounding test, MOA* becomes unreliable and cannot
produce any useful solution. However, it is reliable when used with a proper set
of heuristics. Tsaggouris and Zaroliagis [10] proposed an improved Fully Poly-
nomial Time Approximation Scheme (FPTAS) algorithm for solving MOSPs.
Their algorithm resembles the multi-objective Bellman-Ford algorithm. Among
FTPASs, it has the best time complexity. Horoba [11] performed an analysis of
a simple evolutionary algorithm that consists of a fitness function and mutation
operation and found that it met the requirements of a Fully Polynomial Time
Randomized Approximation Scheme and its runtime was comparable to that of
Tsaggouris and Zaroliagis’s algorithm [10]. The conventional FTPAS requires
pre-computation of some values (e.g., node labels which includes cost of links)
before determining the optimal path. In case of dynamic changes, the cost of
links can change to reflect dynamic changes in the network. Therefore, some
or many of the node labels becomes invalid. The conventional FTPAS does
not robustly accommodate dynamic changes and the calculation of the shortest
path must be restarted several times whenever there are dynamic changes in
the network. Because simple EC algorithms perform well and robustly accom-
modate dynamic changes in the network, they are often used to solve MOSPs
with dynamic changes.

6

2.2 Evolutionary Algorithms

Elitist Evolutionary Multi-objective Optimization (EMO) algorithms are the
most recent EMOs used for finding Pareto-optimal solutions. In elitist EMO
algorithms, good solutions are preserved during iterations. Recent EMO algo-
rithms can be classified into two classes: (i) single solution based algorithms,
and (ii) population based algorithms. The single solution based EMOs work on a
single solution and therefore, are quite memory efficient. The population based
EMOs work on a population of solutions. They require more memory than the
single solution based algorithms but also yield good quality solutions. In this
chapter, some popular single solution based and population based algorithms
are described.

2.2.1 Single Solution based Algorithms

(1-1)- PAES

Knowles and Corne [20] proposed a multi-objective local search algorithm which
they named as: (1-1)-Pareto Archived Evolution Strategy ((1-1)-PAES) algo-
rithm. (1-1)-PAES is capable of generating diverse Pareto-optimal solutions.
The (1-1)-PAES maintains an archive of Paret-optimal solutions of size m so-
lutions. Each solution in the archive has a position in the n-dimensional grid
(where n is the number of objectives). The PAES has three portions: (1) the
candidate solution generator; (2) the candidate solution acceptance; and (3)
the non-dominated-solutions (NDS) archive. The candidate solution generator
consists of a simple mutation operation and in each iteration it creates a new
solution (called as mutant solution) through performing random mutation in the
solution. The design of the candidate solution acceptance function is as follows:
If the mutant solution dominates the existing solutions then it is accepted and
the current solution is updated. If the mutant solution does not dominate the
existing solution then the following rules are applied: If the mutant solution lies
in a less crowded region of the archive then the existing solution is updated to
the mutant solution. The NDS archive of m solutions is maintained. However,
when the archive becomes full then the following method is used to remove a
solution from the archive to make space for the new solution (c). The grid po-
sition of c in the archive is determined. If c lies in a less crowded region than
any solution in the archive of pareto-optimal solutions then a solution that lies
in the most crowded region is removed and c is inserted to the archive. The ex-
perimental results show that despite being simple, it is very effective in solving
multi-objective optimization problems.

MOSA

Smith, et al. [22] proposed a multi-objective simulated annealing (MOSA) al-
gorithm. The algorithm keeps an archive of pareto-optimal solutions. They
proposed a transformation function to transform a multi-objective solution into
an energy value. A solution can be compared with another solution based on
its energy value and a solution can be better, equal or worse than the other
solution. The energy of any solution is determined by calculating the number
of solutions in the archive of pareto-optimal set that dominates it. Therefore,
the solutions having higher energy values are considered inferior. All solutions

7

in the archive of pareto-optimal solutions are mutually non-dominating. A new
solution is accepted to replace the existing solution according to an exponential
equation of energy difference. When the archive of pareto-optimal solutions
contains too few solutions then the efficiency of the energy difference equation
becomes low; therefore, new solutions (real and/or artificial) are considered to
be a part of the archive of pareto-optimal solutions. Two methods can be used
to increase the number of solutions in the archive of pareto-optimal solutions:
(i) Conditional removal of the dominated solutions from the archive, and (ii)
Creation of artificial solutions through linear interpolation. In the first method,
the dominated solutions whose removal reduces the size of archive below some
specified limit are retained in the archive. In the second method, linear interpo-
lation is used to generate new points. The new hypothetical points are evenly
spread along the pareto-optimal front and dominated by at-least one actual
solution in the archive of the pareto-optimal solutions.

2.2.2 Population based Algorithms

Genetic Algorithm (GA) is a famous population based algorithm. This section
shows some famous variants of GA to solve the MOO problem.

Micro-GA

Coello and Pulido [21] proposed Micro-GA for high quality multi-objective op-
timization. It stores solutions in two types of memories. The first type is the
population memory and the second type is an external memory to store pareto-
optimal solutions. The population memory is further divided into a replaceable
portion and a non-replaceable portion. The replaceable portion contains the so-
lutions that can be altered during the optimization; whereas, the non-replaceable
portion contains the solutions that cannot be changed after being initialized in
the initialization step. The Micro-GA contains a micro-GA cycle that works
on a separate population of solutions in which the elements are selected from
the replaceable and non-replaceable portions of the population memory. The
micro-GA cycle consists of the conventional GA operators (crossover and mu-
tation) and executes for a smaller number of iterations. When the micro-GA
cycle finishes, up to two new pareto optimal solutions are copied from its popu-
lation to the replaceable portion of the population memory and to the external
archive of pareto-optimal solutions. In the next micro-GA cycle, the elements
of the population of the micro-GA cycle are again selected from the population
memory. When the stopping criteria of the Micro-GA is reached then algorithm
goes to the termination instead of initiating another micro-GA cycle.

NSGA-II

Deb, et al. [4] proposed Non-dominated Sorting Genetic Algorithm-II (NSGA-
II) to perform multi-objective optimization. NSGA-II has low computational
complexity. During its iterations, it preserves two types of solutions: non-
dominated solutions and solutions that are most distinct in the population. By
doing so, the algorithm maintains both quality and diversity among its solutions.
An iteration cycle consists of the following steps: (i) The population (includ-
ing children chromosomes) is sorted according to the non-domination count of

8

the solutions. The chromosomes are assigned pareto front values such that the
non-dominated solutions are selected in the first front. The solutions that are
non-dominated after removing the chromosomes of the first front are placed in
the second front. The pareto-front values to the remaining solutions are also
assigned in the same way. (ii) The crowding distances of the chromosomes are
calculated based on the distances between the objective function values of the
chromosomes. The crowding distance helps in developing a uniformly spread
pareto optimal front. (iii) The chromosomes for the population of the next iter-
ation are selected from the combined population (i.e., population and children
chromosomes). The solutions having lesser pareto-front values are first selected
and the solutions of the last front are selected based on the crowding distance.
The children chromosomes are created using crossover and mutation operations.
Experimental results have shown that this algorithm is very successful in finding
diverse Pareto-optimal sets of solutions for multi-objective optimization prob-
lems. Bora, et al. [24] added greedy reinforcement learning to NSGA-II for
self-tuning its parameters. Their new algorithm, NSGA-RL, tunes four NSGA-
II parameters—the probabilities of crossover and mutation operations and the
distribution indices in crossover and mutation operations—on the basis of the
results of previous generations. NSGA-RL is slower than NSGA-II; however, its
results are closer to the NSGA-II results that have the best possible parameter
values.

9

Chapter 3

Problem Description and
Performance Measurement

This chapter describes the MOSP problem in detail. It also describes the meth-
ods of measuring the solution of different algorithms. The result of any MOSP
problem is a set of pareto-optimal solutions. The quality of the pareto-optimal
solutions obtained by different algorithm can vary, therefore, calculating the
performance of the pareto-optimal sets is important.

3.1 Problem Description

Let us consider an undirected graph G(V,E), where V is the set of all vertices
in the network and E is the set of all edges in the network. An edge ex ∈ E has
a starting node and an ending node. For any edge ei, the starting node is rep-
resented as ei.st and the ending node is represented as ei.en, where st, en ∈ V .
Any edge ei ∈ E has up to K weights associated with it, which are represented
as {ei.w1, ei.w2, ..., ei.wK}. The weights of the edges should be non-negative
real numbers. One or more point-to-point (P2P) paths exist between the nodes
in the graph. If s and d (where s, d ∈ V) are two distinct nodes in G, which are
selected as the source and destination nodes. Then many paths exist between
s and d. A path is represented by P and is a sub-set of E, i.e., P ⊆ E. If ex
is the first edge in P and ey is the last edge in P , then ex.st should be s and
ey.en should be d. For any two consecutive edges em and en edges in P (s.t.,
en lies after em in P), em.en = en.st.

In the multi-objective shortest path problem (MOSP), the path P is asso-
ciated with up to K1 (where 1 < K1 ≤ K) objective functions and up to K2

constraints (where 0 ≤ K2 ≤ K). The objective functions can be represented
as f1, f2, ..., fK . The value of any objective function can be calculated as:

fk(P) =
∑
ex∈P

ex.wk, for k= 1 to K1 (3.1)

The set of constraints are represented as g1(P), g2(P), ..., gM (P). The value of
any constraint gk(P) can be determined as:

gk(P) =
∑
ex∈P

ex.wk − C ≥ 0,where C ≥ 0, C ∈ R+ and k= 1 to K2. (3.2)

10

The MOSP problem can be defined as:

Minimize(f1(P), f2(P), ..., fk(P)), s.t., {g1(P), g2(P), ..., gk(P)} can be satisfied.
(3.3)

The objective functions and constraints can have any other form based on
the actual problem. When the number of objectives is greater than one, i.e.,
K1 > 1 and K > 1, then the MOSP problem becomes an NP-hard problem
[8, 3] and heuristics should be used to solve it. The multiple objectives can be
in contradiction to each other and no single solution is said to be optimum in
all objectives. Therefore, a set of pareto-optimal solutions should be obtained
for the MOSP problem. A pareto-optimal set contains all solutions that are not
dominated by any other solution. A solution A dominates another solution B
(which is represented as A � B), if A is better than B in at-least one objective
function value and A is not inferior than B in any objective function value.

3.2 Performance Measurement

EAs are used to approximately solve the multi-objective optimization problems.
Therefore, the quality of pareto-optimal set obtained from any EA should be
calculated. Hypervolume (HV) metric [25, 26] is a popular method for finding
and comparing the quality of pareto-optimal solutions obtained from different
algorithms. The HV metric calculates the space covered by the solutions in the
pareto-optimal set of any algorithm in the solution space. The HV indicator
measures both quality and diversity of solutions. The algorithms that yield
higher values of the HV metric are considered good. The choice of performance
metric depends on the information available about the problem. Many test
problems were designed to do experiments with the multi-objective optimiza-
tion algorithms. In actual or true pareto-front of the test problems is known.
Therefore, many performance metrics exist for the test problems. The real-world
problems, on the other hand have unknown true pareto-fronts. Therefore, very
few performance metrics exist for real-world problems. HV metric has the ad-
vantage that it can works well in problems with unknown true pareto-front.

The HV metric is illustrated in Fig. 3.1 for a minimization problem of two
objectives. In Fig. 3.1, the pareto-optimal set has two solution a1 and a2 and b
is the maximum bounding point. The shaded portion shows the HV value of the
pareto-optimal set. The bounding point (b) has coordinates equal to the number
of objectives in the multi-objective problem. The value of b can be determined by
using the method proposed by Knowles [27]. He selected the bounding point as
bj = maxj+δ(maxj−minj), where bj is the bounding value of the jth coordinate
and maxj and minj are the maximum and minimum values, respectively, of the
jth coordinate in the Pareto-optimal solutions. The value of δ can be taken as
0.01. The HV of the Pareto-optimal sets were calculated using the tool proposed
by Fonseca, et al. [28]. The tool uses an improved version of the Hypervolume
by Slicing Objectives algorithm [29], which accurately computes the HV. This
algorithm is among the fastest methods to compute HV.

When two algorithms (A and B) are compared against each other. If HVA
is the HV of algorithm A and HVB is the HV of the algorithm B. The ratio
HVA
HVB

has value equal to greater than 1 when HVA ≥ HVB . The ratio can relate
the HVs of any two algorithms. If A represents any of the proposed algorithm

11

Space covered by
the pareto-optimal

solutions

f1(P)

f2(P)

a1

a2

b

Figure 3.1: Illustration of the HV metric.

Table 3.1: Details of the Road Networks
Road Network Description Number of nodes Number of edges

BAY Road network of the San Francisco Bay Area 321,270 800,172
COL Road network of the Colorado state 435,666 1,057,066
NY Road network of the New York City 264,346 733,846

Table 3.2: Variables representing the HV of the algorithms
Symbols Description
HVStocE HV of the Proposed StocE-based algorithm
HVGA HV of the Proposed Off-Spring Non-Storing GA algorithm

HVNSGA−II HV of the existing NSGA-II algorithm
HVMicro−GA HV of the existing Micro-GA algorithm
HVPAES HV of the existing PAES algorithm
HVMOSA HV of the existing MOSA algorithm

HVStd−StocE HV of the straight-forward StocE algorithm
HV (NSGA− II) Ratio of the HV of the Proposed algorithm to that of the NSGA-II
HV (Micro−GA) Ratio of the HV of the Proposed algorithm to that of the Micro-GA
HV (PAES) Ratio of the HV of the Proposed algorithm to that of the PAES
HV (MOSA) Ratio of the HV of the Proposed algorithm to that of the MOSA

HV (Std− StocE) Ratio of the HV of the Proposed algorithm to that of the std-StocE

and B represents any of the existing algorithm. Then, the ratio HVA
HVB

gives the

following information: (i) If HVA
HVB

≥ 1, then the proposed algorithm is equal

to or better than the existing algorithm, (ii) If HVA
HVB

= x < 1, then the HV of
the proposed algorithm is about x% of the existing algorithm. When x value
is closer to 1 like 0.9, 0.8 or 0.7 then the performance of the two algorithms is
considered to be very close.

The MOSP problem is solved on the road networks of some cities and states
of the United States of America. The DIMACS design challenge website [30]
contains huge size road networks of some cities and states of United States of
America. The selected road networks are shown in Table 3.1. Table 3.1 shows
the symbol, description of the road network and the number of nodes and edges
that it contains. All the road networks are of huge sizes. An experiment consists

12

of randomly selecting the source and destination nodes in the road network and
finding MOSPs between them. The EAs are non-deterministic algorithms and
they yield a different solution every time. Therefore, a test-case consists of
up-to five trials of an experiment. The average HV of the five trials is the
HV of that test-case. This works consists of two proposed algorithms and five
existing algorithms. The symbols used to represent the HV of a test-case (i.e.,
average HV of its five trails) of different algorithms is shown in Table 3.2. In the
ratios of the HVs, the numerator contains the HV of the proposed algorithm.
The proposed algorithm refers either to the Proposed StocE-based algorithm or
Proposed Off-spring Non-storing GA-based algorithm based on the context. in
the ratios HVNSGA−II , HVMicro−GA, HVPAES , HVMOSA, and HVStd−StocE ,
when their value is greater than 1, then the proposed algorithm performs better
than the existing algorithm. When their value is 1, then the proposed and the
existing algorithm performs equal to each other. When their value is lesser than
1, then the existing algorithm performs better than the proposed algorithm.

13

Chapter 4

Proposed Algorithms

This section describes two new EAs for solving the MOSP problem. Our first
proposed algorithm is based on Stochastic Evolution (StocE); and our second
algorithm is based on Genetic Algorithm (GA).

4.1 Method to generate a random paths

In the proposed algorithms, a random path needs to be built between any source
and destination nodes in the network. Fig. 4.1 shows a method to generate a
random path between the nodes s and d. The method can be invoked by calling
the function form path(s, d) . The first four lines initialize the variables. Each
node has two attributes π and sel associated with it, π is used to store the node
that is preceding it in the path from source to destination and sel is used to
indicate that the corresponding node is entered in the queue Q at least once.
The while loop between lines 6 and 15, retrieves an element from Q i.e. η
then inspects the nodes that are adjacent to η and inserts new elements in Q
according to the conditions shown. The second while loop between 17 and 20,
forms a complete path between the source and destination node by following
the π attribute of the nodes. Reverse Order function in line 21, corrects the
order to path from source to destination.

4.2 Proposed StocE based Algorithm

StocE is a general purpose iterative stochastic algorithm [16, 17]. It resembles
a biological evolutionary process in which the solution eliminates its bad char-
acteristics from generation to generation. The perturb operation in the StocE
performs the task of elimination of the bad characteristics from the solution.
This paper proposes a StocE algorithm for the MOSP problem. In the pro-
posed algorithm, sub-paths in the solution are considered as its characteristics
and the solution replaces the bad sub-paths with better sub-paths from gen-
eration to generation. The proposed StocE based algorithm is shown in Fig.
4.2. The inputs are: source and destination nodes (s & d); iter, which is the
maximum number of iterations in the Perturb-cycle; mt, which is the maximum
iteration in the Mutation-cycle; Num, which is the number of sub-paths (i.e.
the number of characteristics) to be considered in the Perturb operation; Pb,

14

Input: nodes: s, & d
Output: y: A path from s to d nodes.-
1: Q= ∅, done= 0, y =∅
2: for (each node ni ∈ V) do
3: ni.sel= false, ni.π= 0
4: end for
5: Q = Q ∪ {s}
6: while (!done) do
7: η= A randomly selected element from Q, Q = Q− {η}
8: for (each node nx ∈ Adj(η)) do
9: if (nx == d) then

10: nx.π = η, done = 1
11: else if (!nx.sel and Q ∩ {nx} == ∅) then
12: nx.π = η, Q = Q ∪ {nx}, nx.sel = true
13: end if
14: end for
15: end while
16: n = d, y = y ∪ {n}
17: while (n! = src) do
18: n = n.π
19: y = y ∪ {n}
20: end while
21: Reverse Order(y)
22: return y

Figure 4.1: Method to find a random path: y = form path(s, d).

15

Figure 4.2: Proposed StocE based Algorithm

16

which is the probability value used in the Perturb operation; and m is the max-
imum number of solutions in the archive of pareto-optimal solutions. The value
of Pb should be kept large, (e.g. 0.7). The first step is initialization in which the
solution S is initialized with a random solution or path between the nodes s and
d. The random path can be built using the function form path. A loop which
contains two cycles (i.e. Perturb-cycle and Mutation-cycle) starts after the ini-
tialization step. The Perturb-cycle creates new solutions through the perturb
operation and store the new solutions in the set SA. The set SA is initialized
to null at the start of the Perturb-cycle and stores all solutions created through
the perturb operation. After the completion of the Perturb-cycle, the function
str optimal() is called. Using the str optimal() function, the solutions in SA
that are not dominated by any other solution in both sets PS (where PS is
the archive of pareto-optimal solutions) and SA are inserted into PS. The mu-
tation cycle also contains up to mt number of iterations. The Mutation-cycle
contains small number of cycles so as to increase the possibility that the mutant
solution dominates (i.e. better than) the existing solution and also the mutation
cycle should not consume much execution time. Due to the mutation operation,
the next iteration of the outer-most loop executes on a different solution then
the previous iteration. The stopping criterion can be the maximum number of
iterations or maximum execution time. After stopping criteria is reached, the
solutions in PS are returned by the algorithm. The different steps are described
in detail in the following sub-sections.

4.2.1 Perturb Operation

In StocE, each characteristic of the solution should prove its suitability to
remain in the next generation. The perturb operation implements this feature
of the StocE. This work considers different sub-paths in the solution as its
characteristics. Therefore, the sub-paths should calculate their suitability to
remain in the next generation. Fig. 4.2 shows that the Perturb cycle has iter
number of iterations. In each iteration, the Perturb operation is applied to form
a new solution S′ from S. S′ is stored in SA and at the end of the Perturb
cycle, up to iter number of solutions are stored in SA.

The proposed perturb operation consists of two parts. The first part consists
of finding a sub-path in S which is minimally suitable to remain in the next
generation. The suitability of any sub-path (p) is determined based on two
values: (i) the values of its objective function values (f1(p), f2(p), ..., fK(p)),
and (ii) the number of elements in the sub-path. The sub-paths that have
higher values of the objective functions and lesser elements are considered to
be less suitable for the next generation. The second part consists of finding
an alternative sub-path to replace the selected sub-path from S. Alternative
sub-path replaces the selected sub-path if it dominates the selected sub-path,
or is better than the selected sub-path in any objective function value.

Fig. 4.3 shows the first part of the perturb operation and Fig. 4.4 shows
the second part of the perturb operation. Fig. 4.3 shows the select subpath()
function, the inputs are the current solution S, positive integer (Num), and a
positive real number (Pb). The Num is used to specify the number of sub-paths
to be considered in the current solution. The for loop between lines 5 and
15 stores the starting and ending nodes of the selected sub-paths in the arrays
st and en. NN stores the number of nodes in each sub-path. The for loop

17

Input: S: current solution, Num ∈ Z+, Pb ∈ R+, P b ∈ {0 ≤ Pb ≤ 1}
Output: y = {y1, y2}, starting (y1) and ending (y2) indices of a sub-path in S
1: st= null, en= null, NN= null, rank= null, n= number of elements in S
2: for k= 1 to K do
3: Fk = null
4: end for
5: for i = 0 to Num− 1 do
6: i1 = 0, i2 = 0
7: while i1 ≥ i2 do
8: i1= random integer between 0 and n− 1
9: i2= random integer between 0 and n− 1

10: end while
11: for k=1 to K do
12: Fk[i] = fk(S[i1....i2])
13: end for
14: st[i] = i1, en[i] = i2, NN [i] = i2 − i1 + 1
15: end for
16: for i=0 to Num− 1 do
17: r1 = 0, r2 = 0, ..., rK+1 = 0
18: for j=0 to Num− 1 do
19: for k=1 to K do
20: if i! = j and Fk[i] > Fk[j] then
21: rk + +
22: end if
23: end for
24: if i! = j and NN [i] < NN [j] then
25: rK+1 + +
26: end if
27: end for
28: rank[i] =

∑K+1
i=1 rk

29: end for
30: Ir: a random integer between 0 and Num− 1
31: Im: index of the maximum element in rank
32: RN= a random real number between 0 and 1
33: if RN ≤ Pb then
34: y1 = st[Im], y2 = en[Im], y = {y1, y2}
35: else
36: y1 = st[Ir], y2 = en[Ir], y = {y1, y2}
37: end if
38: return y

Figure 4.3: Function for the selection of a sub-path y =
select subpath(S,Num,Pb).

18

Input: S: current solution, Num ∈ Z+, Pb ∈ R+, P b ∈ {0 ≤ Pb ≤ 1},
G = (V,E)

Output: S: solution after the perturb operation
1: I = {i1, i2} = select subpath(S,Num)
2: e1 = (na, nb) = S[i1], e2 = (nc, nd) = S[i2]
3: t = form path(na, nd)
4: S′ = Concatenate{S[0...i1 − 1], t, S[i2 + 1....]}
5: return S′

Figure 4.4: Proposed Perturb operation S′ = Perturb(S,Num,Pb).

between lines 16 and 29 finds the ranks of all sub-paths. The sub-paths that are
less suitable are assigned higher rank values. The sub-paths that have higher
objective function values and lesser number of nodes are assigned higher ranks.
In line 30, Im is the index of the sub-path that has the highest rank value.
In line 31, Ir is the index of a randomly selected sub-path. In lines 33 to 37,
the starting and ending indices of the sub-path that has maximum rank value
is stored in y1 with probability Pb. With probability 1 − Pb, the starting and
ending indices of a random sub-path is stored in y1. The Pb is assigned a higher
value, therefore, generally the algorithm in Fig. 4.3 returns a sub-path that is
least suitable to be kept in the next iteration as compared to the several other
randomly selected sub-paths.

Fig. 4.4 shows the second part of the perturb operation. The inputs are the
current solution (S), Num and Pb, which are already described. The function
returns a new solution which is obtained after applying the perturb operation.
In line 1, a sub-path is chosen in S by calling the function select subpath(). e1
and e2 represent the edges that contains the starting and ending nodes of the
sub-path. In line 3, a new sub-path t is formed between the starting (na) and
ending nodes (nb) of the selected sub-path. In line 4, a new path S′ by inserting
t between the upper and lower portions of the current solution. In lines 5 and
6, S is updated to S′, if S′ is not dominated by S or S′ is better than S in any
objective function value.

4.2.2 Mutation

Input: S: current solution, d destination node
Output: S′: solution after the mutation operation
1: n= number of elements in S, S′ = S
2: rn= random integer between 0 and n− 1
3: ern= (na, nb)= S′[rn]
4: t = form path(na, d)
5: S′ = concatenate{S′[0...rn − 1], t}
6: return S′

Figure 4.5: Mutation Operation.

Fig. 4.2 shows the Mutation-cycle that comprises of up to mt number of it-
erations. The Mutation-cycle aims to find a new solution through mutation that
dominates the existing solution. However, after mt iterations are completed and

19

no new solution can dominate the existing solution, then the existing solution
is updated to the solution that is created in the last iteration of the Mutation-
cycle. The purpose of the mutation operation is to move the current solution
to another random location in the solution space. This operations aims to in-
crease the diversity of solutions and escaping from local minima. The mutation
operation is shown in Fig. 4.5. It first selects a random edge ern in the current
solution, then forms a new random path from the starting node (i.e. na) of
selected edge to the destination node (d). The mutant solution S′ is returned
at the end.

4.2.3 Store pareto-optimal solutions

Fig. 4.2 shows that the function str optimal() is executed after the completion
of the Perturb-cycle. Using the function str optimal(), the solutions in the set
SA are stored in the archive of pareto-optimal solutions (i.e., PS) if they are
feasible as well as not dominated by any other solution in the sets SA or PS.
The solutions in SA are inserted into PS one by one. The solution from SA
is compared with the solutions that already exist in SA. If the solution from
SA is feasible and not dominated by any solution in PS, then it is inserted
into PS. The solutions in PS that are dominated by the solution from SA
are removed from PS. The maximum size of the archive of the pareto-optimal
solutions (PS) is m solutions. When the archive becomes full, then one of the
following two approaches can be used to replace an existing solution with the
new solution in the archive of pareto-optimal solutions. The first approach is to
randomly select a solution in the archive and replace it with the new solution.
The second approach is the adaptive grid method proposed by Knowles, at al.
[20]. It is used to decide if the solution should be accepted by replacing another
already existing member of the archive. In this method, each solution in the
pareto-optimal archive has a grid location. If the new solution lies in a less
crowded location in the grid, then it is accepted in place of a solution that lies
in a crowded location of the grid. The grid has dimensions equal to the number
of objectives, and the range of each dimension is known from the solutions in the
archive. The grid location of any solution is determined by recursively bisecting
each dimension and finding the half in which the solution lies. The maximum
number of sub-divisions in each dimension is set by the user and an example
value is 15 or 25.

4.3 Proposed Off-Storing Non-Storing GA

The GA and its different variants (like NSGA-II, Micro-GA, etc) create children
chromosomes equal to the size of the population. Therefore, if the population
size is N1, then the GA stores a total of 2 × N1 solutions in the population.
In our proposed GA-based algorithm, a child chromosome after its creation
through the crossover or mutation operation is not stored at a new memory
location but conditionally stored at the place of its parent chromosome. The
child chromosome replaces its parent chromosome under the following condi-
tions: (i) If the child chromosome dominates the parent chromosome, (ii) If the
parent chromosome is not pareto-optimal solution in the existing population
then the child chromosome always replaces its parent chromosome. Therefore,

20

additional amount of memory is not required to store the children chromosomes.
The algorithm consists of two GA operations: crossover and mutation. In each
iteration, all chromosomes undergo any one GA operation. Dominated chromo-
somes prefer the crossover operation and non-dominated chromosomes prefer
the mutation operation. The second parent in the crossover operation is al-
ways a non-dominated chromosome that has some common genes with the first
parent. The first parent in the crossover operation is considered as the actual
parent chromosome.

The proposed GA-based algorithm is shown in Fig. 4.6. The inputs to the
algorithm are: Population size (N), source and destination nodes (s and d), a
probability (Pb) which is used in selecting a GA operator for the chromosome.
The first step is initialization. After initialization, the outer-most loop performs
the optimization until the stopping criterion which can be the maximum number
of iterations or maximum execution time is reached. In the optimization, the
first step is to mark the chromosomes in the population that are pareto-optimal
and feasible in the current population. In that way, the pareto-optimal solutions
can be preserved in the GA operations. The next step consists of a loop that
has N iterations. In any iteration, Pi represents the chromosome that exists
at the ith position in the Population. First, a GA operator is selected for the
chromosome Pi and then the selected GA operator is applied to Pi. The new
chromosome that is created after applying the GA operator is called c′. If Pi
is a non-dominated chromosome and c′ dominates Pi then the existing value
of Pi is replaced by c′. If Pi is a not a non-dominated chromosome then c′

replaces the existing value of Pi. After the stopping criterion is reached, then
the pareto-optimal and feasible solutions in the Population are returned by the
algorithm. The remaining part of this section describes the main operations in
the proposed algorithm.

4.3.1 Initialization

In this step, the Population is initialized with up to N distinct and random
chromosomes. Each chromosome is a complete solution or path between the
nodes s and d. The random paths are generated using the function form path().

4.3.2 Mark Pareto-Optimal Solutions

The chromosomes are associated with an attribute sel which is initially set to
the false value. When its value is true then the chromosome is called as selected.
In this step, all chromosomes in the Population that are feasible as well as not
dominated by any other solution in the Population are selected and the values
of their sel attributes are set to true.

4.3.3 Selection of the GA Operation

The proposed algorithm contains a set of GA operations, which is represented as
GAset. The set consists of two elements, i.e., GAset = {Crossover,Mutation}.
All chromosomes must go through any one of the operations from the set GAset.
The crossover operation requires that a common node should exist between the
two parents [14]. In a conventional GA, parents are selected by methods such as
roulette-wheel or tournament selection. This work proposes that the crossover

21

Figure 4.6: Proposed GA based Algorithm

22

Input: Pi ∈ Population, s: source node, Population
Output: y=1, if Pi has a feasible pair in Population. .
1: cnt=0
2: for each chromosome Pj ∈ Population and Pi 6= Pj do
3: for each edge ex = (na, nb) ∈ Pj do
4: for each edge ey = (nu, nv) ∈ Pi do
5: if na == nu 6= s then
6: cnt++
7: Exit from the nested for loops
8: end if
9: end for

10: end for
11: end for
12: if cnt > 0 then
13: return 1
14: else
15: return 0
16: end if

Figure 4.7: Method used to find if Pi has a feasible pair in the population
y = CheckCn(Pi, Population, s).

operation can be applied to any chromosome Pi such that the second parent is
any feasible pair for Pi. A feasible pair for Pi is a non-dominated chromosome
that has at least one common node with Pi (excluding source and destination
nodes). The procedure to check if any feasible pair exists for a chromosome Pi is
shown in Fig. 4.7 and is represented as CheckCn(). The function CheckCn(Pi)
returns 1 if at least one pair exists for Pi, otherwise it returns 0.

The method to select a GA operation for the chromosome is shown in Fig.
4.8. The basic idea behind the proposed assignment of GA operations is the
following. The chromosomes are distinguished into two classes: non-dominated
and dominated. The crossover operation is selected for the dominated chromo-
somes with a high probability (Pb). As previously mentioned, the second parent
in the crossover operation should be a non-dominated chromosome. Therefore,
the dominated chromosomes have a high probability of producing a better off-
spring by exchanging genes with a non-dominated chromosome. On the other
hand, a mutation operation is selected for the non-dominated chromosomes with
a higher probability (Pb) so that they try to produce a better quality offspring
by introducing new genes. The inputs to the method in Fig. 4.8 are as follows:
chromosomes Pj and Pb which is a real number between 0.5 and 1. At the end
of the method, a GA operation is selected for the input chromosome Pj .

4.3.4 GA Operations

GAset in the proposed algorithm consists of two operations: crossover and mu-
tation. Therefore, GAset = {crossover,mutation} and new operations can be
added into the set GAset at any time. The function SelectOperation() should
be modified if new operations are added into GAset. The next two subsections
describe the operations which currently exists in GAset.

23

Input: Pj ∈ Population, Pb ∈ {x ∈ R|0.5 < x ≤ 1}
Output: OPER : A GA operation for Pj
1: v= CheckCn(Pj)
2: r: random real number between [0, 1]
3: if v == 0 then
4: return Mutation
5: else if Pj .sel == true and r ≤ Pb then
6: return Mutation
7: else if Pj .sel == true then
8: return Crossover
9: else if r ≤ Pb then

10: return Crossover
11: else
12: return Mutation
13: end if

Figure 4.8: Method used to select a GA operation for the chromosome Pj ,
OPER = SelectOperation(Pj).

Input: Pj , Population, s: source node
Output: Index of the feasible pair
1: for each particle Pk ∈ Population do
2: if Pk.marked == true and Pj 6= Pk then
3: for each edge ex = (na, nb) ∈ Pj do
4: for each edge ey = (nu, nv) ∈ Pk do
5: if na == nu 6= s then
6: I= index of Pk in the Population
7: Pc = Pc ∪ I
8: exit to the outermost for loop
9: end if

10: end for
11: end for
12: end if
13: end for
14: selP= randomly select an element from Pc
15: return selP

Figure 4.9: Procedure to select a feasible pair for Pj , i.e., y =
findpair(Pj , Population, s)

24

Input: Pj , Population.
Output: c′: offspring
1: c′ = Population[findgbest(Pj)]
2: Cn = null
3: for each edge ex = (na, nb) ∈ Pj do
4: for each edge ey = (nu, nv) ∈ c′ do
5: if (na == nu) then
6: Cn = Cn ∪ na
7: end if
8: end for
9: end for

10: r= a randomly selected node from Cn
11: c′ = concatenate(c′(s..., r), Pj(r,d))
12: return (c′)

Figure 4.10: Procedure to apply the crossover operation to particle Pj , i.e.,
c′ = Crossover(Pj , Population)

Input: Pj ∈ Population, d: destination node
Output: c′: offspring
1: er = (na, nb): a randomly selected edge in Pj
2: c′= form path(na, d)
3: c′= concatenate(Pj(e0, ..., ex), c′) (s.t. ex = (nx, na))
4: return (c′)

Figure 4.11: Mutation operation, i.e., c′ = mutation(Pj)

25

Table 4.1: Memory requirements of the algorithms
Component Number of Paths in different Algorithms

Prop. StocE Prop. GA NSGA-II Micro-GA (1-1)-PAES MOSA
Population 1 N N N 1 1
Children 1 1 N N 1 1

Pareto-optimal set m 0 0 0 m m
others iter 0 0 m1 0 0

total paths 2 + iter +m N + 1 2N 2N +m1 2 +m 2 +m

4.3.5 Crossover Operation

The crossover operation in this algorithm is different from conventional single-
point crossover. Before the crossover operation can be applied on the chromo-
some Pj ∈ Population, the second parent should be determined by calling the
function findpair(Pj), which is shown in Fig. 4.9. The procedure finds a feasi-
ble pair for Pj . As shown in Fig. 4.9, the indexes of all feasible pairs for Pj are
stored in Pc. Then, an element is randomly selected from Pc and is returned.
The crossover operation which is quite similar to the one proposed by Ahn, et
al. [14] is shown in Fig. 4.10. The crossover operation stores the second parent
in variable c′. The common nodes between C and Pj are stored in Cn. Then,
an element is randomly selected from Cn. In the second to last row, c′ is formed
by combining the upper portion of c′ with the lower portion of Pj . Finally, c′ is
returned

4.3.6 Mutation Operation

The proposed mutation operation is shown in Fig. 4.11. The inputs are: a
chromosome Pj and destination node d. An edge is randomly selected in Pj
that is represented as er = (na, nb), where na and nb are its starting and ending
nodes. Then a random sub-path is formed between the nodes na and d. In the
next step, c′ is updated to store the newly created path between the nodes s
and d.

4.4 Estimation of the Memory Requirements

This section presents an estimation of the memory requirements of the pro-
posed algorithms in terms of maximum number of solutions which they store
in the memory at any time during their execution. For comparison purposes,
the memory required by some famous multi-objective optimization algorithms
including NSGA-II, Micro-GA, (1-1)-PAES and MOSA are also shown.

The memory requirements in terms of the number of paths that should be
stored in the memory by the algorithms are shown in Table 4.1. The first col-
umn mentions the component of the algorithm that store the specified number
of paths; the second column mentions the number of paths for different algo-
rithms. The “Prop.” acts as short form of “Proposed”. The number of paths
are calculated based on the input parameters of the algorithms. In that way,
different input parameters have different memory requirements. The descrip-
tion of values in the first column are as follows: (i) “Population” refers to the
population of solutions in the algorithms; (ii) “Children” refers to the number
of chromosomes which are created through the GA operators (crossover and/or

26

Table 4.2: Memory requirements based on typical values
Algorithm Parameter values Number of Paths

Proposed StocE m = 10, iter = 3 15
Proposed GA N = 20 21

NSGA-II N = 20 40
Micro-GA N = 10,m1 = 20 40

(1-1)-PAES m = 10 12
MOSA m = 10 12

mutation); (iii) “Pareto-optimal set” mentions the size of the pareto-optimal
set; (iv) “others” include the number of paths to be stored in the memory by
the remaining components of the algorithm. In the proposed StocE based algo-
rithm, “others” include number of paths to be stored in the Perturb cycle. In
the Micro-GA algorithm, “others” include the paths that needs to be stored in
the memory by the replaceable and non-replaceable memories and their value
is represented as m1. .

4.5 Comparison of Memory Requirements with
Some Typical Values

This section shows the comparison of the memory requirements of the proposed
algorithms with the existing algorithms. The authors of NSGA-II used a popu-
lation size of 20 [4] in their experiments. Therefore, the typical values of param-
eters have a population size of 20. The experiments in the next three chapters
use the same parameter values to solve the vehicles’ navigation problem. The
typical values are selected such that the population size in all population-based
algorithms is same. The NSGA-II and Micro-GA require additional memory to
store the children chromosomes, therefore, their overall memory requirement is
higher than the proposed algorithms.

In Table 4.2, the first column mentions the algorithm. The second column
mentions parameter values that are relevant with respect to determining the
memory requirements. The last column mentions the memory requirements of
the algorithms in terms of the number of paths. The results show that the
proposed algorithms are memory-efficient than the existing population based
multi-objective algorithms. The solution quality of the algorithms will be shown
in the next two chapters. The next chapters show that based on typical values
The memory requirement of an algorithm should be combined by its solutions
quality The solution quality will be analysed in the next two chapters.

4.6 Summary

This chapter presents two new EAs to solve the MOSP problem. The first
algorithm is based on StocE algorithm and treats the random sub-paths in a
solution as its characteristics. During optimization it replaces the bad sub-paths
with good sub-paths. The second algorithm is an Off-Spring Non-Storing GA.
The GA generally creates children chromosomes equal to the population size.
The proposed GA is different from the conventional GA because it minimizes
the memory requirements of the algorithm by not storing children chromosomes.
The children chromosomes either replace their parent chromosomes or being dis-

27

carded soon after their creation. An estimation and comparison of the memory
requirements of the proposed algorithms with the existing algorithms shows that
the proposed algorithm uses lesser memory than the famous population-based
algorithms.

28

Chapter 5

Application of the Proposed
Algorithms to the Vehicle
Navigation Problem of
Conventional Vehicles

5.1 Introduction

This chapter shows the application of the proposed algorithms to solve the
navigation problem of internal combustion engine based vehicles (ICEVs). The
navigation problem in ICEVs aims to find one or more point-to-point (P2P)
MOSPs in a road network. The objectives in the MOSP problem are generally
minimizing the length of the paths and the travelling time on the paths. The
length of a path is equal to the sum of the lengths of the individual edges
that are included in it and is generally expressed in km. The travelling time
on a path is based on many factors such as the traffic, condition of the roads,
road width, maximum allowed speed of the vehicles, etc. The travelling time
is generally not related with just length of the path. Therefore, length of the
path and their travelling time can be in contradiction to each other. Therefore,
a set of pareto-optimal solution should be determined for the MOSP problem
for ICEVs.

Let us consider a road network G = (V,E), where V contains all intersections
in the road network and E contains all roads that join the intersections in the
road network. Any edge ei ∈ E has a starting node u and an ending node v
and is associated with up to two attributes ei.l and ei.SA. ei.l represents the
length of the edge and ei.SA represents the average travelling time on the edge
for the ICEVs vehicles. The driver selects two distinct nodes s and d in the
road network and wants to find one or more paths from s to d. If P represents
a path between nodes s and d, then P ⊆ E. The first and last elements in P
can be represented as es and ed such that the starting node of es is s and the
ending node of ed is d.

The MOSP problem consists of two objectives which are: f1(P) and f2(P).
f1(P) represents the total distance of the path and f2(P) represents the total

29

travelling time of the path. The values of f1(P) and f2(P) can be determined
as follows.

f1(P) =
∑
ei∈P

ei.l (5.1)

f2(P) =
∑
ei∈P

ei.SA (5.2)

The objective function of the MOSP problem can be defined as follows:

Minimize(f1(P), f2(P)) (5.3)

The pareto-optimal set of solutions that is obtained from the optimization
algorithms can be represented as S and contains one or more paths (or solu-
tions).

As already mentioned in the chapter 3, the experiments are conducted using
the road networks of some cities and states of the USA. The road networks that
are shown in Table 3.1 contain the following information: length and travelling
time of the edges (i.e., ei.l and ei.SA), and geographical location of the nodes.

5.2 Implementation of the existing algorithms

The proposed algorithms were compared with some existing Evolutionary or
Stochastic Algorithms in order to show their performances. We selected NSGA-
II, Mirco GA, (1-1)-PAES and MOSA algorithms for the comparison because
they showed very good performance on many different problems and somewhat
can act as benchmark algorithms. The algorithms were implemented using C#
in Visual Studio 2010 and executed on an Intel iCore 5, 2.27 MHz based laptop
computer that has 3 GB of RAM. The details of the implementations of the
existing algorithms are shown in the following:

The stopping criterion in all algorithms was set to 30 seconds. The NSGA-II
was implemented with population size of 20 solutions. The authors of NSGA-II
experimented their algorithm with a population size of 20 [4], therefore, this
work also uses the same population size. It used tournament selection based
on crowding distance to select the parents for the crossover operation. The
crossover and mutation operations were used for the shortest path problem,
as proposed by Ahn, et al. [14]. Crossover probability was set to 0.90 and
mutation probability was set to 0.15. During each iteration, the elements for
the population in the next iteration were selected from the population and
children sets. The selection was made based on the non-domination count and
diversity of solutions.

The Micro-GA was implemented with population memory size of 20 solu-
tions in which 50% is non-replaceable memory and the remaining is replaceable
memory. The size of the population for the micro-GA cycle is 10. The nominal
convergence of the micro-GA cycle is reached in 5 iterations. In the micro-GA
cycle, the parents for the crossover operation are selected using tournament se-
lection based on non-domination count of the solutions. The crossover rate and
mutation probability were set to 0.90 and 0.15. The crossover and mutation
operations were used for the shortest path problem, as proposed by Ahn, et al.
[14]. In the micro-GA cycle, up to one non-dominated solution is retained from

30

one generation to the next. When nominal convergence of the micro-GA cycle
is reached then up to two non-dominated solutions are copied to the external
memory and replaceable portion of the population memory.

The MOSA was implemented with parameter values as follows, initial tem-
perature (To) was set to 100 and its value is decreased by 10% in each iteration.
The threshold for minimum solutions in the pareto optimal solutions archive
was set to 4, i.e., if the archive of pareto optimal solutions contains less than
four solutions then interpolation is applied to find hypothetical solutions that
are dominated by at least one solution in the archive of pareto optimal solutions.
The perturb operation in MOSA is similar to the GA mutation operation [14].

The (1-1)-PAES was also implemented and contains mutation operation as
proposed by Ahn, et al. [14]. The size of the archive of pareto-optimal solutions
was set to 10. The value of parameter l, i.e., the number of bisections of each
dimension in the adaptive grid was set to 100.

A straight-forward implementation of StocE was also performed. The StocE
is not previously applied to the MOSP problem, however, a straight-forward
implementation is performed to show the advantage of using the proposed al-
gorithm. In the perturb operation, each edge in the solution is considered as
a movable element [17]. The perturb operation consists of the following steps:
(i) A loop is executed that selects a different edge from the current solution in
each of its iterations, (ii) A new sub-path is built using the function form path
from the starting node of the selected edge to the destination node. The new
sub-path is integrated in the original solution and a new solution is formed.
With a probability of 0.80, the new solution replaces the original solution only
if it dominates the original solution. With a probability of 0.2, the new solution
replaces the original solution without any condition. As soon as the original
solution is updated the outer for loop is terminated and the perturb operation
finishes.

5.3 Proposed StocE based Algorithm

The proposed StocE based algorithm was implemented with typical parameter
values, such that sufficient number of iterations can be executed by the algo-
rithm. The fine tuning or analysis of the parameter values is left for future study.
The proposed StocE based algorithm was implemented with the following pa-
rameter values: (i)iter = 3, (ii) mt = 3, (iii) m = 10, (iv) number of bisections
in the adaptive grid = 100, and (v) stopping criterion was 30 seconds, which is
equal to the other algorithms.

The performance of the proposed StocE based algorithm is compared with
the existing population and single solution-based algorithms. The existing al-
gorithms include: (i) NSGA-II, (ii) Micro-GA, (iii) (1-1)-PAES, (iv) MOSA,
and (v) Std-StocE. The ratios of the HVs between the proposed StocE-based
algorithm to the existing algorithms are determined. The results are shown in
Figs. 5.1 to 5.3. Fig. 5.1 shows the results of the BAY road network. Fig. 5.2
shows the results of the COL road network. Fig. 5.3 shows the results of the NY
road network. In Fig. 5.1, the Proposed StocE-based algorithm obtains average
HV values that are 55% to 85% than that of the NSGA-II. It also obtains HV
values better than Micro-GA in up-to 20% test cases. It obtains average HV
values better than (1-1)-PAES and Std-StocE in 90% test cases. It obtains av-

31

erage HV values better than MOSA in all test cases. In Fig. 5.2, the Proposed
StocE-based algorithm obtains average HV values that are better than that of
the NSGA-II in 40% test cases. It also obtains average HV values which are
better than Micro-GA in 50% test cases. Its average HV value remains better
than that of (1-1)-PAES, MOSA and Std-StocE in all test cases. In Fig. 5.3,
the Proposed StocE-based algorithm obtains average HV values that are better
than that of the NSGA-II and Micro-GA in 20% test cases. It obtains an aver-
age HV value which is better than (1-1)-PAES in 70% test cases. It obtains an
average HV which is better than that of the MOSA and Std-StocE in all test
cases.

The results are summarized in Fig. 5.4. The graph breaks the HV ratio
values into four classes. The interval {x|x > 1} includes test cases in which the
proposed StocE-based Algorithm obtains an average HV which is better than
the other algorithm. The interval {x|x = 1} includes test cases in which the
proposed and the existing algorithm obtains equal average HV value. The third
interval {x|0.8 ≥ x < 1} includes the test cases in which the existing algorithm
obtains a better average HV value than the proposed algorithm but the average
HV of the proposed algorithm is not lesser than 80% of the average HV value
of the existing algorithm. The last interval {x|0.5 ≥ x < 0.8} includes the
test cases in which the proposed algorithm obtains an average HV value which
is equal to or more than 50% but lesser than 80% of the average HV of the
existing algorithm. The graph in Fig. 5.4 shows that the Proposed StocE-based
Algorithm dominates the existing single-solution based algorithms while using
just 25% more memory than them. It also occasionally performs better than the
existing population based algorithms while using memory which is about 2.65
times lesser than them. The Proposed StocE-based algorithm also performs
better than NSGA-II and Micro-GA in 17% and 30% test cases, respectively.
In that way, the Proposed StocE-based Algorithm is successful in achieving its
goals by outperforming existing single-solution based algorithms and remains
memory efficient.

5.4 Proposed Off-Spring Non-Storing GA

The proposed off-spring non-storing GA was implemented with the following
parameter values:(i) N = 20, (ii) Mb = 0.75, and (iii) stopping criterion was set
to 30 seconds. The proposed algorithm was compared with NSGA-II, Micro-
GA, (1-1)-PAES and MOSA. The implementation of the existing algorithms is
described in Section 5.2. The proposed GA based algorithm requires memory
which is almost half of the NSGA-II and Micro-GA.

The performance of the proposed GA based algorithm is compared with the
existing population and single solution-based algorithms. The existing algo-
rithms include: (i) NSGA-II, (ii) Micro-GA, (iii) (1-1)-PAES, (iv) MOSA, and
(v) Std-StocE. The ratios of the HVs between the proposed GA algorithm to
the existing algorithms are determined. The results are shown in Figs. 5.5 to
5.7. Fig. 5.5 shows the results of the BAY road network. Fig. 5.6 shows the
results of the COL road network. Fig. 5.7 shows the results of the NY road
network. In Fig. 5.5, the Proposed GA-based algorithm obtains an average HV
which is better then NSGA-II in 30% test cases, better than Micro-GA in 20%
test cases, better than (1-1)-PAES in 90% test cases, and better than MOSA

32

in 80% test cases. In Fig. 5.6, the Proposed GA-based algorithm obtains an
average HV which is better then NSGA-II in 30% test cases, better than Micro-
GA in 50% test cases, better than (1-1)-PAES in 60% test cases, and better
than MOSA in 70% test cases. In Fig. 5.7, the Proposed GA-based algorithm
obtains an average HV which is better then NSGA-II in 80% test cases, better
than Micro-GA in 50% test cases, better than (1-1)-PAES in 90% test cases and
better than MOSA in all test cases.

The results are summarized in Fig. 5.8. The graph breaks the HV ratio
values into four classes as also performed for the Proposed StocE-based algo-
rithm. The graph in Fig. 5.8 shows that the Proposed StocE-based Algorithm
dominates the existing single-solution based algorithms while using just 75%
more memory than them. It also performs better than the NSGA-II and Micro-
GA in 47% and 40% test cases, respectively. It uses memory which is about
half of the NSGA-II and Micro-GA. Its performance is also slightly better than
the Proposed StocE-based algorithm, however, the Proposed StocE-based algo-
rithm requires lesser memory. Based on the obtained results, the proposed-GA
based algorithm successfully outperformed the existing single-solution based al-
gorithms and also uses lesser memory than the Population-based algorithms.
Therefore, it is suitable to be utilized for solving MOSP problem in embedded
systems.

5.5 Summary

This chapter showed the application of the proposed algorithms to solve the
MOSP problem of ICEVs. The MOSP problem of ICEVs has two objectives
that are: (i) Minimize the total distance of the path, and (ii) Minimize the total
travelling time of the path. The algorithms were implemented using C# in
Visual Studio 2010. The experiments were conducted on real road networks of
some cities and states in the USA. The performances of algorithms are measured
in terms of HV metric. The algorithms having larger HV values are considered
better. The HV values of the proposed and the existing algorithm are compared
by finding the ratio between the HV of the proposed algorithm to the HV of
the existing algorithm. Each experiment consists of up to six trials and the
comparisons were performed on the average HV values of the six trials.

The experiments were performed under the condition in which the proposed
algorithms can use memory between the single-solution and population-based
algorithms. The Proposed StocE-based algorithm outperformed several exist-
ing single-solution based algorithms ((1-1)-PAES, MOSA, and Std-StocE) while
using only 25% more memory. The Proposed StocE-based algorithm also per-
forms better than the population-based algorithms (NSGA-II and Micro-GA) in
around 17% test cases. The Proposed Off-Spring Non-Storing GA also outper-
forms several existing single-solution-based algorithms ((1-1)-PAES and MOSA)
and performs better than the population-based algorithms (NSGA-II and Micro-
GA) in 40% test cases.

The experimental results show that the Proposed StocE-based and Off-
Spring Non-Storing GA algorithms should be preferred to be solve MOSP prob-
lem in embedded systems than the single-solution-based algorithms. They have
solution quality better than the single-solution-based algorithms and memory
requirement which is lesser than the population-based algorithms.

33

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 5.1: Results of the HV ratios for the proposed StocE-based algorithm on
the BAY road network.

34

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

HV(std-StocE)

Test cases

H
yp

er
vo

lu
m

e
ra

tio
s

Figure 5.2: Results of the HV ratios for the proposed StocE-based algorithm on
the COL road network.

35

0

1

2

3

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

HV(std-StocE)

Test cases

H
yp

er
vo

lu
m

e
ra

tio
s

Figure 5.3: Results of the HV ratios for the proposed StocE-based algorithm on
the NY road network.

36

P
e
rc
e
n
ta
ge

Figure 5.4: Summary of the HV ratio results of the Proposed StocE-based
Algorithm.

37

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

Test cases

Hy
pe

rv
ol

um
e

ra
tio

s

Figure 5.5: Results of the HV ratios for the proposed Off-Spring Non-Storing
GA algorithm on the BAY road network.

38

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 5.6: Results of the HV ratios for the proposed Off-Spring Non-Storing
GA algorithm on the COL road network.

39

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 5.7: Results of the HV ratios for the proposed Off-Spring Non-Storing
GA algorithm on the NY road network.

40

Pe
rc
en

ta
ge

Figure 5.8: Summary of the HV ratio results of the Proposed Off-Spring Non-
Storing GA Algorithm.

41

Chapter 6

Application of the Proposed
Algorithms to the Vehicle
Navigation Problem of
Battery Electric Vehicles

6.1 Introduction

This chapter shows the application of the proposed algorithms to solve the navi-
gation problem of battery electric vehicles (BEVs). The navigation problem in a
BEV aims to find Point-to-Point (P2P) multi-objective shortest paths (MOSP)
in the selected road network.

The intersections in a road network for BEVs are assumed to contain Con-
tactless Power Transfer (CPT) units [31]. The CPTs are installed in the roads
and use inductive wireless recharging technology to recharge the BEVs while
they are waiting on the traffic signal at the intersection. The recharging ca-
pability of a CPT depends on its power rating. CPTs of four different power
ratings are available: (a) 10 kW, (b) 20 kW, (c) 30 kW, and (d) 40 kW. The
capability of a CPT to recharge BEVs per unit time increases with its power rat-
ing. Therefore, the intersections that are equipped with high power CPTs can
provide more recharging than the CPTs that are equipped with less powerful
recharging stations.

Chopra, et al. [32] investigated the rate of charging or discharging of the
BEVs when the road network contains CPTs. They assumed that BEVs are
running according to one of the following standard driving cycles: (a) U.S. stan-
dard FTP 72 (Federal Test Procedure) cycle also called Urban Dynamometer
Driving Schedule (UDDS); (b) European standard ECE-EUDC combined ur-
ban test cycle; (c) Japanese standard JC08 urban test cycle. Each driving cycle
specifies the characteristics such as: (a) the total distance of the path; (b) total
duration; and (c)average speed of the vehicle, etc. Chopra, et al. determined
charging rates for the BEVs when the intersections contain different types of
CPTs. In our experiments, we used the road networks of the United States of
America (as described in Chapter 5). Therefore, the results of the UDDC cycle

42

Table 6.1: Charging rate of the BEVs using different types of CPTs
Power rating of the CPT total percentage charging total travelling time % charging per minute

(kW) (%) (seconds) (%/minute)
0 kW -7.8 1396 -0.3352
10 kW -5.6 1396 -0.2454
20 kW -2.9 1396 - 0.1271
30 kW -0.2 1396 - 0.0088
40 kW +2 1396 +0.0887

give best approximate values for the charging rate of the BEVs.
Table 6.1 shows the results which were presented by Chopra, et al. for a

UDDC driving cycle. In Table 6.1, the first column mentions the power rating
of the CPT. The 0 kW CPT means that no CPTs exist at the intersection. The
second column mentions the percentage charge of the BEV from its initial value
after completing a UDDC driving cycle. For example, if the initial battery level
of any BEV is 80%, then on a road network that has 10 kW CPTs installed
at the intersections, the battery level of the BEV at the end of an UDDC
driving cycle would be 74.2% (because, 80 + (−5.6) = 74.4). The negative sign
refers to discharging and the positive sign refers to charging. The third column
mentions the time for which the BEV travelled. The fourth column mentions
the charging rate per minute. In a strict sense, the values in the fourth column
are only valid for the BEVs that are following the requirements of the UDDC
driving cycle. However, the UDDC cycle was designed considering most common
driving conditions in the United States of America. Therefore, same results can
be used for the other BEVs that are travelling in the road networks of the United
States of America and not following any particular driving cycle. The charging
rate per minute is used in our experiments to determine the charging rates of
the edges in the network. The networks can also contain more than one type of
CPTs. When the CPTs at the starting and ending nodes of an edge are different
then the average charging rates of the two nodes is considered as the charging
rate of that edge. The percentage charge per minute for any power rating of
CPT can be obtained by calling the function; y = Rat(x), where x is the power
rating of the CPT and x ∈ {0, 10, 20, 30, 40}. The value of y is obtained from
Table 6.1.

Let us consider a road network G(V,E). V contains all nodes or intersections
in the road network and E contains the edges or roads that join the intersections.
Any node vi ∈ V is associated with a property vi.r that contains a value from the
set {0, 10kW, 20kW, 30kW, 40kW} that specifies the power rating of the CPT
that is present at the node vi. In the experiments, the type of CPTs is randomly
chosen. Any edge ei ∈ E has a starting node vx and an ending node vy and is
associated with up to three attributes ei.l, ei.SA, and ei.s. ei.l represents the
length of the edge; ei.SA represents the average travelling time on the edge; and
ei.s represents the charging rate on ei. If vx and vy are the starting and ending

nodes of ei, respectively, then ei.s =
Rat(vx.r)+Rat(vy.r)

2 .
A driver selects two distinct nodes s and d in the road network and wants

to find one or more paths from s to d. A BEV starts its journey with some
battery level that is represented as Bini and its value can vary between 0 and
1 and represents the percentage of battery which is charged at the source node
(s). If P represents a path between nodes s and d, then P ⊆ E. The first and
last elements in P can be represented as es and ed such that the starting node

43

Input: Bini: initial battery level of the BEV, P : a solution or path
Output: result: true or false, depends on if the constraint is satisfied or not
1: Bc = Bini, result = true
2: for each edge ex ∈ P do
3: Bc = Bc + (ex.s× ex.SA)
4: if Bc < 0 then
5: result = false
6: end if
7: end for
8: return result

Figure 6.1: Function g1(Bini, P).

of es is s and the ending node of ed is d. The starting node of all edges in P
except the first edge in P should be same as the ending node of the preceding
edge. The MOSP problem contains two objective functions and one constraint.
The objective functions can be defined as: (i) f1(P), which is the total length
of P ; and (ii) f2(P), which is the total travelling time on P . Mathematically:

f1(P) =
∑
ei∈P

ei.l (6.1)

f2(P) =
∑
ei∈P

ei.SA (6.2)

The constraint is represented as g1(P) and is shown in Fig. 6.1. It is used to
ensure that the BEV do not run out of battery during its journey. In Fig. 6.1,
the inputs are the BEV’s initial battery level (i.e. Bini), and the solution P . In
line 1, Bc initializes to Bini and result to true. The for loop in lines 2 to 7,
adds the percentage charging of each edge in P into Bc. If the Bc value becomes
negative at any time then it means that the BEV cannot travel on the path P .
The path or solution P is a feasible solution, if and only if g1(P) is true. The
objective functions, constraints and the MOSP problem can be mathematically
expressed as follows:. The objective function of the MOSP problem for the
BEVs can be defined as follows:

Minimize(f1(P), f2(P)), (6.3)

such that g1(P) = true

The pareto-optimal set is represented as S and contains only feasible pareto-
optimal solutions.

6.2 Proposed StocE Algorithm

The implementation and parameter values of the algorithms remains same as
already discussed in the Section 5.3 of the previous chapter. The performance
of the proposed StocE based algorithm is compared with the existing popula-
tion and single-solution-based algorithms. The existing algorithms include: (i)
NSGA-II, (ii) Micro-GA, (iii) (1-1)-PAES, (iv) MOSA, and (v) Std-StocE. The
ratios of the HVs between the proposed StocE-based algorithm to the existing
algorithms were determined.

44

Figs. 6.2 to 6.4 shows the results of the HVs ratios of the experiments. Fig.
6.2 shows the results of the BAY road network. Fig. 6.7 shows the results of
the COL road network. Fig. 6.4 shows the results of the NY road network.
In Fig. 6.2, the Proposed StocE-based algorithm obtains average HV values
that are better than NSGA-II in 70% test cases, it also average HV values
better than Micro-GA in 80% test cases. The proposed GA-based algorithm
obtains also performs better than the (1-1)-PAES and MOSA in most of the
test cases. In Fig. 6.3, the proposed algorithm obtains a better value than
the other algorithms as follows: (a) better than NSGA-II in 50% test cases,
(ii) better than Micro-GA in 80% test cases, (iii) better than (1-1)-PAES and
MOSA in all test cases.

The results for all road networks are summarized and the plot in Fig. 6.5
shows the summary of all test cases. The intervals {x|x > 1} and {x|x =
1} indicates percentage of test cases in which the proposed algorithm obtains
an average HV value that is better than or equal to the existing algorithms.
The Proposed StocE-based algorithm performs better than NSGA-II in 30%
test cases; it also performs better than Micro-GA in 40% experiments; it also
performs better than (1-1)-PAES in 67% test cases and; it performs better than
MOSA in 94% test cases. The main reason for the better performance of the
proposed algorithm is its ability to explore more paths in the network through
the use of the innovative Perturb operation. .

6.3 Proposed Off-Spring Non-Storing GA

The implementation of the algorithms and parameters values was same as dis-
cussed in Section 5.4 of the previous chapter. The proposed algorithm was
compared with NSGA-II, Micro-GA, (1-1)-PAES and MOSA. The proposed
GA based algorithm requires memory which is almost half of the NSGA-II and
Micro-GA.

Figs. 6.6 to 6.8 shows the results of the HVs ratios of the experiments. Fig.
6.6 shows the results of the BAY road network. Fig. 6.7 shows the results of
the COL road network. Fig. 6.8 shows the results of the NY road network. In
Fig. 6.6, the Proposed Off-Spring Non-Storing algorithm obtains average HV
values that are better than NSGA-II in 70% test cases, it also obtain average HV
values that are better than that of Micro-GA in 80% test cases. The proposed
GA-based algorithm also performs better than that of (1-1)-PAES in 90% test
cases. It obtains average HV values better than MOSA in all test cases. In
Fig. 6.7, the proposed algorithm obtains HV values as follows: (a) better than
NSGA-II in 50% test cases, (ii) better than Micro-GA in 80% test cases, (iii)
better than (1-1)-PAES and MOSA in all test cases. In Fig. 6.8, the proposed
algorithm obtains HV values as follows: (a) better than NSGA-II and Micro-GA
in 60% test cases, (ii) better than Micro-GA in 40% test cases, (iii) better than
(1-1)-PAES and MOSA in all test cases.

The results for all road networks are summarized and the plot in Fig. 6.9
shows the summary of all test cases. The intervals {x|x > 1} and {x|x = 1}
indicates percentage of test cases in which the proposed algorithm obtains an
average HV value that is better than or equal to the existing algorithms. The
Proposed GA-based algorithm performs better than NSGA-II in 60% test-cases.
It also performs better than Micro-GA in 67% test cases. It performs better

45

than (1 − 1) − PAES in 97% test cases. It performs better than MOSA in all
test cases. Therefore, the Proposed Off-Spring Non-Storing GA outperformed
the existing single-solution algorithms in terms of solution quality. It performs
better than the population-based algorithms in 60% test cases while using a
memory which is about half of the population-based algorithm. The innovative
methods for selecting the GA operation for the chromosomes and the conditional
replacement of the parent chromosomes by their children are found to be very
successful in improving the solution quality and keeping the population size
small.

6.4 Summary

The proposed algorithms are also applied to solve the MOSP problem of BEVs.
The experiments were conducted on real road networks and assume CPTs exist
at the intersections. The MOSP problem consists of two minimization objec-
tives and one constraint. The minimization objectives consist of minimizing the
length and travelling time of the path. On any path P , the BEV starts its travel
with an initial battery level and on each edge in P the battery level of the BEV
decreases up to some percent. The total percentage decrease in the battery
level of the BEV should not exceed the initial battery level of the BEV. The
proposed algorithms were implemented to find the pareto-optimal feasible solu-
tions. The performances of the proposed algorithms were compared with some
famous existing algorithms (NSGA-II, Micro-GA, PAES, MOSA and straight-
forward StocE). The comparison results showed that the proposed StocE based
algorithm outperforms the existing single solution-based algorithms while using
25% more memory. It also performs better than the population-based algo-
rithms in 17% test cases. The Proposed Off-Spring Non-Storing GA also out-
performs existing single-solution-based algorithms. It performs better than the
population-based algorithms in 60% test cases while using about half amount
of memory. Therefore, the proposed algorithms are suitable to solve the MOSP
problem in embedded systems and other platforms in which memory-efficiency
is very important.

46

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

HV(Std-StocE)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 6.2: Results of the HV ratios for the proposed StocE-based algorithm on
the BAY road network.

47

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

HV(Std-StocE)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 6.3: Results of the HV ratios for the proposed StocE-based algorithm on
the COL road network.

48

0

1

2

3

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

HV(Std-StocE)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 6.4: Results of the HV ratios for the proposed StocE-based algorithm on
the NY road network.

49

P
e
rc
e
n
ta
g
e

Figure 6.5: Summary of the HV ratio results of the Proposed StocE-based
Algorithm.

50

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 6.6: Results of the HV ratios for the Proposed Off-Spring Non-Storing
GA on the BAY road network.

51

0

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 6.7: Results of the HV ratios for the Proposed Off-Spring Non-Storing
GA on the COL road network.

52

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

HV(NSGA-II)

HV(Micro-GA)

HV(PAES)

HV(MOSA)

Test cases

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

Figure 6.8: Results of the HV ratios for the Proposed Off-Spring Non-Storing
GA on the NY road network.

53

Pe
rc
en

ta
ge

Figure 6.9: Summary of the HV ratio results of the Proposed Off-Spring Non-
Storing GA Algorithm.

54

Chapter 7

Generalization of the
Proposed Algorithms

An important feature of the Evolutionary Algorithms (EAs) is that they are
not specific to any problem. Therefore, the proposed algorithms remain useful
for applications other than the multi-objective shortest path (MOSP) prob-
lem. This chapter discusses the generalized designs of the proposed algorithms
and their performance comparison with the existing algorithms. The proposed
StocE-based algorithm and off-spring non-storing GA-based algorithms that
are shown in Figs. 4.2 and 4.6 can be applied to solve any multi-objective op-
timization problem. However, the evolutionary operators that constitutes the
proposed algorithms should be redefined based on their basic principles for a
general multi-objective optimization problem. Several test problems exist for
the multi-objective optimization problems. The test problems have known ac-
tual pareto-fronts. Many performance metrics exist for the test problems with
known actual pareto-front. Therefore, the performance of the proposed algo-
rithms can be evaluated and compared with the exiting algorithms in detail.

The continuous multi-objective optimization (MOP) problem having m ob-
jectives can be described as follows:

minimize F (x) = (f1(x), ..., fm(x)) (7.1)

subject to x ∈ Ω

where Ω is the decision (variable) space, Rm is the objective space, and
F : Ω → Rm consists of m real-valued objective functions. A point x ∈ Ω is
represented by a set of m elements, i.e., x = (x1, x2, ..., xm). A point x∗ is called
pareto-optimal if there is no x ∈ Ω such that F (x) dominates F (x∗). Any point
x ∈ Ω is a possible solution and is used as a solution or chromosome in the
proposed algorithms.

This chapter is organized as follows: The first two sections describe the
generalized versions of the proposed StocE-based and off-spring non-storing GA-
based algorithms. The third section shows the simulation results.

55

7.1 Proposed StocE-based Algorithms

The proposed StocE-based algorithm is introduced in chapter 4. Fig. 7.1 shows
the generalized form of the proposed StocE-based algorithm. The generalized
form of the proposed StocE-based algorithm is slightly different from its version
to solve the MOSP problem. The Perturb operation in the generalized StocE-
based algorithm returns a set SA that contains a maximum of Num number of
solutions, instead of a single solution. Therefore, the step str optimal(..) that
is used to store the solutions in SA into the archive of pareto-optimal solu-
tions is present inside the Perturb cycle. The proposed StocE-based algorithm
contains two evolutionary operators that are: Perturb operation and Mutation.
The following two sub-sections describe the general designs of the Perturb and
mutation operations.

7.1.1 Perturb Operation

Chapter 4 described the Perturb operation for the MOSP problem. It selects
different sub-paths in the solution, determine their suitability to remain in the
next generation and then finally replace a least suitable sub-path with another
sub-path. A solution in the MOSP problem is a set of interconnected edges
and the value of each element is dependent on its predecessor. If we want to
replace just one element in the solution without effecting the remaining elements
than very few alternate edges exist. Therefore, in-order to increase the possible
choices we used sub-paths instead of just one edge. The sub-paths are created by
using a method in which the destination node is searched from the source node
in a fashion similar to the breadth-first-search. When the source and destination
nodes are too far then it can be slow. Therefore, the creation of new sub-paths
is reduced by first computing the suitability of the existing sub-paths and then
generating just one new sub-path to replace an existing least suitable sub-path.

In a general continuous MOP, a solution contains up to m elements or vari-
ables such that each element can select its value independently from its set of
possible values. Alternate choices for any element can be generated by randomly
selecting values from its set of possible values. Therefore, generating alternate
solutions is not an expensive operation. The Perturb operation is shown in
Fig. 7.2. The inputs are: the current solution S and positive integer Num.
The Perturb operation creates up-to Num number of new solutions and store
in the set SA. It returns the set SA at the end. The steps performed in the
Perturb operation are as follows: An element (xr) is randomly selected in the
solution. A loop is executed for Num number of times. In each iteration, it
first generates a random number R that belongs to the set of possible values
for xr. Then the value of the element xr is assigned equal to R to form a new
solution S′. S′ is similar to S in all elements except xr. S

′ is added into SA. If
S′ dominates S then the existing current solution S is updated to S′. After the
Perturb operation is completed, then the current solution S may be updated to
a new value and several solutions that are not dominated by S are contained in
the set SA. All solutions in SA are inserted into the archive of pareto-optimal
solutions, if they remains non-dominated in comparison with the solutions that
already present in the archive.

56

Start

s: source node
d: destination node

iter ∊ Z+; mt ∊ Z+; Num ∊

Z+; Pb ∊ R+; m ∊ Z+

Initialization
S= random_path(s, d)

PS= Ø

SA= Ø, cnt=0

if cnt < iter

SA= Perturb(S, Num)
str_optimal(PS, SA)

cnt++
if cnt < mt

S’= Mutation(S)
cnt++

if S’
dominates

S

S= S’
Fnd= true

if fnd==
false

S=S’

If stopping criterion
is reached

return PS

End

Yes

No

Yes

No

No

Yes Yes

No

Yes

Perturb-cycle

Mutation-cycle

Figure 7.1: Proposed StocE-based algorithm for the general MOP problems.

57

Input: S = {x1, x2, ..., xm}: current solution, Num ∈ Z+: Number of itera-
tions in the Perturb Operation.

Output: SA: set of solutions created in the Perturb operation.
1: SA = null; xr: a randomly selected element from S
2: for i= 1 to Num do
3: generate R (where R is a randomly selected value for the xr element from

its set of possible values.)
4: S′ = S, S′(xr) = R
5: SA = SA ∪ S′
6: if S′ dominates S then
7: S = S′

8: end if
9: end for

10: return SA

Figure 7.2: Perturb Operation for the general MOP, SA = Perturb(S,Num)

7.1.2 Mutation

The proposed mutation operation forms a new solution from scratch. In the
mutated solution, the values of all elements in the solution are randomly selected
from their sets of possible values.

7.2 Off-Spring Non-Storing GA

The proposed Off-spring Non-Storing GA-based algorithm is shown in Fig. 4.6
and is described in chapter 4. The algorithm uses a novel procedure that selects
a GA operator for the chromosome. The algorithm consists of two evolutionary
operators: Crossover and Mutation. The procedure to select a GA operator
for the chromosomes and the evolutionary operators should be defined for a
general MOP. The population is represented as Population and contains up to
N chromosomes.

7.2.1 Selection of the GA Operation

In the MOSP problem, the crossover operation can be applied to the chromo-
somes that have at-least one common node with another non-dominated chro-
mosome. In the general MOP, there is no such type of restriction. Both the
crossover and mutation operations can be applied to any chromosome. If the
crossover operation is selected for the chromosome Pi ∈ Population, then the
second parent is any non-dominated chromosome P ∗k ∈ Population. The pro-
cedure to select a GA operator for the chromosome Pi ∈ Population is shown
in Fig. 7.3.

For the non-dominated chromosomes in the Population, the mutation oper-
ation is selected with probability Pb and the crossover operation can be selected
with probability 1 − Pb. For the remaining chromosomes, the crossover opera-
tion is selected with probability Pb and the mutation operation can be selected
with probability 1− Pb.

58

Input: Pi = {x1, x2, ..., xm}: a chromosome from the Population, Pb: Proba-
bility value

Output: GAOper: the selected GA operator for the chromosome Pi
1: r: a randomly generated real number between [0, 1]
2: if Pi is a non-dominated solution in the Population then
3: if r ≤ Pb then
4: GAOper = Mutation
5: else
6: GAOper = Crossover
7: end if
8: else
9: if r ≤ Pb then

10: GAOper = Crossover
11: else
12: GAOper = Mutation
13: end if
14: end if
15: return GAOper

Figure 7.3: Method to select a GA operation for the chromosome Pi, GAOper =
SelectGAOper(Pi)

Different types of crossover operators have been proposed that can be used
in the proposed algorithm. Some examples of the crossover operators include:
Simulated Binary Crossover (SBX) [33], Partially Matched Crossover (PMX)
[16], Single Point Crossover and Two Point Crossover [16]. Different types of
mutation operations are also proposed that includes: Polynomial mutation [34],
uniform mutation and non-uniform mutation [35].

7.3 Simulations

The Proposed StocE and Off-Spring Non-Storing GA-based algorithms were
implemented using Java programing language on the jMetal toolkit [36, 37].
jMetal was developed for the purpose of promoting the research of evolutionary
algorithms. It contains implementations of several multi-objective optimization
algorithms, evolutionary operators, and performance metrics. The implemen-
tations of the proposed algorithms contain new implementation of their novel
components and the existing implementations of the standard GA functions
like crossover, mutation, finding non-dominance, etc. The jMetal also contains
several test problems that have known pareto-fronts. The following sections de-
scribes the test problems on which the algorithms were evaluated; parameters
of the algorithms; and the simulation results on the test problems.

7.3.1 Test Problems

Hui Li and Qingfu Zhang [38] have introduced a suite of nine test problems
that are named as: LZ09 F1 to LZ09 F9. The test problems have complicated
shape pareto-fronts that are difficult to achieve by any algorithm. Table 7.1
shows the test problems for multi-objective optimization as proposed by Hui Li

59

Table 7.1: Description of test problems
Problem Objective Functions Variable Bounds

LZ09 F1 f1 = x1 + 2
J1

∑
j∈J1(xj − x

0.5(1.0+
3(j−2)
n−2)2

1) [0, 1]n

f2 = 1−√x1 + 2
|J2|

∑
j∈J2(xj − x

0.5(1.0+
3(j−2)
n−2)

1)2

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}
LZ09 F2 f1 = x1 + 2

|J1|
∑
j∈J1(xj − sin(6πx1 + jπ

n))2 [0, 1]× [−1, 1]n−1

f2 = 1−√x1 + 2
|J2|

∑
j∈J2(xj − sin(6πx1 + jπ

n))2

where J1 and J2 are same as those of LZ09 F1
LZ09 F3 f1 = x1 + 2√

J1

∑
j∈J1(xj − 0.8x1cos(6πx1) + jπ

n)2 [0, 1]× [−1, 1]n−1

f2 = 1−√x1 + 2
|
√
J2|

∑
i∈J2(xj − 0.8x1sin(6πx1 + jπ

n))2

where J1 and J2 are same as those of LZ09 F1

LZ09 F4 f1 = x1 + 2
|J1|

∑
j∈J1(xj − 0.8x1cos(

6πx1+
jπ
n

3))2 [0, 1]× [−1, 1]n−1

f2 = 1−√x1 + 2
|J2|

∑
j∈J2(xj − 0.8x1sin(6πx1 + jπ

n))2

where J1 and J2 are same as those of LZ09 F1
LZ09 F5 f1 = x1 + 2

|J1|
∑
j∈J1{xj − [0.3x21cos(24πx1 + 4jπ

n) + 0.6x1]cos(6πx1 + jπ
n)}2 [0, 1]× [−1, 1]n−1

f2 = 1−√x1 + 2
|J2|

∑
j∈J2{xj − [0.3x21cos(24πx1 + 4jπ

n) + 0.6x1]sin(6πx1 + jπ
n)}2

where J1 and J2 are same as those of LZ09 F1
LZ09 F6 f1 = cos(0.5x1π)cos(0.5x2π) + 2

|J1|
∑
j∈J1(xj − 2x2sin(2πx1 + jπ

n))2

f2 = cos(0.5x1π)sin(0.5x2π) + 2
|J2|

∑
j∈J2(xj − 2x2sin(2πx1 + jπ

n))2

f3 = sin(0.5x1π) + 2
|J3|

∑
j∈J3(xj − 2x2sin(2πx1 + jπ

n))2 [0, 1]2 × [−2, 2]n−2

where
J1 = {j|3 ≤ j ≤ n, and j-1 is a multiplication of 3 }
J2 = {j|3 ≤ j ≤ n, and j-2 is a multiplication of 3 }
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3 }

LZ09 F7 f1 = x1 + 2
|J1| (4

∑
j∈J1 y

2
j − 2

∏
j∈J1 cos(

20yjπ√
j

+ 2) [0, 1]n

f2 = 1−√x1 + 2
|J2| (4

∑
j∈J2 y

2
j − 2

∏
j∈J2 cos(

20yjπ√
j

+ 2)
where J1 and J2 are same as those of LZ09 F1

and yj = xj − x
0.5(1.0+

3(j−2)
n−2)

1 , j = 2, .., n.

LZ09 F8 f1 = x1 + 2
|J1| (4

∑
j∈J1 y

2
j − 2

∏
j∈J1 cos(

20yjπ√
j

) + 2) [0, 1]n

f2 = 1−√x1 + 2
|J2| (4

∑
j∈J2 y

2
j − 2

∏
j∈J2 cos(

20yjπ√
j

) + 2)
where J1 and J2 are same as those of LZ09 F1

and yi = xj − x
0.5(1.0+

3(j−2)
n−2

1 , j = 2, ..., n
LZ09 F9 f1 = x1 + 2

|J1|
∑
j∈J1(xj − sin(6πx1 + jπ

n))2 [0, 1]× [−1, 1]n−1

f2 = 1− x21 + 2
|J2|

∑
j∈J2(xj − sin(6πx1 + jπ

n))2

where J1 and J2 are same as those of LZ09 F1

and Qingfu Zhang. In Table 7.1, the first column shows the problem name, the
second column describes the objective functions (f1, f2 and f3) of the problem.
The third column mentions the possible set of values for the variables. The
number of variables (i.e., the values of n) which were used in the experiments
are shown in Table 7.2.

7.3.2 Algorithm Parameters

The jMetal tool-kit contains implementations of several existing algorithms
that includes: NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[39], Pareto Archived Evolution Strategy -2 (PAES-2), (1-1)-PAES, etc. The
proposed algorithms were compared with NSGA-II, SPEA2 and (1-1)-PAES.
NSGA-II and SPEA2 are population-based algorithms, whereas, (1-1)-PAES is
a single solution based algorithm. NSGA-II requires to store number of paths
equal to the twice of the population size. If the Population size is NNSGA−II ,
then NSGA-II requires to store a total of 2NNSGA−II paths in the memory.

60

Table 7.2: Number of variables (i.e., value of n) used in the experiments.
Test Problem Value of n
LZ09 F1 10
LZ09 F2 30
LZ09 F3 30
LZ09 F4 30
LZ09 F5 30
LZ09 F6 10
LZ09 F7 10
LZ09 F8 10
LZ09 F9 30

SPEA2 maintains a population of solutions as well as an archive of Pareto-
optimal solutions. Therefore, if the population size is NSPEA2 and archive size
is ASPEA2, then it requires to store 2NSPEA2 +ASPEA2 paths in the memory.
The (1-1)-PAES requires to store number of solutions equal to APAES+2 in the
memory, where APAES is the size of the archive to store pareto-optimal solu-
tions. The proposed StocE-based algorithm needs to store a total of 2+m+Num
number of paths in the memory, where m is the size of the archive of pareto-
optimal solutions and Num is the number of iterations in the Perturb cycle.
The proposed off-spring non-storing GA requires to store a total of 2 + NGA
solutions in the memory, where NGA is the population size. The solution quality
of the different algorithms were compared at an equal execution time and mem-
ory requirement. The execution time (or stopping criteria) of the algorithms
was set to 20 seconds. The experiments were divided into two cases: case I and
case II. In case I, the total memory requirement of the algorithms was set to
300 solutions. In case II, the total memory requirement of the algorithms was
set to 100 solutions. The parameter values of the algorithms are shown in Table
7.3. The algorithms uses the SBX Crossover with probability equal to 0.90.
The algorithms used Polynomial mutation operator with probability equal to

1
Number of variables . NSGA-II used Binary tournament selection for selecting the
parents for the crossover operation.

7.3.3 Results of the Test Problems

The nine test problems were solved using the proposed StocE and GA-based
algorithms as well as using the NSGA-II and SPEA2. Each test problem was
solved by any particular algorithm for up-to ten times. In each trial, the values
of the performance metrics were calculated and the average value of the perfor-
mance metrics in the ten trials is reported in this subsection. The performance
of the algorithms was measured in terms of the following performance metrics:
Hypervolume Ratio (HVR), Generational Distance (GD), and Inverse Gener-
ational Distance (IGD). HVR is the ratio between the pareto-front obtained
from the algorithm to the actual pareto-front of the problem. Its value lies be-
tween 0 and 1 and a value closer to 1 is considered better. GD is the average
distance of the solutions in the obtained paret-front from nearest member of
the actual pareto-front. A smaller value of GD is considered better and the
obtained pareto-front is considered to be closer to the actual front. IGD is the
distance of the actual pareto-front from the obtained front. A smaller value of
IGD shows that the obtained pareto-front is closer to the actual pareto-front
and is also uniformly spread along the actual pareto-front.

The results of case I are shown in Figs. 7.4. Fig. 7.4 contains three graphs

61

Table 7.3: Values of parameters.
Proposed StocE-based Algorithm

Case I Case II
Parameter Value Parameter Value

m 278 m 88
iter 10 iter 10
Num 20 Num 10
mt 10 mt 10

Proposed GA-based Algorithm
Case I Case II

Parameter Value Parameter Value
NGA 298 m 98
Pb 0.95 Pb 0.95

NSGA-II
Case I Case II

Parameter Value Parameter Value
NNSGA−II 150 NNSGA−II 50

SPEA2
Case I Case II

Parameter Value Parameter Value
NSPEA2 100 NSPEA2 25
ASPEA2 100 ASPEA2 50

(1-1)-PAES
Case I Case II

Parameter Value Parameter Value
APAES 298 APAES 98

(a), (b) and (c). The graph (a) shows the average HVR values of the ten trials
for each test problem. The graph (b) shows the average GD values for each test
problem and the graph (c) shows the average IGD values for the test problems.
The graphs show that in many test problems, the proposed algorithms obtains
a better results than the existing algorithms. The comparison is quantitatively
shown in Fig. 7.5. The y-axis mentions the percentage of test problems in which
the proposed algorithms obtains a better value than that of the algorithm which
is mentioned on the x-axis.

The results are summarized in Fig. 7.5. Fig. 7.5 shows that the Proposed
StocE-based algorithms performance is as follows. In terms of HVR values: (i)
It performs better than NSGA-II in 67% test problems, (ii) it performs better
than SPEA2 in 56% test problems, (iii) it performs better than (1-1)-PAES
in 78% test problems. In terms of GD values: (i) It performs better than
NSGA-II in 22%, (ii) it performs better than SPEA2 in 22% test problems, (iii)
it performs better than (1-1)-PAES in 100% test problems. In terms of IGD
values: (i) It performs better than NSGA-II in 67%, (ii) it performs better than
SPEA2 in 89% test problems, (iii) it performs better than (1-1)-PAES in 89%
test problems.

Fig. 7.5 shows that the Proposed GA-based algorithm is as follows. In terms
of HVR values: (i) It performs better than NSGA-II in 56% test problems, (ii) it
performs better than SPEA2 in 33% test problems, (iii) it performs better than
(1-1)-PAES in 44% test problems. In terms of GD values: (i) It performs better
than NSGA-II in 100%, (ii) it performs better than SPEA2 in 89% test problems,
(iii) it performs better than (1-1)-PAES in 79% test problems. In terms of IGD
values: (i) It performs better than NSGA-II in 22%, (ii) it performs better than
SPEA2 in 44% test problems, (iii) it performs better than (1-1)-PAES in 67%
test problems.

The results of case II are shown in Fig. 7.6. Similar to Fig. 7.4, it also
has three graphs. The results show that in many test problems the proposed

62

algorithms performs better than the existing algorithms. The results are sum-
marized in Fig. 7.7. Fig. 7.7 shows that the Proposed StocE-based algorithms
performance is as follows. In terms of HVR values: (i) It performs better than
NSGA-II in 67% test problems, (ii) it performs better than SPEA2 in 56% test
problems, (iii) it performs better than (1-1)-PAES in 56% test problems. In
terms of GD values: (i) It performs better than NSGA-II in 44% test problem,
(ii) it performs better than SPEA2 in 22% test problems, (iii) it performs better
than (1-1)-PAES in 22% test problems. In terms of IGD values: (i) It performs
better than NSGA-II in 89% test problems, (ii) it performs better than SPEA2
in 89% test problems, (iii) it performs better than (1-1)-PAES in 100% test
problems.

Fig. 7.7 shows that the Proposed GA-based algorithm is as follows. In terms
of HVR values: (i) It performs better than NSGA-II in 100%, (ii) it performs
better than SPEA2 in 78% test problems, (iii) it performs better than (1-1)-
PAES in 67% test problems. In terms of GD values: (i) It performs better
than NSGA-II in 89% test problems, (ii) it performs better than SPEA2 in 89%
test problems, (iii) it performs better than (1-1)-PAES in 89% test problems. In
terms of IGD values: (i) It performs better than NSGA-II in 67% test problems,
(ii) it performs better than SPEA2 in 67% test problems, (iii) it performs better
than (1-1)-PAES in 56% test problems.

The comparison results show that given equal amount of memory and exe-
cution time, the Proposed StocE and GA-based algorithms are competitive in
performance to the existing well-known algorithms on a set of difficult test prob-
lems. In many test problems, the proposed algorithms obtains a better results
than one or more of the existing algorithms. Therefore, they should be utilized
in solving practical problems in the field of multi-objective optimization.

7.4 Effect of Memory Size on the Solution Qual-
ity

In proposed algorithms, the impact of memory size on the solution quality can
be determined by executing the algorithms at a constant execution time but
with different memory sizes. The proposed StocE and GA-based algorithms
are implemented with the following parameter values: (i) execution time is set
constant to 20 sec, (ii)iter= 5, (iii) mt= 10, and (iv) num= 10. The value
of m (i.e., size of the archive of pareto-optimal solutions) varies in different
experiments. The proposed Off-Spring Non-Storing GA was implemented with
the following values: (i) Pb was set to 0.75. The value of population (i.e., NGA)
varies in different experiments. In each experiment, the nine test problems
are solved by using the proposed algorithms. Each test problem is solved for
10 times and the average values of the 10 trials is used in the analysis. The
total memory requirement of the Proposed StocE-based algorithm is given by:
m + Num + 2, since Num = 10, therefore, the expression becomes m + 12.
The total memory requirement of the Proposed GA-based algorithm is equal to
2 + NGA. The values of the m and NGA in different experiments in shown in
Table 7.4.

The performance of the algorithms is measured using the same three perfor-
mance metrics: (i) HVR, (ii) GD, and (iii) IGD. The nine test problems in the

63

0.00001

0.0001

0.001

0.01

0.1

1

LZ09_F1 LZ09_F2 LZ09_F3 LZ09_F4 LZ09_F5 LZ09_F6 LZ09_F7 LZ09_F8 LZ09_F9

Proposed StocE

Proposed GA

NSGA-II

SPEA2

(1-1)-PAES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LZ09_F1 LZ09_F2 LZ09_F3 LZ09_F4 LZ09_F5 LZ09_F6 LZ09_F7 LZ09_F8 LZ09_F9

Proposed StocE

Proposed GA

NSGA-II

SPEA2

(1-1)-PAES

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

(H
V

R
s)

G
D

 v
a

lu
e

s

Test Problems

(a) Average HVR values

Test Problems

0

0.005

0.01

0.015

0.02

0.025

LZ09_F1 LZ09_F2 LZ09_F3 LZ09_F4 LZ09_F5 LZ09_F6 LZ09_F7 LZ09_F8 LZ09_F9

Proposed StocE

Proposed GA

NSGA-II

SPEA2

(1-1)-PAES

IG
D

 v
a

lu
e

s

Test Problems

(b) Average GD values

(c) Average IGD values

Figure 7.4: Results of the calculation of HVR, GD and IGD metrics on the test
problems for the experiments in Case I.

64

(a) Percentage of experiments in which the proposed algorithms
obtain a better HVR value than the exiting algorithms

(b) Percentage of experiments in which the proposed algorithms
obtain a better GD value than the exiting algorithms

(c) Percentage of experiments in which the proposed algorithms
obtain a better IGD value than the exiting algorithms

Figure 7.5: Summary of the results in Case I.

65

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

LZ09_F1 LZ09_F2 LZ09_F3 LZ09_F4 LZ09_F5 LZ09_F6 LZ09_F7 LZ09_F8 LZ09_F9

Proposed StocE

Proposed GA

NSGA-II

SPEA2

(1-1)-PAES

0.00001

0.0001

0.001

0.01

0.1

1

10

LZ09_F1 LZ09_F2 LZ09_F3 LZ09_F4 LZ09_F5 LZ09_F6 LZ09_F7 LZ09_F8 LZ09_F9

Proposed StocE

Proposed GA

NSGA-II

SPEA2

(1-1)-PAES

H
y

p
e

rv
o

lu
m

e
 r

a
ti

o
s

(H
V

R
s)

G
D

 v
a

lu
e

s

Test Problems

(a) Average HVR values.

Test Problems

IG
D

 v
a

lu
e

s

Test Problems

(b) Average GD values

(c) Average IGD values

0

0.2

0.4

0.6

0.8

1

1.2

LZ09_F1 LZ09_F2 LZ09_F3 LZ09_F4 LZ09_F5 LZ09_F6 LZ09_F7 LZ09_F8 LZ09_F9

Proposed StocE

Proposed GA

NSGA-II

SPEA2

(1-1)-PAES

Figure 7.6: Results of the calculation of HVR, GD and IGD metrics on the test
problems for the experiments in Case II.

66

0

10

20

30

40

50

60

70

80

90

100

NSGA-II SPEA2 (1-1)-PAES

Proposed StocE

Proposed GA

(a) Percentage of experiments in which the proposed algorithms
obtains a better HVR value than the exiting algorithms

(b) Percentage of experiments in which the proposed algorithms
obtains a better GD value than the exiting algorithms

(c) Percentage of experiments in which the proposed algorithms
obtains a better IGD value than the exiting algorithms

0

10

20

30

40

50

60

70

80

90

100

NSGA-II SPEA2 (1-1)-PAES

Proposed StocE

Proposed GA

0

10

20

30

40

50

60

70

80

90

100

NSGA-II SPEA2 (1-1)-PAES

Proposed StocE

Proposed GA

Figure 7.7: Summary of the results in Case II.

67

Table 7.4: Parameter values and memory sizes.
Algorithm Parameter values Total memory size

Proposed StocE m= 38 50 solutions
Proposed GA NGA= 48 50 solutions

Proposed StocE m= 88 100 solutions
Proposed GA NGA= 98 100 solutions

Proposed StocE m= 188 200 solutions
Proposed GA NGA= 198 200 solutions

Proposed StocE m= 288 300 solutions
Proposed GA NGA= 298 300 solutions

Proposed StocE m= 388 400 solutions
Proposed GA NGA= 298 400 solutions

suite LZ09 were used. The performance of the Proposed StocE-based algorithm
is shown in Fig. 7.8. The results show there at very small memory size (i.e. 50
solutions), the performance of the proposed algorithm is not good. However, in
memory sizes of 100 solutions and onwards, the performance of the proposed
algorithm is good and also remains nearly constant.

The performance of the Proposed Off-Spring Non-Storing GA is shown in
Fig. 7.9. The results show that for the small size memory (i.e. 50 solutions)
the performance of the algorithm is not good. But for memory sizes of 100 so-
lutions and onwards, the performance of the proposed algorithm remains good.
Therefore, the performance analysis shows that the proposed algorithms exces-
sively memory sizes are not necessary to obtain goof quality solutions from the
proposed algorithms.

7.5 Summary

This chapter shows the general forms of the proposed StocE and Off-spring
non-storing GA-based algorithms. The general forms are not restricted to any
particular MOP (Multi-Objective Optimization) problem, but can solve any
type of MOP problem. The performance of the algorithms are shown in nine
test MOP problems. Each test problem has a different and difficult pareto-
optimal front. Therefore, the experiments on the test problems demonstrates the
algorithm’s capability to solve different types of MOP problems. The proposed
algorithms were compared with NSGA-II and SPEA2. The proposed algorithms
were found to be competitive with the existing algorithms at an equal memory
requirement and execution time. The relationship between the memory size
and solution quality is also analysed in detail. In most of the test problems, the
solution quality increases with the memory size but excessive increase in the
memory size does not improve performance.

68

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

50 solutions 100 solutions 200 solutions 300 solutions 400 solutions

LZ09_F1

LZ09_F2

LZ09_F3

LZ09_F4

LZ09_F5

LZ09_F6

LZ09_F7

LZ09_F8

LZ09_F9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 solutions 100 solutions 200 solutions 300 solutions 400 solutions

LZ09_F1

LZ09_F2

LZ09_F3

LZ09_F4

LZ09_F5

LZ09_F6

LZ09_F7

LZ09_F8

LZ09_F9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

50 solutions 100 solutions 200 solutions 300 solutions 400 solutions

LZ09_F1

LZ09_F2

LZ09_F3

LZ09_F4

LZ09_F5

LZ09_F6

LZ09_F7

LZ09_F8

LZ09_F9

(a) HVR

(b) GD

(c) IGD

Figure 7.8: HVR, GD and IGD metric values of the Proposed StocE-based
algorithm at different memory sizes.

69

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

50 solutions 100 solutions 200 solutions 300 solutions 400 solutions

LZ09_F1

LZ09_F2

LZ09_F3

LZ09_F4

LZ09_F5

LZ09_F6

LZ09_F7

LZ09_F8

LZ09_F9

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

50 solutions 100 solutions 200 solutions 300 solutions 400 solutions

LZ09_F1

LZ09_F2

LZ09_F3

LZ09_F4

LZ09_F5

LZ09_F6

LZ09_F7

LZ09_F8

LZ09_F9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

50 solutions 100 solutions 200 solutions 300 solutions 400 solutions

LZ09_F1

LZ09_F2

LZ09_F3

LZ09_F4

LZ09_F5

LZ09_F6

LZ09_F7

LZ09_F8

LZ09_F9

(a) HVR

(b) GD

(c) IGD

Figure 7.9: HVR, GD and IGD metric values of the Proposed Off-Spring Non-
Storing GA algorithm at different memory sizes.

70

Chapter 8

Congestion Awareness in
case of Multi-Vehicles
Problem

The vehicles can independently use the proposed multi-objective optimization
algorithm to find most suitable paths to the destination. The values of parame-
ters of the road network which are stored in the vehicle significantly impact the
quality of the optimal paths. The advent of intelligent vehicles enable the ve-
hicles to communicate with the other vehicles and with the road infrastructure
(i.e., Road Side Units (RSUs)) using V2V and V2I types of communications
[41, 42]. The detectors situated alongside the roads can monitor the traffic situ-
ation [43] and broadcast the latest traffic information to the vehicles using V2I
communications. Therefore, the intelligent vehicles can frequently update the
values of their network parameters and therefore, can find good quality optimal
paths. The independent computation of optimal paths in the vehicles forms a
sort of distributed system for determination of optimal paths.

A centralized system for traffic management is also proposed in recent past.
In a centralized system, the road network information is maintained at a central
control station. The vehicles send their requests to find optimal paths between
their source and destination nodes to the central control station. The central
control station finds the optimal paths for the vehicles and then sends the results
back to the vehicles [44]. One major advantage of using the centralized system
as compared to the distributed systems is that the vehicles can easily exchange
information among each other in search of the optimal paths. A cooperation (or
exchange of information) between the vehicles help in increasing the congestion
awareness [42] of the vehicles and potential congestions in the road network can
be avoided. The V2I communications enable the vehicles to communicate with
their nearest control station. The range of V2I communication in any road net-
work is restricted. The V2I communication uses IEEE 802.11p standard that
has range of 1000 meters [42], but its range can be increased using multi-hop
transmission through interconnected RSUs at expense of increase in communi-
cation time and cost. Therefore, a huge size road network can contain a large
number of control stations. Each control station can perform minimization of
potential congestion of the vehicles in its range.

71

Considering the benefits of using the control stations. The step to perform
minimization of potential congestion in the road network can be also be added
into the proposed method of optimal path selection. The vehicles can compute
their optimal paths independently and then use the nearest or any reachable
control station to reduce the potential congestion that could occur due to the
optimal paths of the vehicles. Traffic flow (Q) on any edge is defined as the
number of vehicles which pass through it within a certain amount of time. The
traffic is also equal Q = K × V , where K is the vehicles per Km and V is the
maximum speed of the vehicles in terms of Km per hour [45]. However, until
a certain threshold value of the density value, the flow increases. But, after
the density passes the threshold value then the traffic flow start decreasing.
Through, traffic management we want to keep the density of all edges below
their threshold values.

This chapter is focussed on showing that a single EA can be used at the
control station to serve the vehicles in its range. Small size random road net-
works are generated and then a first a large number of vehicles independently
compute their optimal paths using the proposed algorithm. Then, the potential
congestion is reduced by using a simple GA-based algorithm.

This chapter first describes the congestion minimization problem in a road
network which is shared by a large number of vehicles, then shows the algorithm
which is proposed to minimize the congestion.

8.1 Problem Description

Let us consider a road network G(V,E), where V contains all intersections or
nodes in the road network and E contains all edges that join the intersections.
Any edge ei ∈ E has a starting node u and an ending node v and is associated
with up to three properties: (i) ei.l: which is the length of the edge, (ii) ei.S:
which is the average speed of the vehicles on it, (iii) ei.d: is the average density of
vehicles in terms of vehicles per km on the edge, and (iv) ei.Dmax is the threshold
on the maximum density value and the traffic flow on ei start decreasing after
this value. The edges on the actual density exceeds the Dmax are called as
congested. The average travelling time on any edge ei can be computed as
T (ei) = ei.l

ei.S
.

The road network is being shared by up to m vehicles which are represented
as: R = {r0, r1, ..., rm−1}. Any vehicle rj ∈ R has a pair of source and destina-
tion nodes (i.e., rj .s and rj .d). The vehicles independently determine optimal
paths between their source and destination nodes using any one of the algo-
rithms which were described in Chapters 5 and 6. After the vehicles determine
their optimal, then they should select an optimal path from their set of pareto-
optimal solutions such that the congestion in the road network is minimized.

A vehicle rj ∈ R stores its pareto-optimal paths in the set rj .S. Let
U be a set in which all vehicles have selected up to one path, then U =
{p0, p1, ..., pm−1}, where p0 ∈ r0.S, p1 ∈ r1.S, and so on. The set U con-
tains many different combinations, however, we want to select a combination in
U that yields minimum congestion in the road network. The congestion in a
road network can be determined as follows:

The potential increase in the density of any edge ei is considered as the
number of times ei occurs in the paths which are selected by different vehicles

72

in U divided by the length of the edge. Therefore, the increases in the density

of any edge is equal to its frequency in the set U divided by ei.l (i.e., freq(U,ei)ei.l
).

The new density of the edge ei becomes ei.d
′ = ei.d + freq(U,ei)

ei.l
. If ei.d

′ ≥
ei.Dmax, then the edge ei is called congested.

CE(U) = {ex ∈ U if ei.d
′ ≥ ei.Dmax} (8.1)

The congestion in a network due to the paths in a set U is represented as
Congestion(U) and can be determined by computing the number of elements
in CE(U) (or cardinal number of CE(U)). The function n(A) yields the cardinal
number of the set A and the congestion can be determined as follows:

Congestion(U) = n(CE(U)) (8.2)

8.2 Proposed Algorithm

The road network G(V,E) is assumed to have a control station C which is
accessible by all vehicles in the set R. The vehicles can use Vehicle to Infras-
tructure (V2I) communications [41] to access the central control station. The
proposed congestion minimization algorithm is illustrated in Fig. 8.1. The first
step shows that the set R contains a large number of vehicles (m) that want to
travel between any two nodes in the network. In Step 2, each vehicle computes
its MOSP paths and populate its set of pareto-optimal solutions using any one
of the algorithm for solving the MOSP problem. In Step 3, all vehicles that be-
long to the set R send their pareto-optimal paths to the central control station.
The proposed algorithm executes at the central control station is based on the
game theoretic approach [47] such that each vehicle act as a player. The aim of
the proposed algorithm is to select a path for vehicle such that the congestion
in the road network is minimized. In the game theoretic approach, a strategy
profile contains a pareto-optimal path selected for each vehicle in the set R. A
strategy profile is represented as U . The game theoretic approach consists of
an iterative process. In each iteration, each vehicle selects a path from its set of
pareto-optimal solutions which minimizes the congestion while considering the
paths selected by the other players. The iterative process continues until a Nash
Equilibrium is achieved in which all players are satisfied with their selection and
no player wants to switch from its previously selected path. When number of
vehicles is equal to m, and the number of paths in the pareto-optimal set of
any vehicle rj is equal to nj (where nj ≥ 0), then the total number of possible

strategy profiles is equal to
∏m−1
i=0 nj . For large values of m and nj , the total

number of possible strategy profile becomes very large and it may take very long
time to determined the Nash Equilibrium. Therefore, a simple EA that consists
of a mutation operation is used to find an approximate solution. In Step 5, the
central control station informs the vehicles the path that should use from their
set of pareto-optimal solutions in order to minimize the congestion in the road
network.

Fig. 8.2 shows the proposed algorithm to find the strategy profile that
minimizes the congestion. The inputs to the algorithm are the pareto-optimal
paths of all vehicles and the output is a strategy profile (U) which minimizes
the congestion in the road network. In line 1, U is initialized to null. In line 2,

73

Figure 8.1: Illustration of the proposed congestion minimization method.

Input: Allpaths = {r0.S, r1.S, ..., rm−1.S}
Output: U = {p0, p1, ..., pm−1}, s.t. pj ∈ rj .S.
1: U= null
2: Initialize(U)
3: while stopping criteria not reached do
4: c1 = Congestion(U);
5: U ′= Mutation(U)
6: c2 = Congestion(U ′)
7: if c2 < c1 then
8: U = U ′

9: end if
10: end while
11: return U

Figure 8.2: Proposed algorithm for congestion minimization.

74

Input: Allpaths = {r0.S, r1.S, ..., rm−1.S}
Output: U
1: U= null
2: for i= 0 to m-1 do
3: p′= randomly select a path from ri.S
4: U = U ∪ p′
5: end for
6: return U

Figure 8.3: Method to initialize a random solution in U

Input: Allpaths = {r0.S, r1.S, ..., rm−1.S}, U , z(s.t.z ∈ 0, 1 ∈ R+)
Output: U : after the mutation operation
1: Mnum : a random number between 0 and z ×m.
2: for i= 0 to Mnum do
3: I= a random number between 0 and m− 1
4: p′= randomly select a path from rI .S
5: U [I] = p′

6: end for
7: return U

Figure 8.4: Method to perform mutation operation on a strategy profile U

U is initialize to a random strategy profile. Lines 3 to 10 contain a while loop,
in which first mutation operation is applied to U to form a new strategy profile
U ′. The costs of U and U ′ are determined and if the cost of U ′ is lesser than
the cost of U , then U is replaced by U . The stopping criterion of the algorithm
can be the maximum elapsed time or maximum iterations.

Fig. 8.3 shows the method to initialize a random solution in U . In line 1,
U is initialized to null. In the for loop between lines 2 and 5, p′ is a randomly
selected path from the set of pareto-optimal paths of the vehicle which is selected
in that iteration (i.e. ri). The selected path is inserted in the set U. Using the
for loop, the paths for all vehicles are selected and stored in U.

Fig. 8.4 shows the mutation operation that is used to make random changes
in the strategy profile U . The inputs are the strategy profiles of all vehicles; m,
which is the number of vehicles in the set network; z, which is a positive real
number between 0 and 1 and is used to decide the number of vehicles whose
paths should be altered in the mutation operation (Mnum). Using the for loop,
the paths of up to Mnum vehicles are replaced by another randomly selected
paths from their set of pareto-optimal paths.

8.3 Simulation Results

The proposed congestion minimization algorithm was implemented using C#
in Visual Studio 2010. Several small size random graphs were generated using
a random graph generation tool [46]. Table 8.1 shows the details of the random
graphs. The values of network parameters are assigned as follows: (i) ei.l,
i.e., length of the edge is assigned between [20, 50] Km, (ii) ei.S, i.e., average
speed of the vehicle is assigned randomly between [50, 100]km/hour. (iii) ei.d

75

Table 8.1: Characteristics of graphs.
Graph Number of nodes Number of edges
G0 600 2000
G1 650 2000
G2 750 2500

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

G0

G1

G3

iterations

C
o
st

Figure 8.5: Illustration of the gradual decrease in the congestion cost as itera-
tions proceeds.

and ei.Dmax which are the average density of vehicles and maximum density of
vehicles on the edge ei are assigned as follows. The average traffic flow capacity
of a one lane of motorway is 1400 vehicles

hour with an average speed of 60 Km
h . The

roads are assumed to be carry traffic which is 90% of their maximum capacity.
Therefore,the value of ei.d are assigned equal to 0.90× ei.Dmax.

The vehicles obtained their sets of possible strategies through successively
applying the random path generation method which is shown in Fig. 4.1. Each
vehicle generates as many alternate paths for its set of possible strategies as
possible within a time interval of 800 msec. In small size networks, many pareto-
optimal paths may not occur between the source and destination nodes. There-
fore, method of generation of alternate random solutions is used instead of the
optimization algorithms. The actual road networks should use the optimization
algorithms. The congestion due to the paths selected by different vehicles and
due to the overlapping among them was reduced using our proposed algorithm.
The number of vehicles in the road network i.e., m is assigned a value equal to
5000. The source and destination nodes for the vehicles were randomly chosen
in the network.

Our proposed algorithm for minimizing the congestion was implemented
with the following parameter values: The stopping criterion was set to 1000
iterations; the value of z in the mutation operation was set to 0.15. Figs. 8.5
shows the performance of the proposed algorithm and the congestion cost values

Table 8.2: Results of the congestion reduction algorithm
Graph Cost w/o optimization Cost w/ optimization % decrease in value

G0 23 9 61%
G1 56 31 45%
G2 39 22 44%

76

are plotted after every 100 iterations. The plot shows gradual decrease in the
cost value in all graphs.

Table 8.2 shows the results of the congestion minimization algorithm. The
first column indicates the network, the second column indicates the Cost or
number of edges that can potentially go into congestion if no cooperation and
optimization is performed in selecting the paths for the vehicles. The second
last column shows the number of edges on which congestion may still occur after
applying the proposed method. The last column shows the percentage reduction
in the number of edges from w/o optimization case to w/ optimization case.

Therefore, based on the results, we can suggest that the proposed optimiza-
tion algorithms can be used in a traffic management system. The vehicles can
find their pareto-optimal paths using their embedded systems then use a nearby
control station to minimize the potential congestion due to the other vehicles.

8.4 Summary

This chapter considers the problem of congestion awareness. Congestion aware-
ness refers to reducing the potential congestion which may occur due to the
vehicles which are planning to start their journeys. in the proposed method,
the vehicles first finds their optimal-paths using their embedded systems. The
vehicles after finding their optimal-paths sends their optimal paths to a reach-
able control station through V2I communications. The control station collects
optimal paths of many vehicle and perform minimization of potential congestion
which may occur due to the paths selected by different vehicles. The control
station selects one path for each vehicle such that minimum number of edges in
the road network can go into congestion by the vehicles which are about to their
journeys. The control station uses a simple GA to optimization the congestion
cost.

The experiments were performed on several randomly generated small size
networks. The results show that in all networks, the congestion costs are reduced
over their initial value. Therefore, the simulations show that it is benefical to
use a control station to reduce potential occurrence of congestion in the network.

77

Chapter 9

Conclusion

Multi-Objective Shortest Path (MOSP) problem often occurs in computer and
transportation networks. When the MOSP problem has two or more objectives
then it becomes an NP-hard problem. Different approaches can be used to
solve the MOSP problem that includes: (1) Evolutionary algorithms (EAs),
(ii) Polynomial time approximation algorithms (PTAAs), and (iii) Polynomial
time algorithms (PTEAs). PTEAs can exactly solve the MOSP problem but
they are useful in case of small size networks only. In huge size networks,
the MOSP problem should be solved using EAs or PTAAs. EAs have the
advantage that they can be described independently to any particular problem.
Therefore, an EA that can solve the MOSP problem remains useful for the other
optimization problems. Generally, PTAAs are specific to one or several classes
of problems. The existing EAs can be divided into two classes: (i) Population-
based algorithms, and (ii) Single-solution based algorithm. The population-
based EAs can yield good quality solutions but they require large memory sizes.
Single-solution based EAs, on the other-hand, are memory-efficient but require
long computation time to yield good quality solutions. Therefore, this work
aimed to propose two new EAs that can overcome the problems of memory-size
and solution quality of the existing EAs. The ability of the proposed EAs to solve
general multi-optimization problem was also demonstrated through evaluating
them on several test problems that are quite different from the MOSP problem.

We proposed an Stochastic Evolution (StocE)-based EA and an Off-Spring
Non-Storing Genetic Algorithm (GA). The standard StocE algorithm improves
the bad characteristics in a solution through applying the Perturb operation.
The Perturb operation determines the suitability to remain in the next genera-
tion of different characteristics and improves a least suitable characteristic in the
solution. The Proposed StocE-based algorithm consists of an innovative Perturb
operation. It considers different sub-paths (or sub-portions) in a solution as its
characteristics. The suitability of the sub-paths is measured in terms of their
objective function values and their sizes. The sub-path that has higher values
of objective functions and smaller size than the other sub-paths is considered
to be least suitable to remain in the next generation. One of the least suitable
sub-path is replaced by another randomly generated sub-path. The algorithm
maintains an archive of pareto-optimal solutions. It requires memory which is
slightly more than the existing single-solution based algorithms and much lesser
than the population-based algorithms.

78

The proposed Off-Spring Non-Storing GA is memory efficient than the exist-
ing GA and its different variants (e.g. NSGA-II, MicroGA, etc). In the existing
GAs, if the population size is N solutions, then they also create N children chro-
mosomes. Therefore, their total memory size is 2N solutions. In the proposed
GA-based algorithm, the children chromosomes are conditionally stored at the
memory locations of their parent chromosomes. Therefore, additional memory
is not required to store the children. The proposed GA-based algorithm requires
a total memory of N + 1 solutions instead on 2N . In the proposed GA-based, a
GA operation (i.e., crossover or mutation) should be selected for each chromo-
some in the population. The children which is created after applying the GA
operator replaces the parent chromosome based on the following conditions: (i)
If the parent is a non-dominated solution in the population and the children
dominates the parent chromosome, or (ii) if the parent is dominated by another
solution in the population, and the children chromosome is not dominated by
the parent chromosome.

The performance of the Proposed algorithms was evaluated through com-
paring their performance against some well-known multi-objective optimization
algorithms. The existing algorithms included Non-dominated Sorting Genetic
Algorithm-II (NSGA-II), Micro-Genetic Algorithm (Micro-GA), (1-1)-Pareto
Archived Evolutionary Strategy ((1-1)-PAES) algorithm, Multi-objective Sim-
ulated Annealing (MOSA), and a straight-forward StocE. The NSGA-II and
Micro-GA are population-based algorithms and the remaining algorithms are
single-solution-based algorithms. The experiments were conducted on the road
networks of some states and cities in the United States. The road networks
have sizes. The quality of the pareto-optimal set of any algorithm is measured
by calculating its Hypervolume (HV) value. The HV is the space occupied by
the pareto-optimal set in the solution space and measures the quality and diver-
sity of solutions in the pareto-optimal set. The algorithms that obtain a higher
HV value have better performance than the other algorithms. Each experi-
ments is repeated for size time or in other words each experiments has six trials.
The average HV of the six trials was used in the comparison. The comparison
results show that the proposed algorithms in all road networks outperformed
the existing single-solution-based algorithms and also performs better than the
population-based algorithms in some experiments. Therefore, the proposed al-
gorithms have successfully solved the MOSP problem with the solution quality
which is better than the existing single-solution-based algorithms and with the
memory-size which is lesser than the existing population-based algorithms.

The proposed algorithms were also generalized to solve the general multi-
objective optimization problems. Complex test problems with known true
pareto-fronts were selected from recent literature. The test problems were solved
using the proposed algorithms as well as using existing algorithms. The exist-
ing algorithms include: NSGA-II, Strength Pareto Evolutionary Algorithm 2
(SPEA2), and (1-1)-PAES. The NSGA-II and SPEA2 are population-based al-
gorithms and (1-1)-PAES is a single-solution-based algorithm. The performance
of the algorithms was measured by using up-to three different performance met-
rics. The performance metrics include: (i) Hypervolume Ratio (HVR), which is
the ratio between the HV of the pareto-front obtained from the algorithm to the
HV of the true pareto-front. (ii) Generational Distance (GD), which is the av-
erage distance of the pareto-front of any algorithm from the actual pareto-front.
(iii) Inverse Generational Distance (IGD), which is the distance of the actual

79

pareto-front from the pareto-front of any algorithm. The GD value indicate
the closeness of the obtained pareto-front from the actual pareto-front. A bet-
ter IGD value indicates that the obtained pareto-front is closer and uniformly
spread along the true pareto-front. The results show that given equal amount
of memory and execution time, the proposed algorithms are competitive to the
existing algorithms. The effect of memory size on the proposed algorithms was
also studied. It is found that at a constant execution time, the proposed algo-
rithms start yielding good quality solutions after a certain memory size (which
was not a large value). It was also noticed that a continued increase in the
memory size do not improve the solution quality.

At any time, in a road network, many vehicles are about to start their
journeys and are finding optimal paths between their source and destination
nodes. Congestion awareness refers to detecting the potential congestion which
may occur due to the paths selected by the vehicles that are about to start
their journeys. The control stations can be built in the road network that can
communicate with the vehicles that lie within their range using V2I communi-
cations. The control station can perform minimization of potential congestion
which could occur due to the paths selected by the different vehicles. The ve-
hicles send their sets of pareto-optimal solutions to a reachable control station.
A control station accepts input from a large number of vehicles and then use a
simple EA to find one path per vehicle, such that the selected paths minimizes
the potential congestion in the road network. The experiments were formed on
small size random networks and the results show that a simple EA is efficient
is reducing the potential congestion in a road network.

The experimental results show that the proposed optimization algorithms
are suitable to solve the MOSP problem in embedded systems. They can yield
a solution quality which is better than the existing single-solution-based algo-
rithms. The proposed optimization algorithms can also become part of a traffic
management system. The proposed algorithm can also be used to solve any
other multi-objective optimization problem.

80

Published Articles

From the mentioned research work, the authors have published several articles
in different international journals and conferences.

Journal Articles

1. Umair F. Siddiqi, Yoichi Shiraishi, Sadiq M. Sait, “Multi-Objective Op-
timal Path Selection in the Electric Vehicles,” Artificial Life and Robotics:
Vol. 17, No. 1, pp. 113-122, 2012.

2. Umair F. Siddiqi, Yoichi Shiraishi, and Sadiq M. Sait, “Memory Effi-
cient Genetic Algorithm for Path Optimization in Embedded Systems,”
Transactions on Mathematical Modeling and Applications, Information
Processing Society of Japan, 2013. (to appear)

Conference Articles

1. Umair F. Siddiqi, Yoichi Shiraishi, Mona Dahb, Sadiq M. Sait, “Finding
Multi-Objective Shortest Paths using Memory Efficient Stochastic Evolu-
tion based Algorithm,” The Third International Conference on Networking
and Computing, Okinawa, Japan, December 5-7, 2012.

2. Umair F. Siddiqi, Yoichi Shiraishi, Sadiq M. Sait, “Multi-Objective Op-
timal Path Selection in the Electric Vehicles,” 17th International Confer-
ence on Artificial Life and Robotics, Beppu, Oita, Japan, 19-21 Jan. 2012,

3. Umair F. Siddiqi, Yoichi Shirashi, Sadiq M. Sait, “Multi-Constrained
Route Optimization for Electric Vehicles (EVs) using Particle Swarm Op-
timization (PSO),” International Conference on Intelligent Systems Design
and Applications (ISDA) 2011, pp. 391-396, Cordoba, Spain, 22-24 Nov.
2011,.

4. Umair F. Siddiqi, Yoichi Shirashi, Sadiq M. Sait, “Multi-Constrained
Route Optimization for Electric Vehicles using SimE,” International Con-
ference on Soft Computing and Pattern Recognition (SoCPaR) 2011, pp.

81

376-383, 14-16 Oct. 2011, Dalian, China.

5. Umair F. Siddiqi, Yoichi Shiraishi, Mona A. El. Dahb, and Sadiq M.
Sait, “Simulated Evolution (SimE) based Embedded System Synthesis Al-
gorithm for Electric Circuit Units (ECUs),” 10th International Conference
on Adaptive and Natural Computing Algorithms (ICCANGA) 2011, Part
1, pp. 400-409, 2011.

6. Umair F. Siddiqi, Yoichi Shiraishi, Mona A. El-Dahb and Sadiq M.
Sait, “Embedded Systems Synthesis Using Simulated Evolution (SimE)
with ECU-Specific Optimization,” International Conference on Computer
Mathematics and Natural Computing, ICCMNC 2011, Year 7, Issue 74,
pp. 42-46, Penang, Malaysia, 22-24 February 2011.

82

Bibliography

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,
Introduction to Algorithms, 2nd edition, MIT Press, 2001.

[2] Zbigniew Tarapata, “Selected Multicriteria Shortest Path Problems: An
Analysis of Complexity, Models and Adoption of Standard Algorithms,”
Int. J. Appl. Math. Comput. Sci., Vol. 17, No. 2, pp. 269-287, 2007.

[3] M.R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman and Co., 1997.

[4] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan, “A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans.
Evolutionary Computation, Vol. 6, No. 2, pp. 182- 197, 2002.

[5] L. dos Santos Coelho and P. Alotto, “Multiobjective Electromagnetic Op-
timization Based on a Nondominated Sorting Genetic Approach with a
Chaotic Crossover Operator,” IEEE Trans. Magnetics, Vol. 44, No. 6, pp.
1078-1081, 2008.

[6] Y. Kumar, B. Das, and J. Sharma, “Service restortation in distribution sys-
tem using non-dominated sorting genetic algorithm,” Electric Power Syst.
Res., vol. 76, pp. 768-777, 2006.

[7] Marcus Vinicius Carvalho da Silva, Nadia Nedjah and Luiza de Macedo
Mourelle, “Optimal application mapping on NoC infrastructure using
NSGA-II and Micro-GA,” International Conference on Intelligent Engi-
neering Systems (INES), pp. 83-88, 2009.

[8] Zbigniew Tarapata, Selected Multicriteria Shortest Path Problems: An
Analysis of Complexity, Models and Adoption of Standard Algorithms,
Int. J. Appl. Math. Comput. Sci., Vol. 17, No. 2, pp. 269-287, 2007.

[9] Christina Hallam, K. J. Harrison, and J. A. Ward, “A Multiobjective Opti-
mal Path Algorithm, Digital Signal Processing,” vol. 11, pp. 133-143, 2001.

[10] George Tsaggouris and Christos Zaroliagis, “Multiobjective Optimization:
Improved FPTAS for Shortest Paths and Non-Linear Objectives with Ap-
plications,” Journal Theory of Computer Systems, Vol. 45, No. 1, pp. 162-
186, 2009.

[11] Christian Horoba, “Exploring the Runtime of an Evolutionary Algorithm
for the Multi-Objective Shortest Path Problem,” Evolutionary Computa-
tion, Vol. 18, No. 3, pp. 357-381, 2010

83

[12] Andrey Gunichev, Srikanta Bedathur, Stephan Seufert, and Gerhard
Weikum, “Fast and Accurate Estimation of Shortest Paths in Large
Graphs,” Proc. 19th ACM International Conference on Information and
Knowledge Management, Toronto, Canada, pp. 499-508, 2010.

[13] E. Martins and J. Santos, “The labelling algorithm for the multiobjective
shortest path problem,” Departamento de Matematica, Universidade de
Coimbra, TR-99/005, Portugal, 1999.

[14] Chang Wook Ahn, and R. S. Ramakrishna, “A Genetic Algorithm for
Shortest Path Routing Problem and the Sizing of Populations,” IEEE
Trans. Evolutionary Computation, Vol. 6. No. 6, (2002)

[15] Sai Ho Yeung and Kim Fung Man, “Multiobjective Optimization,” IEEE
microwave magazine, pp. 120-133, October, 2011.

[16] S.M. Sait and H. Youssef, Iterative Computer Algorithms with Applications
in Engineering, IEEE Computer Society Press, 1999.

[17] Youssef G. Saab and Vasant B. Rao, “Stochastic Evolution: A Fast Effec-
tive Heuristic for Some Generic Layout Problems,” 27th Design Automation
Conference, pp. 36-31, 24-28 June 1990.

[18] J. H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, Michigan, 1975.

[19] Ralph Michael Kling and Prithviraj Banerjee, “Concurrent ESP: A place-
ment algorithm for execution on distributed processors,” Proc. IEEE In-
ternational Conference on Computer-Aided Design, pp. 354-357, 1987.

[20] Joshua D. Knowles and David W. Corne, “Approximating the Non-
dominated Front Using the Pareto Archived Evolution Strategy,” Evolu-
tionary Computation, vol. 8, No. 2, pp. 149-172, 2000.

[21] Carlos A. Coello Coello and Gregorio Toscano Pulido, “A Micro-Genetic
Algorithm for Multiobjective Optimization,” Departamento de Matemat-
ica, Universidade de Coimbra, TR-99/005, Portugal, 1999.

[22] Kevin I. Smith, Richard M. Everson, Jonathan E. Fieldsend, Chris Murphy
and Rashmi Misra, “Dominance-Based Multiobjective Simulated Anneal-
ing,” IEEE Trans. Evolutionary Computation, Vol. 12, No. 3, pp. 323- 342,
2008.

[23] J. Teo, P. Anthony, Jia Hui Ong, ”Neural network ensembles for video
game AI using evolutionary multi-objective optimization,“ 11th Interna-
tional Conference on Hybrid Intelligent Systems (HIS) 2011, pp. 605-510,
Malaysia, pp. 605-510, 5-8 Dec. 2011.

[24] Teodoro C. Bora, Luiz Lebensztajn, and Leandro Dos S. Coelho, “Non-
Dominated Sorting Genetic Algorithm Based on Reinforcement Learning
to Optimization of Broad-Band Reflector Antennas Satellite,” IEEE Trans.
Magnetics, Vol. 48, No. 2, pp. 767-770, 2012.

84

[25] P. Ngatchou, Anahita Zarei, M.A. El-Sharkawi, “Pareto Multi Objective
Optimization,” Proc. 13th Intelligent Systems Application to Power Sys-
tem, pp. 84-91, 2005..

[26] Johannes M. Bader, “Hypervolume-Based Search for Multiobjective Opti-
mization: Theory and Methods,” Ph.D. dissertation, Swiss Federal Inst.
Technology (ETH) Zurich, Switzerland, (2009).

[27] Joshua Knowles, “ParEGO: A Hybrid Algorithm With On-Line Land-
scape Approximation for Expensive Multiobjective Optimization Prob-
lem,” IEEE Trans. Evolutionary Computation, Vol. 10 No. 1, pp. 50-66,
2005.

[28] Carlos M. Fonseca, Lus Paquete, and Manuel Lpez-Ibez, “An Improved
Dimension - Sweep Algorithm for the Hypervolume Indicator,” 2006 IEEE
Congress on Evolutionary Computation (CEC’06), pp. 1157-1163, 2006.

[29] L. White, P. Hingston, L. Barone, and S. Husband, “A Faster Algorithm
for Calculating Hypervolume,” IEEE Trans. Evolutionary Computation,
Vol. 10. No. 1, pp. 29-38, 2006.

[30] http://www.dis.uniroma1.it/challenge9/download.shtml

[31] Murat Yilmaz, Veysel T. Buyukdegirmenci, and Philip T. Krein, “ General
Design Requirements and Analysis of Roadbed Inductive Power Transfer
System for Dynamic Electric Vehicle Charging,” 2012 IEEE Transportation
Electrification Conference and Expo, pp. 1-6, 18-20 June 2012.

[32] Swagat Chopra and Pavol Bauer, “Driving Range Extension of EV with On-
Road Contactless Power Transfer- A Case Study,” IEEE Trans. Industrial
Electronics, vol. 60, No. 1, January, 2013.

[33] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, No. 9, pp. 115-148, 1995.

[34] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for
engineering design,” Computer Sciences and Informatics, Vol. 26, No. 4,
pp. 30-45, 1996.

[35] http://www.nd.com/products/genetic/mutation.htm

[36] Juan J. Durillo and Antonio J. Nebro, “jMetal: A Java framework for
multi-objective optimization,” Advances in Engineering Software, vol. 42,
pp. 760-771, 2011.

[37] http://jmetal.sourceforge.net/

[38] H. Li and Q. Zhang. Multiobjective Optimization Problems with Compli-
cated Pareto Sets, MOEA/D and NSGA-II, IEEE Trans on Evolutionary
Computation, vol. 2, No. 12, pp. 284-302, 2009.

[39] E. Zitzler and M. Laumanns and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm,” Technical Report, Computer
Engineering and Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland, no. 103, 2001.

85

[40] http://www.nvidia.com/object/cuda home new.html

[41] Erik Strom, Hannes Hartenstein, Paolo Santi, Werner Wielsbeck, “Vehicu-
lar Communications: Ubiquitous Networks for Sustainable Mobility,” Proc.
of the IEEE, Vol. 98, No. 7, pp. 1111-1112, July 2010.

[42] Miguel Sepulcre, Jens Mittag, Paolo Santi, Hannes Hartenstein, and Javier
Gozalvez, “Congestion and Awareness Control in Cooperative Vehicular
Systems,” Proceedings of IEEE, vol. 99, no. 7, pp. 1260-1279, 2011.

[43] David H. Roper and Goro Endo, “Advanced Traffic Management in Cal-
ifornia,” IEEE Trans. Vehicular Technology, vol. 40, no. 1, pp. 152-158,
1991.

[44] Yanyan Chen, Michael G. H. Bell, and Klaus Bogenberger, “Reliable Pre-
trip Multipath Planning and Dynamic Adaptation for a Centralized Road
Navigation System,” IEEE Trans. Intelligent Transportation Systems, vol.
8, no. 1, pp. 14-20, 2007.

[45] Wikipedia http : //en.wikipedia.org/wiki/Traffic engineering (transportation).

[46] Fabien Viger, Matthieu Latapy, Efficient and Simple Generation of Ran-
dom Simple Connected Graphs with Prescribed Degree Sequence, 11th Con-
ference of Computing and Combinatorics (COCOON 2005), pp. 440-449,
(2005).

[47] Jorgen W. Weibull, Evolutionary Game Theory, The MIT Press, 1995.

86

