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Chapter 1

Introduction

1.1 A trend of a study for repetitive control

Periodic signals are very common in engineering. They are associated with magnet power supply
of synchrotron, engines, electrical motors and generators, converters, machines that perform a
cyclic task and many other things [1]∼[6]. To handle them, repetitive control was originated
by Inoue et al. That is, the repetitive control is the method to track a periodic reference input
without steady state error and reject periodic disturbances effectively [1]∼[16]. The repetitive
control system has a simple structure and is easily designed. Because the repetitive control is
a very practical and effective way for a system to track a periodic reference and reject periodic
disturbances and the structure is simple, the repetitive control is applied to many applications
such as trajectory control of the robot manipulator [4, 5] and reducing rotational unevenness
in motors[6].

1.1.1 Repetitive control

Firstly we will look at the trend of a study for the repetitive control. Requirements of repetitive
control system can be divided roughly into the following two. One is input-output characteristic
and the other is stability of the control system.

Input-output characteristic means that the output follows the periodic reference input with-
out a steady state error. In order for the output to follow the reference input without a steady
state error, from internal model principle [17, 18], an internal model that has same poles of
reference input must be included in the controller. To obtain the internal model for the peri-
odic reference input, we assume that the reference input r(t) is a periodic function with period
T > 0 written as

r(t+ T ) = r(t). (1.1)

When we define a period of r(t) as

r0(t) = r(t) (0 ≤ t ≤ T ), (1.2)

the periodic reference input r(t) can be rewritten as

r(t) = r0(t− nT ), (1.3)

where n is a non-negative integer satisfying 0 ≤ t − nT < T . When we define Laplace trans-
formation of r(t) and r0(t) as r(s) and r0(s) respectively, r(s) is written by

r(s) =
∫ ∞

0
r(t)e−sTdt
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=
∞∑
n=0

e−nsT r0(s)

=
1

1− e−sT
r0(s). (1.4)

From (1.4), the structure of an internal model for the periodic reference input is shown in Fig.
1.1 [1, 2, 3]. The controller C(s) that has the internal model for the periodic reference input

+

+

e
àsT

Fig. 1.1: The internal model for the periodic reference input with period T

r(t) with period T in Fig. 1.1 is called the repetitive controller, and a control system using
the repetitive controllers is called the repetitive control system.

1.1.2 Modified repetitive control

Under the internal model in Fig. 1.1 , we will describe the stability of repetitive control system.
Because the repetitive controller has an internal model in Fig. 1.1 , the repetitive controller
has infinite number of poles on imaginary axis as shown in Fig. 1.2 . This type of a system
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Fig. 1.2: Poles of the internal model for the periodic reference input with period T

is called the neutral type of time-delay system. Because we must stabilize infinite number
of poles by feedback control, it is difficult to design stabilizing controllers for the plant [12].
To design a repetitive control system that follows any periodic reference input without steady
state error, the plant needs to be biproper [3, 4, 7, 8, 9, 10, 11, 12]. Ikeda and Takano [13, 14]
pointed out that it has physical difficulty that the output follows any periodic reference input
without steady state error. In addition they showed that the repetitive control system is L2

stable for periodic signal that does not include infinite frequency signals if the relative degree
of controller is one. However, the actually control system is strictly proper and has any relative
degree. Therefore, many design methods for repetitive control systems for strictly proper plants
have been given [3, 4, 7, 8, 9, 10, 11, 12]. These systems are divided into two types. One type
uses an attenuator [12] and the other type uses a low-pass filter [3, 4, 7, 8, 9, 10, 11].

The method using an attenuator was proposed in [12]. This method makes the internal
model includes an attenuator α (0 < α < 1) as shown in Fig. 1.3 and examines a design
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method for repetitive control systems for strictly proper plants using the internal model in Fig.
1.3 . When the internal model includes an attenuator, poles of the internal model in Fig. 1.3
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Fig. 1.3: The internal model for the reference input with period T using the method in [12]

are s =
loge α

T
+ j

2π

T
k (k = 0,±1,±2, . . .). Therefore, all poles of internal model are restricted

to open left half plane as shown in Fig. 1.4 . The system that has finite number of poles on
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Fig. 1.4: Poles of the internal model using the method in [12]

imaginary axis and has other infinite number of poles in open left half plane, is called the delay
type of time-delay system, and is known that stabilization is relatively easy. The reference in
[12] achieves stabilization using partial pole placement method that is one of the stabilization
methods for the delay type of time-delay system. That is, the method in [12] is a method to
convert the neutral type of time-delay system into the delay type of time-delay system, and
achieve stabilization using partial pole placement method [12].

The method using a low-pass filter was proposed in [3, 4, 7, 8, 9, 10, 11]. This method notes
that it is impossible to follow all frequency components of the periodic reference input and
examines a design method for repetitive control systems for strictly proper plants. To stabilize
the repetitive control system, it must not occur unstable pole-zero cancellation between the
plant and the controller. However, unstable pole-zero cancellation occurs between the zero
at infinity included in the plant and the pole at infinity included in the repetitive controller.
Therefore, it is impossible to follow all frequency components of the periodic reference input
without steady state error for strictly proper plants. From this, using the idea that it permits
tracking error for high-frequency components and follows with high precision for low-frequency
components, the method using a low-pass filter was proposed [3, 4, 7, 8, 9, 10, 11]. This
method makes the internal model includes a low-pass filter q(s) as shown in Fig. 1.5 . When
the internal model includes a low-pass filter, a pole of internal model exists in the origin on the
imaginary axis, but all other poles exist in open left half plane as shown in Fig. 1.6 . Therefore
the repetitive control system becomes the delay type of time-delay system and stabilization is
easy.

Here we compare two methods. The former type of system is difficult to design because
it uses a state-variable time-delay in the repetitive controller [12]. The latter has a simple
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Fig. 1.5: The internal model of the modified repetitive controller using the low-pass filter
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Fig. 1.6: Poles of the internal model of the modified repetitive controller using the low-pass
filter

structure and is easily designed. Therefore, the former type of repetitive control system is
called the modified repetitive control system [3, 4, 7, 8, 9, 10, 11].

In this way, the input-output characteristic and the stability of the repetitive control system
have been examined.

1.1.3 The history of the expansion of modified repetitive control

In this subsection, how the modified repetitive control system has been researched is shown.
When the control system is designed, the control problem that should be examined is different
according to the class of the plant and the control performance to be achieved. Therefore, it
is necessary to think about the control problem individually for the class of the plant and the
control performance to be achieved.

Here, problem to time-delay system, robust stability problem, problem of disturbance at-
tenuation characteristic, and the parameterization problem are shown.

1. Problem to time-delay system

In an actual mechanism, there is a device that the delay is caused by the delay of the
operation etc. in the transmission of the signal. The control performance decreases
remarkably to take time from the change of the instrumental variable to the appearance
of the influence to the control variable. When we define u(t) is the input, y(t) is the
output and T > 0 is the time-delay, then the input-output relation is written by

y(t) = u(t− T ). (1.5)

When we perform Laplace transformation using (1.5), we have

Y (s) = e−sTU(s). (1.6)

Element e−sT that causes the delay of the signal is called a dead time component, and the
control system including dead time component e−sT is called a time-delay system. Because
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the time-delay system includes the dead time component e−sT , the system has infinite
number of poles on imaginary axis. As it was previously mentioned, such a system is the
neutral type of time-delay system, and stabilization is difficult [12]. The design method
of repetitive control for time-delay system was examined in [15, 16]. The reference in
[15] gives a design method of repetitive control system for input time-delay system using
an attenuator and partial pole placement method. The method in [15] can design the
repetitive control system that achieves small steady state error for large time-delay. The
reference in [16] gives a design method of repetitive control system for input time-delay
system using the modified repetitive controller and a state predictor, without using a
state-variable time-delay in the repetitive controller. That is, this method notes that it
is difficult to stabilizes the time-delay system using only modified repetitive controller
and clarifies that the stabilization problem of modified repetitive control for time-delay
system can be came to a same stabilization problem of control system for non-time-delay
system [7, 8] by using the modified repetitive controller and a state predictor.

2. Robust stability problem

When the modified repetitive controller is applied to real systems, the influence of uncer-
tainties in the plant must be considered, because many real plants include the uncertainty.
In some cases, the uncertainty makes the control system unstable. The stability problem
with the uncertainty is known as the robust stability problem [19]∼[25]. The robust sta-
bility problem of modified repetitive control systems was considered by Hara et al. [26].
The robust stability condition for modified repetitive control systems was reduced to the
µ synthesis problem [26], but the µ synthesis problem cannot be solved analytically. That
is, in order to solve the µ synthesis problem, we must solve an H∞ problem iteratively
using the D − K iteration method. Furthermore, the convergence of iterative methods
to solve the µ synthesis problem is not guaranteed. Yamada et al. tackled this problem
and proposed a design method for robust repetitive control systems without solving the
µ synthesis problem [27].

3. Problem of disturbance attenuation characteristic

When the modified repetitive controller is applied to real systems, the disturbance in
the plant must be attenuated to achieve desired action. The disturbance attenuation
characteristic of modified repetitive control system was examined in [5, 28, 29, 30, 31, 32].
Gotou et al. [28] notes that the ratio of the disturbance attenuation characteristic of
modified repetitive control system to the disturbance attenuation characteristic of control
system without modified repetitive controller satisfies 1 − q(s)e−sT , and examined the
disturbance attenuation characteristic of modified repetitive control system. The gain
plot of 1−q(s)e−sT when q(s) = 1/(1+0.05s) and T = 2π/5 is shown in Fig. 1.7 . Figure
1.7 shows that at certain frequencies, the disturbance is amplified as twice, because the
maximum value of the gain of 1− q(s)e−sT is 2. Gotou et al. [28] overcame this problem
by proposing a multi-period repetitive control system that uses an internal model shown
in Fig. 1.8 . From Fig. 1.8 , we can construe the multi-period repetitive controller as a
controller using information not only before one period but also before N period. When
the multi-period repetitive controller is used, the fact that the disturbance attenuation
characteristic can be improved is confirmed as follows: The gain plot of 1−∑3

i=1 qi(s)e
−sTi

when qi(s) = 1/(1 + 0.05s)(i = 1, 2, 3) and Ti = 2πk/5(k = 1, 2, 3) is shown in Fig. 1.9 .
From Fig. 1.9 , it is clear that the disturbance attenuation characteristic can be improved.
However, the phase angle of the low-pass filter in a multi-period repetitive controller has a
bad effect on the disturbance attenuation characteristics [31, 32]. Yamada et al. overcame
this problem and proposed a design method for multi-period repetitive controllers to
attenuate disturbances effectively [33, 34] using the time advance compensation described
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Fig. 1.7: The gain plot of 1− q(s)e−sT
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Fig. 1.8: The internal model of the multi-period repetitive controller using the method in [28]

in [31, 32, 35]. Using this multi-period repetitive control structure, Steinbuch proposed a
design method for repetitive control systems with uncertain period time [36].

4. Parameterization problem

There exists one of important control problems to find all stabilizing controllers named
the parameterization problem [37, 38, 39, 40, 41]. Using the parameterization, at first the
stability of control system is guaranteed by choosing a controller from the parameteriza-
tion. The parameterization includes free parameter that can be chosen freely. We can
satisfy specifications except the stability by using the flexibility of this free parameter.
That is, we can design a control system with two phases to satisfy stability and other
specifications. So, we can easily design stabilizing controllers. Therefore, it is a impor-
tant control problem to obtain the parameterization. At first, the parameterization of all
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stabilizing modified repetitive controllers was studied by Hara and Yamamoto [8]. In [8],
since the stability sufficient condition of repetitive control system is decided as H∞ norm
problem, the parameterization of all stabilizing modified repetitive controllers is given by
resolving into the interpolation problem of Nevanlinna-Pick. Katoh and Funahashi gave
the parameterization of all stabilizing modified repetitive controllers for minimum phase
systems by solving exactly Bezout equation [42]. In [42], since the parameterization is not
given based on stability sufficient condition that the modified repetitive control system is
internally stable, this result is important in the sense that the class of modified repetitive
controllers is extensive than a class of modified repetitive controllers given in [8]. How-
ever, in [42], the plant is assumed to be stable or be stabilized by local feedback control.
This implies that the reference in [42] gave a parameterization of all stabilizing modified
repetitive controllers for a stable and minimum phase plant. That is, the reference in
[42] did not give the exact parameterization for minimum phase systems. Yamada and
Okuyama overcame this problem and gave the parameterization of all stabilizing mod-
ified repetitive controllers for minimum phase systems those are not necessarily stable
[47]. Yamada et al. [43] expanded the result in [47] and gave the parameterization of
all stabilizing modified repetitive controllers for a certain class of non-minimum phase
systems using the idea of parallel compensation technique and the solution of Bezout
equation. Yamada et al. gave the parameterization of all stabilizing modified repetitive
controllers for non-minimum phase systems [44]. The parameterization of all stabilizing
multi-period repetitive controllers was solved in [45, 46].

1.1.4 Simple repetitive control

Using modified repetitive controllers [3, 4, 7, 8, 9, 10, 11], even if the plant does not include
time delays, transfer functions from the periodic reference input to the output and from the
disturbance to the output have infinite numbers of poles. This makes it difficult to specify the
input–output characteristic and the disturbance attenuation characteristic. From a practical
point of view, it is desirable that these characteristics should be easy to specify. Therefore,
these transfer functions should have finite numbers of poles. To overcome this problem, Yamada
et al. proposed simple repetitive control systems such that the controller works as a modified
repetitive controller, and transfer functions from the periodic reference input to the output and
from the disturbance to the output have finite numbers of poles [48]. In addition, Yamada et
al. clarified the parameterization of all stabilizing simple repetitive controllers.

1.2 A trend of a study for simple repetitive control

In this section, how simple repetitive control system has been researched is shown. When the
control system is designed, the control problem that should be examined is different according
to the class of the plant and the control performance to be achieved. Therefore, it is necessary
to think about the control problem individually for the class of the plant and the control
performance to be achieved. The design methods for simple repetitive control systems hitherto
examined are as follows:

1. Simple multi-period repetitive control

Using multi-period repetitive control structure in [28, 33, 34, 45, 46], it is possible to design
a control system to attenuate periodic disturbances effectively than the simple repetitive
control. Yamada and Takenaga proposed simple multi-period repetitive control systems
such that the controller works as a multi-period repetitive controller, and the transfer
functions from the periodic reference input to the output and from the disturbance to the
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output have finite numbers of poles [49]. In addition, they clarified the parameterization
of all stabilizing simple multi-period repetitive controllers.

2. Robust stabilization

The stability problem with uncertainty is known as the robust stability problem [19]∼[25].
When the simple repetitive controller in [48] is applied to the real control system, the
influence of uncertainty must be considered. The parameterization of all robust stabilizing
controllers for the plant with uncertainty is obtained using H∞ control theory based on
the Riccati equation [19, 20] and the Linear Matrix Inequality (LMI) [21, 22]. Using this
parameterization, Yamada et al. proposed the parameterization of all robust stabilizing
simple repetitive controllers [50]. Sakanushi et al. proposed the parameterization of all
robust stabilizing simple multi-period repetitive controllers [51].

3. Time-delay system

The method in [50] cannot be applied to time-delay plants with uncertainty. Since many
real systems include time-delays and uncertainties, the problem to obtain the parametriza-
tion of all stabilizing simple repetitive controllers for time-delay plants with uncertainty
is one of important problem to solve. Yamada et al. proposed the parametrization of all
robust stabilizing simple repetitive controllers for time-delay plants with uncertainty [52]
and that of all robust stabilizing simple multi-period repetitive controllers for time-delay
plants with uncertainty [53]

4. Multiple-input/multiple-output plants

For multiple-input/multiple-output plants, Sakanushi et al. [54] proposed a design method
for stabilizing simple multi-period repetitive controllers. This design method is based on
the doubly coprime factorization.

5. Two-degree-of-freedom control

Simple repetitive controllers in [48] cannot specify the input-output characteristic and
the disturbance attenuation characteristic separately, although it is desirable to be able
to do so in practice. To solve this problem, Yamada et al. [55] adopted the two-degree-
of-freedom control structure shown in Fig. 1.10 and clarified the parameterization of
all stabilizing two-degree-of-freedom simple repetitive controllers that can specify these
characteristics separately by using two controllers. Sakanushi et al. [56] proposed a design

+r(s) u(s)

+
+

y(s)

d1(s)

d2(s)

G(s)
+

C1(s)

C2(s)

+
à

Fig. 1.10: Two-degree-of-freedom control system

method for two-degree-of-freedom simple repetitive control systems using the parameter-
ization in [55] and demonstrated its application in a motor control experiment.

1.3 The purpose and contents of this study

The modified repetitive control system is a type of servomechanism for a periodic reference
input. In other words, the repetitive control system follows a periodic reference input with
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small steady-state error, even if a periodic disturbance or uncertainty exists in the plant [3,
4, 7, 8, 9, 10, 11]. Using modified repetitive controllers, even if the plant does not include
time delays, transfer functions from the periodic reference input to the output and from the
disturbance to the output have infinite numbers of poles. This makes it difficult to specify the
input–output characteristic and the disturbance attenuation characteristic. From a practical
point of view, it is desirable that these characteristics should be easy to specify. Therefore,
these transfer functions should have finite numbers of poles. To overcome this problem, Yamada
et al. proposed simple repetitive control systems such that the controller works as a modified
repetitive controller, and transfer functions from the periodic reference input to the output and
from the disturbance to the output have finite numbers of poles [48]. In addition, Yamada et
al. clarified the parameterization of all stabilizing simple repetitive controllers.

In recent years, many design methods for simple repetitive control systems with considering
an uncertainty, useless time and disturbances, etc. have been proposed [49, 50, 51, 52, 53,
54, 55, 56]. However, using these methods, it is not easy to specify the low-pass filter in the
internal model for the periodic reference input that specifies the input–output characteristic,
because the low-pass filter is related to more than two free parameters. When we design a
simple repetitive controller, if the low-pass filter in the internal model for the periodic reference
input is set beforehand, we can specify the input–output characteristic more easily than the
conventional simple repetitive control systems. This is achieved by parameterizing all stabi-
lizing simple repetitive controllers with the specified input–output characteristic, which is the
parameterization when the low-pass filter is set beforehand. However, no paper has considered
the problem of obtaining the parameterization of all stabilizing simple repetitive controllers
with the specified input–output characteristic. In addition, the parameterization is useful to
design stabilizing controllers [37, 38, 40, 41]. In this paper, in order to make specifying the
input–output characteristic easier, we propose parameterizations of all stabilizing simple repet-
itive controllers with specified input–output characteristic with the low-pass filter specified
beforehand.

This paper is organized as follows:
In Chapter 2., we propose the parameterization of all stabilizing simple repetitive controllers

with the specified input-output characteristic such that low-pass filter in the internal model
for the periodic reference input are settled beforehand, the controller works as a stabilizing
modified repetitive controller and transfer functions from the periodic reference input to the
output and from the disturbance to the output have finite numbers of poles. In addition,
we propose a design method for a control system using the parameterization. A numerical
example is presented to illustrate the effectiveness of the proposed design method. Finally, to
demonstrate the effectiveness of the parameterization for real plants, we present an application
for the reduction of rotational unevenness in motors.

In Chapter 3., we adopt multi-period repetitive control structure and propose the parame-
terization of all stabilizing simple multi-period repetitive controllers with the specified input-
output characteristic such that low-pass filters in the internal model for the periodic reference
input are settled beforehand, the controller works as a stabilizing multi-period repetitive con-
troller and transfer functions from the periodic reference input to the output and from the
disturbance to the output have finite numbers of poles. In addition, we propose a design
method for a control system using the parameterization. A numerical example is presented to
illustrate the effectiveness of the proposed design method.

In Chapter 4., we propose the parameterization of all robust stabilizing simple multi-period
repetitive controllers for time-delay plants with the specified input-output characteristic such
that the low-pass filters in the internal model for the periodic reference input are settled be-
forehand, the controller works as a robust stabilizing multi-period repetitive controller for
time-delay plants and transfer functions from the periodic reference input to the output and
from the disturbance to the output have finite numbers of poles when the uncertainty does not

9



exist. The basic idea of designing a robust stabilizing simple multi-period repetitive controllers
for time-delay plants with the specified input-output characteristic is very simple. For a certain
class of time-delay plants with uncertainty, using state predictive control, the problem to design
a robust stabilizing controller is reduced to that for the plant without a time delay [59]. That
is, if the simple multi-period repetitive control system is robustly stable for the time-delay plant
with uncertainty, then the simple multi-period repetitive controller must satisfy the robust sta-
bility condition for system without time delay. This implies that if the simple multi-period
repetitive control system is robustly stable, then the simple multi-period repetitive controller
is included in the parameterization of all robust stabilizing controllers for the plant with uncer-
tainty. The parameterization of all robust stabilizing controllers for the plant with uncertainty
is obtained by employing H∞ control theory based on the Riccati equation [19, 20]. The robust
stabilizing controller for plants with uncertainty contains free parameter that is designed to
achieve desirable control characteristic. When the free parameter of the parameterization of all
robust stabilizing controllers is appropriately chosen, then the controller works as robust stabi-
lizing simple multi-period repetitive controller. A numerical example is presented to illustrate
the effectiveness of the proposed design method.

Chapter 5. summarizes the result of the present study by the conclusion.
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Notations

R the set of real numbers.
R+ R ∪ {∞}.
R(s) the set of real rational function with s.
RH∞ the set of stable proper real rational functions.
H∞ the set of stable causal functions.

D⊥ orthogonal complement of D, i.e.,
[
D D⊥

]
or

[
D
D⊥

]
is unitary.

AT transpose of A.
A† pseudo inverse of A.
ρ({·}) spectral radius of {·}.
∥{·}∥∞ H∞ norm of {·}.[
A B
C D

]
represents the state space description C(sI−A)−1B+D.

L{·} the Laplace transformation of {·}.
L−1{·} the inverse Laplace transformation of {·}.
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Chapter 2

A design method for simple repetitive
controllers with specified input–output
characteristic

2.1 Introduction

The simple repetitive control system proposed by Yamada et al. is a type of servomechanism
for the periodic reference input [48]. That is, the simple repetitive control system follows
the periodic reference input with small steady state error, even if a periodic disturbance or
uncertainty exists in the plant. In addition, simple repetitive control systems make transfer
functions from the periodic reference input to the output and from the disturbance to the output
have finite numbers of poles. Yamada et al. clarified the parameterization of all stabilizing
simple repetitive controllers [48].

According to Yamada et al., the parameterization of all stabilizing simple repetitive con-
trollers includes two free parameters. One specifies the disturbance attenuation characteristic.
The other specifies the low-pass filter in the internal model for the periodic reference input that
specifies the input–output characteristic. However, when employing the method of Yamada et
al., it is complex to specify the low-pass filter in the internal model for the periodic reference
input. When we design a simple repetitive controller, if the low-pass filter in the internal model
for the periodic reference input is set beforehand, we can specify the input–output characteristic
more easily than in the method employed in [48]. This is achieved by parameterizing all stabi-
lizing simple repetitive controllers with the specified input–output characteristic, which is the
parameterization when the low-pass filter is set beforehand. However, no paper has considered
the problem of obtaining the parameterization of all stabilizing simple repetitive controllers
with the specified input–output characteristic. In addition, the parameterization is useful to
design stabilizing controllers [37, 38, 39, 40, 41].

In this chapter, we propose the parameterization of all stabilizing simple repetitive con-
trollers with the specified input–output characteristic and demonstrate the effectiveness of the
parameterization of all stabilizing simple repetitive controllers with the specified input–output
characteristic. First, we give the parameterization of all stabilizing simple repetitive controllers
with the specified input–output characteristic. Next, we clarify control characteristics using
the parameterization. In addition, a design procedure using the parameterization is presented.
A numerical example is presented to illustrate the effectiveness of the proposed design method.
Finally, to demonstrate the effectiveness of the parameterization for real plants, we present an
application for the reduction of rotational unevenness in motors.
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2.2 Problem formulation

Consider the unity feedback control system given by{
y(s) = G(s)u(s) + d(s)
u(s) = C(s)(r(s)− y(s))

, (2.1)

where G(s) ∈ R(s) is the strictly proper plant, C(s) is the controller, u(s) ∈ R(s) is the control
input, y(s) ∈ R(s) is the output, d(s) ∈ R(s) is the disturbance and r(s) ∈ R(s) is the periodic
reference input with period T > 0 satisfying

r(t+ T ) = r(t) (∀t ≥ 0). (2.2)

According to [3, 4, 7, 8, 9, 10, 11, 12], the modified repetitive controller C(s) is written in the
form

C(s) = C1(s) + C2(s)Cr(s), (2.3)

where C1(s) ∈ R(s) and C2(s) ̸= 0 ∈ R(s). Cr(s) is an internal model for the periodic reference
input r(s) with period T and is written as

Cr(s) =
e−sT

1− q(s)e−sT , (2.4)

where q(s) ∈ R(s) is a proper low-pass filter satisfying q(0) = 1.
Using the modified repetitive controller C(s) in (2.3), transfer functions from the periodic

reference input r(s) to the output y(s) and from the disturbance d(s) to the output y(s) in
(2.1) are written as

y(s)

r(s)
=

C(s)G(s)

1 + C(s)G(s)

=

{
C1(s)− (C1(s)q(s)− C2(s))e

−sT
}
G(s)

1 + C1(s)G(s)− {(1 + C1(s)G(s))q(s)− C2(s)G(s)} e−sT (2.5)

and

y(s)

d(s)
=

1

1 + C(s)G(s)

=
1− q(s)e−sT

1 + C1(s)G(s)− {(1 + C1(s)G(s))q(s)− C2(s)G(s)} e−sT , (2.6)

respectively. Generally, transfer functions from the periodic reference input r(s) to the output
y(s) in (2.5) and from the disturbance d(s) to the output y(s) in (2.6) have infinite numbers of
poles. When transfer functions from the periodic reference input r(s) to the output y(s) and
from the disturbance d(s) to the output y(s) have infinite numbers of poles, it is difficult to
specify the input–output characteristic and the disturbance attenuation characteristic. From a
practical point of view, it is desirable that the input–output characteristic and the disturbance
attenuation characteristic are easily specified. To specify the input–output characteristic and
the disturbance attenuation characteristic easily, it is desirable for transfer functions from the
periodic reference input r(s) to the output y(s) and from the disturbance d(s) to the output
y(s) to have finite numbers of poles. To achieve this, Yamada et al. proposed simple repetitive
control systems such that the controller works as a modified repetitive controller, and transfer
functions from the periodic reference input to the output and from the disturbance to the output
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have finite numbers of poles [48]. In addition, Yamada et al. clarified the parameterization of
all stabilizing simple repetitive controllers.

On the other hand, according to [3, 4, 7, 8, 9, 10, 11, 12], if the low-pass filter q(s) satisfies

1− q(jωi) ≃ 0 (∀i = 0, . . . , Nmax) , (2.7)

where ωi is the frequency component of the periodic reference input r(s) written by

ωi =
2π

T
i (i = 0, . . . , Nmax) (2.8)

and ωNmax is the maximum frequency component of the periodic reference input r(s), then
the output y(s) in (2.1) follows the periodic reference input r(s) with small steady-state error.
Using the result in [48], for q(s) to satisfy (2.7) in a wide frequency range, we must design
q(s) to be stable and of minimum phase. If we obtain the parameterization of all stabilizing
simple repetitive controllers such that q(s) in (2.4) is set beforehand, we can design the simple
repetitive controller satisfying (2.7) more easily than in the method in [48].

From the above practical requirement, we propose the concept of the simple repetitive
controller with the specified input–output characteristic as follows.

Definition 1 (Simple repetitive controller with the specified input–output characteristic)
We call the controller C(s) a “simple repetitive controller with the specified input–output char-
acteristic” if the following expressions hold true.

1. The low-pass filter q(s) ∈ RH∞ in (2.4) is set beforehand. That is, the input–output
characteristic is set beforehand.

2. The controller C(s) works as a modified repetitive controller. That is, the controller C(s)
is written as (2.3), where C1(s) ∈ R(s), C2(s) ̸= 0 ∈ R(s) and Cr(s) is written as (2.4).

3. The controller C(s) ensures transfer functions from the periodic reference input r(s) to
the output y(s) in (2.1) and from the disturbance d(s) to the output y(s) in (2.1) have
finite numbers of poles.

The problem considered in this paper is to propose the parameterization of all stabilizing
simple repetitive controllers with the specified input-output characteristic and to propose a
design method for a control system using the parameterization.

2.3 The parameterization of all stabilizing simple repeti-

tive controllers with the specified input-output char-

acteristic

In this section, we clarify the parameterization of all stabilizing simple repetitive controllers
with the specified input–output characteristic defined in Definition 1.

In order to obtain the parameterization of all stabilizing simple repetitive controllers with
the specified input–output characteristic, q(s) ∈ RH∞ is assumed to be settled beforehand. The
parameterization of all stabilizing simple repetitive controllers with the specified input-output
characteristic is summarized in the following theorem.

Theorem 1 There exists a stabilizing simple repetitive controller with the specified input–
output characteristic if and only if the low-pass filter q(s) ∈ RH∞ in (2.4) takes the form:

q(s) = N(s)q̄(s). (2.9)
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Here, N(s) ∈ RH∞ and D(s) ∈ RH∞ are coprime factors of G(s) on RH∞ satisfying

G(s) =
N(s)

D(s)
(2.10)

and q̄(s) ̸= 0 ∈ RH∞ is any function. When the low-pass filter q(s) ∈ RH∞ in (2.4) satisfies
(2.9), the parameterization of all stabilizing simple repetitive controllers with the specified input–
output characteristic is given by

C(s) =
X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT . (2.11)

Here, X(s) ∈ RH∞ and Y (s) ∈ RH∞ are functions satisfying

X(s)N(s) + Y (s)D(s) = 1 (2.12)

and Q(s) ∈ RH∞ is any function.

Proof of this theorem requires the following lemma.

Lemma 1 The unity feedback control system in (2.1) is internally stable if and only if C(s) is
written as

C(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
, (2.13)

where N(s) ∈ RH∞ and D(s) ∈ RH∞ are coprime factors of G(s) on RH∞ satisfying (2.10),
X(s) ∈ RH∞ and Y (s) ∈ RH∞ are functions satisfying (2.12) and Q(s) ∈ RH∞ is any function
[41].

Using Lemma 1, we present the proof of Theorem 1.
(Proof) First, the necessity is shown. That is, we show that if the controller C(s) in (2.3)

stabilizes the control system in (2.1) and ensures that the transfer function from the periodic
reference input r(s) to the output y(s) of the control system in (2.1) has a finite number of
poles, then the low-pass filter q(s) must take the form (2.9). From the assumption that the
controller C(s) in (2.3) ensures that the transfer function from the periodic reference input r(s)
to the output y(s) of the control system in (2.1) has a finite number of poles, we know that

G(s)C(s)

1 +G(s)C(s)
=

{
C1(s)− (C1(s)q(s)− C2(s))e

−sT
}
G(s)

1 +G(s)C1(s)− {(1 +G(s)C1(s))q(s)− C2(s)G(s)} e−sT (2.14)

has a finite number of poles. This implies that

C2(s) =
(1 +G(s)C1(s))q(s)

G(s)
(2.15)

is satisfied; that is, C(s) is necessarily

C(s) =
G(s)C1(s) + q(s)e−sT

G(s)
(
1− q(s)e−sT

) . (2.16)

From the assumption that C(s) in (2.3) stabilizes the control system in (2.1), we know that
G(s)C(s)/(1 + G(s)C(s)), C(s)/(1 + G(s)C(s)), G(s)/(1 + G(s)C(s)) and 1/(1 + G(s)C(s))
are stable. From simple manipulation and (2.16), we have

G(s)C(s)

1 +G(s)C(s)
=

G(s)C1(s) + q(s)e−sT

1 +G(s)C1(s)
, (2.17)
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C(s)

1 +G(s)C(s)
=

G(s)C1(s) + q(s)e−sT

(1 +G(s)C1(s))G(s)
, (2.18)

G(s)

1 +G(s)C(s)
=

(1− q(s)e−sT )G(s)

1 +G(s)C1(s)
(2.19)

and

1

1 +G(s)C(s)
=

1− q(s)e−sT

1 +G(s)C1(s)
. (2.20)

From the assumption that all transfer functions in (2.17), (2.18), (2.19) and (2.20) are stable,
we know that G(s)C1(s)/(1 + G(s)C1(s)), C1(s)/(1 + G(s)C1(s)), G(s)/(1 + G(s)C1(s)) and
1/(1 + G(s)C1(s)) are stable. This means that C1(s) is an internally stabilizing controller for
G(s). From Lemma 1, C1(s) must take the form:

C1(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
, (2.21)

where Q(s) ∈ RH∞. From the assumption that the transfer function in (2.18) is stable, we
know that

q(s)

G(s) (1 +G(s)C1(s))
=

(Y (s)−N(s)Q(s))D2(s)q(s)

N(s)
(2.22)

is stable. This implies that q(s) must take the form:

q(s) = N(s)q̄(s), (2.23)

where q̄(s) ̸= 0 ∈ RH∞ is any function. In this way, it is shown that if there exists a stabilizing
simple repetitive controller with the specified input–output characteristic, then the low-pass
filter q(s) must take the form (2.9).

Next, we show that if (2.9) holds true, then C(s) is written as (2.11). Substituting (2.15),
(2.21) and (2.23) into (2.3), we have (2.11). Thus, the necessity has been shown.

Next, the sufficiency is shown. That is, it is shown that if q(s) and C(s) take the form
(2.9) and (2.11), respectively, then the controller C(s) stabilizes the control system in (2.1),
ensures that the transfer functions from r(s) and d(s) to y(s) of the control system in (2.1)
have finite numbers of poles and works as a stabilizing modified repetitive controller. After
simple manipulation, we have

G(s)C(s)

1 +G(s)C(s)
=

{
X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

}
N(s),

(2.24)

C(s)

1 +G(s)C(s)
=

{
X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

}
D(s),

(2.25)

G(s)

1 +G(s)C(s)
=

{
Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

)
N(s)

(2.26)
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and

1

1 +G(s)C(s)
=

{
Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s)) q̄(s)e−sT

}
D(s).

(2.27)

Since X(s) ∈ RH∞, Y (s) ∈ RH∞, N(s) ∈ RH∞, D(s) ∈ RH∞, Q(s) ∈ RH∞ and q̄(s) ∈ RH∞,
the transfer functions in (2.24), (2.25), (2.26) and (2.27) are stable. In addition, for the same
reason, transfer functions from r(s) and d(s) to y(s) of the control system in (2.1) have finite
numbers of poles.

Next, we show that the controller in (2.11) works as a modified repetitive controller. The
controller in (2.11) is rewritten in the form in (2.3), where

C1(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
(2.28)

and

C2(s) =
q̄(s)

(Y (s)−N(s)Q(s))
. (2.29)

From the assumption of q̄(s) ̸= 0, C2(s) ̸= 0 holds true. These expressions imply that the
controller C(s) in (2.11) works as a modified repetitive controller. Thus, the sufficiency has
been shown.

We have thus proved Theorem 1.

Remark 1 Note that from Theorem 1, when the plant G(s) is of non-minimum phase, the
low-pass filter q(s) cannot be set to be of minimum phase.

2.4 Control characteristics

In this section, we describe control characteristics of the control system in (2.1) using the
stabilizing simple repetitive controller in (2.11).

First, we mention the input–output characteristic. The transfer function S(s) from the
periodic reference input r(s) to the error e(s) = r(s)− y(s) is written as

S(s) =
1

1 +G(s)C(s)
= D(s) (Y (s)−N(s)Q(s))

(
1− q(s)e−sT

)
. (2.30)

From (2.30), since q(s) is set beforehand to satisfy (2.7), the output y(s) follows the peri-
odic reference input r(s) with small steady-state error. That is, we find that by using the
parameterization of all stabilizing simple repetitive controllers with the specified input–output
characteristic, the input–output characteristic can be specified beforehand.

Next, we mention the disturbance attenuation characteristic. The transfer function from
the disturbance d(s) to the output y(s) is written as (2.30). From (2.30), for the frequency
component ωi(i = 0, . . . , Nmax) in (2.8) of the disturbance d(s) that is the same as that of the
periodic reference input r(s), since S(s) satisfies S(jωi) ≃ 0(∀i = 0, . . . , Nmax), the disturbance
d(s) is attenuated effectively. For the frequency component ωd of the disturbance d(s) that is
different from that of the periodic reference input r(s) (that is, ωd ̸= ωi), even if

1− q(jωd) ≃ 0, (2.31)

the disturbance d(s) cannot be attenuated because

e−jωdT ̸= 1 (2.32)
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and

1− q(jωd)e
−jωdT ̸= 0. (2.33)

To attenuate the frequency component ωd of the disturbance d(s) that is different from that of
the periodic reference input r(s), we need to set Q(s) satisfying

Y (jωd)−N(jωd)Q(jωd) ≃ 0. (2.34)

From the above discussion, the role of q(s) is to specify the input–output characteristic
for the periodic reference input r(s) and it can be specified beforehand. The role of Q(s)
is to specify the disturbance attenuation characteristic for the frequency component of the
disturbance d(s) that is different from that of the periodic reference input r(s).

2.5 Design procedure

In this section, a design procedure for stabilizing the simple repetitive controller with the
specified input–output characteristic is presented.

A design procedure for stabilizing simple repetitive controllers satisfying Theorem 1 is sum-
marized as follows.

Procedure

Step 1) Obtain coprime factors N(s) ∈ RH∞ and D(s) ∈ RH∞ of G(s) satisfying (2.10).

Step 2) X(s) ∈ RH∞ and Y (s) ∈ RH∞ are set satisfying (2.12).

Step 3) q̄(s) ∈ RH∞ in (2.9) is set so that for the frequency component ωi(i = 0, . . . , Nmax) of
the periodic reference input r(s),

1− q(jωi) = 1−N(jωi)q̄(jωi) ≃ 0. (2.35)

To satisfy 1−N(jωi)q̄(jωi) ≃ 0, q̄(s) ∈ RH∞ is set according to

q̄(s) =
1

No(s)
q̄r(s), (2.36)

where No(s) ∈ RH∞ is an outer function of N(s) satisfying

N(s) = Ni(s)No(s), (2.37)

Ni(s) ∈ RH∞ is an inner function satisfying Ni(0) = 1 and |Ni(jω)| = 1(∀ω ∈ R+), q̄r(s)
is a low-pass filter satisfying q̄r(0) = 1, as

q̄r(s) =
1

(1 + sτr)
αr

(2.38)

is valid, αr is an arbitrary positive integer that ensures q̄r(s)/No(s) is proper and τr ∈ R
is any positive real number satisfying

1−Ni(jωi)
1

(1 + jωiτr)
αr

≃ 0(∀i = 0, . . . , Nmax). (2.39)
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Step 4) Q(s) ∈ RH∞ is set so that for the frequency component ωd of the disturbance d(s),
Y (jωd)−N(jωd)Q(jωd) ≃ 0 is satisfied. To design Q(s) to hold Y (jωd)−N(jωd)Q(jωd) ≃
0 , Q(s) is set according to

Q(s) =
Y (s)

No(s)
q̄d(s), (2.40)

where q̄d(s) is a low-pass filter satisfying q̄d(0) = 1, as

q̄d(s) =
1

(1 + sτd)
αd

(2.41)

is valid, αd is an arbitrary positive integer that ensures q̄d(s)/No(s) is proper and τd ∈ R
is any positive real number satisfying

1−Ni(jωd)
1

(1 + jωdτd)
αd

≃ 0. (2.42)

2.6 Numerical example

In this section, a numerical example is presented to illustrate the effectiveness of the proposed
method.

We consider the problem of obtaining the parameterization of all stabilizing simple repetitive
controllers with the specified input–output characteristic for the plant G(s) written as

G(s) =
s− 50

(s+ 1)(s− 1)
(2.43)

that follows the periodic reference input r(t) with period T = 2[s].
A pair of coprime factors N(s) ∈ RH∞ and D(s) ∈ RH∞ of G(s) in (2.43) satisfying (2.10)

is given by

N(s) =
s− 50

(s+ 30)(s+ 40)
(2.44)

and

D(s) =
(s+ 1)(s− 1)

(s+ 30)(s+ 40)
. (2.45)

q(s) is set according to

q(s) = Ni(s)q̄r(s)

=
−s+ 50

s+ 50
· 1

0.001s+ 1
, (2.46)

where

Ni(s) =
−s+ 50

s+ 50
(2.47)

and

q̄r(s) =
1

0.001s+ 1
. (2.48)
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X(s) ∈ RH∞ and Y (s) ∈ RH∞ satisfying (2.12) are derived as

X(s) = − 3943s+ 29024

(s+ 30)(s+ 40)
(2.49)

and

Y (s) =
s2 + 140s+ 11244

(s+ 30)(s+ 40)
. (2.50)

From Theorem 1, the parameterization of all stabilizing simple repetitive controllers with the
specified input–output characteristic for G(s) in (2.43) is given by (2.11), where Q(s) ∈ RH∞
in (2.11) is any function. So that the disturbance

d(t) = sin
(
πt

2

)
(2.51)

can be attenuated effectively, Q(s) is set by (2.40), where

q̄d(s) =
1

0.001s+ 1
(2.52)

and

No(s) =
−s− 50

(s+ 30)(s+ 40)
. (2.53)

Using the abovementioned parameters, we have a stabilizing simple repetitive controller with
the specified input–output characteristic.

Using the designed stabilizing simple repetitive controller with the specified input–output
characteristic, the response of the error e(t) = r(t)−y(t) in (2.1) for the periodic reference input
r(t) = sin(πt) is shown in Fig. 2.1 . Here, the dotted line shows the response of the periodic
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Fig. 2.1: Response of the error e(t) = r(t)− y(t) for the periodic reference input r(t) = sin(πt)

reference input r(t) = sin(πt) and the solid line shows that of the error e(t) = r(t) − y(t).
Figure 2.1 shows that the output y(t) follows the periodic reference input r(t) with a small
steady-state error.

Next, using the designed simple repetitive controller with the specified input–output char-
acteristic C(s), the disturbance attenuation characteristic is shown. The response of the output
y(t) for the disturbance d(t) = sin(2πt) of which the frequency component is equivalent to that
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Fig. 2.2: Response of the output y(t) for the disturbance d(t) = sin(2πt)

of the periodic reference input r(t) is shown in Fig. 2.2 . Here, the dotted line shows the
response of the disturbance d(t) = sin(2πt) and the solid line shows that of the output y(t).
Figure 2.2 shows that the disturbance d(t) = sin(2πt) is attenuated effectively. Finally, the
response of the output y(t) for the disturbance d(t) in (2.51) of which the frequency component
is different from that of the periodic reference input r(t) is shown in Fig. 2.3 . Here, the dotted
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Fig. 2.3: Response of the output y(t) for the disturbance d(t) = sin
(
πt
2

)
line shows the response of the disturbance d(t) in (2.51) and the solid line shows that of the
output y(t). Figure 2.3 shows that the disturbance d(t) in (2.51) is attenuated effectively.

A stabilizing simple repetitive controller with the specified input–output characteristic can
be easily designed in the way shown here.

2.7 Application of reducing rotational unevenness in mo-

tors

In this section, to demonstrate the effectiveness of the parameterization of all stabilizing simple
repetitive controllers with the specified input–output characteristic for real plants, we present
an application of reducing rotational unevenness in motors.
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2.7.1 Motor control experiment and problem description

A motor control experiment is illustrated in Fig. 2.4 . The motor control experiment consists

5
0
.7

10.3

Optical EncoderDC MotorWheel

input output

Digital Signal Processor

Personal Computer

Fig. 2.4: Illustrated motor control experiment

of a direct-current motor with an optical encoder of 1000[counts/revolution] and a wheel that
has a diameter of 50.7[mm], a width of 10.3[mm] and mass of 72.5[g] attached to the motor. We
denote with Tv[rad/s] the estimated value of the angular velocity of the wheel calculated from
the measurement of the angle of the wheel. Vm denotes a control input for the direct-current
motor, and the available voltage of Vm is −24[V] ≤ Vm ≤ 24[V]. When we set Vm = 2.1[V], the
response of Tv, which is the angular velocity of the wheel, is shown in Fig. 2.5 and Fig. 2.6 .
Figure 2.5 and Fig. 2.6 show disturbances including rotational unevenness in the motor. Since
the rotational unevenness in the motor depends on the angle of the motor, the disturbance is
considered a periodic disturbance.

The problem considered in this experiment is to design a control system to attenuate periodic
disturbances including the rotational unevenness in the motor by parameterizing all stabilizing
simple repetitive controllers with the specified input–output characteristic, which is an effective
compensator for attenuating periodic disturbances effectively.
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Fig. 2.5: Response of Tv when Vm = 2.1[V]
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Fig. 2.6: Magnified plot of Fig. 2.5 between 99[rad/s] and 104[rad/s]

2.7.2 Experimental result

In this subsection, we present experimental results of controlling the angular velocity in the
motor control experiment in Fig. 2.4 using the parameterization of all stabilizing simple
repetitive controllers with the specified input–output characteristic.

From Fig. 2.5 , we find that the transfer function from Vm to Tv, which is the angular
velocity of the wheel, is

Tv =
48

1 + 1.31s
Vm. (2.54)

Tv and Vm are considered as the output y(s) and the control input u(s) in the control system.
G(s) is then written as

G(s) =
48

1 + 1.31s
∈ RH∞. (2.55)

The reference input r(s) is set as r(t) = vr = 100[rad/s]. The period T of the disturbance d(t)
is

T =
2π

vr
=

2π

100
. (2.56)

To attenuate the periodic disturbance d(t) with period T , we design a simple repetitive
controller with the specified input–output characteristic C(s) in (2.11). Coprime factors N(s) ∈
RH∞ and D(s) ∈ RH∞ of the plant G(s) in (2.55) on RH∞ are given by

N(s) =
114.2857

s+ 1
(2.57)

and

D(s) =
s+ 2.381

s+ 1
. (2.58)

A pair of X(s) ∈ RH∞ and Y (s) ∈ RH∞ satisfying N(s)X(s) +D(s)Y (s) = 1 is written as

X(s) =
0.0167

s+ 1
(2.59)
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and

Y (s) =
s− 0.381

s+ 1
. (2.60)

q(s) is set according to

q(s) = Ni(s)q̄r(s) =
1

0.2s+ 1
, (2.61)

where

Ni(s) = 1 (2.62)

and

q̄r(s) =
1

0.2s+ 1
. (2.63)

Using the abovementioned parameters, the parameterization of all stabilizing simple repetitive
controllers with the specified input–output characteristic for G(s) in (2.55) is given by (2.11),
where Q(s) ∈ RH∞ in (2.11) is any function.

Q(s) is set by (2.40), where

q̄d(s) =
1

0.03s+ 1
(2.64)

and

No(s) = N(s). (2.65)

Substitution of Q(s) into (2.11) gives a stabilizing simple repetitive controller with the specified
input–output characteristic C(s).

Using the designed simple repetitive controller with the specified input–output characteristic
C(s), the response of the output y(t), which is the angular velocity of the wheel Tv, for the
reference input r(t) = 100[rad/s], is shown in Fig. 2.7 and Fig. 2.8 . Figure 2.7 and Fig. 2.8
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Fig. 2.7: Response of the output y(t), which is the angular velocity of the wheel Tv, for the
reference input r(t) = 100[rad/s] using the simple repetitive controller with the specified input–
output characteristic

show that the output y(t), which is the angular velocity of the wheel Tv, follows the reference
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Fig. 2.8: Magnified plot of Fig. 2.7 between 99[rad/s] and 101[rad/s]

input r(t) = 100[rad/s] with small steady-state error. In addition, the disturbance d(t) that
includes the rotational unevenness in the motor is attenuated effectively.

To demonstrate the effectiveness of the simple repetitive controller with the specified input–
output characteristic, a comparison was made with the response when using the parameteriza-
tion of all stabilizing modified repetitive controllers with the specified input–output character-
istic in [57] written as

C(s) =
X(s) +D(s)Q̂(s)

Y (s)−N(s)Q̂(s)
, (2.66)

where

Q̂(s) =
Qn(s) +

(
Y (s)Q̄(s)−Qn(s)

)
q(s)e−sT

Qd(s) +
(
N(s)Q̄(s)−Qd(s)

)
q(s)e−sT

∈ H∞. (2.67)

Here, Qn(s) ∈ RH∞, Q̄(s) ̸= 0 ∈ RH∞ and Qd(s) ̸= 0 ∈ RH∞ are any functions. N(s) ∈ RH∞,
D(s) ∈ RH∞, X(s) ∈ RH∞ and Y (s) ∈ RH∞ are given by (2.57), (2.58), (2.59) and (2.60),
respectively. q(s) is a low-pass filter that satisfies q(0) = 1 and specifies the input–output
characteristic for the periodic reference input r(s) and the disturbance attenuation characteristic
for the frequency component of the disturbance d(s) that is the same as that of the periodic
reference input r(s). To compare the simple repetitive controller and the modified repetitive
controller fairly, q(s) in (2.67) is set as that of the simple repetitive controller; that is, q(s)
is set by (2.61). Using the abovementioned parameters, the parameterization of all stabilizing
modified repetitive controllers with the specified input–output characteristic C(s) is written as
(2.66) with (2.67).

For Q̂(s) to satisfy Q̂(s) ∈ H∞, Qd ∈ RH∞ and Q̄(s) ∈ RH∞ are set according to

Qd(s) =
2s+ 100

s+ 0.1
(2.68)

and

Q̄(s) =
5(s2 + s+ 1)

3
(
10s2 + s+ 2

) , (2.69)

respectively. Qn(s) in (2.67) is set according to

Qn(s) =
Y (s)Qd(s)

N(s)
q̄d(s), (2.70)
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where q̄d(s) is given by (2.64). Substitution of Qn(s), Qd(s) and Q̄(s) into (2.67) gives a
stabilizing modified repetitive controller C(s).

Using the obtained modified repetitive controller C(s), the response of the output y(t),
which is the angular velocity of the wheel Tv, for the reference input r(t) = 100[rad/s] is shown
in Fig. 2.9 and Fig. 2.10 . Figure 2.9 and Fig. 2.10 show that the output y(t), which is
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Fig. 2.9: Response of the output y(t), which is the angular velocity of the wheel Tv, for the
reference input r(t) = 100[rad/s] using the modified repetitive controller with the specified
input–output characteristic
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Fig. 2.10: Magnified plot of Fig. 2.9 between 99[rad/s] and 101[rad/s]

the angular velocity of the wheel Tv, follows the reference input r(t) = 100[rad/s] with small
steady-state error. In addition, the disturbance d(t) that includes the rotational unevenness of
the motor is attenuated effectively.

The comparison of Fig. 2.8 with Fig. 2.10 shows that the convergence of the simple
repetitive control system is faster than that of the modified repetitive control system. In
addition, the simple repetitive control system attenuates the disturbance that includes the
rotational unevenness in the motor more effectively than the modified repetitive control system.
The simple repetitive control system has merits such as the transfer functions from the periodic
reference input to the output having finite numbers of poles and the system being easy to design.
This result illustrates that the simple repetitive control system is more effective for the reduction
of rotational unevenness in motors than the modified repetitive control system.
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In this way, the effectiveness of the control system employing the parameterization of all
stabilizing simple repetitive controllers with the specified input–output characteristic in (2.11)
for real plants has been shown.

2.8 Conclusion

In this chapter, we proposed the parameterization of all stabilizing simple repetitive controllers
with the specified input–output characteristic such that the low-pass filter in the internal model
for the periodic reference input is set beforehand, the controller works as a stabilizing modified
repetitive controller, and transfer functions from the periodic reference input to the output and
from the disturbance to the output have finite numbers of poles. In addition, we demonstrated
the effectiveness of the parameterization of all stabilizing simple repetitive controllers with
the specified input–output characteristic. Control characteristics of a simple repetitive control
system were presented, as well as a design procedure for a simple repetitive controller with the
specified input–output characteristic. Finally, a numerical example and an application for the
reduction of rotational unevenness in motors were presented to illustrate the effectiveness of
the proposed method.
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Chapter 3

A design method for simple
multi-period repetitive controllers with
the specified input-output
characteristic

3.1 Introduction

A modified repetitive control system is a type of servomechanism for a periodic reference input,
i.e., it follows a periodic reference input with small steady state error, even when there exists
a periodic disturbance or an uncertainty of a plant [3, 4, 7, 8, 9, 10, 11].

However, the modified repetitive control system has a bad effect on the disturbance atten-
uation characteristic [28], in that at certain frequencies, the sensitivity to disturbances of a
control system with a modified repetitive controller becomes twice as worse as that of a con-
trol system without a modified repetitive controller. Gotou et al. overcame this problem by
proposing a multi-period repetitive control system [28]. However, the phase angle of the low-
pass filter in a multi-period repetitive controller has a bad effect on the disturbance attenuation
characteristics [31, 32]. Yamada et al. overcame this problem and proposed a design method
for multi-period repetitive controllers to attenuate disturbances effectively [33, 34] using the
time advance compensation described in [31, 32, 35]. Using this multi-period repetitive control
structure, Steinbuch proposed a design method for repetitive control systems with uncertain
period time [36].

On the other hand, there exists an important control problem of finding all stabilizing
controllers, named the parameterization problem [37, 38, 39, 40, 41]. The parameterization of
all stabilizing multi-period repetitive controllers was solved in [45, 46].

Using the multi-period repetitive controllers in [28, 33, 34, 45, 46], even if the plant does
not include time delays, the transfer function from the periodic reference input to the output
and that from the disturbance to the output have infinite numbers of poles. In this situation,
it is difficult to specify the input-output characteristic and the disturbance attenuation char-
acteristic. From a practical point of view, it is desirable that the input-output characteristic
and the disturbance attenuation characteristic are easy to determine. To do this, the transfer
function from the periodic reference input to the output and that from the disturbance to the
output should have finite numbers of poles. If we can design multi-period repetitive control sys-
tems where these transfer functions have finite numbers of poles, then they will become more
widely used controller structures, like the Smith predictor [58] for time-delay plants. From
this viewpoint, Yamada and Takenaga [49] proposed such multi-period repetitive controller,
named simple multi-period repetitive controller, and clarified the parameterization of all sta-
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bilizing simple multi-period repetitive controllers. According to Yamada and Takenaga, the
parameterization of all stabilizing simple multi-period repetitive controllers includes two kinds
of free-parameters. One has the role to specify the disturbance attenuation characteristic. The
others have the role to specify low-pass filters in the internal model for the periodic reference
input of which the role is to specify the input-output characteristic. However, using the method
by Yamada and Takenaga, it is complex to specify low-pass filters in the internal model for the
periodic reference input. When we design a simple multi-period repetitive controller, if low-pass
filters in the internal model for the periodic reference input are settled beforehand, we can spec-
ify the input-output characteristic more easily than the method in [49]. This problem is solved
by obtaining the parameterization of all stabilizing simple multi-period repetitive controllers
with the specified input-output characteristic, which is the parameterization when low-pass
filters are settled beforehand. However, no paper has considered the problem to obtain the
parameterization of all stabilizing simple multi-period repetitive controllers with the specified
input-output characteristic. In addition, the parameterization is useful to design stabilizing
controllers [37, 38, 39, 40, 41]. Therefore, the problem of obtaining the parameterization of all
stabilizing simple multi-period repetitive controllers with the specified input-output character-
istic is important to solve.

In this chapter, we propose the parameterization of all stabilizing simple multi-period repet-
itive controllers with the specified input-output characteristic such that low-pass filters in the
internal model for the periodic reference input are settled beforehand, the controller works as a
stabilizing multi-period repetitive controller and transfer functions from the periodic reference
input to the output and from the disturbance to the output have finite numbers of poles.

3.2 Problem formulation

Consider the unity feedback control system given by{
y(s) = G(s)u(s) + d(s)
u(s) = C(s)(r(s)− y(s))

, (3.1)

where G(s) ∈ R(s) is the strictly proper plant, C(s) is the controller, u(s) ∈ R is the control
input, y(s) ∈ R is the output, d(s) ∈ R is the disturbance and r(s) ∈ R is the periodic reference
input with period T > 0 satisfying

r(t+ T ) = r(t) (∀t ≥ 0). (3.2)

According to [28, 33, 34, 45, 46], the multi-period repetitive controller C(s) is written by the
form in

C(s) = C0(s) +

(
N∑
i=1

Ci(s)e
−sTi

)
Cr(s), (3.3)

where C0(s) ∈ R(s), Ci(s) ∈ R(s)(i = 1, . . . , N) and N is an arbitrary positive integer. Cr(s)
is an internal model for the periodic reference input with period T written by

Cr(s) =
1

1−
N∑
i=1

qi(s)e
−sTi

, (3.4)

where qi(s) ∈ RH∞(i = 1, . . . , N) are low-pass filters satisfying
∑N

i=1 qi(0) = 1 and Ti ∈ R >
0 (i = 1, . . . , N). Without loss of generality, it is assumed to hold Ci(s) ̸= 0 (∀i = 1, . . . , N) and
qi(s) ̸= 0 (∀i = 1, . . . , N). That is, the general form of the multi-period repetitive controller
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Fig. 3.1: Structure of a multi-period repetitive control system

C(s) is shown in Fig. 3.1 . Gotou et al. [28] proposed a design of time-delays Ti in the
multi-period repetitive controller in (3.3) as

Ti = T · i (i = 1, . . . , N). (3.5)

On the other hand, Yamada et al. [34] proposed the design method for multi-period repetitive
controller such that Ti (i = 1, . . . , N) do not necessarily satisfy (3.5). Therefore, in this chapter,
we attach importance to the generality and assume that Ti (i = 1, . . . , N) do not necessarily
satisfy (3.5).

Using the multi-period repetitive controller C(s) in (3.3), the transfer function from the
periodic reference input r(s) to the output y(s) and that from the disturbance d(s) to the
output y(s) in (3.1) are written as

y(s)

r(s)
=

G(s)C(s)

1 +G(s)C(s)

=

{
C0(s)−

N∑
i=1

(C0(s)qi(s)− Ci(s)) e
−sTi

}
G(s)

1 +G(s)C0(s)−
N∑
i=1

{(1 +G(s)C0(s)) qi(s)−G(s)Ci(s)} e−sTi

(3.6)

and

y(s)

d(s)
=

1

1 + C(s)G(s)

=

1−
N∑
i=1

qi(s)e
−sTi

1 +G(s)C0(s)−
N∑
i=1

{(1 +G(s)C0(s)) qi(s)−G(s)Ci(s)} e−sTi

, (3.7)

respectively. Generally, transfer functions from the periodic reference input r(s) to the output
y(s) in (3.6) and from the disturbance d(s) to the output y(s) in (3.7) have infinite numbers
of poles. When transfer functions from the periodic reference input r(s) to the output y(s)
and from the disturbance d(s) to the output y(s) have infinite numbers of poles, it is diffi-
cult to specify the input-output characteristic and the disturbance attenuation characteristic.
From the practical point of view, it is desirable that the input-output characteristic and the
disturbance attenuation characteristic are easily specified. In order to specify the input-output
characteristic and the disturbance attenuation characteristic easily, transfer functions from the
periodic reference input r(s) to the output y(s) and from the disturbance d(s) to the output
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y(s) are desirable to have finite numbers of poles. To overcome this problem, Yamada and Tak-
enaga proposed simple multi-period repetitive control systems such that the controller works as
a multi-period repetitive controller and transfer functions from the periodic reference input to
the output and from the disturbance to the output have finite numbers of poles [49]. In addi-
tion, Yamada and Takenaga clarified the parameterization of all stabilizing simple multi-period
repetitive controllers.

On the other hand, according to [28, 33, 34, 45, 46], it is note that if low-pass filters
qi(s) (i = 1, . . . , N) satisfy

1−
N∑
i=1

qi(jωk)e
−jωkTi ≃ 0 (∀k = 0, 1, . . . , Nmax) , (3.8)

where ωk(k = 0, 1, . . . , Nmax) are frequency components of the periodic reference input r(s)
written by

ωk =
2π

T
k (k = 0, 1, . . . , Nmax) , (3.9)

and ωNmax is the maximum frequency component of the periodic reference input r(s), then
the output y(s) in (3.1) follows the periodic reference input r(s) with small steady state error.
That is, to specify the low-pass filters qi(s) (i = 1, . . . , N) means to specify the input-output
characteristic. Using the result in [49], in order for qi(s) (i = 1, . . . , N) to satisfy (3.8) in wide
frequency range, we must design qi(s) (i = 1, . . . , N) to be stable and of minimum phase. If
we obtain the parameterization of all stabilizing simple multi-period repetitive controllers such
that qi(s) (i = 1, . . . , N) in (3.4) are settled beforehand, we can design the simple multi-period
repetitive controller satisfying (3.8) more easily than the method in [49].

From above practical requirement, we propose the concept of the simple multi-period repet-
itive controller with the specified input-output characteristic as follows:

Definition 2 (simple multi-period repetitive controller with the specified input-output charac-
teristic)
We call the controller C(s) a “simple multi-period repetitive controller with the specified input-
output characteristic”, if following expressions hold true:

1. Low-pass filters qi(s) ∈ RH∞ (i = 1, . . . , N) in (3.4) are settled beforehand to satisfy
(3.8). That is, the input-output characteristic is settled beforehand.

2. The controller C(s) works as a multi-period repetitive controller. That is, the controller
C(s) is written by (3.3), where C0(s) ∈ R(s), Ci(s) ̸= 0 ∈ R(s)(i = 1, . . . , N), Cr(s)
is written by (3.4) and qi(s) ∈ RH∞ (i = 1, . . . , N) satisfy

∑N
i=1 qi(0) = 1 and qi(s) ̸=

0(∀i = 1, . . . , N).

3. The controller C(s) makes transfer functions from the periodic reference input r(s) to the
output y(s) in (3.1) and from the disturbance d(s) to the output y(s) in (3.1) have finite
numbers of poles.

The problem considered in this chapter is to propose the parameterization of all stabilizing
simple multi-period repetitive controllers with the specified input-output characteristic.

3.3 The parameterization of all stabilizing simple multi-

period repetitive controllers with the specified input-

output characteristic

In this section, we clarify the parameterization of all stabilizing simple multi-period repetitive
controllers with the specified input-output characteristic defined in Definition 2.
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In order to obtain the parameterization of all stabilizing simple multi-period repetitive con-
trollers with the specified input-output characteristic, qi(s) ∈ RH∞ (i = 1, . . . , N) are assumed
to be settled beforehand. Under this assumption, the parameterization of all stabilizing simple
multi-period repetitive controllers with the specified input-output characteristic is summarized
in the following theorem.

Theorem 2 There exists a stabilizing simple multi-period repetitive controller with the specified
input-output characteristic if and only if low-pass filters qi(s) ∈ RH∞ (i = 1, . . . , N) in (3.4)
take the form:

qi(s) = N(s)q̄i(s) (i = 1, . . . , N). (3.10)

Here, N(s) ∈ RH∞ and D(s) ∈ RH∞ are coprime factors of G(s) on RH∞ satisfying

G(s) =
N(s)

D(s)
(3.11)

and q̄i(s) ̸= 0 ∈ RH∞ (i = 1, . . . , N) are any functions. When low-pass filters qi(s) ∈ RH∞ (i =
1, . . . , N) in (3.4) satisfy (3.10), the controller C(s) is a stabilizing simple multi-period repetitive
controller with the specified input-output characteristic if and only if C(s) is written by

C(s) =

X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s))
N∑
i=1

q̄i(s)e
−sTi

Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s))
N∑
i=1

q̄i(s)e
−sTi

. (3.12)

Here, X(s) ∈ RH∞ and Y (s) ∈ RH∞ are functions satisfying

X(s)N(s) + Y (s)D(s) = 1 (3.13)

and Q(s) ∈ RH∞ is any function.

Proof of this theorem requires following lemma.

Lemma 2 Unity feedback control system in (3.1) is internally stable if and only if C(s) is
written by

C(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
, (3.14)

where N(s) ∈ RH∞ and D(s) ∈ RH∞ are coprime factors of G(s) on RH∞ satisfying (3.11),
X(s) ∈ RH∞ and Y (s) ∈ RH∞ are functions satisfying (3.13) and Q(s) ∈ RH∞ is any function
[41].

Using Lemma 2, we shall show the proof of Theorem 2.
(Proof) First, the necessity is shown. That is, we show that if the controller C(s) in (3.3)

makes the control system in (3.1) stable and makes the transfer function from the periodic
reference input r(s) to the output y(s) of the control system in (3.1) have finite numbers of
poles, then low-pass filters qi(s)(i = 1, . . . , N) must take the form (3.10). From the assumption
that the controller C(s) in (3.3) makes the transfer function from the periodic reference input
r(s) to the output y(s) of the control system in (3.1) have finite numbers of poles,

G(s)C(s)

1 +G(s)C(s)
=

{
C0(s)−

N∑
i=1

(C0(s)qi(s)− Ci(s)) e
−sTi

}
G(s)

1 +G(s)C0(s)−
N∑
i=1

{(1 +G(s)C0(s)) qi(s)−G(s)Ci(s)} e−sTi

(3.15)
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has finite numbers of poles. This implies that

Ci(s) =
(1 +G(s)C0(s))qi(s)

G(s)
(i = 1, . . . , N) (3.16)

is satisfied, that is, C(s) is necessarily

C(s) =

G(s)C0(s) +
N∑
i=1

qi(s)e
−sTi

G(s)

(
1−

N∑
i=1

qi(s)e
−sTi

) . (3.17)

From the assumption that C(s) in (3.3) makes the control system in (3.1) stable, G(s)C(s)/(1+
G(s)C(s)), C(s)/(1 +G(s)C(s)), G(s)/(1 +G(s)C(s)) and 1/(1 +G(s)C(s)) are stable. From
simple manipulations and (3.17), we have

G(s)C(s)

1 +G(s)C(s)
=

G(s)C0(s) +
N∑
i=1

qi(s)e
−sTi

1 +G(s)C0(s)
, (3.18)

C(s)

1 +G(s)C(s)
=

G(s)C0(s) +
N∑
i=1

qi(s)e
−sTi

G(s)(1 +G(s)C0(s))
, (3.19)

G(s)

1 +G(s)C(s)
=

G(s)

(
1−

N∑
i=1

qi(s)e
−sTi

)
1 +G(s)C0(s)

(3.20)

and

1

1 +G(s)C(s)
=

1−
N∑
i=1

qi(s)e
−sTi

1 +G(s)C0(s)
. (3.21)

From the assumption that all transfer functions in (3.18), (3.19), (3.20) and (3.21) are stable,
G(s)C0(s)/(1+G(s)C0(s)), C0(s)/(1+G(s)C0(s)), G(s)/(1+G(s)C0(s)) and 1/(1+G(s)C0(s))
are stable. This means that C0(s) is an internally stabilizing controller for G(s). From Lemma
2, C0(s) must take the form:

C0(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
, (3.22)

where Q(s) ∈ RH∞. From the assumption that the transfer function in (3.19) is stable,

qi(s)

G(s) (1 +G(s)C0(s))
=

D2(s) (Y (s)−N(s)Q(s)) qi(s)

N(s)
(i = 1, . . . , N) (3.23)

are stable. This implies that qi(s)(i = 1, . . . , N) must take the form

qi(s) = N(s)q̄i(s) (i = 1, . . . , N), (3.24)
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where q̄i(s) ̸= 0 ∈ RH∞(i = 1, . . . , N) are any functions, because qi(s) ̸= 0(i = 1, . . . , N). In
this way, it is shown that if there exists a stabilizing simple multi-period repetitive controller
with the specified input-output characteristic, then the low-pass filers qi(s)(i = 1, . . . , N) must
take the form (3.10).

Next, we show that if (3.10) holds true, then C(s) is written by (3.12). Substituting (3.16),
(3.22) and (3.24) into (3.3), we have (3.12). Thus, the necessity has been shown.

Next, the sufficiency is shown. That is, it is shown that if qi(s)(i = 1, . . . , N) and C(s) take
the form (3.10) and (3.12), respectively, then the controller C(s) makes the control system in
(3.1) stable, makes transfer functions from r(s) and d(s) to y(s) of the control system in (3.1)
have finite numbers of poles and works as a stabilizing multi-period repetitive controller. After
simple manipulations, we have

G(s)C(s)

1 +G(s)C(s)
=

{
X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s))

N∑
i=1

q̄i(s)e
−sTi

}
N(s),

(3.25)

C(s)

1 +G(s)C(s)
=

{
X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s))

N∑
i=1

q̄i(s)e
−sTi

}
D(s),

(3.26)

G(s)

1 +G(s)C(s)
=

{
Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s))

N∑
i=1

q̄i(s)e
−sTi

}
N(s)

(3.27)

and

1

1 +G(s)C(s)
=

{
Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s))

N∑
i=1

q̄i(s)e
−sTi

}
D(s).

(3.28)

Since X(s) ∈ RH∞, Y (s) ∈ RH∞, N(s) ∈ RH∞, D(s) ∈ RH∞, Q(s) ∈ RH∞ and q̄i(s) ∈
RH∞(1, . . . , N), the transfer functions in (3.25), (3.26), (3.27) and (3.28) are stable. In addition,
from the same reason, the transfer function from r(s) and d(s) to y(s) of the control system in
(3.1) have finite numbers of poles.

Next we show that the controller in (3.12) works as a multi-period repetitive controller. The
controller in (3.12) is rewritten by the form in (3.3), where

C0(s) =
X(s) +D(s)Q(s)

Y (s)−N(s)Q(s)
(3.29)

and

Ci(s) =
q̄i(s)

Y (s)−N(s)Q(s)
(i = 1, . . . , N). (3.30)

From the assumption of q̄i(s) ̸= 0 (i = 1, . . . , N), Ci(s) ̸= 0 (∀i = 1, . . . , N) hold true. These
expressions imply that the feedback controller C(s) in (3.12) works as a multi-period repetitive
controller. Thus, the sufficiency has been shown.

We have thus proved Theorem 2.

Remark 2 Note that from Theorem 2, when the plant G(s) is of non-minimum-phase, low-pass
filters qi(s) (i = 1, . . . , N) cannot be settled to be of minimum-phase.
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3.4 Control characteristics

In this section, we describe control characteristics of control system in (3.1) using the stabilizing
simple multi-period repetitive controller with the specified input-output characteristic in (3.12).

First, we mention the input-output characteristic. The transfer function S(s) from the
periodic reference input r(s) to the error e(s) = r(s)− y(s) is written by

S(s) =
1

1 +G(s)C(s)

= D(s) (Y (s)−N(s)Q(s))

(
1−

N∑
i=1

qi(s)e
−sTi

)
. (3.31)

From (3.31), since qi(s) (i = 1, . . . , N) are settled beforehand to satisfy (3.8), the output y(s)
follows the periodic reference input r(s) with small steady state error.

Next, we mention the disturbance attenuation characteristics. The transfer function from
the disturbance d(s) to the output y(s) is written by (3.31). From (3.31), for the frequency
components ωk (k = 0, 1, . . . , Nmax) in (3.8) of the disturbance d(s) those are same to those
of the periodic reference input r(s), since S(s) satisfies S(jωk) ≃ 0, the disturbance d(s) is
attenuated effectively. For the frequency component ωd of the disturbance d(s) that is different
from that of the periodic reference input r(s), that is ωd ̸= ωk (k = 0, 1, . . . , Nmax), even if

1−
N∑
i=1

qi(jωd) ≃ 0, (3.32)

the disturbance d(s) cannot be attenuated, because

e−jωdTi ̸= 1 (i = 1, . . . , N) (3.33)

and

1−
N∑
i=1

qi(jωd)e
−jωdTi ̸= 0. (3.34)

In order to attenuate the frequency component ωd of the disturbance d(s) that is different from
that of the periodic reference input r(s), we need to settle Q(s) satisfying

Y (jωd)−N(jωd)Q(jωd) ≃ 0. (3.35)

From above discussion, the role of qi(s) (i = 1, . . . , N) is to specify the input-output char-
acteristic for the periodic reference input r(s) and to specify the disturbance attenuation char-
acteristic with same frequency components of the periodic reference input, and that of Q(s)
is to specify the disturbance attenuation characteristic for the frequency component of the
disturbance d(s) that is different from that of the periodic reference input r(s).

3.5 Design procedure

In this section, a design procedure of stabilizing simple multi-period repetitive controller with
the specified input-output characteristic is presented.

A design procedure of stabilizing simple multi-period repetitive controllers satisfying The-
orem 2 is summarized as follows:

Procedure
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Step 1) Obtain coprime factors N(s) ∈ RH∞ and D(s) ∈ RH∞ of G(s) satisfying (3.11).

Step 2) X(s) ∈ RH∞ and Y (s) ∈ RH∞ are settled satisfying (3.13).

Step 3) q̄i(s) ∈ RH∞ (i = 1, . . . , N) in (3.10) are settled so that for the frequency components
ωk (k = 0, 1, . . . , Nmax) of the periodic reference input r(s),

1−
N∑
i=1

qi(jωk)e
−jωkTi = 1−

N∑
i=1

N(jωk)q̄i(jωk)e
−jωkTi

≃ 0 (∀k = 0, 1, . . . , Nmax). (3.36)

In order to satisfy 1 − ∑N
i=1N(jωk)q̄i(jωk)e

−jωkTi ≃ 0, q̄i(s) ∈ RH∞ (i = 1, . . . , N) in
(3.10) are settled by

q̄i(s) =
1

No(s)
q̄ri(s) (i = 1, . . . , N), (3.37)

where No(s) ∈ RH∞ is an outer function of N(s) satisfying

N(s) = Ni(s)No(s), (3.38)

Ni(s) ∈ RH∞ is an inner function satisfying Ni(0) = 1 and |Ni(jω)| = 1(∀ω ∈ R+),
q̄ri(s) (i = 1, . . . , N) are low-pass filters satisfying

∑N
i=1 q̄ri(0) = 1 and

1−Ni(jωk)
N∑
i=1

q̄ri(jωk)e
−jωkTi ≃ 0 (∀k = 0, 1, . . . , Nmax). (3.39)

That is, using above mentioned parameters, qi(s) (i = 1, . . . , N) in (3.10) are set as

qi(s) = Ni(s)q̄ri(s) (i = 1, . . . , N). (3.40)

Step 4) Q(s) ∈ RH∞ is settled so that for the frequency component ωd of the disturbance d,
Y (jωd) − N(jωd)Q(jωd)≃ 0 is satisfied. In order to design Q(s) to hold Y (jωd) −
N(jωd)Q(jωd) ≃ 0 , Q(s) is settled by

Q(s) =
Y (s)

No(s)
q̄d(s), (3.41)

where q̄d(s) is a low-pass filter satisfying q̄d(0) = 1, as

q̄d(s) =
1

(1 + sτd)
αd

(3.42)

is valid, αd is an arbitrary positive integer to make q̄d(s)/No(s) proper and τd ∈ R is any
positive real number satisfying

1−Ni(jωd)
1

(1 + jωdτd)
αd

≃ 0. (3.43)

3.6 Numerical example

In this section, a numerical example is shown to illustrate the effectiveness of the proposed
method.
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Consider the problem of obtaining the parameterization of all stabilizing simple multi-period
repetitive controllers with the specified input-output characteristic for the plant G(s) written
by

G(s) =
s− 150

(s+ 2)(s− 2)
(3.44)

that follows the periodic reference input r(t) with period T = 4[sec]. N in (3.3) and Ti(i =
1, 2, 3) are chosen as N = 3 and

Ti = T · i (i = 1, 2, 3), (3.45)

respectively.
A pair of coprime factors N(s) ∈ RH∞ and D(s) ∈ RH∞ of G(s) in (3.44) satisfying (3.11)

is given by

N(s) =
s− 150

(s+ 10)(s+ 15)
(3.46)

and

D(s) =
(s+ 2)(s− 2)

(s+ 10)(s+ 15)
. (3.47)

qi(s) (i = 1, 2, 3) in (3.10) are settled by (3.40), where

Ni(s) =
−s+ 150

s+ 150
(3.48)

and

q̄ri(s) =
1

3 (0.001s+ 1)
(i = 1, 2, 3). (3.49)

The gain plot of 1−Ni(s)
∑N

i=1 q̄ri(s)e
−sTi is shown in Fig. 3.2 . For comparison, the gain plot

of 1 − ∑N
i=1 q̄ri(s)e

−sTi is shown in Fig. 3.3 . From the comparison of Fig. 3.2 with Fig.
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Fig. 3.2: The gain plot of 1−Ni(s)
N∑
i=1

q̄ri(s)e
−sTi

3.3 , we can confirm that when the low-pass filters are settled to be of non-minimum-phase,
frequency range which can satisfy (3.8) is not so wide.
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Fig. 3.3: The gain plot of 1−
N∑
i=1

q̄ri(s)e
−sTi

X(s) ∈ RH∞ and Y (s) ∈ RH∞ satisfying (3.13) are derived as

X(s) = −−32.35s+ 56.41

s2 + 25s+ 33.87
(3.50)

and

Y (s) =
s2 + 50s+ 845.2

s2 + 25s+ 33.87
. (3.51)

From Theorem 2, the parameterization of all stabilizing simple multi-period repetitive con-
trollers with the specified input-output characteristic for G(s) in (3.44) is given by

C(s) =

X(s) +D(s)Q(s) +D(s) (Y (s)−N(s)Q(s))
N∑
i=1

q̄i(s)e
−sTi

Y (s)−N(s)Q(s)−N(s) (Y (s)−N(s)Q(s))
N∑
i=1

q̄i(s)e
−sTi

, (3.52)

where Q(s) ∈ RH∞ is any function.
So that the disturbance

d(t) = sin
(
πt

8

)
+ sin

(
πt

4

)
+ sin

(
3πt

8

)
(3.53)

can be attenuated effectively, Q(s) is settled by (3.41), where

q̄d(s) =
1

0.001s+ 1
, (3.54)

and

No(s) =
−s− 150

(s+ 10)(s+ 15)
. (3.55)

Using above-mentioned parameters, we have a stabilizing simple multi-period repetitive con-
troller with the specified input-output characteristic.

Using the designed stabilizing simple multi-period repetitive controller with the specified
input-output characteristic, the response of the error e(t) = r(t)− y(t) in (3.1) for the periodic
reference input

r(t) = sin
(
π

2
t
)
+ sin (πt) + sin

(
3π

2
t
)

(3.56)
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Fig. 3.4: The response of the error e(t) = r(t) − y(t) for the periodic reference input r(t) in
(3.56)

is shown in Fig. 3.4 . Here, the dotted line shows the response of the periodic reference input
r(t) in (3.56) and the solid line shows that of the error e(t) = r(t)− y(t). Figure 3.4 shows that
the output y(t) follows the periodic reference input r(t) with a small steady state error.

Next, using the designed simple multi-period repetitive controller with the specified input-
output characteristic C(s), disturbance attenuation characteristics are shown. The response of
the output y(t) for the disturbance

d(t) = sin(πt) + sin(2πt) + sin(3πt) (3.57)

of which frequency components are equivalent to those of the periodic reference input r(t) is
shown in Fig. 3.5 . Here, the dotted line shows the response of the disturbance d(t) in (3.57)
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Fig. 3.5: The response of the output y(t) for the disturbance d(t) in (3.57)

and the solid line shows that of the output y(t). Figure 3.5 shows that the disturbance d(t) in
(3.57) is attenuated effectively. Finally, the response of the output y(t) for the disturbance d(t)
in (3.53) of which frequency components are different from those of the periodic reference input
r(t) is shown in Fig. 3.6 . Here, the dotted line shows the response of the disturbance d(t) in
(3.53) and the solid line shows that of the output y(t). Figure 3.6 shows that the disturbance
d(t) in (3.53) is attenuated effectively.
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Fig. 3.6: The response of the output y(t) for the disturbance d(t) in (3.53)

A stabilizing simple multi-period repetitive controller with the specified input-output char-
acteristic can be easily designed in the way shown here.

3.7 Conclusion

We have proposed the parameterization of all stabilizing simple multi-period repetitive con-
trollers with the specified input-output characteristic such that low-pass filters in the internal
model for the periodic reference input are settled beforehand, the controller works as a sta-
bilizing multi-period repetitive controller and transfer functions from the periodic reference
input to the output and from the disturbance to the output have finite numbers of poles. Con-
trol characteristics of a simple multi-period repetitive control system were presented, as well
as a design procedure for a simple multi-period repetitive controller with the specified input-
output characteristic. Finally, a numerical example illustrated the effectiveness of the proposed
method.
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Chapter 4

A design method for robust stabilizing
simple multi-period repetitive
controllers for time-delay plants with
the specified input-output
characteristic

4.1 Introduction

In this chapter, we propose the parameterization of all robust stabilizing simple multi-period
repetitive controllers for time-delay plants with the specified input-output characteristic.

Simple multi-period repetitive controllers in [48] cannot guarantee the stability of control
system for time-delay plants with uncertainties. Almost all real plants include uncertainties
and many plants have time-delays. Yamada et al. proposed the parameterization of all robust
stabilizing simple multi-period repetitive controllers for time-delay plants with uncertainties
[53]. However, using the method in [53], it is complex to specify the low-pass filters in the
internal model for the periodic reference input of which the role is to specify the input-output
characteristic. Because, the low-pass filters are related to three kinds of free parameters in the
parameterization by Yamada et al. When we design a robust stabilizing simple multi-period
repetitive controller, if the low-pass filters in the internal model for the periodic reference input
are settled beforehand, we can specify the input-output characteristic more easily than the
method in [53]. This problem is solved by obtaining the parameterization of all robust stabilizing
simple multi-period repetitive controllers for time-delay plants with the specified input-output
characteristic, which is the parameterization when the low-pass filters are settled beforehand.
However, no paper has considered the problem to obtain the parameterization of all robust
stabilizing simple multi-period repetitive controllers for time-delay plants with the specified
input-output characteristic. In addition, the parameterization is useful to design stabilizing
controllers [37, 38, 39, 40, 41]. Therefore, the problem of obtaining the parameterization of
all robust stabilizing simple multi-period repetitive controllers for time-delay plants with the
specified input-output characteristic is important to solve.

In this chapter, we propose the parameterization of all robust stabilizing simple multi-
period repetitive controllers for time-delay plants with the specified input-output characteristic
such that the low-pass filters in the internal model for the periodic reference input are settled
beforehand, the controller works as a robust stabilizing multi-period repetitive controller for
time-delay plants and transfer functions from the periodic reference input to the output and
from the disturbance to the output have finite numbers of poles when the uncertainty does not
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exist.

4.2 Problem formulation

Consider the unity feedback control system in{
y = G(s)e−sLu+ d
u = C(s)(r − y)

, (4.1)

where G(s)e−sL is the time-delay plant, L > 0 is the time-delay, G(s) ∈ R(s), C(s) is the
controller, u ∈ R is the control input, d ∈ R is the disturbance, y ∈ R is the output and r ∈ R
is the periodic reference input with period T satisfying

r(t+ T ) = r(t) (∀t ≥ 0). (4.2)

The nominal time-delay plant of G(s)e−sL is denoted by Gm(s)e
−sLm . Both G(s) and Gm(s)

are assumed to have no zero or pole on the imaginary axis. In addition, it is assumed that the
number of poles of G(s) in the closed right half plane is equal to that of Gm(s). The relation
between the time-delay plant G(s)e−sL and the nominal time-delay plant Gm(s)e

−sLm is written
as

G(s)e−sL = Gm(s)(e
−sLm +∆(s)), (4.3)

where ∆(s) is an uncertainty. The set of ∆(s) is all functions satisfying

|∆(jω)| < |WT (jω)| (∀ω ∈ R+), (4.4)

where WT (s) is a stable rational function.
The robust stability condition for the time-delay plant G(s)e−sL with uncertainty ∆(s)

satisfying (4.4) is given by

∥T (s)WT (s)∥∞ < 1, (4.5)

where T (s) is given by

T (s) =
C(s)Gm(s)

1 + C(s)Gm(s)e
−sLm

. (4.6)

According to [28, 33, 34], in order for the output y to follow the periodic reference input r
with period T in (4.1) with small steady state error, the controller C(s) must have the following
structure

C(s) = C0(s) +

(
N∑
i=1

Ci(s)qi(s)e
−sTi

)
Cr(s), (4.7)

where C0(s) ∈ R(s), Ci(s) ∈ R(s) (i = 1, . . . , N) and N is an arbitrary positive integer. Cr(s)
is an internal model for the periodic reference input with period T written by

Cr(s) =
1

1−
N∑
i=1

qi(s)e
−sTi

, (4.8)

where qi(s) ∈ R(s) (i = 1, . . . , N) are low-pass filters satisfying
∑N

i=1 qi(0) = 1 and Ti ∈ R >
0 (i = 1, . . . , N). Without loss of generality, it is assumed to hold Ci(s) ̸= 0 (∀i = 1, . . . , N) and
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qi(s) ̸= 0 (∀i = 1, . . . , N). The controller written by the form in (4.7) is called the multi-period
repetitive controller [28, 33, 34]. Gotou et al. [28] proposed the design method for multi-period
repetitive controller as

Ti = T · i (i = 1, . . . , N). (4.9)

On the other hand, Yamada et al. [34] proposed the design method for multi-period repetitive
controller such that Ti (i = 1, . . . , N) do not necessarily satisfy (4.9). Therefore, in this chapter,
we attach importance to the generality and assume that Ti (i = 1, . . . , N) do not necessarily
satisfy (4.9).

Using the multi-period repetitive controller C(s) in (4.7), transfer functions from the peri-
odic reference input r to the output y and from the disturbance d to the output y in (4.1) are
written as

y

r
=

C(s)G(s)e−sL

1 + C(s)G(s)e−sL

=

C0(s)Gm(s)
(
e−sL +∆(s)

)
−

N∑
i=1

(C0(s)− Ci(s)) qi(s)e
−sTiGm(s)

(
e−sL +∆(s)

)

1 + C0(s)Gm(s)
(
e−sL +∆(s)

)
−

N∑
i=1

{
1 + C0(s)Gm(s)

(
e−sL +∆(s)

)

−Ci(s)Gm(s)
(
e−sL +∆(s)

)}
qi(s)e

−sTi
(4.10)

and

y

d
=

1

1 + C(s)G(s)e−sL

=

1−
N∑
i=1

qi(s)e
−sTi

1 + C0(s)Gm(s)
(
e−sL +∆(s)

)
−

N∑
i=1

{
1 + C0(s)Gm(s)

(
e−sL +∆(s)

)

−Ci(s)Gm(s)
(
e−sL +∆(s)

)}
qi(s)e

−sTi
, (4.11)

respectively. Generally, transfer functions from the periodic reference input r to the output y in
(4.10) and from the disturbance d to the output y in (4.11) have infinite numbers of poles, even
if ∆(s) = 0. When transfer functions from the periodic reference input r to the output y and
from the disturbance d to the output y have infinite numbers of poles, it is difficult to specify the
input-output characteristic and the disturbance attenuation characteristic. From the practical
point of view, it is desirable that the input-output characteristic and the disturbance attenuation
characteristic are easily specified. In order to specify the input-output characteristic and the
disturbance attenuation characteristic easily, transfer functions from the periodic reference
input r to the output y and from the disturbance d to the output y are desirable to have finite
numbers of poles. To overcome this problem, Yamada et al. proposed robust stabilizing simple
multi-period repetitive control systems such that the controller works as a robust stabilizing
multi-period repetitive controller for time-delay plants and transfer functions from the periodic
reference input to the output and from the disturbance to the output have finite numbers
of poles when the uncertainty does not exist [53]. In addition, Yamada et al. clarified the
parameterization of all robust stabilizing simple multi-period repetitive controllers for time-
delay plants.
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On the other hand, according to [28, 33, 34], if the low-pass filters qi(s) (i = 1, . . . , N)
satisfy

1−
N∑
i=1

qi(jωk)e
−jωkTi ≃ 0 (k = 0, 1, . . . , Nmax) , (4.12)

where ωk are frequency components of the periodic reference input r written by

ωk =
2π

T
k (k = 0, 1, . . . , Nmax) (4.13)

and ωNmax is the maximum frequency component of the periodic reference input r, then the
output y in (4.1) follows the periodic reference input r with small steady state error. Using
the result in [53], in order for qi(s) (i = 1, . . . , N) to satisfy (4.12) in wide frequency range,
we must design qi(s) (i = 1, . . . , N) to be stable and of minimum phase. If we obtain the
parameterization of all robust stabilizing simple multi-period repetitive controllers such that
qi(s) (i = 1, . . . , N) in (4.7) are settled beforehand, we can design a robust stabilizing simple
multi-period repetitive controller satisfying (4.12) more easily than the method in [53].

From above practical requirement, we define a robust stabilizing simple multi-period repeti-
tive controller for time-delay plants with the specified input-output characteristic as Definition
3 and clarify the parameterization of all robust stabilizing simple multi-period repetitive con-
trollers for time-delay plants with the specified input-output characteristic.

Definition 3 (robust stabilizing simple multi-period repetitive controller for time-delay plants
with the specified input-output characteristic)
We call the controller C(s) a “robust stabilizing simple multi-period repetitive controller for
time-delay plants with the specified input-output characteristic”, if following expressions hold
true:

1. The low-pass filters qi(s) ∈ RH∞ (i = 1, . . . , N) in (4.7) are settled beforehand. That is,
the input-output characteristic is settled beforehand.

2. The controller C(s) works as a multi-period repetitive controller. That is, the controller
C(s) is written by (4.7), where C0(s) ∈ R(s), Ci(s) ̸= 0 ∈ R(s) (∀i = 1, . . . , N) and
qi(s) ̸= 0 ∈ RH∞ (i = 1, . . . , N) satisfy

∑N
i=1 qi(0) = 1.

3. When ∆(s) = 0, the controller C(s) makes transfer functions from the periodic reference
input r to the output y in (4.1) and from the disturbance d to the output y in (4.1) have
finite numbers of poles.

4. The controller C(s) satisfies the robust stability condition in (4.5).

4.3 The parameterization of all robust stabilizing sim-

ple multi-period repetitive controllers for time-delay

plants with the specified input-output characteristic

In this section, we clarify the parameterization of all robust stabilizing simple multi-period
repetitive controllers for time-delay plants with the specified input-output characteristic defined
in Definition 3.

In order to obtain the parameterization of all robust stabilizing simple multi-period repet-
itive controllers for time-delay plants with the specified input-output characteristic, we must
see that controllers C(s) satisfying (4.5). The problem of obtaining the controller C(s), which
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w z

u y
P(s)

C(s)

Fig. 4.1: Block diagram of H∞ control problem

is not necessarily a simple multi-period repetitive controller, satisfying (4.5) is equivalent to
the following H∞ control problem. In order to obtain the controller C(s) satisfying (4.5), we
consider the control system shown in Fig. 4.1 . P (s) is selected such that the transfer function
from w to z in Fig. 4.1 is equal to T (s)WT (s). The state space description of P (s) is, in
general, 

ẋ(t) = Ax(t) +B1w(t) +B2u(t− Lm)
z(t) = C1x(t) +D12u(t)
y(t) = C2x(t) +D21w(t)

, (4.14)

where A ∈ Rn×n, B1 ∈ Rn, B2 ∈ Rn, C1 ∈ R1×n, C2 ∈ R1×n, D12 ∈ R, D21 ∈ R. P (s) is called
the generalized plant. P (s) is assumed to satisfy the following assumptions:

1. (C2, A) is detectable, (A,B2) is stabilizable.

2. D12 ̸= 0, D21 ̸= 0.

3. rank

[
A− jωI B2

C1 D12

]
= n+ 1 (∀ω ∈ R+),

rank

[
A− jωI B1

C2 D21

]
= n+ 1 (∀ω ∈ R+).

4. C1A
iB2 = 0 (i = 0, 1, 2, . . .).

Under these assumptions, from [59], the following lemma holds true.

Lemma 3 There exists an H∞ controller C(s) for the generalized plant P (s) in (4.14) if and
only if there exists an H∞ controller C(s) for the generalized plant P̃ (s) written by

q̇(t) = Aq(t) +B1w(t) +B̃2u(t)
z̃(t) = C1q(t) +D12u(t)
ỹ(t) = C2q(t) +D21w(t)

, (4.15)

where B̃2 = e−ALmB2. When u(s) = C(s)ỹ(s) is an H∞ control input for the generalized plant
P̃ (s) in (4.15),

u(t) = L−1 {C(s)ỹ(s)} (4.16)

is an H∞ control input for the generalized plant P (s) in (4.14), where

ỹ(s) = L
{
y(t) + C2

∫ 0

−Lm

e−A(τ+Lm)B2u(t+ τ)dτ
}
. (4.17)

From Lemma 3 and [19], the following lemma holds true.
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Lemma 4 If controllers satisfying (4.5) exist, both

X
(
A− B̃2D

†
12C1

)
+
(
A− B̃2D

†
12C1

)T
X

+X
{
B1B

T
1 − B̃2

(
DT

12D12

)−1
B̃T

2

}
X +

(
D⊥

12C1

)T
D⊥

12C1 = 0 (4.18)

and

Y
(
A−B1D

†
21C2

)T
+
(
A−B1D

†
21C2

)
Y

+Y
{
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

}
Y +B1D

⊥
21

(
B1D

⊥
21

)T
= 0 (4.19)

have solutions X ≥ 0 and Y ≥ 0 such that

ρ (XY ) < 1 (4.20)

and both

A− B̃2D
†
12C1 +

{
B1B

T
1 − B̃2

(
DT

12D12

)−1
B̃T

2

}
X (4.21)

and

A−B1D
†
21C2 + Y

{
CT

1 C1 − CT
2

(
D21D

T
21

)−1
C2

}
(4.22)

have no eigenvalue in the closed right half plane. Using X and Y , the parameterization of all
controllers satisfying (4.5) is given by

C(s) = C11(s) + C12(s)Q(s) (1− C22(s)Q(s))−1 C21(s), (4.23)

where

[
C11(s) C12(s)
C21(s) C22(s)

]
=

 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

 , (4.24)

Ac = A+B1B
T
1 X − B̃2

(
D†

12C1 + E−1
12 B̃

T
2 X

)
− (I − Y X)−1

(
B1D

†
21 + Y CT

2 E
−1
21

) (
C2 +D21B

T
1 X

)
,

Bc1 = (I − Y X)−1
(
B1D

†
21 + Y CT

2 E
−1
21

)
,

Bc2 = (I − Y X)−1
(
B̃2 + Y CT

1 D12

)
E

−1/2
12 ,

Cc1 = −D†
12C1 − E−1

12 B̃
T
2 X, Cc2 = −E

−1/2
21

(
C2 +D21B

T
1 X

)
,

Dc11 = 0, Dc12 = E
−1/2
12 , Dc21 = E

−1/2
21 , Dc22 = 0, E12 = DT

12D12, E21 = D21D
T
21

and Q(s) ∈ H∞ is any function satisfying ∥Q(s)∥∞ < 1 [19].

Using Lemma 3 and Lemma 4, the parameterization of all robust stabilizing simple multi-
period repetitive controllers for time-delay plants with the specified input-output characteristic
is given by following theorem.
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Theorem 3 If simple multi-period repetitive controllers satisfying (4.5) exist, both (4.18) and
(4.19) have solutions X ≥ 0 and Y ≥ 0 such that (4.20) and both A − B̃2D

†
12C1 + {B1B

T
1 −

B̃2(D
T
12D12)

−1B̃T
2 }X and A− B1D

†
21C2 + Y {CT

1 C1 − CT
2 (D21D

T
21)

−1C2} have no eigenvalue in
the closed right half plane. Using X and Y , the parameterization of all robust stabilizing simple
multi-period repetitive control laws with the specified input-output characteristic satisfying (4.5)
is given by

u(t) = L−1 {C(s)ỹ(s)} , (4.25)

where

ỹ(s) = L
{
y(t) + C2

∫ 0

−Lm

e−A(τ+Lm)B2u(t+ τ)dτ
}

(4.26)

and

C(s) = C11(s) + C12(s)Q(s) (1− C22(s)Q(s))−1 C21(s), (4.27)

where Cij(s)(i = 1, 2; j = 1, 2) are given by (4.24) and Q(s) ∈ H∞ is any function satisfying
∥Q(s)∥∞ < 1 and written by

Q(s) =

Qn0(s) +
N∑
i=1

Qni(s)qi(s)e
−sTi

Qd0(s) +
N∑
i=1

Qdi(s)qi(s)e
−sTi

, (4.28)

Qni(s) = G̃d(s)Q̄i(s) (i = 1, . . . , N) (4.29)

and

Qdi(s) = − 1

1 + C11(s)G̃m(s)
G̃n(s)Q̄i(s) (i = 1, . . . , N). (4.30)

Here, G̃n(s) ∈ RH∞ and G̃d(s) ∈ RH∞ are coprime factors of −C22(s) + (C12(s)C21(s) −
C11(s)C22(s))G̃m(s) on RH∞ satisfying

G̃n(s)

G̃d(s)
= −C22(s) + (C12(s)C21(s)− C11(s)C22(s)) G̃m(s), (4.31)

where G̃m(s) = C2(sI − A)−1B̃2. Qn0(s) ∈ RH∞, Qd0(s) ∈ RH∞ and Q̄i(s) ̸= 0 ∈ RH∞ (i =
1, . . . , N) are any functions satisfying

C11(s) (Qd0(s) +Qdi(s)) + (C12(s)C21(s)− C11(s)C22(s)) (Qn0(s) +Qni(s)) ̸= 0

(i = 1, . . . , N). (4.32)

(Proof) First, the necessity is shown. That is, we show that when the low-pass filters qi(s) (i =
1, . . . , N) in (4.7) are settled beforehand, if the multi-period repetitive controller written by
(4.7) stabilizes the control system in (4.1) robustly and makes transfer functions from the
periodic reference input r to the output y in (4.10) and from the disturbance d to the output
y in (4.11) have finite numbers of poles, when ∆(s) = 0, then C(s) and Q(s) are written by
(4.27) and (4.28), respectively. From Lemma 4, the parameterization of all robust stabilizing
controllers C(s) for G(s)e−sL is written by (4.27), where ∥Q(s)∥∞ < 1. In order to prove the
necessity, we will show that if the controller C(s) written by (4.27) works as a multi-period
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repetitive controller, then Q(s) in (4.27) is written by (4.28). Substituting C(s) in (4.7) into
(4.27), we have (4.28), where

Qn0(s) = C̄d(s)C12d(s)C21d(s)C22d(s) (C0n(s)C11d(s)− C0d(s)C11n(s)) , (4.33)

Qni(s) = C0d(s)C̄in(s)C11d(s)C12d(s)C21d(s)C22d(s)

−C̄d(s)C12d(s)C21d(s)C22d(s) (C0n(s)C11d(s)− C0d(s)C11n(s)) (i = 1, . . . , N),

(4.34)

Qd0(s) = C̄d(s) (C0d(s)C11d(s)C12n(s)C21n(s)C22d(s)

−C0d(s)C11n(s)C12d(s)C21d(s)C22n(s)

+C0n(s)C11d(s)C12d(s)C21d(s)C22n(s)) (4.35)

and

Qdi(s) = C0d(s)C̄in(s)C11d(s)C12d(s)C21d(s)C22n(s)

−C̄d(s) (C0d(s)C11d(s)C12n(s)C21n(s)C22d(s)

−C0d(s)C11n(s)C12d(s)C21d(s)C22n(s)

+C0n(s)C11d(s)C12d(s)C21d(s)C22n(s)) (i = 1, . . . , N). (4.36)

Here, C0n(s) ∈ RH∞, C0d(s) ∈ RH∞, Cijn(s) ∈ RH∞ (i = 1, 2; j = 1, 2) and Cijd(s) ∈
RH∞ (i = 1, 2; j = 1, 2) are coprime factors satisfying

C0(s) =
C0n(s)

C0d(s)
(4.37)

and

Cij(s) =
Cijn(s)

Cijd(s)
(i = 1, 2; j = 1, 2). (4.38)

C̄in(s) ∈ RH∞ (i = 1, . . . , N) and C̄d(s) ∈ RH∞ are defined by

C̄in(s) = Cin(s)
i−1∏
j=1

Cjd(s)
N∏

j=i+1

Cjd(s) (i = 1, . . . , N) (4.39)

and

C̄d(s) =
N∏
i=1

Cid(s), (4.40)

respectively. Here, Cin(s) ∈ RH∞ (i = 1, . . . , N) and Cid(s) ∈ RH∞ (i = 1, . . . , N) are coprime
factors satisfying

Ci(s) =
Cin(s)

Cid(s)
(i = 1, . . . , N). (4.41)

From (4.33) ∼ (4.41), all of Qni(s) (i = 0, . . . , N) and Qdi(s) (i = 0, . . . , N) are included in
RH∞. Thus, we have shown that if C(s) written by (4.7) stabilizes the control system in (4.1)
robustly, Q(s) in (4.27) is written by (4.28). From the assumption of Ci(s) ̸= 0 (i = 1, . . . , N),
(4.32) is satisfied.
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The rest to prove the necessity is to show that when ∆(s) = 0, if C(s) in (4.7) makes transfer
functions from the periodic reference input r to the output y and from the disturbance d to
the output y have finite numbers of poles, then Qni(s) (i = 1, . . . , N) and Qdi(s) (i = 1, . . . , N)
are written by (4.29) and (4.30), respectively. From (4.28), when ∆(s) = 0, transfer functions
from the periodic reference input r to the output y and from the disturbance d to the output
y are written by

y

r
=

Gryn(s)

Gryd(s)
(4.42)

and

y

d
=

Gdyn(s)

Gdyd(s)
, (4.43)

respectively, where

Gryn(s) = [{C11(s)Qd0(s) + (C12(s)C21(s)− C11(s)C22(s))Qn0(s)}

+
N∑
i=1

{C11(s)Qdi(s) + (C12(s)C21(s)− C11(s)C22(s))Qni(s)}

·qi(s)e−sTi

]
G̃m(s), (4.44)

Gryd(s) = (Qd0(s)− C22(s)Qn0(s)) + {C11(s)Qd0(s) + (C12(s)C21(s)

−C11(s)C22(s))Qn0(s)} G̃m(s) +
N∑
i=1

[Qdi(s)− C22(s)Qni(s)

+ {C11(s)Qdi(s) + (C12(s)C21(s)− C11(s)C22(s))Qni(s)}
·G̃m(s)

]
qi(s)e

−sTi , (4.45)

Gdyn(s) =

(
1−

N∑
i=1

qi(s)e
−sTi

)
(Qd0(s)− C22(s)Qn0(s)) (4.46)

and

Gdyd(s) = (Qd0(s)− C22(s)Qn0(s)) + {C11(s)Qd0(s) + (C12(s)C21(s)

−C11(s)C22(s))Qn0(s)} G̃m(s) +
N∑
i=1

[Qdi(s)− C22(s)Qni(s)

+ {C11(s)Qdi(s) + (C12(s)C21(s)− C11(s)C22(s))Qni(s)}
·G̃m(s)

]
qi(s)e

−sTi . (4.47)

From the assumption that transfer functions from the periodic reference input r to the output
y in (4.42) and from the disturbance d to the output y in (4.43) have finite numbers of poles,
(4.45) and (4.47),

Qdi(s)− C22(s)Qni(s) + {C11(s)Qdi(s) + (C12(s)C21(s)− C11(s)C22(s))Qni(s)}Gm(s)

= 0 (i = 1, . . . , N) (4.48)

is satisfied. Using (4.31), this equation is rewritten by

Qdi(s) = − 1

1 + C11(s)G̃m(s)

G̃n(s)

G̃d(s)
Qni(s) (i = 1, . . . , N). (4.49)
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Since Qni(s) ∈ RH∞ (i = 1, . . . , N) and Qdi(s) ∈ RH∞ (i = 1, . . . , N), Qni(s) (i = 1, . . . , N)
and Qdi(s) (i = 1, . . . , N) are written by (4.29) and (4.30), respectively, where Q̄i(s) ∈
RH∞ (i = 1, . . . , N). From the assumption that Ci(s) ̸= 0 (i = 1, . . . , N) and from (4.34)
and (4.36), Q̄i(s) ̸= 0 (∀i = 1, . . . , N) holds true. We have thus proved the necessity.

Next, the sufficiency is shown. That is, it is shown that if C(s) and Q(s) ∈ H∞ are settled
by (4.27) and (4.28), respectively, then the controller C(s) is written by the form in (4.7) and
transfer functions from the periodic reference input r to the output y and from the disturbance
d to the output y have finite numbers of poles. Substituting (4.28) into (4.27), we have (4.7),
where C0(s) and Ci(s) (i = 1, . . . , N) are denoted by

C0(s) =
C11(s)Qd0(s) + (C12(s)C21(s)− C11(s)C22(s))Qn0(s)

Qd0(s)− C22(s)Qn0(s)

(4.50)

and

Ci(s) =
C11(s) (Qd0(s) +Qdi(s)) + (C12(s)C21(s)− C11(s)C22(s)) (Qn0(s) +Qni(s))

Qd0(s)− C22(s)Qn0(s)

(i = 1, . . . , N). (4.51)

We find that if C(s) and Q(s) are settled by (4.27) and (4.28), respectively, then the controller
C(s) is written by the form in (4.7). From Q̄i(s) ̸= 0 (i = 1, . . . , N) and (4.51), Ci(s) ̸= 0 (i =
1, . . . , N) holds true. In addition, from (4.29) and (4.30) and easy manipulation, we can confirm
that when ∆(s) = 0, transfer functions from the periodic reference input r to the output y and
from the disturbance d to the output y have finite numbers of poles.

We have thus proved Theorem 3.

4.4 Control characteristics

In this section, we describe control characteristics of the control system in (4.1) using the robust
stabilizing simple multi-period repetitive controller C(s) in (4.27).

From Theorem 3, Q(s) in (4.28) must be included in H∞. Since Qn0(s) ∈ RH∞, Qni(s) ∈
RH∞ (i = 1, . . . , N) and qi(s) ∈ RH∞ (i = 1, . . . , N) in (4.28), if{

Qd0(s) +
N∑
i=1

Qdi(s)qi(s)e
−sTi

}−1

∈ H∞,

then Q(s) satisfies Q(s) ∈ H∞. That is, the role of Qd0(s) and Q̄i(s) (i = 1, . . . , N) in (4.30) is
to assure the stability of the control system in (4.1).

Next, we mention the input-output characteristic. The transfer function S(s) from the
periodic reference input r to the error e = r − y is written by

S(s) =
1

1 + C(s)G(s)e−sL =

(
1−

N∑
i=1

qi(s)e
−sTi

)
(Qd0(s)− C22(s)Qn0(s))

Sd(s)
, (4.52)

where

Sd(s)

= Qd0(s)− C22(s)Qn0(s) + {C11(s)Qd0(s) + (C12(s)C21(s)− C11(s)C22(s))Qn0(s)}

·G(s)e−sL +
N∑
i=1

[Qdi(s)− C22(s)Qni(s) + {C11(s)Qdi(s) + (C12(s)C21(s)

−C11(s)C22(s))Qni(s)}G(s)e−sL
]
qi(s)e

−sTi . (4.53)
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From (4.52), for frequency components ωk (k = 0, 1, . . . , Nmax) in (4.13) of the periodic reference
input r, since qi(s) ∈ RH∞ (i = 1, . . . , N) are settled beforehand satisfying (4.12), the output
y follows the periodic reference input r with a small steady state error. That is, the role of
qi(s) (i = 1, . . . , N) is to specify the input-output characteristic for the periodic reference input
r.

Finally, we mention the disturbance attenuation characteristic. The transfer function S(s)
from the disturbance d to the output y is written by (4.52) and (4.53). From (4.52), for the
frequency components ωk (k = 0, 1, . . . , Nmax) in (4.13) of the disturbance d those are same to
those of the periodic reference input r, since S(s) satisfies S(jωk) ≃ 0 (∀k = 0, 1, . . . , Nmax),
the disturbance d is attenuated effectively. For the frequency component ωd of the distur-
bance d that is different from that of the periodic reference input r, that is ωd ̸= ωk (∀k =
0, 1, . . . , Nmax), even if

1−
N∑
i=1

qi(jωd) ≃ 0, (4.54)

the disturbance d cannot be attenuated, because

e−jωdTi ̸= 1 (4.55)

and

1−
N∑
i=1

qi(jωd)e
−jωdTi ̸= 0. (4.56)

In order to attenuate this frequency component, we must find Qn0(s) that satisfies

Qd0(jωd)− C22(jωd)Qn0(jωd) ≃ 0. (4.57)

That is, the role of Qn0(s) is to specify the disturbance attenuation characteristic for the
disturbance d with frequency components ωd ̸= ωk (∀k = 0, 1, . . . , Nmax).

From above discussion, the role of Qd0(s) and Q̄i(s) (i = 1, . . . , N) is to assure the stability
of the control system in (4.1) by satisfying Q(s) ∈ H∞. The role of qi(s)(i = 1, . . . , N) are
to specify the input-output characteristic for the periodic reference input r and to specify the
disturbance attenuation characteristic for the disturbance d with same frequency components
ωk (k = 0, 1, . . . , Nmax) of the periodic reference input r. The role of Qn0(s) is to specify
the disturbance attenuation characteristic for the disturbance d with frequency components
ωd ̸= ωk (∀k = 0, 1, . . . , Nmax).

4.5 Design procedure

In this section, a design procedure of robust stabilizing simple multi-period repetitive controller
for time-delay plants with the specified input-output characteristic is presented.

A design procedure of robust stabilizing simple multi-period repetitive controller C(s) sat-
isfying Theorem 3 is summarized as follows:

Procedure

Step 1) Obtain C11(s), C12(s), C21(s) and C22(s) by solving the robust stability problem using
the Riccati equation based H∞ control as Theorem 3.
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Step 2) qi(s) ∈ RH∞ (i = 1, . . . , N) and Ti (i = 1, . . . , N) in (4.28) are settled so that for the
frequency components ωk (k = 0, 1, . . . , Nmax) of the periodic reference input r(s),

1−
N∑
i=1

qi(jωk)e
−jωkTi ≃ 0 (∀k = 0, 1, . . . , Nmax) (4.58)

is satisfied. When Ti (i = 1, . . . , N) are given by (4.9), in order to satisfy (4.58), for
example, qi(s) (i = 1, . . . , N) are designed by

qi(s) =
1

N(1 + sτr)
αr
, (4.59)

where αr is an arbitrary positive integer and τr ∈ R is an arbitrary positive real number
satisfying

1−
N∑
i=1

1

N (1 + jωkτr)
αr

= 1− 1

(1 + jωkτr)
αr

≃ 0 (k = 0, 1, . . . , Nmax). (4.60)

On the other hand, when Ti are not given by (4.9), qi(s) (i = 1, . . . , N) and Ti (i =
1, . . . , N) satisfying (4.58) for k = 1, . . . , N can be designed using the method in [34].

Step 3) Qd0(s) ∈ RH∞ and Q̄i(s) ∈ RH∞ (i = 1, . . . , N) in (4.29) and (4.30) are settled so that
Q(s) in (4.28) is included in H∞.

Step 4) Qn0(s) ∈ RH∞ is designed so that for the frequency component ωd of the disturbance
d, |Qd0(jωd)− C22(jωd)Qn0(jωd)| is effectively small. To achieve this, Qn0(s) is designed
according to

Qn0(s) =
Qd0(s)

C22o(s)
q̄d(s), (4.61)

where C22o(s) ∈ RH∞ is an outer function of C22(s) satisfying

C22(s) = C22i(s)C22o(s), (4.62)

C22i(s) ∈ RH∞ is an inner function satisfying C22i(0) = 1 and q̄d(s) is a low-pass filter
satisfying q̄d(0) = 1, as

q̄d(s) =
1

(1 + sτd)
αd

(4.63)

is valid, αd is an arbitrary positive integer to make q̄d(s)/C22o(s) proper and τd ∈ R is
any positive real number satisfying

1− C22i(jωd)
1

(1 + jωdτd)
αd

≃ 0. (4.64)

When Qn0(s) is settled by (4.61), Qd0(jωd)− C22(jωd)Qn0(jωd) satisfies

Qd0(jωd)− C22(jωd)Qn0(jωd) = Qd0(jωd)

(
1− C22i(jωd)

1

(1 + jωdτd)
αd

)
≃ 0. (4.65)

That is, if τd is adequately chosen to satisfy (4.64) for the frequency range ωd, then the
disturbance d is attenuated effectively.
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4.6 Numerical example

In this section, a numerical example is shown to illustrate the effectiveness of the proposed
parameterization.

Consider the problem to obtain the parameterization of all robust stabilizing simple multi-
period repetitive controllers with the specified input-output characteristic for time-delay plant
G(s)e−sL written by

G(s)e−sL = Gm(s)(e
−sLm +∆(s)). (4.66)

The nominal time-delay plant of G(s)e−sL and the upper bound WT (s) of the set of ∆(s) are
given by

Gm(s)e
−sLm =

1

(s+ 3)(s+ 4)
e−0.5s (4.67)

and

WT (s) =
3s+ 2

s+ 10
, (4.68)

where Gm(s) = 1/{(s + 3)(s + 4)} and Lm = 0.5[sec]. The period T of the periodic reference
input r in (3.2) is T = 20[sec]. Solving the robust stability problem using Riccati equation
based H∞ control as Theorem 3, the parameterization of all robust stabilizing simple multi-
period repetitive controllers for time-delay plants with the specified input-output characteristic
is obtained as (4.27), where N is selected as N = 3 and Ti (i = 1, 2, 3) are set as Ti = T · i (i =
1, 2, 3). Here, Cij(s)(i = 1, 2; j = 1, 2) are given by

C11(s) = 0, (4.69)

C12(s) = 1, (4.70)

C21(s) =
106 · (s3 + 17s2 + 82s+ 120)

s3 + 17s2 + 3 · 106s+ 2 · 106
(4.71)

and

C22(s) =
106 · (2.91s2 + 33.3s+ 42.4)

s3 + 17s2 + 3 · 106s+ 2 · 106
. (4.72)

Low-pass filters qi(s) ∈ RH∞(i = 1, 2, 3) are settled by

qi(s) =
1

3 (0.01s+ 1)
∈ RH∞ (i = 1, 2, 3). (4.73)

In order to hold Q(s) ∈ H∞ in (4.28), Qd0(s) ∈ RH∞ in (4.28) and Q̄i(s) ∈ RH∞ (1, 2, 3) in
(4.29) and (4.30) are settled by

Qd0(s) = 200 (4.74)

and

Q̄i(s) = 0.01 (i = 1, 2, 3). (4.75)

When Qd0(s) and Q̄i(s) (i = 1, 2, 3) are set as (4.74) and (4.75), the fact that Q(s) ∈ H∞
in (4.28) is confirmed as follows: Since Qn0(s) ∈ RH∞, Qni(s) ∈ RH∞ (i = 1, 2, 3) and
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Fig. 4.3: The gain plot of Q(s) in (4.28)

qi(s) ∈ RH∞ (1, 2, 3), if the Nyquist plot of Qd0(s) +
∑N

i=1Qdi(s)qi(s)e
−sTi does not encircle

the origin, then Q(s) ∈ H∞ holds true. The Nyquist plot of Qd0(s) +
∑N

i=1Qdi(s)qi(s)e
−sTi is

shown in Fig. 4.2 . From Fig. 4.2 , since the Nyquist plot of Qd0(s) +
∑N

i=1Qdi(s)qi(s)e
−sTi

does not encircle the origin, we find that Q(s) ∈ H∞ holds true. The rest to show that Q(s) in
(4.28) satisfies |Q(jω)| < 1 (∀ω ∈ R+). The gain plot of Q(s) in (4.28) is shown in Fig. 4.3 .
Figure 4.3 shows that the designed Q(s) satisfies ∥Q(s)∥∞ < 1.

In order for the disturbance

d(t) = sin(0.05πt) (4.76)

to be attenuated effectively, Qn0(s) ∈ RH∞ is designed using (4.61), where

C22o(s) = C22(s) ∈ RH∞ (4.77)

and

q̄d(s) =
1

0.01s+ 1
∈ RH∞. (4.78)

When ∆(s) is given by

∆(s) =
2s+ 1

s+ 10
, (4.79)
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Fig. 4.4: The gain plot of ∆(s) and WT (s)

the gain plot of ∆(s) and WT (s) are shown in Fig. 4.4 . Here, the dotted line shows the gain
plot of WT (s) and the solid line shows that of ∆(s). Figure 4.4 shows that the uncertainty ∆(s)
satisfies (4.4).

Using above-mentioned parameters, we have a robust stabilizing simple multi-period repet-
itive controller for time-delay plant with the specified input-output characteristic. When
the designed robust stabilizing simple multi-period repetitive controller C(s) is used, the re-
sponse of the output y(t) in (4.1) for the periodic reference input r(t) = sin(0.1πt − Lm) is
shown in Fig. 4.5 . Here, the dotted line shows the response of the periodic reference input
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Fig. 4.5: The response of the output y(t) for the periodic reference input r(t) = sin(0.1πt−Lm)

r(t) = sin(0.1πt− Lm) and the solid line shows that of the output y(t). Figure 4.5 shows that
the output y(t) follows the periodic reference input r(t) with a small steady state error, even if
the time-delay plant has uncertainty ∆(s).

Next, using the designed robust stabilizing simple multi-period repetitive controller for
time-delay plant with the specified input-output characteristic, the disturbance attenuation
characteristic is shown. The response of the output y(t) for the disturbance d(t) = sin(0.2πt)
of which the frequency component is equivalent to that of the periodic reference input r(t) is
shown in Fig. 4.6 . Here, the dotted line shows the response of the disturbance d(t) = sin(0.2πt)
and the solid line shows that of the output y(t). Figure 4.6 shows that the disturbance d(t) is
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Fig. 4.6: The response of the output y(t) for the disturbance d(t) = sin(0.2πt)

attenuated effectively. Finally, the response of the output y(t) for the disturbance d(t) in (4.76)
of which the frequency component is different from that of the periodic reference input r(t) is
shown in Fig. 4.7 . Here, the dotted line shows the response of the disturbance d(t) in (4.76)
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Fig. 4.7: The response of the output y(t) for the disturbance d(t) = sin(0.05πt)

and the solid line shows that of the output y(t). Figure 4.7 shows that the disturbance d(t) in
(4.76) is attenuated effectively.

In this way, we find that we can easily design a robust stabilizing simple multi-period
repetitive controller using Theorem 3.

4.7 Conclusion

In this chapter, we proposed the parameterization of all robust stabilizing simple multi-period
repetitive controllers for time-delay plants with the specified input-output characteristic such
that the low-pass filters in the internal model for the periodic reference input are settled before-
hand, the controller works as a robust stabilizing multi-period repetitive controller for time-
delay plants and transfer functions from the periodic reference input to the output and from
the disturbance to the output have finite numbers of poles, when the uncertainty does not exist.
Control characteristics of a robust stabilizing simple multi-period repetitive control system are
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presented, as well as a design procedure for a robust stabilizing simple multi-period repeti-
tive controller for time-delay plants with the specified input-output characteristic. Finally, a
numerical example was illustrated to show the effectiveness of the proposed method.
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Chapter 5

Conclusions

In this study, we proposed design methods for simple repetitive control systems with the spec-
ified input-output characteristic such that the low-pass filter in the internal model for the
periodic reference input can be set beforehand. Results of this paper are summarized as fol-
lows:

In Chapter 2., we proposed the parameterization of all stabilizing simple repetitive con-
trollers with the specified input–output characteristic such that the low-pass filter in the inter-
nal model for the periodic reference input is set beforehand, the controller works as a stabilizing
modified repetitive controller, and transfer functions from the periodic reference input to the
output and from the disturbance to the output have finite numbers of poles. In addition,
we demonstrated the effectiveness of the parameterization of all stabilizing simple repetitive
controllers with the specified input–output characteristic. Control characteristics of a simple
repetitive control system were presented, as well as a design procedure for a simple repetitive
controller with the specified input–output characteristic. An application for the reduction of
rotational unevenness in motors was presented to illustrate the effectiveness of the proposed
method.

In Chapter 3., We have proposed the parameterization of all stabilizing simple multi-period
repetitive controllers with the specified input-output characteristic such that low-pass filters
in the internal model for the periodic reference input are settled beforehand, the controller
works as a stabilizing multi-period repetitive controller and transfer functions from the periodic
reference input to the output and from the disturbance to the output have finite numbers of
poles. Control characteristics of a simple multi-period repetitive control system were presented,
as well as a design procedure for a simple multi-period repetitive controller with the specified
input-output characteristic.

In Chapter 4., we proposed the parameterization of all robust stabilizing simple multi-
period repetitive controllers for time-delay plants with the specified input-output characteristic
such that the low-pass filters in the internal model for the periodic reference input are settled
beforehand, the controller works as a robust stabilizing multi-period repetitive controller for
time-delay plants and transfer functions from the periodic reference input to the output and
from the disturbance to the output have finite numbers of poles, when the uncertainty does
not exist. Control characteristics of a robust stabilizing simple multi-period repetitive control
system are presented, as well as a design procedure for a robust stabilizing simple multi-period
repetitive controller for time-delay plants with the specified input-output characteristic.

Advantages of control systems using the proposed design methods are that its input-output
characteristic is easily specified than in the method employed in [48, 49, ?]. These simple
repetitive control systems are expected to have practical applications in, for example, engines,
electrical motors and generators, converters, and other machines that perform cyclic tasks.
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