

Model Based Design Environment for the Embedded System

Case Study: Inverter Power Supply

By

MONA ABD EL-BASET ABO EL-DAHB

A THESIS

Submitted to the Department of Production Science and Technology,

Graduate School of Engineering, Gunma University

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Electrical and Computer Science Engineering

Under Supervision of

Prof. WEI SHU GANG

Prof. YOICHI SHIRAISHI

Department of Production Science and Technology

Graduate School of Engineering

Kiryu-shi, Gunma, 376-8515, JAPAN

September 2011

i

ACKNOWLEDGEMENTS

First of all, praise to ALLAH for all - it is the prime honor for me that ALLAH makes me

Muslim and shows me the reality of this life. Also, I would like to declare my thanks for

ALLAH for giving me the patience and perseverance to work through this research.

I would like to express my deepest appreciation and thanks to the great Professor Yoichi

Shiraishi for his brilliant guidance, as well as his tremendous and earnest supervision, not

only throughout the duration of this period of study, but also in all my general life matters.

He always gives his support for my spirit and teaches me well. He has been a very caring

and helpful supervisor throughout the time of my study in Gunma University and

residence in Japan. There is no doubt this is all from ALLAH and I wish I keep my

communication with Prof. Yoichi for my future research as well as social activities.

Special thanks extended to the Ministry of Higher Education in Egypt, Helwan University

and all the staffs of Egyptian Culture Office in Tokyo to support me and my Ph D study in

Japan.

Also, I would like to express my thanks to all the examiner committee of my thesis that

includes Prof. Wei Shu Gang, Prof. Takeo Ishikawa, Prof. Kou Yamada and Prof.

Toshikazu Matsui. Special thanks for Mis. Lida Tohidi, who is my family friend, for

assisting in English revision of the written aspect of the thesis as well as my published

papers.

I am also really grateful and highly appreciate for the support of all colleagues from Tokyo

Sieden Company. A cordial thank you to everyone of Prof. Yoichi laboratory who gave

me useful and helpful assistance, support, and cooperation in various ways during my

study time. I would also like to express many thanks for all of the Gunma University staff

for their help during my study.

I assign my profound and deepest thanks to my wonderful husband, Dr. Aly, for his

devotion, support, patience, and encouragement. He provided the suitable atmosphere not

only for my study but for my life. I would also like to thank my four wonderful kids,

Fatama, Mohamed, Youssef and Ibrahim, who give me the happiness in this life.

ii

EXECUTIVE SUMMARY

Nowadays, an embedded system is becoming a main solution to most specific tasks in

industrial and business fields because of its high stability, economic power consumption

and usefulness in many fields. Every year, billions of microprocessors are sold for use in

embedded systems. This is in sharp contrast to a few hundred million desktop processors

that are sold in the same timeframe. From automobiles to medical equipments, thermostats

to space shuttles, embedded systems are all around us. Basically the embedded system can

be simply defined as a combination of hardware and software that are built into a product

for purposes such as control, monitoring and communication without human intervention.

Hardware includes microprocessor with additional attached external memory, I/O, and

other components such as sensors, keyboard, LEDs, LCDs, and any kind of actuators.

Embedded software is the driving force of an embedded system when it is loaded on the

system, it will never be changed unless it needs to be reloaded or replaced. Embedded

systems are considered one of the most difficult technical and commercial environments

because there are many critical systems controlled by embedded system. It includes

communication applications, transportation navigation, medical systems and financial

systems. Failure or compromise of such systems can have significant consequences

including disruption of critical services, financial loss and sometimes loss of life.

Subsequently, both quality and performance of such system are considering vital issues.

In developing embedded systems, the requirements for software design are completely

different than the case of software design in the business application field. In the

embedded software design, ultra high reliability, real time process and hardware/software

co-design are required. However, in the development of an embedded system, the amount

of software increases explosively in a very short period. The designers of the embedded

system face ever increasing challenges in the design stage. One of the difficulties of the

embedded system design is that the hardware and the software of an embedded system are

developed simultaneously. In the business system development, the hardware on which the

software should be executed is available. For example in the business software

development, the platform for executing software is a computer incorporating Intel's

microprocessor and Windows operating system. However, in the embedded software

design even the specifications of hardware usually are not completed embedded software

cannot be tested. The embedded system software designer should wait until the hardware

iii

completed, thus software is tested in the actual prototypes. So, revealing the error in the

embedded software is considered a critical step. Furthermore, the discovery of errors often

resulted in production delay as well as additional expense can be added to the estimated

product cost.

One of the major challenges in the design process of embedded systems is to accurately

predict performance characteristics of the final system implementation in early design

stages. Another challenge of the embedded system design is the system parameters

optimization because embedded software controls hardware. Consequently, if the software

is not accurately optimized then the embedded system may run out of control. Verification

of the embedded system function, which is the process to verify that the system meet the

required specification or not, is considered one of the most vital challenges of the

embedded system design. In the traditional design method, it is reported that the

verification period takes about 50% of the production time. In addition the complexity of

the embedded system which arises due to the combination of more and more functions

onto a single system. Building on the above descriptions, the complexity of the embedded

system design in many applications has been dramatically increasing over the past few

years. Therefore, most of researchers directed their attentions to solve some of those

challenges. One of the leading techniques in this field is the Model Based Design method.

In this method the model can be used to verify the system design and control algorithm.

Furthermore, it can be used as executable specification for the designer before the actual

implementation. The Model Based Design method is a new approach in the embedded

system design and development. It only defines the design methodology and in actual

applications, the problem is the definition and representation of each component of

embedded system as a model. Once a model is defined in an application, the variations of

the model can also be defined by the modification of the original model in other

applications based on the reusability of object oriented programming. However, the

usefulness of the Model Based Design method has not yet been verified in many

applications. The objective of the study is to verify the usefulness, to find out the problems

and to check the feasibility of the Model Based Design method.

This research contributes a novel technique that allows the full simulation of the

embedded system in the virtual environment based on the Model Based Design method.

We used the inverter power supply design as a case study of the application of the Model

iv

Based Design method. Inverter power supplies are widely used in many industrial

processes and applications, such as, uninterruptable power supplies, motor control, and

electric vehicle applications. It can be defined as a device that converts DC (Direct

Current) from sources such as batteries, solar panels, fuel cells, or wind generations to AC

(Alternative Current). So, the output can be used in a wide range of AC applications.

Traditionally, an analog control technique is used to control the inverter power supply.

However, due to the fact that a digital control technique can provide the benefits which

cannot be provided by an analog one, a digital control starts to be a viable candidate in the

inverter power supply design. Actually, a digital controller can offer a programmable

solution for the applications. Moreover, it also offers the flexibility in design and an

advanced algorithm as well as additional features can be added to the controlling software

instead of hardware. From the electrical point of view, a digital controller is less sensitive

to the environmental conditions and shows precise behaviors compared to analog

counterparts. In this study the SH7047 microprocessor is used to control the generation of

the PWM signal which control the operation of the inverter power supply. To improve the

performances of the digital PWM pulses, a digital control technique should be used. The

main duties of the inverter control system are to regulate the output voltage against all

possible existing disturbances. In this study, to an inverter power supply, a controlling

algorithm is newly proposed, which is two layer controller that includes the feedforword

and PI controller. To implement a digital control technique in the inverter power supply,

an embedded system must be developed. Now, in general, this kind of embedded system is

manually developed and the embedded software developing and testing time takes around

50% from the entire developing cycle. Therefore, the Model Based Design method is

strong necessary in the design of inverter power supply. The entire inverter power supply

system model is constructed under the name of Model In the Loop Simulation (MILS)

environment. MILS environment is divided in two main parts which are the controlled part

(electric DC/DC and DC/AC circuits) and the control part consisting of the

microcontroller and the embedded software. A full simulator of the inverter power supply

including electric circuit model and the functional model of the microprocessor is

developed by using the MATLAB and Simulink environment. The electric part is

developed using the Simulink power block set. The control part is modeled by simulating

the function of the microprocessor unit using the S-Function technique and the embedded

system software was described as C-MEX files. All parameters and the behavior of the

model were tested, optimized and analyzed graphically as well as mathematically. The

v

validity and usefulness of the MILS environment is verified by comparing the simulated

results with the experimental results in the actual device. The actual prototype of inverter

power supply has been fabricated using Renesas SH7047 microprocessor and the

embedded software is implemented manually. The input DC voltage is 24V and the target

AC output is 100 RMSV with frequency of 60 Hz.

The results show that the application of Model Based Design method can contribute to

system development period reduction and guarantee robust system design. The developed

models helped us to optimize software parameters and to validate control algorithm in the

virtual environment. Moreover, the models can be used to study and analyze the behaviors

of the system which meet the challenges of designing the embedded control system. The

results show that the suggested models are promising and the models can be useful for

optimizing the performances in developing the embedded software. On top of that, the

Model Based Design method saved the time and cost by large percentage comparing to the

traditional method of design.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...I

EXECUTIVE SUMMARY .. II

TABLE OF CONTENTS .. VI

LIST OF TABLES .. IX

LIST OF FIGURES ... X

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. GENERAL ... 1

1.2. DEFINITION OF EMBEDDED SYSTEMS .. 1

1.3. EMBEDDED SYSTEM VERSUS GERNAL PURPOSE SYSTEM 3

1.4. EMEDDED SYSTEM DESGIN LIFE CYCLE ... 5

1.5. CLASSIFICATION OF EMBEDED SYSTEMS ... 6

1.5.1 Classification Based of the Function and Required Performance 6

1.5.2. Classification Based on the Size ... 7

1.6. SCOPE OF RESEARCH .. 8

1.7. PURPOSE OF RESEARCH ... 9

1.8. THESIS OUTLINES .. 11

REFERENCES .. 13

CHAPTER 2 ... 15

MODEL BASED DEVELOPMENT .. 15

2.1. INTRODUCTION .. 15

2.2. CHALLENGES OF THE EMBEDDED SYSTEM DESIGN 16

2.3 HARDWARE / SOFWARE CO-DESGIN .. 17

2.3.1 Hardware / Software Concept .. 17

2.4. MODEL BASED DESGIN .. 19

2.4.1. Executable Specifications ... 20

2.4.2. Design with Simulation ... 21

2.4.3. Implementation and Testing .. 21

vii

REFERENCES .. 23

CHAPTER 3 ... 25

INVERTER POWER SUPPLY DESGIN .. 25

3.1. INTRODUCTION .. 25

3.2. TOPOLGIES OF THE INVERTER POWER SUPPLY ... 27

3.3. DIGITAL CONTROL FOR INVERTER POWER SUPPLY 27

3.4. DESCRIPTION OF THE INVERTER POWER SUPPLY 30

3.4.1. DC-DC Conversion ... 30

3.4.2. DC/AC Inverter ... 34

3.4.3. SH microprocessor .. 40

3.5. PULSE WIDTH MODULATION .. 45

3.6. PID CONTROLLER ... 48

REFERENCES .. 53

CHAPTER 4 ... 56

MODEL IN THE LOOP SIMULATION ... 56

4.1. INTRODUCTION .. 56

4.2. MATLAB/SIMULINK ENVIRONMENT ... 56

4.3. MODEL IN THE LOOP SIMULATION, MILS ... 57

4.3.1 DC/DC and DC/AC Circuit Simulation ... 59

4.4. MICROPROCESSOR SIMULATION ... 62

4.4.1. Control Algorithm ... 62

4.4.2. PWM Generation Program .. 66

4.5. S-FUNCTION ... 66

REFERENCES .. 70

CHAPTER 5 ... 71

EXPIRAMINTAL RESULTS AND DISCUSSIONS .. 71

5.1. INTRODUCTION .. 71

5.2. DC/DC CONVERTER PERFORMANCES ... 72

5.3. DC/AC INVERTER PERFORMANCES ... 75

5.3.1. The Time for Reaching the Stationary Voltage .. 75

viii

5.3.2. Pure Sine Wave Output Voltage and Frequency... 78

5.4. RESPONSE WITH LINEAR LOAD ... 84

5.5. SUGGESTION OF ARTIFICAL NEURAL NETWOK APPLICATION 90

REFERENCES .. 92

CHAPTER 6 ... 93

CONCLUSIONS AND RECOMMENDATIONS ... 93

6.1. CONCLUSIONS .. 93

6.2. RECOMMENDATION FOR FUTURE STUDY .. 94

6.2.1. MILS Quality Improvement .. 94

6.2.2. Optimization of Software Parameters Based on Neural Network 94

APPENDIX I ... 95

APPENDIX II ... 103

ix

LIST OF TABLES

Table 1. 1: Main export products of Japan .. 2

Table 3. 1: Types of power conversion ... 26

Table 3. 2: The pin configuration of the MMT ... 42

Table 3. 3: Action modes of the PID control .. 51

Table 4. 1: Specifications of the inverter circuits ... 61

Table 5. 1: The three different cases a, b and c of the controlling parameters 75

Table 5. 2: Inverter power supply parameters ... 78

x

LIST OF FIGURES

Fig.1. 1. Examples of embedded system ... 2

Fig.1. 2. Explosive increase in embedded software size ... 3

Fig.1. 3. Embedded system life cycle ... 5

Fig.1. 4. Difficulty of embedded software design ... 10

Fig.2. 1. Hardware/Software co-design technique .. 18

Fig.2. 2. Design processes of the Hardware/Software co-design .. 18

Fig.2. 3. Developing cycle of the embedded system .. 19

Fig.2. 4. Elements of Model Based Design ... 20

Fig.2. 5. Hardware In the Loop Testing .. 22

Fig.3. 1. Square, modified and pure sine wave inverter .. 27

Fig.3. 2 Developing cycle of the inverter power supply ... 28

Fig.3. 3 Conventional program development process ... 29

Fig.3. 4. Block diagram of inverter power supply .. 30

Fig.3. 5. Examples of the isolated DC/DC converter .. 32

Fig.3. 6. Circuit schematic of DC/DC converter ... 32

Fig.3. 7. Switching operation of DC/DC converter .. 33

Fig.3. 8. DC/DC switching operation ... 34

Fig.3. 9. DC/DC rectification and filtering operation ... 34

Fig.3. 10. Circuit schematic of DC/AC inverter ... 35

Fig.3. 11. Gate drive signals of the PWM inverters .. 36

Fig.3. 12. Relation between dead time and the voltage drop .. 37

Fig.3. 13. The relation between dead time value and the total harmonic distortion (THD)37

Fig.3. 14. Voltage and current distortion caused by the dead time 39

Fig.3. 15. Block diagram of SH microprocessor ... 41

Fig.3. 16. Block diagram of MMT .. 42

Fig.3. 17. Example of PWM waveform generation from MMT unit 43

Fig.3. 18. Block diagram of MTU .. 44

Fig.3. 19. Analog PWM generation .. 46

Fig.3. 20. PWM outputs .. 47

Fig.3. 21. Microcontroller based PWM alignments .. 48

Fig.3. 22. Conventional feedback control system ... 50

Fig.3. 23. Block diagram of newly applied control system .. 52

xi

Fig.4. 1. Hierarchical models of complex control systems using Simulink 58

Fig.4. 2.Circuit schematic of inverter power supply ... 59

Fig.4. 3. SimPower system block set .. 59

Fig.4. 4. PWM generator block ... 60

Fig.4. 5. MATLAB model of open loop system ... 61

Fig.4. 6. Simplified block diagram of the proposed control system 63

Fig.4. 7. PI controller algorithm .. 65

Fig.4. 8. Block parameter dialog box of DC/DC S-Function ... 67

Fig.4. 9. S-Function parameter block .. 68

Fig.4. 10. Model In the Loop Simulation of inverter power supply 69

Fig.5. 1. Actual inverter power supply device .. 71

Fig.5. 2. Actual prototype circuits for the inverter power supply 72

Fig.5. 3. Actual control pulse in the DC/DC ... 73

Fig.5. 4. Simulated control pulses in DC/DC stage .. 73

Fig.5. 5. Principal of operation in DC/DC converter .. 74

Fig.5. 6. Simulation result of DC/DC converter ... 74

Fig.5. 7. Simulated AC output in case (a) ... 75

Fig.5. 8. Actual AC output in case (a) ... 76

Fig.5. 9. Simulated output in case (b) ... 76

Fig.5. 10. The actual output in case (b) ... 77

Fig.5. 11. The simulated result in case (c) .. 77

Fig.5. 12. The actual output in case (c) ... 78

Fig.5. 13. Actual sin wave output of inverter power supply ... 79

Fig.5. 14. The simulated sin wave output of inverter power supply 79

Fig.5. 15. Relation between the modulating signal and the generated pulses 80

Fig.5. 16. The actual control MTU pulses .. 81

Fig.5. 17. The actual MUT microprocessor output pulses .. 81

Fig.5. 18. The simulated MTU microprocessor unit pulses .. 82

Fig.5. 19. Actual sin wave output ... 82

Fig.5. 20. Simulated sin wave output .. 83

Fig.5. 21. The actual dead time value Td = 0.002ms .. 84

Fig.5. 22. The simulated value of the dead time ... 84

Fig.5. 23. Inverter power supply output with no load ... 85

Fig.5. 24. Inverter power supply output with no load in the MILS 86

xii

Fig.5. 25. The inverter power supply output with the linear load 86

Fig.5. 26. The inverter power supply output with the linear load in MILS 87

Fig.5. 27. Output of the inverter power supply with no load .. 88

Fig.5. 28. Output with the linear load ... 88

Fig.5. 29. Inverter power supply output with open loop ... 89

Fig.5. 30. Inverter power supply output with control algorithm ... 90

Fig.5. 31. Proposed ANN control for the inverter power supply .. 91

1

 CHAPTER 1

INTRODUCTION

1.1. GENERAL

This chapter offers a brief introduction of the embedded systems; the difference between

the embedded system and the general propose computer, embedded systems classification

and the design challenges. Every year, billions of microprocessors are sold for use in

embedded systems [1]. This is in sharp contrast to a few hundred million desktop

processors that are sold in the same timeframe. From automobiles to medical equipments,

thermostats to space shuttles, embedded systems are all around us. If you count how many

computers you own or use probably one or two at work and another one or two at home.

Now count the number of embedded systems you own or use, a digital cellular telephone,

a pager, microwave oven, washer, dryer, dishwasher, coffee maker, refrigerator, VCR,

television, video-game console, stereo receiver, CD player, DVD player, portable Discman,

remote control for the TV, remote for the VCR, remote for the stereo, garage-door opener,

automatic sprinkler timer, fax machine, PDA, answering machine, and so on. The modern

automobile has about 100 embedded systems on it. Consequently, that is why embedded

system design is a very important research field.

1.2. DEFINITION OF EMBEDDED SYSTEMS

An embedded system can be simply defined as a combination of hardware

(microprocessor) and software that is built into a product for purposes such as control,

monitoring and communication without human intervention [2, 3]. By other way,

embedded system is a special-purpose computing device designed to perform dedicated

functions, which consists of hardware and software. The hardware includes a

microprocessor or microcontroller with additional attached external memory, I/O, and

other components such as sensors, keypad, LEDs, LCDs, and any kind of actuators. The

embedded software is the driving force of an embedded system. Once it is loaded it will

never be changed unless it needs to be reloaded or replaced [4, 5]. Traditionally most of

these systems are used for control and process measurement, as a side-effect of higher

integration of integrated circuits more complex applications can be solved by embedded

systems. Nowadays embedded systems can be found in devices from digital watch to

communication systems, transportation navigation systems, medical systems, and financial

2

systems. Figure 1.1 shows some examples of the embedded systems applications.

Fig.1. 1. Examples of embedded system

The number of the embedded systems increases rapidly in the last few decades to meet

modern life demands. For example in Japan, which is considered one of the most

advanced country in the world, there are many products including the embedded system

act as main export products such as automobiles, office equipments, copying machines.

Table 1.1 shows the main export products in Japan (Japanese Ministry of Economy, Trade

and Industry (METI)).

Table 1. 1: Main export products of Japan

 Year 2000 2001 2002 2003

 Total Cost
*
 516,542 489,792 521,080 545,484

1

Products

Amount

Ratio %

Automobile

69,301

13.4

Automobile

72,108

14.7

Automobile

87,746

16.8

Automobile

88,756

16.3

2

Products

Amount

Ratio %

Elec. Devices

45,758

8.9

Elec. Devices

36,474

7.4

Elec. Devices

38,673

7.4

Elec. Devices

40,745

7.5

3

Products

Amount

Ratio

Office Equip

30,942

6.0

Office Equip

28,207

5.8

Office Equip

30,053

5.8

Office Equip

26,191

4.8

4

Products

Amount

Ratio

Copy Machine

26,256

5.1

Copy Machine

25,045

5.1

Copy Machine

21,171

4.1

Copy Machine

20,660

3.8

Note:
*
 hundred million yen

3

However, in the development of an embedded system, the amount of software increases

explosively in a very short period as shown in Figure 1.2 and this causes a very serious

problem in the embedded system industry. Japanese METI (Ministry of Economy, Trade

and Industry) continues the investigations of the embedded system industry from 2004 and

published the reports. From the latest report, the deficiency of embedded software

designers reaches to about 94,000 in 2007. In the software development, the increase of

the amount of lines of codes in an automobiles, mobiles phones, and digital home

appliances makes the complexity of software design very much increased and the supply

of embedded software engineers can not satisfy the needs of the current deficiency.

Therefore, many studies are needed to overcome such problems.

Fig.1. 2. Explosive increase in embedded software size

1.3. EMBEDDED SYSTEM VERSUS GERNAL PURPOSE SYSTEM

An embedded system is usually classified as a system that has a set of predefined,

specific functions to be performed and in which the resources are constrained [6]. For

example cellular phones, it is an embedded system and it has several readily apparent

functions as follows: the main function is to call and receive phone call perhaps several

functions such as clock, alarm, and camera and so on. It also has several resource

constraints as follows: Firstly, the processor that is operating the mobile phone cannot be

very large, or else no one would use it. Secondly, the power consumption must be minimal,

only a small battery can be contained in that cellular phone. Finally, it must perform its

Function accurately. Each embedded system design satisfies its own set of functions and

constraints. By comparing this example with the general propose computer we can see the

differences. In this section the main differences between both systems are described

below:

4

1. Embedded systems are dedicated to specific tasks, where PCs are general computing

platforms. Embedded system is programmed to perform specific tasks conversely.

General computer is able to perform unlimited tasks or a general-purpose computer,

for example, you can install any software to do all kinds of jobs such as word

processing, data sheet, database management, and others depending on your

purposes.

2. Embedded systems are usually cost sensitive because the embedded system is only

part of the whole product. Subsequently, if the cost of the embedded system reduces

you can potentially reduce the product cost.

3. The implication of software failure are much more severe in the embedded systems

than the general propose computer. It is considered one of the most difficult

technical and commercial environments because many critical systems are controlled

by embedded computer system. These include communication systems,

transportation navigation systems, medical systems, and financial systems. Failure or

compromise of such system can have significant consequences including disruption

of critical services, financial loss, and loss of life.

4. Embedded systems have power constrains. This is not practically serious constraint

for the general computer system. However, consider an embedded system connected

to medical system in the ambulance, so the system must work reliably and for long

time in a set of small batteries. So, it is very important issue to keep the embedded

system running on minute amount of power.

5. Embedded systems have real time constrains. Real time constrains generally are

grouped into categories depending on the application as follows: the first category is

time sensitive constraints and; the second category is time critical constraints. If the

application has time critical constraints the task must take place within a set window

of time, controlling the flight worthiness of an aircraft is a good example of this.

6. Embedded systems must operate under extreme environmental conditions. The

embedded systems are everywhere, so the system must be designed to work well in

different environment conditions and in the harsh environment as well.

7. Embedded systems microprocessors often have debugging circuitry.

5

1.4. EMEDDED SYSTEM DESGIN LIFE CYCLE

Aforementioned, the embedded system is a system which designed to perform a dedicated

function, typically with tight real-time constraints, limited dimensions, and low cost and

low-power consumption requirements. It is a combination of computer hardware and

software and additional mechanical, optical, or other parts that are typically used in the

specific role of actuators, sensors, and transducers [5, 7, 8]. In general the design life cycle

of the embedded systems is unlike the design life cycle for the standard platform. The

traditional design cycle of the embedded system can be summarized in the following

phases [5].

1. Production specification,

2. Partitioning of the design into its software and hardware components,

3. Iteration and refinement of the partitioning,

4. Independent hardware and software design tasks,

5. Integration of the hardware and software components,

6. Product testing and release,

7. Ongoing maintenance and upgrading.

The percentage of the project time spent in each stage of the embedded system design life

cycle is shown in Figure 1.3.

Fig.1. 3. Embedded system life cycle

In general, in the business software development, the platform for executing and testing

the software computer is an easy task. However in the embedded system, an embedded

system cannot be tested in the actual hardware. The software designer needs to wait until

the hardware is completed then they can test the software which increases the product cost

and time as well as it will affect the system quality. So, the developing cycle must have

37%

12%

31%

20%

System specification

&design

HW&SW

Design

Prototype

Debug
System

Test

51% of time

6

special tools and method to manage the complexity of the design. Thus, there are many

challenges face the embedded system design which are described in details in the next

chapter.

1.5. CLASSIFICATION OF EMBEDED SYSTEMS

Embedded systems can be classified into different categories based on its Function, the

required performance of the application and the size of the system. The classification

presented below in details.

1.5.1 Classification Based of the Function and Required Performance

An embedded system is becoming a main solution to most specific tasks because of its

high stability, economic power consumption and usefulness. It is widely used in a range of

applications in our life. The function of the embedded system varies from application to

other application. The functions of the embedded system can be classified as follows:

 Stand-alone embedded systems

In this category the embedded system works by itself and it is a self-contained device.

It takes either digital or analog inputs from its input ports then it processes this data to

get specific output. Then it outputs the resulting data to its attached output device,

which either displays data, or controls and drives the attached devices. Entertainment

devices such as video game console and MP3 players, digital cameras, and

microwaves are typical systems that fall into this category [9].

 Real-time embedded systems

In this category, the time is considered as a critical factor. In other words, some

specific functions must be done in particular period. There are two types of real-time

embedded systems hard real-time and soft real-time embedded systems. In hard real-

time systems if the task is completed after the deadline it may lead to critical failure

and in some case it may result in loss of life. For example, a car airbag control system,

if any delayed reaction in this system can cause severe results. The response time

deadline for the hard real time system is very critical (in millisecond or even shorter).

It is very important for such system to react to an event within a strict deadline, and

missing a deadline will constitute failure of the system. The hardware and software of

hard real-time systems must allow a worst case execution (WCET) analysis that

guarantees the execution be completed within a strict deadline [10,11,12]. The second

group for the real time embedded system is the soft real-time system, in this system it

7

can tolerate with some degrees of the time missing. In this system, if the task is

completed after the deadline, the system can continue work but only the quality of the

system will reduce. For example the microwaves and the washing machines, in this

example, the time for completing the task can be delaying with second without causing

any critical problems .

 Networked embedded systems

The networked embedded system is considered one of the fastest growing areas in

embedded systems applications. The networked embedded systems connect to a

network with network interfaces to access resources. The connected network can be

Local Area Network (LAN), Wide Area Network (WAN), or the Internet. The

connection can be wired or wireless [13]. Home security systems are one example of

this group.

1.5.2. Classification Based on the Size

For different applications the scale of the embedded systems are varied. We can classify

the embedded system based on the size as follows:

 Small scale embedded system is designed using a single 8 or 16 bit microcontroller.

Most of the small scale embedded systems are battery operated. Usually, „C‟ language

is used for developing these systems. „C‟ program compilation is done into the

assembly, and executable codes are then appropriately located in the system memory

[10,11]. The software has to fit within the memory available and keep in view the need

to limit power dissipation when the system is running continuously.

 Medium Scale Embedded Systems:

These systems are usually designed with a single or few 16 or 32 bit microcontrollers

or Digital Single Processors (DSPs) or Reduced Instruction Set Computers (RISCs).

These have both hardware and software complexities. For complex software design,

there are the following programming tools: Real Time Operating System (RTOS),

Source code engineering tool, Simulator, Debugger and Integrated Development

Environment (IDE). Software tools also provide the solutions to the hardware

complexities. An assembler is of a little use as a programming tool.

 Sophisticated Embedded Systems:

Sophisticated embedded systems have enormous hardware and software complexities

and may need scalable processors or configurable processors and programmable logic

arrays. They are used for cutting edge applications that need hardware and software

8

co-design and integration in the final system. However, they are constrained by the

processing speeds available in their hardware units. Certain software functions such as

encryption and deciphering algorithms, discrete cosine transformation and inverse

transformation algorithms, TCP/IP protocol stacking and network driver functions are

implemented in the hardware to obtain additional speeds by saving time. Some of the

functions of the hardware resources in the system are also implemented by the

software. Development tools for these systems may not be readily available at a

reasonable cost or may not be available at all [10,11].

1.6. SCOPE OF RESEARCH

Embedded systems are considered one of the most difficult technical and commercial

environments because many critical systems are controlled by embedded system including

communication applications, transportation navigation, medical systems and financial

systems. Failure or compromise of such systems can have significant consequences

including disruption of critical services, financial loss and sometimes loss of life so the

quality and the performance of such system are considering vital issues [8]. Building on

this the focus of most researchers nowadays is directed to solve the challenges which face

the embedded system. These challenges presented below:

1. The complexity of the embedded system, which arises due to the combination of

more and more functions onto a single system.

2. The optimization: the software and the hardware parameter of the embedded

system have to be optimized in very accurate way and also have to be on time.

3. Verification of the embedded system function, which is the process verify that the

system meet the required specification or not. In the traditional design method it is

reported that the verification period takes about 50% of the production time.

Many of researchers nowadays try to develop new technique to overcome such challenges.

One of the leading techniques in this field is the Model Based Design method. This study

will test how the model based design put a good solution for the embedded system

challenges. In this research, one case study was taken as an embedded system example

which is the inverter power supply. Due the fact that a digital controller can provide more

benefits which cannot be provided by the analog one in the inverter power supply

applications, the digital control starts to be used. However, developing the inverter power

supply based on the digital control faces some challenges which listed below:

9

1. It is so difficult to monitor the control algorithm behavior before the actual

implementation.

2. The embedded software which controls the operation of the inverter power supply

is developed manually which takes much time and bugs in such program are

inevitable.

3. Bugs discovery is considered a critical problem and it results in production delay

time and additional cost will be added.

4. Within the scope of our investigation, all the previous study concentrated on the

modeling of the analog part and the digital pulse was generated by pulse generator.

So, in the actual implementation, the software is needed to be tested in the actual

prototype which may lead to system failure as well as it takes so much time to

obtain the optimum parameters. And when any change occurred in the embedded

software, the verification process is needed to start from the beginning. It is takes

long time to optimize the software parameters using the conventional design

method.

5. It is reported that the verification of the system performance and the control

algorithm for the embedded system takes from 50 to 70 % of the production time.

So, in this research, entire virtual environment for the inverter power supply was

constructed based on Model Based Design technique. The entire embedded system model

is constructed under the name of Model In the Loop Simulation (MILS) environment. The

embedded software is designed and optimized in the virtual environment using the

MATLAB and Simulink environment. Newly applied controlling algorithm is designed

and tested in the virtual system; this controlling algorithm consists of PI controller and the

feedforward controller. Then to verify the validity of the proposed MILS environment,

and to verify the control algorithm, a comparison between the virtual environment and

conventional design method will be presented.

1.7. PURPOSE OF RESEARCH

In developing embedded systems, the requirements for software design are completely

different in the case of software design as in the business application fields. In the

embedded software design, ultra high reliability, real time process and hardware/software

10

co-design are required. Because of embedded software controls hardware, if the software

is not accurately optimized then the embedded system runs out of control. One of the

difficulties of embedded system design is that the hardware and the software of an

embedded system are developed simultaneously. In the business system development, the

hardware on which the software should be executed is available as shown in Figure 1. 4.

For example, in general, in the business software development, the platform for executing

software is a computer incorporating Intel's microprocessor and Windows operating

system. However, in the embedded software design, even the specifications of hardware

usually are not completed. Therefore, embedded software cannot test on the actual

platform until the completion of the hardware. This will cause the degradations of qualities

of embedded software.

Fig.1. 4. Difficulty of embedded software design

In the Model Based Design (MBD) method the model acts as the heart of the developing

process. This study aims to develop a virtual environment that can be used to test and

optimize the embedded software parameters before the actual implementation. This

environment will save the time and cost comparing to the traditional design method as

well as reduces the possibility of any damage which can be occurred, when the software is

tested and optimized in the actual prototype as in the traditional methods. We used the

inverter power supply as case study of the embedded system. Traditionally, an analog

control technique is used to control the inverter power supply. However, due to the fact

that a digital control technique can provide the benefits which cannot be provided by an

analog one, a digital control starts to be used [14, 15, 16, 17]. We used the SH

microprocessor as a digital controller for the inverter power supply circuits.

11

This study proposes a new virtual environment to test and optimize the software

parameters in the virtual environment before the actual implementation. This environment

called the Model In the Loop Simulation (MILS). This virtual environment is divided into

two main parts, the control part and the plant part. MATLAB and Simulink software

package is used in the developing of this virtual environment. The functional model of the

microprocessor is developed using the S-Function and C-MEX files. All the software

parameters used in this model are optimized and tested. Such system needs control

algorithm to be stabilized. So, this study proposes a newly applied two layer controlling

algorithm including the PI controller plus feedforward control. The validity of the

controlling algorithm is also tested in the virtual environment (MILS). Finally, the

optimized software parameters and the proposed controlling algorithm are tested on the

actual inverter power supply prototype which has been fabricated using the Renesas SH

microcontroller.

1.8. THESIS OUTLINES

This thesis consisted of seven chapters as presented below:

Chapter 1 presents an introduction about the embedded system design and its challenges.

This chapter also describes a brief background of the embedded system and the main

difference between the embedded system design and the general propose computer system

design. It also describes the design life cycle of the embedded system and finally some

embedded system design challenges are discussed.

Chapter 2 presents the embedded system design tools. Model Based Design (MBD)

technique and the advantages of using it in the early stage of design are described in this

chapter. Also, MBD concept and methodology are presented in this chapter

Chapter 3 presents the description of the inverter power supply as an example of the

embedded system and topologies of the inverter power supply design is presented. The

digital control technique and its advantages and the methodology of design are also

described in this chapter. As well as, the controlling algorithms which we proposed are

described in this chapter.

Chapter 4 presents the description of the proposed environment of design which is the

MILS of the inverter power supply under the MATLAB and Simulink environment.

12

Chapter 5 presents results of both experimental and simulation environments. The

investigation of performances of inverter power supply as well as the verification of the

proposed control algorithm is shown. Finally, the usefulness of the virtual environment

model is verified.

Chapter 6 contains the main and specific conclusions obtained from this study and also

highlights recommendations for future studies.

13

REFERENCES

[1] J. Turley. “Embedded processors by the numbers”, Website, Accessed in October,

2010, http://vault.embedded.com/1999/9905/9905turley.htm.

[2] T. Henzinger and J. Sifakis, “The Embedded System Design Challenge”, In the

Proceedings of the 14
th

 International Symposium on Formal Methods (FM), May 2006.

[3] W. Hongxing and W. Tianmiao, “Curriculum of Embedded System for Software

Colleges”, In the Proceedings of the 2
nd

 IEEE, August 2006.

[4] B. Thomas, “Embedded Robotics: Mobile Robot Design and Application with

Embedded system”, Springer- Verlag Hiedelerg Ltd. Co., 2006.

[5] A. S. Berger, “Embedded Systems Design: An Introduction to Processes, Tools &

Techniques”, Group West Publishers, US, 2002.

[6] D. Stepner , N. Rajan and D. Hui, “Embedded Application Design Using a Real-time

OS”, In proceeding of 36th Design Automation Conference, New Orleans, USA,

pp.151-156, 21-25 Jun, 1999.

 [7] P. J. Mosterman, “Model Based Design for the Embedded System”, Taylor & Franicis

Group, LLC, Ltd. Co., 2010.

[8] M. A. El Dahb, S. Iino, Y. Shiraishi and M. Tatsuno, “Model Based Design of the

Inverter Power Supply”, In the Proceeding of ICCAS-SICE 2009 International

Conference, August 17-21, 2009.

[9] K. Qian, D. D. Haring and L. Cao, “Embedded Software Development with C”,

Springer Dardrecht, London New York, Ltd. Co., 2009.

[10] L. Brush, “Trends in Digital Power Management: Power Converter and System

Demand Characteristics”, In the Proceedings of the Twentieth annual IEEE Applied

Power Electronic Conference, 2005.

[11] T. Wikmshurst, “An Introduction to the Design of Small Scale Embedded systems”,

Palgrave Macmillan Co., Ltd., 2001.

[12] Q. Li and C. Yao, “Real Time Concept for Embedded System Design”, CMO Media

LLC, Group West Co., Ltd., 2003.

[13] J. Gregory, P. William and J. Kaiser, “Principle of Embedded Networks Systems

Design”, ISBN Publisher Co., Ltd., California, US, January, 2009.

[14] M. Trigg, H. Dehbonei and C. V. Nayar, “Digital Sinusoidal PWMs for a Micro-

Controller Based Single-phase Inverter, Part1: Principles of Digital Sinusoidal PWM

http://vault.embedded.com/1999/9905/9905turley.htm

14

Generation”, International Journal of Electronics, Vol.95, No.8. pp.819-840, August,

2008.

[15] Y. Xue, K. Baekhy and J. Bordonau, “Topologies of Single Phase Inverter for Small

Distributed Power Generators: An Overview”, IEEE Transactions, Vol.19, No.5,

pp.1305-1314, Sept., 2004.

[16] O. Pop, G. Chindris and A. Dulf, “Using DSP Technology for True Sine PWM

Generators for Power Inverters”, In the Proceedings of the 27th International Spring

Seminar, 13-16 May, 2004.

[17] C. Matthew, D. Hooman and C. V. Nayar, “Digital Sinusoidal PWM Generation

Using a Low–Cost Micro-Controller Based Single–Phase Inverter”, IEEE

Transactions, Vol.1, pp.390-396, September, 2005.

15

CHAPTER 2

 MODEL BASED DEVELOPMENT

2.1. INTRODUCTION

Given competitive temporal and cost constrains, developing a product on time and within

budget requires a systematic approach to design and realization. A systematic approach

ensures that the final products meet the initial requirements and let engineering teams with

different specialization work together and communicate between the stages in the overall

processes. In addition the approach also ensures that the design process and the final

product are documented for maintenance and future development. In the traditional

approach, engineering teams observe strict boundaries between their design activities.

Furthermore, they transfer the data by passing design documents back and forth. This

approach has the following drawbacks:

1. Documents can be unwieldy and unsuitable for recording functionality of the system.

2. It is difficult to keep the documentation synchronized with the current state of design.

3. Once the design is approved, coding the application becomes a separate, manual

activity.

4. When the documents are used as deliverable and shared electronically, engineers

often duplicate their efforts. It is difficult to trace the source of error along a paper

trail. So it is considered as a waste of time and increases the product cost.

So, many researches now try to solve these problems by using computer aided design

techniques which can be defined as the use of computer systems to assist in the creation,

modification, analysis, and optimization of a design. There are many critical systems

controlled by embedded system including communication applications, transportation

navigation, medical systems and financial systems. Subsequently, embedded systems are

considered one of the most difficult technical and commercial environments. Failure or

error of such systems may lead to significant consequences including disruption of critical

services, financial loss and sometimes loss of life. Thus, the quality and the performance

of such systems are considering vital issues. So, the design method of the embedded

system should be selected very carefully to meet the required specifications. But up to

now, there are many challenges facing the embedded system development and some of

these challenges are described in the next section.

16

2.2. CHALLENGES OF THE EMBEDDED SYSTEM DESIGN

Embedded system development tools have traditionally lagged behind tools for the

development of general systems [1]. Unlike general systems, the design space for

embedded systems is extremely large, so it is difficult to contain all of the facilities to

specify, design, and test embedded systems. The number of embedded systems increased

rapidly year by year and then the designers of the embedded system face ever increasing

challenges in the design stage. Some of these challenges are listed below:

1. In the traditional design method of the embedded system, the hardware and the

software of an embedded system are developed simultaneously which is a sharp

contrast of the general or business system. In the business system development, the

hardware on which the software should be executed is available. For example, in

general, in the business software development, the software can be tested and

modified in the computer. However, in the embedded software design, even the

specifications of hardware usually are not completed. Therefore, embedded software

cannot test on the actual platform until the completion of the hardware. This will

cause the degradations of qualities of embedded software as well as increasing the

process time [2].

2. In traditional development method, design took places early in the development

process, and the software designer should wait until late in the process. Then the

embedded software is tested in the actual prototype. So revealing the errors in the

embedded software is considered a critical step. Furthermore, the discovery of errors

often resulted in production delay as well as additional expense can be added to the

product cost [2, 3].

3. One of the major challenges in the design process of embedded systems is to

accurately predict performance characteristics of the final system implementation in

the early design stages.

4. The complexity of the embedded system arises due to the combination of more and

more functions onto a single system [2, 4]. For example, luxury vehicles produced

today contains more than 90 embedded electronic control units (ECU), which execute

more than 10 million lines of computer codes which control many different functions

in a car [5]. Increase of system complexity may lead to the increase of a project time

and the system design cost.

5. As mentioned above, the main difference between the conventional computer

17

systems and the embedded computer systems is that the hardware on which the

software should be executed is unavailable. Therefore, a simulator of the embedded

hardware is very useful for the development of the embedded software but it becomes

a difficult matter because of the length of time required to build a simulator [2-4].

6. Verification is the process of determining whether a system satisfies a given property

of interest or not. It is considered one of the most difficult challenges of the embedded

system. Due to the fact that the embedded systems deal with very critical applications,

a designer has to make sure that the system meets the required specification perfectly.

It is reported that the verification takes more than 50 to 70% of the project time and

the cost for verification of the embedded system is increasing rapidly [1].

7. As a result, the competition between the companies to deliver the product to the

market faster and with lower cost, in most cases, the embedded system is a part of

much larger product. Thus, any delay in the embedded system development will

causes overall delay in the project or products.

However, nowadays embedded systems have garnered more interest in the research

community, as well as there being an increased need for those embedded systems.

Increasing the embedded system challenges open a wide range of research in the

developing tools. Most of researchers try to find design tools that can solve some of the

embedded system challenges mentioned above. This chapter presents some of the popular

embedded systems design tools.

2.3 HARDWARE / SOFWARE CO-DESGIN

One of the methodologies gained a wide acceptance in both the embedded world and the

general purpose world is that of Hardware/Software Co-design. Figure 2.1 presents the

description of the Hardware/Software co-design technique.

2.3.1 Hardware / Software Concept

In the traditional design method, the designers have to portion the system into hardware

and software parts and each part is developed separately [6, 7]. The hardware designer

usually makes the architecture based on the knowledge of the hardware requirements.

While the software designer faces many difficulties to fix the software due to the shortage

of knowledge and software understandings. The result is that often the software designers

are forced to make up for problems in the hardware through additional work of the

18

software, often leading to a less than optimal overall design of the system. The concept of

Hardware/Software Co-design is that of both hardware and software designers worked in

parallel to develop a system [7]. The designers define requirements and create a working

specification. Then the hardware and software designers work together to map this

specification on hardware and software architectures as shown is Figure 2. 2.

Fig.2. 1. Hardware/Software co-design technique

In this method the software design should wait until the hardware specification is fixed

then they can test software. So, revealing the errors in the embedded software is

considered critical step. In addition to the discovery of errors, it is often resulted in

production delay as well as additional expense can be added to the product cost. Recently,

many researchers try to find new methods that can reduce the suspension time for the

software designer as shown in Figure 2. 2.

Fig.2. 2. Design processes of the Hardware/Software co-design

19

2.4. MODEL BASED DESGIN

Currently, many researches are focused on determining a good way to eliminate the

challenges of the embedded systems design. Embedded systems have particularly tight

performance, time to market, and cost constraint. To meet these constraints, researchers

try to find solutions to efficiently design the systems with required performances. Recently,

Model Based Design method is considered as one of the chief technique in this field. The

Model Based Design method is considered one of the leading techniques as a solution of

those challenges. In this method, the model can be used to verify the plant design and the

control algorithm. MBD method puts a system model at the center of the development

process, from requirement development through design implementation. Figure 2. 3 shows

an example of the embedded control V Diagram which is often used to describe the

development cycle of the embedded systems. Several versions of these diagrams can be

found to describe variety of product design cycle. The figure from left to right describes

the general propagation of the development steps. The main target of the Model Based

Design method is to improve the development cycle by minimizing the iterations required

for the design. If we consider the X axis of the diagram to represent the time, so the main

goal is to narrow the V shape as much as possible by drawing the two legs of the diagram

closer [8].

Fig.2. 3. Developing cycle of the embedded system

The system specifications phase is started by the analysis and the documentation of the

system requirements. In the traditional method, this step is accomplished using paper

based method which results in poor communication in the design process, errors in the

design as well as limited traceability between the design and the requirements. In the

System

Definition

Modeling &

Simulation

System

Testing

Rapid

Prototype

Targeting

Hardware-in-

the Loop

Testing

20

MBD method, the model can provide an excellent virtual environment for high level

descriptions of the embedded system as shown in Figure 2. 4. This figure illustrates the

main four elements of the MBD method. Description for elements of Model Based Design

method is presented below.

Fig.2. 4. Elements of Model Based Design

2.4.1. Executable Specifications

As designs become larger and more complicated, it becomes necessary to first describe

them at a high level of abstraction. For example, Simulink can provide specific blocksets

such as signal processing, communication, video and image processing block set to help

the designer to build abstraction model. This model provides a documented method for

verifying and validating of design prior to move the development in actual controllers and

hardware [8,9]. System engineers usually develop this high-level description for several

purposes as listed below:

1. It enables designers to perform simulations by directly executing the model.

2. It is used throughout the development process for testing, verification, and

implementation.

3. It allows for developers to identify bugs early on and avoid costly bug discovery

towards the end of development.

Models

Exceutable
Specfication
from Models

Design with
Simulation

Implementation

Continous
Test and

Verification

21

4. It eliminates the need for paper-based specifications, which is easily prone to

misinterpretations, and replaces it with the executable specification.

5. Each member of a design team can understand and execute the model and can focus

in developing parts of the main model [10,11].

A key point of shrinking the V embedded diagram by applying the MBD method is to

begin developing the embedded control algorithm as early in the design cycle. In this

stage, the model provides the ability to begin simulation of the control behaviors while the

hardware prototype is still under development. In addition, the model can be reused for

further modification of the same product which reduces the effort necessary to build the

model again.

2.4.2. Design with Simulation

When designing the executable specification, the system engineer generally does not keep

the implementation details in mind, but rather designs the algorithm to match the

behavioral requirements for the system. Once the system engineer submits the executable

specification to the development team, the team may need to make modifications to it in

order to fit the design into a real world that may have limited resources, such as memory

or processing power. These modifications may cause the output of the new design to

deviate from the original design. Design engineers should decide if the deviation is

acceptable. In this section, modifications to the algorithm will be done to make it suitable

for hardware implementation and demonstrate how to continuously verify the design

against the executable specifications. For example, if the designers need to change the

controlling algorithm to meet the requirements, MBD method provides an environment

where the designer can redesign the control algorithms and validate it in very short time

comparing to traditional method of design [11].

2.4.3. Implementation and Testing

The modern Model Based Design tools provide automatic generation for both prototype

and production codes directly from the model. So, all the design changes automatically

flow through the final implementation. This process results in significant time and cost

saving due to the inherent reproducibility and testability of the generated codes and

elimination of communication errors [11,12]. In the Hardware in The Loop (HIL) Testing,

the designer can test the real time behaviors and characteristics of the final system to

verify the system control without the need for the physical hardware or operational

22

environment as shown in Figure 2. 5. HIL Testing can save the time with significant ratio

comparing to the traditional design method. As well as, it is easy to implement comparing

to physical prototype production. Up to this moment, the Model Based Design process

does not completely eliminate the need for testing in the actual prototype, but it offers

several opportunities to reduce the time needed to the testing stage [13,14,15,16].

Fig.2. 5. Hardware In the Loop Testing

Generally, it can conclude that the Model Based Design method will reduce the number of

the development stages by combining the design, implementation, and testing into one

process. The reduction of the required step comparing to the traditional method of design

will result in better project management and mitigate the system development risk. The

system design using this approach will reach the market faster and the end up costing will

less than that of the system designed using the traditional method. Subsequently, the use of

the Model Based Design method can provide numerous advantages over the traditional

design method. Therefore, this study investigates how the Model Based Design method

can provide such advantages by applying and building a new virtual environment for the

embedded system design. Inverter power supply is used as a case study of the embedded

system in this research.

Output hardware

(A/D, discrete,

serial)

Input

Software

Inputs

Hardware-in-the-loop-simulator

Truth or

physics

model

software

Outputs

Input hardware

(A/D, discrete,

serial)

Output

Software

Outputs of

embedded system

Inputs of

simulator
Outputs of

simulator

Inputs of

embedded system

Embedded Computer

HIL Simulator

23

REFERENCES

[1] M. Charistopher, “An Evaluation of Embedded System Behavior”. M.Sc Thesis,

Department of Electrical and Computing Engineering, University of Maryland, 2000.

[2] V. Woodward and J. Mosterman, “Challenges for Embedded Software Development”.

In the Proceeding of Circuit and System, MWSCAS Conference, pp.630-633, 5-8

August, 2007.

[3] B. Manfred, “Challenges in Automotive Software Engineering”, In the Proceedings of

ICSE‟06 Conference, May20-28
th

, 2006.

[4] A. Madhukar and I. Lee, “Challenges and Opportunities in Deeply Embedded System

Security”, ACM SIGBED Journal, New York, USA, Vol. 5, January, 2008.

[5] L. Ming-Shan, “Application of Embedded System in Construction Machinery”, In the

Proceedings of the 8
th

 ACIS international Conference, 30
th

 July-1
st
 August, 2007.

[6] M. A. El Dahb，S. Iino，Y. Shiraishi and M. Tatsuno, “Model Based Design of

Inverter Power Supply”, In the Proceeding of ICCAS-SICE International Joint

Conference, Fukouka, Japan, August 17-21, 2009.

[7] J. Hennessy and M. Heinrich, “Hardware/Software Co-design of Processors Concept

Examples”, Lecture Notes Presented at Advanced Study Institute (ASI), Temezzo,

Italy, June, 1995.

[8] J. Rautio, “Shortening the Design Cycle”, Microwave Magazine, IEEE, Vol.9, No.6,

pp.86-96, Dec., 2008.

[9] D. Stepner, N. Rajac and D. Hui, “Embedded Application Design Using a Real-time

OS”, In proceeding of the 36th of Design Automation Conference, New Orleans UAS,

pp. 151-156, 21-25 June 1999.

[10] P. J. Mosterman, “Model Based Design for Embedded System”, Taylor &Francis

Group Co., Ltd., New York, 2010.

[11] A. Behboodian, “Model Based Design”, DSP Magazine, Vol.2, pp.52-56, May, 2006.

[12] C. Davey and J. Friedman, “Software Engineering with Model-Based Design”, In the

Proceedings of the Fourth International Workshop on Software Engineering for

Automotive System, 2007.

[13] K. I. El-Far and J. A. Whittaker, “Model Based Software Testing”, Encyclopedia on

Software Engineering, 2001.

24

 [14] T. Erkkinen, “Automatic Flight Code Generation with Integrated Static Run Time

Error Checking and Code Analysis”, In the Proceedings of AIAA Modelling and

Simulation Conference and Exhibit, Colorado, August 21-24
th

, 2006.

[15] J. Zhenhua, R. A. Dougl and R. Leonard, “Hardware In the Loop Testing of Digital

Power Controllers”, In the Proceeding of Applied Power Electronic Conference, April

18
th

, 2006.

[16] X Wu, H. Fifueroa and A. Mont, “Testing of Digital Controller Using Real Time

Hardware in the Loop Simulation”, In the Proceeding of Power Electronic Specialists

Conference, IEEE, Vol.5 , pp.3622-3627, April, 2006.

25

CHAPTER 3

INVERTER POWER SUPPLY DESGIN

3.1. INTRODUCTION

The development of new useful energy sources is the main key to continued industrial

progress, and the continual improvement in the world‟s standard of living. Discovering

new sources of energy, obtaining an essentially inexhaustible energy source, making it

available everywhere, and converting it from one form to another without polluting and

destroying the environment are some of the great challenges in the world today. One of

these energy sources is to produces AC (Alternative Current) from fuel cell or solar panels

output this device is called the inverter power supply system. In general, power conversion

is the process which converts the electric current from AC or DC (Direct Current) power

to provide a different electrical waveform. The term “converter” denotes a mechanism for

either processing AC power into DC power (rectifier) or deriving power with an AC

waveform from DC (inverter). Some converters serve both functions, others only one.

Converters are used for such applications as follows:

 Rectification from AC to supply electrochemical processes with large controlled

levels of DC.

 Rectification of AC to DC followed by inversion to a controlled frequency of AC to

supply variable-speed AC motors.

 Interfacing DC power sources (such as fuel cells and photoelectric devices) to AC

distribution systems.

 Production of DC from AC power for subway and streetcar systems, and for

controlled DC voltage for speed-control of DC motors in numerous industrial

applications.

 Transmission of DC electric power between rectifier stations and inverter stations

within AC generation and transmission networks.

Table 3.1 illustrates the available power conversion devices

26

Table 3. 1: Types of power conversion

Conversion work Name of equipment

AC→DC Rectifier

DC→AC Inverter

DC→DC Converter

AC→AC Ac power regulator (transformer)

In this study DC/AC conversion is investigated through the inverter power supply. Inverter

power supplies are widely used in various kinds of applications, such as motor driver

controllers [1, 2, 3], uninterruptible power supplies [4, 5], audio power amplifiers [6], and

many other applications. It is a device that converts DC from sources such as batteries,

solar panels, fuel cells, or wind generations to AC and then the output can be used in a

wide range of AC applications [7]. The first generation of the inverter power supplies

invented to get a square wave output. The use of such kind of inverter leads to many

problems involving the functionality of the device that were being powered because those

devices were designed to work with a sine wave source. Furthermore, the harsh edge of

the square ware can cause some disturbances in the devices. Some hardware

modifications were done in the square wave inverter to produce the modified square wave

inverter. The modified square wave inverter provides a cheap and easy solution to

powering the AC devices. But it has some drawbacks as it reduces the problem of the

harsh edge of the square wave and it is not eliminating it. Moreover, not all the AC

devices can work properly with such kind of inverter. A quantum leap occurs in an

inverter power supply when it becomes possible to use the Pulse Width Modulation

(PWM) technique to get the pure sine wave output. The PWM method allows for filtering

undesirable harmonics in the output signals that is not possible in either square wave

output or modified square wave output. Figure 3.1 shows the output signal for the square,

modified square and pure sine wave output. Usually sine wave inverters are more

expensive then modified sine wave generators due to the added circuitry. However, this

cost is made up for in its ability to provide power to all AC electronic devices, to allow

inductive loads to run faster and quieter, and to reduce the audible and electric noise in

audio equipments.

27

Fig.3. 1. Square, modified and pure sine wave inverter

3.2. TOPOLGIES OF THE INVERTER POWER SUPPLY

The inverter power supply can be classified into two main groups, single stage inverters

and multi stages inverters. Each group has different topologies and multi stage inverters

which will be described in this study. A multi stage inverter is defined as an inverter with

more than one stage power conversion. There are many different topologies which are

used to determine the parts of the inverter power supply which are listed below [8, 9]:

1. DC-DC-AC topology,

2. DC-AC-DC-AC topology,

3. DC-AC-AC topology.

The choice of such topology depends on many factors, such as size, cost, efficiency and

capability. In this study DC-DC-AC inverter will be designed.

3.3. DIGITAL CONTROL FOR INVERTER POWER SUPPLY

Now, with the advent of high speed, lower cost digital signal processing (DSP) ICs and

microprocessors, digital control has been one effective candidate in inverter power supply

systems design [8]. Traditionally, the implementation of switching type inverter power

supply has been accomplished by using analog technique, which is able to provide

improved power factor. Analog control can provide continuous processing of signal, thus

allowing very high bandwidth. It also gives infinite resolution of the signal measured.

Analog control, however, also possesses some drawbacks such as a number of parts

required in the system and their susceptibility to aging and environment variations, which

28

lead to high cost of maintenance. Further, analog control once designed is inflexible and

performances cannot be optimized for various utility distortions. In the view of these, the

digital controller started to be a valuable candidate in the inverter power supply control.

Digital control provides advantages such as programmability, less susceptibility to

environmental variations, and fewer part counts. It also reduces the size of the power

supply by containing the complexity of control system within the software. Digital control

is much flexible than analog control and its cost is becoming lower and applicable for

intelligent control. However, the design for digital control inverter power supply faces

many challenges which open a wide range of research. The developing cycle of the

inverter power supply using traditional design method can be described in Figure 3.2.

Fig.3. 2 Developing cycle of the inverter power supply

From Figure 3.2 it is clear that the software developing and testing time takes around 50%

from the entire developing cycle as well as the software developing itself faces many

challenges which are listed below:

1. The embedded software which controls the operation of the inverter power supply

is developed manually which takes much time and bugs in such programs are

inevitable.

2. The software engineers cannot test the software performance in early stage of

design because it needs to be tested in the actual prototype which takes long time to

develop. Each time the software is modified, it must be built, downloaded,

Structural Design

Electrical Circuit Design

Software Design (Manual)

Drawings

29

executed and evaluated in the actual prototype which takes so much time and may

cause severe damage in the prototype. Moreover, it adds cost to the product as well

as it increases the product time.

3. It is so difficult to monitor the control algorithm behaviors before the actual

implementation.

4. Bug discovery is considered a critical problem and it results in production delay

time and additional cost will be added.

5. Within the scope of our investigation, all the previous study concentrated on the

modeling of the analog part and the digital pulse was generated by pulse generator.

So in the actual implementation, the software is needed to be tested in the actual

prototype which may lead to system failure as well as it takes so much time to

obtain the optimum parameters. And when any change is occurred in the embedded

software, the verification process is needed to start from the beginning. It takes

long time to optimize the software parameters using the conventional design

method, as shown in Figure 3.3.

Fig.3. 3 Conventional program development process

30

So, in this research, we develop a virtual environment for the inverter power supply design

to develop the embedded software and optimize its parameters. Then, we propose the new

application of control algorithm and verity its performances in the virtual environment. All

the details of the inverter power supply structure and the virtual environment will be

presented in Chapter 3 and Chapter 4, respectively.

3.4. DESCRIPTION OF THE INVERTER POWER SUPPLY

As mentioned before, an inverter power supply is a device which can convert DC to AC

that can be used in various AC applications. Many topologies are considered as a

candidate of the inverter design and there are many factors affecting the choice of such

topology, such as the size and the required efficiency as well as the cost of the inverter. In

this study, an inverter power supply configuration is broken into two stages. The first stage

is to step up the DC voltage level by using DC/DC converter and the second stage is to

invert DC to AC through a DC/AC inverter.

The block diagram of the inverter power supply is shown in Figure 3. 4.

Fig.3. 4. Block diagram of inverter power supply

3.4.1. DC-DC Conversion

The first step of the inverter power supply is to step up the DC voltage level which comes

from a battery to higher DC level by using the DC/DC converter. DC/DC conversion

revolves around the conversion of DC voltage level which comes from sources as batteries,

31

solar panels, fuel cells, or wind generations to higher DC level. There are many different

types of DC/DC converter, each of them tends to be more suitable for some types of

application than for others. For conveniences, we can classify them into various groups.

For example, some converters are only suitable for stepping down the voltage while others

are only suitable for stepping it up; a third group can be used for both cases stepping up

and stepping down. Another important distinction among converters is which one offers

full dielectric isolation between their input and output circuits. Dielectric isolation

behavior may be important for some applications, although it may not be important in

many others. In this section we are going to look briefly at each of the main types of

DC/DC converter in the current use as presented below:

 Non isolating converter: The non-isolating type of converter is generally used where

the voltage needs to be stepped up or down by relatively small value (less than 4:1),

and there is no problem with the output and the input having dielectric isolation.

Examples are 24V/12V reducer, 5V/3V reducer, and 1.5V/3V step up converter [7].

There are five main types

1. Buck converter.

2. Boost converter.

3. Buck-boost converter.

4. Cuk converter.

5. Charge-pump converter

 Isolating converters: In many applications the non isolating converter is unsuitable

where the output needs to be completely isolated from the input. Isolated converter

topologies can provide advantages in applications which require large voltage

conversion ratio. The transformer in the isolation type DC/DC converter can reduce

switch and diode device stresses and allow multiple windings or taps to be used for

multiple converter outputs [7]. Here is some of the isolating converter.

a) Half Bridge

b) Push-Pull

c) Full Bridge DC-DC converter

In this study the isolation type DC/DC converter is used in the inverter power supply

implementation. Figure 3.5 show examples of the isolated converter.

32

+

-

Vd

Vd

2

C1

C2

S1

S2

+

-

N2

N2

D1

D2

+

-
Vo

Io
+ -

N1

••

•

ID1
Vg

Ig

V1

+

-
Vr

C1 = C2

+

-

Vd

S1 S2

N2

N2

D1

+

-

Vo

Io
+ -

N1

•

•

ID1
Vg

Ig

+

-

Vr

•

•

N1

D2

+

-

Vd

S3 S4

N2

N2

D1

+

-

Vo

Io
+ -

•

•

ID1
Vg

Ig

+

-

Vr
•

N1

S2S1

+

-

V1

D2

 a) Half bridge (b) Push-Pull,

 (c) Full bridge

Fig.3. 5. Examples of the isolated DC/DC converter

The full-bridge is a popular design for both buck and boost applications. It is one of the

simplest and most effective cost configurations. Another advantage for using the full

bridge converter is the fact that when higher power application are requested the full

bridge converter can act as a modular block and that it is possible to stack up [5]. For this

purpose, the chosen topology for the converter to be used in this application is a full bridge

phase shifted PWM converter [10-11].

A schematic of DC/DC converter is shown in Figure 3.6. The major components are the

four transistors (full bridge converter).

Fig.3. 6. Circuit schematic of DC/DC converter

33

The main purpose for this full bridge converter is to chop up the DC voltage so that AC is

seen by the transformer. The current is forced across the primary side of the transformer

when Q1 and Q4 are on and Q2 and Q3 are off, and the current in the primary of the

transformer changes its polarity when Q2 and Q3 are on and Q1 and Q4 are off as shown

in Figure 3.7.

Fig.3. 7. Switching operation of DC/DC converter

The transformer is a part of the DC/DC circuit that is responsible for boosting the voltage

V1 by means of a ferrite core, a primary winding and a secondary winding. It is important

to note that the transformer does not create any power, and it only transforms or transfers

the voltage. The transformer operates by inducing a magnetic flux on the core from the

current flowing through the primary winding. The flux passing through the core is induced

onto the secondary winding and the current flows out of the device. The transformer

output will apply to the full bridge rectifier and the low pass filter, respectively, to get the

stepped up DC voltage V2. The DC voltage is converted to a square wave signal due to the

switching operation of the full bridge then the signal is stepped up the transformer as

shown in Figure 3.8.

34

Fig.3. 8. DC/DC switching operation

The output of the transformer is rectified using the full bridge rectifier circuit and then

filtered using low path filter all the signals are shown in Figure 3.9.

Fig.3. 9. DC/DC rectification and filtering operation

3.4.2. DC/AC Inverter

The second stage of the inverter power supply is to invert the new DC level into AC

voltage through DC/AC inverter. There are many different topologies for a DC/AC

inverter. The most common topology is the full bridge configuration because of its easy

filtering [4, 10]. The full-bridge inverter was chosen as the inverting output stage for a

number of reasons. It is preferred over a half-bridge inverter because with an equivalent

input voltage, the full-bridge inverter can provide twice the output voltage. The full-bridge

inverter is also significantly more controllable than other configurations. A single phase

full bridge inverter is shown in Figure 3.10 and the function of the full bridge inverter is to

convert the DC voltage supplied by DC/DC converter into a 100V, 60 Hz sine wave. The

35

most important part of the DC/AC conversion process is in the generation of the sinusoidal

input signals to the gates of the MOSFETs. This will be covered in the next section which

focuses on microprocessor control systems and PWM.

Fig.3. 10. Circuit schematic of DC/AC inverter

The PWM pulses which are generated by a microcontroller are fed into the gates of full

bridge inverter. Programming the microcontroller allows the transistors Q1 and Q4 to be

on while Q2 and Q3 to be off and vice versa. Due to the limited response time and delay

time of the transistors, two switches in one leg may be switched on at the same time then

shoot through will occur and the switches may be damaged due to high short circuit

current then the dead time is introduced in order to avoid the occurrence of the short

circuit.

Figure 3.11 shows the ideal switching patterns and the drive signals containing the dead

time for the inverter leg. The Sp and Sn are the ideal switching pattern of the positive

device and the negative device of the full bridge DC/AC inverter, respectively. As

mentioned before, the short time delay is used to avoid shoot-through, the actual gate drive

signals must be delayed by the dead time. The gate drive signals containing the dead time

are denoted as Spd and Snd since the gate drive signals are shifted from the center of the

sampling interval by the dead time. The generated phase voltage is also shifted as much as

the delay time. It had been reported that the generated voltage pulses residing in the

middle of the sampling interval contain the least amount of harmonics [4]. Although the

36

produced voltage pulses resulting from each of the gate drive signals during the sampling

intervals are not much affected, the resultant voltage during an entire cycle is significantly

reduced due to the dead time. In addition, those cumulated delays may distort the output

waveform of the inverter.

Fig.3. 11. Gate drive signals of the PWM inverters

In fact, the addition of the dead time can improve the performance of inverter power

supply by preventing the short circuit current. However, the instability and harmonic

distortion problem can be arising due to the miss selection of the sufficient dead time

value [12]. Figure 3.12 shows the relationship between the voltage drop of inverter and the

dead time value.

The relation between dead time and the voltage drop can be described as presented in

Figure 3.13. It is considered that Vd is the voltage drop due to the dead time and the

amplitude of the rectangular waveform indicates the mean voltage of each voltage drop

during half cycle of the output voltage.

37

Fig.3. 12. Relation between dead time and the voltage drop

Fig.3. 13. The relation between dead time value and the total harmonic distortion (THD)

As described in the previous work [13], the amplitude of the rectangular waveform can be

calculated by the following equation (3.1).

dcdeadcodcdead VtffVt

p
m 2)(

2
 (3.1)

where:

p=fc/fo ,

fc : carrier frequency of the inverter power supply,

fo : output frequency of the inverter,

 t dead : the dead time value of the inverter,

 vdc : DC input voltage.

 mvdrop

4
1 (3.2)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 2 4 6 8 10

T
H

D
,

(%
)

Dead time, (µ sec.)

38

The reference voltage and the voltage drop can be described as in equations (3.3) and (3.4).

)(sin2 1 wtVvref (3.3)

)(sin2 wtVv dropd (3.4)

where:

 V1 is the RMS value of the reference voltage

))(sin(2)sin(2 1 wtVwtVV dropout
 (3.5)

)sin()cos1(2)(2

)}sin)cos(cos)(sin()sin(2

11

2

11

11

wtVVVV

wtwtVwtV

dropdrop

drop

.

Here:

From the equations above, it is apparent that the output voltage of the inverter power

supply contains voltage drop and phase delay and those values can affect the output if the

dead time is not optimized correctly.

Figure 3.14 shows how the miss selection of the dead time can affect the performance of

the inverter power supply. Figure 3.14 (a) shows the circuit of the inverter leg and figure

3.14 (b) presents the modified PWM signal by adding the dead time value.

39

(a) Inverter leg

(b) Pulse with the dead time.

(c) Current distortion

Fig.3. 14. Voltage and current distortion caused by the dead time

40

From the previous figures, the output distortion is defined by the difference between the

ideal and the real voltage. The real output voltage is greater than the ideal voltage when

the current is negative and the real output voltage is smaller than the ideal voltage when

the current is positive as shown in Figure 3.14 (c). In this figure, the blue line (signal B)

describes the output voltage with the dead time and the red line (signal A) describes the

ideal output without dead time. When those two lines are intersected, the output current

also can be distorted at those two zero crossing point P1 and P2.

So the selection of the dead time should be optimized very carefully. The shorter is this

time, the better is the inverter performance. It is reported that the dead time should be

usually around 1-5µsec [8]. In this research the value of the dead time is optimized in the

virtual environment and then tested in the actual inverter power supply prototype. The

details of the dead time value are described in Chapter 4.

3.4.3. SH microprocessor

In the inverter power supply application, the microprocessor is used to control the

switching period of the transistor as a digital controller. However, due to the fact that a

digital PWM technique can provide the benefits which cannot be given by an analog one,

a digital PWM technique starts to be used [14,15]. The standard method for generating a

PWM using a microcontroller or DSP is developed by using one of the built-in PWM

modules. These modules operate by comparing a free running timer with a duty cycle and

duty period register. When a matching occurs between the timer and duty cycle register,

the corresponding pin is either set to “high” or “low”. The matching between the timer and

the duty cycle register also causes the timer to reset to zero and then to restart counting

[15]. Depending on the type of microcontroller or DSP, the PWM can be classified into

“left-aligned”, “central-aligned” or “right-aligned”. In this study, Renesas SH

microprocessor is used. It is a Reduced Instruction Set Computer (RISC) integrating a

Renesas original RISC CPU core with peripheral functions required for a system

configuration [14]. SH RISC is a microprocessor family and combines the computational

ability of a high speed RISC core with embedded Multiply-Accumulate hardware and

extensive on-board peripheral function to enable a virtual single chip PID controller [15].

In the inverter power supply application, two separate control units in the SH

microcontroller are used to generate the PWM signal and control the system operation.

These two units are Motor Management Timer unit (MMT) which controls the generation

of the PWM pulse in the DC/DC stage and Multi Function Timer Pulse Unit (MTU) which

41

controls the generation of the PWM DC/AC stage. The block diagram of the entire

microprocessor is shown in Figure 3.15 [16].

Fig.3. 15. Block diagram of SH microprocessor

3.4.3.1. Motor Management Timer (MMT)

Motor Management Timer (MMT) can output 6-phase PWM waveforms with non-overlap

times. Figure 3.16 shows a block diagram of the MMT. In the inverter power supply

application, the MMT unit is used to control the switching devices in the DC/DC stage by

generating the PWM signal.

42

Fig.3. 16. Block diagram of MMT

Pin Configuration of the MMT unit in described in Table 3.2.

Table 3. 2: The pin configuration of the MMT

Name I/O Function

PCIO Input/Output
Counter clear signal input when se as an input by

PAIORL register: toggle output in synchronization with

the PWM cycle when set as output by PAIORL register.

PUOA Output PWMU phase output (positive phase)

PUOB Output PWMU phase output (negative phase)

PVOA Output PWMV phase output (positive phase)

PVOB Output PWMV phase output (negative phase)

PWOA Output PWMW phase output (positive phase)

PWOB Output PWMW phase output (negative phase)

43

As shown in Table 3.2, the PUOA, PUOB, PVOA, PVOB, PWOA, and PWOB pins are

PWM output pins [16].

Figure 3.17 illustrates an example of the PWM pulse which is generated from the MMT

unit [16]. In this figure the PWM output waveform is generated by comparing the values

in the TCNT counter and the TGR registers resulting in the compare output waveform.

Then the dead time generation process is started using the TDCNT0 and TDCNT1

registers [16]. The output generation wave form is generated by adding the compare

output waveforms with the dead time signal finally. The PWM waveform is generated by

converting the output generation waveform to the output PWM pins. In the operating

modes, PWM waveforms with any duty cycle from 0% to 100% can be generated.

Fig.3. 17. Example of PWM waveform generation from MMT unit

3.4.3.2. Multi-Function Timer Pulse Unit (MTU)

MTU is the control unit which is used to generate the PWM pulses that control the

operation of the DC/AC inverter stage. MTU comprises of five 16 bit timers. As shown in

Figure 3.18, channels 3 and 4 of the MTU are used in complementary PWM mode with

programmable dead time to generate the chopping waves for sinusoidal PWM.

44

Fig.3. 18. Block diagram of MTU

In PWM mode, PWM waveforms can be generated from the output pins. The output level

can be selected and TGR registers settings can be used to output a PWM waveform in the

range of 0% to 100% duty. Designating TGR compare match as the counter clearing

source enables the period to be set in that register. All channels can be designated for

PWM mode independently. Synchronous operation is also possible [16].

45

There are two PWM modes: in PWM mode 1, PWM output is generated from the TIOCA

and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. In PWM mode 2,

PWM output is generated using one TGR as the cycle register and the others as duty

registers. The output specified in TIOR is performed by means of compare matches. Upon

counter clearing by a synchronization register compare match, the output value of each pin

is the initial value set in TIOR. If the set values of the cycle and duty registers are identical,

the output value does not change when a compare match occurs [16, 17].

3.5. PULSE WIDTH MODULATION

Nowadays, Pulse Width Modulation (PWM) plays a major role in the generation of pure

sine waves. PWM can be defined as a powerful technique for controlling the analog

circuits. The applications of PWM are widely used like ranging from measurement and

communications to power control and conversion [8]. In the inverter power supply

application, the PWM is a switching method which is used to control the operation of the

DC/DC converter and DC/AC inverter stages, where the pulse width (duty cycle) at the

switching gates of the transistors varies according to a sinusoidal reference signal (control

signal). The generation of PWM patterns can be done by using two different techniques

which are analog or digital techniques [7, 8, 18]. PWM provides a way to decrease the

Total Harmonic Distortion (THD) of load current. Here, the total harmonic distortion, or

THD, is defined as the ratio of the sum of the powers of all harmonic components to the

power of the fundamental [8]. The THD requirement can be achieved more easily when

the output of PWM inverter is filtering. The unfiltered PWM output will have a relatively

high THD, but the harmonic will be at the much higher frequencies than for the required

frequency that making filtering become easy [18,19].

There are many different PWMs that have been proposed for single-phase inverters such

as Bipolar, Unipolar [7], Space Vector Modulation (SVM) [18], the optimal PWM [20]

and optimized PWM [21].

Analog PWM control requires the generation of both reference and carrier signals that fed

into a comparator which creates output signals based on the difference between the signals.

The reference signal is a sinusoidal signal at the frequency of the desired output signal,

while the carrier signal is often either a sawtooth or a triangular wave at a frequency

significantly greater than the reference. When the carrier signal exceeds the reference, the

comparator output signal is at one state, and when the reference is at a higher voltage, the

output is at its second state. This process is shown in Figure 3.19. At each point, where the

46

reference signal and the carrier signal intersect, the output of PWM toggles from a high

state to a low.

Fig.3. 19. Analog PWM generation

The frequency of the carrier signal is generally kept constant along with its values. The

control signal is used to control the switching duty by changing its values as a factor,

called modulation ratio “m”, as described in equation (3.6).

 m = Vcontroller /Vcarrier (3.6)

Here: Vcontroller is the peak amplitude of reference sine wave and Vcarrier is the peak

amplitude of sawtooth wave, respectively.

Figure 3.20(a) shows a PWM output at a 10% duty cycle. That is, the signal is on for 10%

of the period and off the other 90%. Figure 3.20 (b) shows the PWM pluses when the duty

equal to 50% and Figure 3.20 (c) represents the PWM output at duty cycle equal to 90%.

These three PWM outputs encode three different analog signal values at 10%, 50%, and

90% of the full strength. If, for example, the supply is 5V and the duty cycle is 10%, a

0.5V analog signal can be generated.

47

(a) 10% of duty

(b) 50% duty

(c) 90% duty cycle

Fig.3. 20. PWM outputs

Due to the fact that a digital PWM technique can provide the benefits which cannot be

provided by an analog one, a digital PWM technique starts to be used. Traditionally, the

implementation of the switching of the inverter power supply has been accomplished by

using an analog technique [3]. Analog PFC IC's which are manufactured by TI/Unitrode,

Fairchild, and ST microelectronics are available and have been able to provide improved

power factor. Analog control can provide continuous processing of signal, thus allowing

very high bandwidth. It also gives infinite resolution of the signal measured. Analog

control, however, also poses some drawbacks such as a number of parts required in the

system and their susceptibility to aging and environment variations, which lead to high

cost of maintenance. Further, analog control once designed is inflexible and the

performances cannot be optimized for various utility distortions. On the other hand, the

digital control can provide advantages such as programmability, less susceptibility to

environmental variations, and fewer part counts [2]. It also reduces the size of the power

supply by containing the complexity of control system within the software. Therefore,

since digital control is much flexible than analog control, it is with lower cost, and

applicable in many application [22].

48

Depend on the type of the microcontroller or the digital signal processor, the

corresponding PWM is generated. The standard method for generating the PWM using the

microcontroller or DSP is by using the built-in PWM modules. These can be done by

comparing a free running timer with the duty cycle and duty period register. When the

timer and duty cycle register are matched, the PWM output pins are either set to high or

low. The timer is reset to zero and restart counting when a match between the timer and

duty period register is occurred. The digital PWM generation can be classified as PWM

can be left, center or right aligned as shown in Figure 3.21. The left aligned PWM is the

most common PWM available on a low-cost microcontroller, as it only requires an up-

counter to be generated. For left alignment, the PWM module automatically sets the PWM

pin to high at the start of the switching period, and when a match occurs between the timer

and duty cycle register, the PWM pin is set to low, and vice versa for the right aligned

PWM. The centre aligned PWM is more difficult to generate [8].

Fig.3. 21. Microcontroller based PWM alignments

3.6. PID Controller

For high performance inverter power supply, the requirement likely to be more stringent,

such as fast response to load change in input voltage [23, 24, 25] and a system control

technique should be used. The main duty of the inverter control system is to regulate the

output voltage against all possible existing disturbances. Traditionally, the inverter power

supply was controlled using analog control. But due to the fact that a digital control

technique can provide the benefits which cannot be provided by an analog one, a digital

control starts to be a good candidate in the inverter power supply design [23, 24, 25].

Today, various modern control techniques have been proposed to develop a sinusoidal

49

output which faces the requirements. These control techniques are classified into three

groups which are presented below:

 Model based instantaneous feedback control: In these controllers, system variables

such as the output voltage, load current and/or inductance/capacitor current are fed

back to achieve good steady-state performances. The challenges of such controller

technique are to make the closed loop operation robust to the system variations and

also to eliminate the need for sensing inductor/capacitor current to reduce the cost

[23].

 Feedforward learning control: In general, the load current of the inverter power

supply is periodic at fundamental frequency. Due to this fact feedforward learning

control is found to be attractive but such control has the ability to achieve excellent

steady state performances but poor transient response when it is applied alone.

 Nonlinear control including sliding mode control (SMC), adaptive control and NN

based control but such controllers are very complex to be applied [23].

To improve both the steady state performances and the transient performances of the

inverter power supply, two layer control algorithm was newly applied. The control

algorithm includes the feedback control and feedforward control. One of the powerful

feedback controller techniques is the PID controller. The PID controller, which consists of

proportional, integral and derivative elements, is widely used in feedback control of

industrial processes. In applying PID controllers, engineers must design the control system.

So, they must first decide which action mode to choose and then adjust the parameters of

the controller so that their control problems are solved appropriately. To that end, they

need to know the characteristics of the process. As the basis for the design procedure, they

must have certain criteria to evaluate the performances of the control system. The basic

knowledge about those topics is summarized in this section [26, 27, 28, 29].

The PID controller was first placed on the market in 1939 and has remained the most

widely used controller in process control until today. An investigation performed in 1989

in Japan indicated that more than 90% of the controllers used in process industries are PID

controllers and advanced versions of the PID controller. PID controller means proportional,

50

integral and derivative, it includes those three elements with three different functions as

illustrated in Figure 3.22.

Fig.3. 22. Conventional feedback control system

The main three elements of the PID controller are:

 P element: Proportional to the error at the instant t, this is the present error.

 I element: Proportional to the integral of the error up to the instant t, which can be

interpreted as the accumulation of the “past” errors.

 D element: Proportional to the derivative of the error at the instant t, which can be

interpreted as the prediction of the “future” error.

The transfer function C(s) of the PID controller can be calculated from the following

equation

)(
1

1)(
1

sDT
sT

KsC Dp
 . (3.7)

Where Kp, TI and TD are positive parameters, which are respectively referred to

proportional gain, integral time and derivative time, and as a whole, PID parameters. D(s)

is the transfer function given by the following equation:

s
T

s
sD

D)(1

)(

 (3.8)

Here D(s) is the approximate derivative, the approximate derivative D(s) is used in place

of the pure derivatives, because the latter is impossible to realize physically. Further γ is a

positive parameter, which is referred to derivative gain. It is reported that the pure

derivative is not the ideal element to use in a practical situation. It is usual practice to use a

fixed value of γ, which is typically chosen as 10 for most applications [26].

C(s) P(s) +
+

+

-

e

d

y

Controller Process

u

51

In the practical applications the designer can use different combination of the three

functional elements which are appropriate to the applications. Theoretically, there are

seven combinations but five of them are used in practical applications. Those

combinations are called the action modes of the PID controller which are described in

Table 3.3.

Table 3. 3: Action modes of the PID control

Action mode Elements Transfer Function

Proportional control P element only C(S)=Kp

Integral control I element only C(s)=Kp/s

PI control P and I elements]
1

1[)(
1sT

KSC p

PD control P and D elements)}(1{)(sTKSC Dp

PID control Three elements)(
1

1)(
1

sDT
sT

KsC Dp

In the inverter power supply application we used the PI action mode because PI action

mode has simple structure, easy to implement in the practical applications and its

flexibility.

It is reported that the disadvantage of using the traditional PI controller is that the delay

time caused by the analog to digital (A/D) conversion and computation time of the

microprocessor reduce the maximum available pulse width. Hence this limitation can

result in output voltage waveform disturbance [15]. Feedforward control combined with

feedback control can significantly improve performances over simple feedback control

whenever there is a major disturbance that can be measured before it affects the process

output. In the most ideal situation, feedforward control can entirely eliminate the effect of

the measured disturbance on the process output. Even when there are modeling errors,

feedforward control can often reduce the effect of the measured disturbance on the output

better than that achievable by feedback control alone. However, the decision as to whether

or not to use feedforward control depends on whether the degree of improvement in the

response to the measured disturbance justifies the added costs of implementation and

maintenance. The economic benefits of feedforward control can come from lower

52

operating costs and/or increased scalability of the product due to its more consistent

quality [23]. Building on the previous explanations, the two layer controller is applied as

shown in Figure 3.23.

Fig.3. 23. Block diagram of newly applied control system

Figure 3.23 shows the block diagram of the inverter power supply control system. The

microprocessor implementation of this controller can be described thought the equation

(3.9)

)()()(
1

kRneTKKeKu
K

nIppi
 (3.9)

Where Kp and Ki, are the Proportional and Integral coefficients, respectively; upi is

controller output and e (K) is the error signal and R(k) is the feedforward signal. The error

value can be calculated as a difference between the target voltage and the actual output

voltage. The value of the modulation ratio m will be changed depend on the present value

of the error as well as the previous value. The evaluation of the control system will be

explained in Chapter 5.

53

REFERENCES

[1] S. S. Wekhande, B. N. Chaudhari, S. V. Dhapte and R. Sharma, “Low cost Inverter

Drive for Two Phase Induction Motor”, In Proceeding of International Conference on

power electronic and Drive System , IEEE, Vol.1, pp.428-431, July, 1999.

[2] H. Kim, H. Lee and S. Sul, “A New PWM Strategy for Common Mode Voltage

Reduction in Neutral Point Clamped Inverter Fed AC Motor Deriver”, Transactions on

Industry application, IEEE, Vol.37, No.6, pp.1840-1845, November, 2001.

[3] T. F. Lowery and D. W. Petro, “Application for the PWM Inverter Fed Low Voltage

Induction Motor”, Transactions on Industry application, IEEE, Vol. 30, No. 2, pp.286-

296, March, 1994.

[4] J. Chen and C. Chu, “Combination Voltage Controlled and Current Controlled PWM

Inverter for UPS Parallel Operation”, Transactions on Power Elec., IEEE, Vol.10,

pp.547-558, September, 1995.

[5] A. N. Rahmin and J. E. Quaicoe, “Analysis and Design of Multiple Feedback Loop

Control Strategy for A Single Phase Voltage Source UPS Inverters”, Transactions on

Power Elec., IEEE, Vol.11, pp.532-541, July, 1996.

[6] A. E. Ginart, R. M. Bass, W. M. Leach and T. G. Habetler, “Analysis of the Class AD

Audio Amplifier Including Hysteresis Effects”, Transactions, IEEE, Vol.18, No.2,

pp.679-685, March, 2003.

[7] N. Mohan, T. M. Undeand and P. Robbins, "Power Electronics-Converters:

Applications and Design", 2
nd

 Edition, John Wiley& Sons, Inc. Ltd. Co., 1995.

[8] M. Trigg, H. Dehbonei and C. V. Nayar, "Digital sinusoidal PWMs for a Micro-

Controller Based Single-Phase Inverter, Part1: Principles of Digital Sinusoidal PWM

Generation", International Journal of Electronics, Vol.95, pp.819-840, August, 2008.

[9] Y. Xue, K. Baekhy and J. Bordonau, "Topologies of Single Phase Inverter for Small

Distributed Power Generators: An Overview", Transactions, IEEE, Vol.19, No.5,

September, 2004.

[10] S. Musumeci, A. Raciti, A. Testra, A. Galluzo, and M. Melito, “Switching Behavior

Improvement of Insulated Gate-Controlled Devices'', Transactions on Power Elec.,

IEEE, Vol.12, No.4, pp.645-653, 1997.

[11] S. Y. R. Hui, Y. K. E. Ho and H. Chung, “Modular Single-Stage, Three-Phase Full

Bridge Converter with Inherent Power Factor Correction and Isolated Output”,

Transactions on Power Electronic Application, IEEE, Vol.145, No.4, pp.407-414, July,

54

1999.

[12] W. C. M, W. H. Lau and H. Chung, “Analytical Technique for Calculation the Output

Harmonic of H bridge Inverter with Dead Time”, Transactions on Fundamental

Theory and Application , IEEE, Vol.26, No.5, pp.617-627, May, 1999.

[13] J. S. Choi, Y. Yong, W. Lim and S. Young, “A Novel Dead Time Minimization

Algorithm on the PWM Inverter”, In the Proceeding of the Industrial Application

Conference, IEEE, Vol.4, pp.2188-2193, 3-7 October, 1999.

[14] C. Matthew, D. Hooman and C. V. Nayar, "Digital Sinusoidal PWM Generation

Using a Low–Cost Micro-Controller Based Single–Phase Inverter", IEEE

Transactions, Vol.1, pp.390-396, September, 2005.

[15] C. Rech, H. Pinheiro, A. Grundling, H. Hey and J. Pinheiro, "Analysis and Design of

a Repetitive Predictive–PID Controller for PWM Inverter", In the Proceedings of

Power Electronics Specialists Conference, Vancouver, Canada,Vol.2, pp.986-991, 17-

21 June, 2001.

[16] Sh-2Sh7047 Group Hardware Manual, Accessed in September 2009,

http://www.renrsas.com.

[17] K. Schultz, “An Application of the Low Cost Hitachi SH-1 RISC Controller for PID

Control of a Three-Phase Brushless DC Motor System'', Hitachi Application Note,

Preliminary V0.1, PMH11IA05D1, September 1997.

[18] T. Abeyasekera, C. M. Johnson, D. J. Atkinson and M. Armstrong, “Elimination of

Sub harmonics in Direct Look-Up Table (DLT) Sine Wave Reference Generators for

Low-Cost Microprocessor-Controlled Inverters”, Transactions on Power Electronics,

IEEE, Vol.18, No.6, pp. 1315-1321, August, 2007.

[19] H. Dehbonei, L. Borle and C. V. Nayar, “Design and Implementation of a Low Cost

Sine Wave Inverter”, In the Proceedings of IEEE International Symposium on

Industrial Electronics, Vol.1, pp.280-285, 9-11 June, 2003.

[20] D. Czarkowski, D. V. Chudnovsky, G. V. Chudnovsky and I. W. Selesnick, “Solving

the Optimal PWM Problem for Single-Phase Inverters”, Transaction on Circuits and

Systems, IEEE, Vol.49, No.4, pp.465–475, April, 2002.

[21] C. Lin, F. Wang, B. Wang and Q. Zheng, “A New Method of Optimized PWM Based

on 8XC196MC”, In the Proceedings of the Third International Power Electronics and

Motion Control Conference, Beijing, China, Vol.3, pp.1266–1270, 16-18 August, 2000.

[22] T. L. Skvarenina, “The Power Electronics Handbook”, Industrial Electronics Series

edition, J.D. Irwin Ltd. Co., New York: CRC., 2002.

55

[23] D. Heng, O. Ramesh and S. Dipti, “Modeling and Control of Single Phase UPS

Inverters: A Survey”, In the Proceedings of Power Electronics and Drives System,

Vol.2, pp.848-853, Oct. 28
th

 - Nov. 1st, 2005.

[24] S. Ghazanfar, F. Jawad and S. Pegah, “Nonlinear Control Techniques in

Uninterruptible Power Supply Inverter: A Review”, In the Proceedings of Second

International Conference on Computer and Electrical Engineering, IEEE, Dubai, pp.

51-55, 28-30 December, 2009.

[25] R. Seungwan and C. Chulhyoi, “PI-PD Controller for Robust and Adaptive Queue

Management for Supporting TCP Congestion Control”, In the Proceeding of the 37
th

Annual Simulation Symposium, 2004.

[26] W. K. Ho, T. H. Lee and Tay, “Knowledge-Based Multivariable PID Control”,

Technical Notes, National University of Singapore, April, 1999.

[27] P. Seda, D. B. Emine and E. Kadir, “Temperature Control Using Autotuning PID

Controller for Control Education”, In the Proceedings of the 5
th

 WSEAS International

Conference on Signal Processing, Robotics and Automation, Madrid, Spain, February

15-17
th

, pp. 131-134, 2006.

[28] M. Niroomand and H. R. Karshenas, “Review and Comparison of Control Methods

for Uninterruptible Power Supplies”, In Proceeding of Power Electronic & Drive

Systems & Technologies Conference (PEDSTC), IEEE, pp.18-23, May, 2010.

[29] H. Toshimasa, K. Atsuo and G. Richard, “Waveform Compensation of PWM Inverter

with Cyclic Fluctuating Loads”, Transaction of Industrial Application, IEEE, Vol.24,

No.00, pp.582-589, July, 1988.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5461629
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5461629

56

CHAPTER 4

MODEL IN THE LOOP SIMULATION

4.1.INTRODUCTION

In developing embedded systems, the requirements for embedded software design are

completely different in the case of software design in the business application field. In the

embedded software design, ultra high reliability, real time process and hardware/software

co-design are required. Because embedded software controls hardware, if the software is

not accurate and the embedded system runs out of control, it may cause very serious

accidents. For example, Toyota Prius, a hybrid car, had a sudden engine stall in the U.S.A.

because of the bug of software, and many other troubles have already occurred in many

products. As well as the real time characteristics of the embedded system which means

that the process must be finished in the specified time period and almost all processes in

an embedded system have such constraints in their executions. To satisfy these kinds

requirements and, moreover, to minimize the cost of manufacturing of the embedded

system, a hardware and a software must cooperate each other. In this chapter new design

environment of the embedded software is proposed using the MATLAB and Simulink

environment. This study applied the Model Based Design method for the development of

the inverter power supply as a case study of the embedded system design. New virtual

environment was used which is the Model In the Loop Simulation (MILS) environment.

Both the hardware and software parts of the embedded system were modeled and tested

using MATLAB/Simulink package. Detailed description of MILS environment is

presented in this chapter.

4.2. MATLAB/SIMULINK ENVIRONMENT

To effectively design an embedded control system and accurately predict its performances,

designers must understand the behaviors of the entire system in which control system will

reside. It is attributed to the complexity of the embedded system design; the Model Based

Design method is considered one of the leading solutions of the embedded system

challenges. In this method, modeling and simulation are considered as vital parts of design.

Particularly, the simulation is indispensable for developing a controller programs. It can

lead to the performance improvement and the reduction of the cost and the time for

development and production. There are varieties of software tools that are used for the

57

development of the embedded system. MATLAB and Simulink form the core environment

for the Model Based Design method for creating accurate mathematical and functional

model of the physical system behavior. The graphical block diagram paradigm of the

MATLAB and Simulink environment lets the user to drag and drop predefined modeling

elements, connect them together and create model of dynamic system. The dynamic

system can be continuous time multi rate, discrete time or any combination of the three.

MATLAB and Simulink are software tools designed for modeling, simulating and

analyzing the design of devices. It supports linear and nonlinear system models in

continuous time, sampled time or combination of both. It consists of a set of blocks such

as communications, controllers, power systems, neural networks, etc. There are a lot of

available tools that can be used in the MATALB environment to design and optimize the

performances in an effective and easy way. It is widely used in academic and industrial

applications. In MATLAB and Simulink environment, the modeling environment can be

hierarchical and self-documenting as presented in Figure 4.1 as well as the system

structure and function can be expressed by grouping model [1, 2, 3].

4.3. MODEL IN THE LOOP SIMULATION, MILS

The topology of the inverter power supply is DC-DC-AC. MILS of the inverter process is

done in two stages. The first stage is the DC/DC converter and in this stage, the input DC

voltage is converted to higher level DC output. This new DC output acts as an input of the

second stage which is the DC/AC inverter. The output of this stage can be used as AC

power supply for any AC equipments. SH 7047 was used as a digital controller to control

the generation of the PWM pulses and control the inverter power supply operation. Both

the DC/DC stage and DC/AC stage is controlled individually as shown in Figure 4.2.

As mentioned before, the entire system was divided into two main parts; the controller part

which is illustrated by the electric circuits and the control part or the microprocessor part.

Most of previous works concentrated in the simulation of the controlled part and the

software part is tested in the actual prototypes which can lead to system failures as well as

it takes so much time and cost to obtain the optimum system behavior. Therefore, most of

research attentions are concentrated on how to solve the above problems.

58

Fig.4. 1. Hierarchical models of complex control systems using Simulink

59

Fig.4. 2.Circuit schematic of inverter power supply

4.3.1 DC/DC and DC/AC Circuit Simulation

The hardware part or the electric circuits are modeled using Simulink power block set. The

power block set consists of the power electronic elements as shown in Figure 4.3.

Fig.4. 3. SimPower system block set

60

Each element in this block set has its own block window which allows for the selection for

the key parameters. At the bottom of the block parameter window is a pull down menu,

which allows for the key voltage and current to be easily measured.

 In the first stage, the electrical circuits was modeled in open loop system to determine the

performance of each circuit separately. The PWM generation block was modeled for both

DC/DC converter stage and DC/AC inverter stage. For example, the PWM model in the

MTU microprocessor unit is illustrated in Figure 4.4. The PWM block compares both the

sin wave signal with the required output frequency and the sawtooth signal with the carrier

frequency equal to 10 kHz . Then the dead time is generated using the delay block and

finally, the PWM pulse is generated and fed into the gates of the full bridge transistors.

Fig.4. 4. PWM generator block

The modulation ratio, the carrier frequency, the reference frequency were changed

manually. Equation 4.1 describes the relation among all three parameters.

 m = VC /Vcarrier (4. 1)

Where:

 m: modulation index,

 VC: amplitude of the reference voltage,

 Vcarrier: amplitude of the carrier signal.

In the DC/AC stage, the carrier frequency is set equal to 10kHz and the reference

frequency equal to the desired output frequency of 60 Hz.

61

By changing the modulation factor, the duty of the PWM pulse is changed as described

previously in Chapter 3. The electric circuit specifications of the two stages of the inverter

power supply is described in Table 4.1

Table 4. 1: Specifications of the inverter circuits

Parameter Value Unit

Output frequency 60 Hz

Output Voltage 100 RMS

Battery Voltage 24 V

Switching frequency 10 kHz

Filter inductor DC/DC 29 mH

Filter capacitor DC/DC 47 µF

Transformer turns ratio 7.2

Filter inductor DC/AC 3 mH

Filter capacitor DC/AC 25 µF

The circuit‟s parameters are modeled and tested in the open loop model without the

controller as shown in Figure 4.5. The signal is monitored using the scope and display

blocks which allow us to figure the circuit outputs as marked with dashed circles as well

as the results can be sent to the MATLAB workspace for analysis.

Fig.4. 5. MATLAB model of open loop system

62

4.4. MICROPROCESSOR SIMULATION

In the inverter power supply applications, the microprocessor is used to control the

switching period of the transistors as a digital controller. As described in Chapter 3,

SH7047 is used. This microprocessor has two main units which used to control both

DC/DC and DC/AC stages of the inverter power supply. Each unit is controlled by a

software program; this embedded software function can be divided into two main parts

which are the control program (control algorithm) and the PWM generation program.

4.4.1. Control Algorithm

Traditionally, the implementation of switching type inverter power supply has been

accomplished by using analog technique. However, the analog technique has some

drawbacks such as a number of parts required in the system and its susceptibility to aging

and environment variations, which lead to high cost of maintenance. Further, analog

control once designed is inflexible and its performance cannot be optimized for various

utility distortions. Now with the advent of high speed, lower cost digital signal processing

(DSP) ICs, and microprocessors, digital control has been one effective candidate for

inverter power supply.

Using a DSP or microprocessor has many benefits that make it attractive for use in control

systems such as:

 Flexibility of Control: When using analog circuits to perform control, the control

algorithm is fixed, and is not easily modified. Using a microprocessor allows the

designer to change the control code very quickly. It is often helpful to implement

simple, slow control algorithms first to verify that the hardware is functioning

correctly before moving to a higher performance or complex control algorithm. If

hardware were used to do this, this would mean separate hardware designs and

implementations for each algorithm. With the use of software, modifying the control

algorithm means changing several lines of codes, which will take only several

minutes.

 Parameter Adjustment: Once the control algorithm is fixed, it is easy to modify the

values of references and constants in the control code by directly modifying memory

locations. This can be performed while the system is operational, allowing for quick

adjustments to be made. If the control algorithm were implemented in analog

hardware, this would not be as easy to do such process.

63

 Backtracking: The use of software allows for easy backtracking when the control

algorithm is not working. If the control were implemented in analog circuits, the

physical modifications would need to be reversed, which may also introduce

additional errors in the process.

Many control techniques have been applied to the inverter power supply as mentioned in

Chapter 3. In this study, we newly apply a controlling algorithm which is two layer control.

This algorithm is a combined feedforward control and feedback control. This control

algorithm can significantly improve performances over simple feedback control whenever

there is a major disturbance that can be measured before it affects the process output. The

basic configuration of the proposed controlling algorithm is shown in Figure 4.6.

Fig.4. 6. Simplified block diagram of the proposed control system

PI (Proportional Integral controller) control algorithm has been one of the more utilized

control techniques in the industry [4, 5]. It has been proved its wide range of applications

and it is first introduced to the market in 1939 [6]. The main reasons for using PI

controller are its simple structure, easy to implement in the practical applications and its

flexibility.

To improve the accuracy of both the steady state response and transient response and to

minimize the output disturbance, a feedforward control is added to the classical PI

controller as shown in Figure 4.6. Then the controller equation can be described through

equation (4.2).

64

 (4.2)

Where: Kp and Ki, are the Proportional, Integral coefficient, respectively, upi is controller

output and e(k) is the error signal and r(k) is the feedforward signal. The controlling

algorithm is described in the flowchart which is presented in Figure 4.7.

65

Fig.4. 7. PI controller algorithm

66

When the switching time is coming, the deviation between the target output and the actual

output is calculated and this deviation is used to modify the controller output. The output

of the PI controller must be within specific interval in order to protect the circuits. The

modulation factor m is calculated with respect to the controller output.

The controller algorithm was applied to both the DC/DC converter and DC/AC inverter

separately and it was implemented using the SH7047 microprocessor. In the MILS

environment, S-Function Block is used as the interface block to test the embedded

software and to optimize the parameters. Details of the S-Function will be described in the

next section. Each of the inverter power supply stages has its own C-MEX file which

describes part of the embedded software. This C-MEX file is compiled to the S-Function

Block and then the output of the S-Function block acts as the simulation of the

microprocessor unit.

4.4.2. PWM Generation Program

The standard method for generating PWM pulses by using a microprocessor or DSP is to

utilize one of the built-in PWM modules. In our model, S-Function Block is used to

compile the embedded system software to control DC/DC and DC/AC circuits. C

programs implement the operations of the microcontroller‟s control units, that is, MMT

which controls the generation of the PWM pulses in the DC/DC and MTU which controls

the generation of the PWM DC/AC stage. These programs are embedded into the S-

Function Block as shown in the lower part of Figure 4.10 (p.69).

4.5. S-FUNCTION

S-Function is the abbreviation of the System Function which provides a powerful

mechanism for extending the capabilities of the Simulink environment. It is a computer

language description of the Simulink block written in MATLAB, C, C++, and/or

FORTRAN. S-Functions are compiled as MEX-files using the MEX utility [1]. S-Function

uses a special calling syntax called the S-Function API (Application Program Interface)

that enables the user to interact with the Simulink engine. The interaction is very similar to

the interaction that takes place between the engine and the built-in Simulink blocks. S-

Function follows a general form and it can accommodate continuous, discrete and hybrid

systems. It allows the user to implement different algorithm and add them to the Simulnik

model.

67

Two S-Function Blocks are designed: one to describe the DC/DC control unit which is the

MMT unit and the other S-Function is used for the MTU unit which controls the second

stage, DC/AC stage. The embedded C codes are compiled to the S-Function Block and the

details of the embedded software are presented in Appendix I. In the first step, all the

electrical circuits‟ parameters are tested and then, in the second step, the embedded

software is tested using the S-Function.

Drag an S-Function Block from the user defined function block library into the model,

then specify the name of the S-Function in the S-Function parameter block as illustrated in

Figure 4.8.

Fig.4. 8. Block parameter dialog box of DC/DC S-Function

68

The S-Function and the C-MEX file have the same name and if the MATLAB path

includes a C-MEX file and M file having the same name, the S-Function uses the C-MEX

file. After the S-Function name is set, then the S-Function parameters are defined. The

parameters include the PI controller parameters which are the Kp and KI, the proportional

coefficient and the integral coefficient. Further the dead time value which is TD is set. The

parameters and the name of the S-Function is defined using the function block parameter

then the main C code can be generated , by pressing the Edit button the user can modified

the embedded software. The value of the S-Function parameters is initialized in the C-

MEX file, and then the updated values can be tested using the S-Function Block

parameters for both DC/DC S-Function and DC/AC S-Function as shown in Figure 4.9.

Fig.4. 9. S-Function parameter block

The data can be displayed and sent to the MATLAB workspace for further analysis by

using the scope blocks. The scope block is used to measure and monitor the signal at each

point in the model, which allows the user to check the model operation at each point as

shown in Figure 4.10. This figure presents the entire inverter power supply model which is

the MILS environment. The embedded software parameters are optimized and the system

performance is tested as well as the verification of the control algorithm is done.

The C-MEX files and DC/DC controller which simulate the MMT function and the C-

69

MEX DC/AC which simulates the MTU function controlling the operation of the inverter

stage are attached in Appendix I.

Fig.4. 10. Model In the Loop Simulation of inverter power supply

DC-DC

Control

C-MEX

DC-DC

Control

C-MEX

70

REFERENCES

[1] The MathWorks web site, Accessed in December, 2010. http://www.mathworks.com/.

[2] A. Tewari, “Modern Control Design With Matlab and Simulnik”, John Wiley & Sons

Ltd. Co., 2002.

[3] O. Beucher and M. Week, “Introduction to Matlab and Simulnik”, Infinity Science

Press LLc, Co., Ltd., New Delhi, 2006.

[4] M. A. El Dahb, Y. Shirashi and T. Shoji, “Simulation Based Design of The inverter

Power Supply”, Transactions on Mathematical Modeling and Application, IPSJ, Vol.3,

pp.186-193, 2010.

[5] M. A. El Dahb, S. Iino, Y. Shirashi and M. Tatsumo, “Model Based Design of The

inverter Power Supply”, In the Proceeding of ICCAS-SICE International Joint

Conference, Fukouka, Japan, August 17-21
th

, 2009.

[6] W. K. Ho, T. H. Lee and Tay, “Knowledge-Based Multivariable PID Control”,

Technical Notes , National University of Singapore, April, 1999.

http://www.mathworks.com/

71

CHAPTER 5

EXPIRAMINTAL RESULTS AND DISCUSSIONS

5.1. INTRODUCTION

The validity and usefulness of the MILS environment constructed is verified by comparing

its results with the experimental results in the actual device. As shown in Figure 5.1, the

actual prototype of the inverter power supply has been fabricated with the cooperation of

Tokyo Seiden Co., Ltd. The full-bridge topology was chosen due to its power handling

capabilities and the ability to provide PWM and thus effectively double the switching

frequency of the output as mentioned previously in Chapter 3. Renesas SH7047

microprocessor was used as a controller that controls the operation of the electric circuits

and the embedded software was implemented manually. The details of the actual

embedded system software are described in Appendix II. The input DC voltage is 24V

and the target AC output is 100 RMSV with frequency of 60 Hz. RMS is the Root Mean

Square value of the output voltage.

Fig.5. 1. Actual inverter power supply device

In the MILS environment, we assumed that all components used are ideal components. So

in the real implementation, some protection circuits were added to the inverter power

supply design as well as monitors and switches. The actual circuit inverter power supply is

described in Figure 5.2. The lower part describes the microprocessor units MMT and

MTU which generate the PWM pulses to the MOSFET gates.

All the software parameters and the control algorithm are optimized in the virtual

environment and then the entire software is tested in the actual prototype. Here, the

software parameters include the PI coefficients, the value of modulation ratio, and the

dead time value.

72

Fig.5. 2. Actual prototype circuits for the inverter power supply

5.2. DC/DC CONVERTER PERFORMANCES

The heart of this inverter power supply is the SH7047 microprocessor. This controller was

utilized to perform the control algorithm to supervise the output voltage and to control the

generation of the PWM pulses. After the parameters of the software are optimized, the

performance is tested in the actual prototype. As mentioned before the SH7047

microprocessor has two units that produce PWM pulses which control the stages of the

73

inverter power supply. The output of each stage in the MILS is tested and compared with

the actual output. DC/DC stage was controlled by the MMT output pulses. Figures 5.3 and

5.4 present the output of the MMT unit which controls the switching of the MOSFET in

the DC/DC stage in the actual prototype and MILS environment, respectively.

Fig.5. 3. Actual control pulse in the DC/DC

Fig.5. 4. Simulated control pulses in DC/DC stage

These pulses are applied to the gates of the MOSFETs of the full bridge converter and

then the output of the full bridge is applied to the transformer to step up the voltage as

shown in Figure 5.5. After the transformer, the output is applied to the full bridge rectifier

and then low path filter. The output of the DC/DC stage was tested in the MILS

74

0 2 4 6 8 10 12 14 16

x 10
5

0

20

40

60

80

100

120

140

160

180

environment for the range of input voltage from 24 to 30 DCV. It is shown that steady no

load voltage about 165 V as shown in Figure 5.6. DC/DC stage is performed well and it

can be seen that the results obtained by the developed simulator are in a good agreement

with the actual results. So the developed model can accurately model the actual prototype.

Moreover, the developed MILS environment is good to optimize the parameters of

embedded software programs. The output of the DC/DC stage cannot be tested in the

actual prototype because of the circuit complications. Therefore, we tested the DC/DC

performance stage in the virtual environment only and its performances in the actual

prototype can be judged due to the entire output of the inverter power supply.

Fig.5. 5. Principal of operation in DC/DC converter

Fig.5. 6. Simulation result of DC/DC converter

170

Time

Voltage

75

5.3. DC/AC INVERTER PERFORMANCES

The function of this stage is to invert the new DC level which comes from the DC/DC

converter stage to the desired AC voltage. The output of this stage is tested considering

many factors.

5.3.1. The Time for Reaching the Stationary Voltage

Many trials were done to get the optimum values of the PI coefficient and some of the

trials are described below. Table 5.1 shows three cases for different values of the

controlling parameters.

Table 5. 1: The three different cases a, b and c of the controlling parameters

PI Parameter A B c

Kp 0.4 0.5 0.4

KI 0.02 0.01 0.01

The time needed for the inverter power supply to reach its stationary voltage is a very

important factor in the inverter power supply design. By optimizing the software

parameters accurately, this time can be decreased. Figure 5.7 describes the AC output of

the inverter power supply in the simulation environment case (a) and Figure 5.8 shows the

output of the same case in the actual prototype. In this case the inverter power supply

reaches its stationary values at about 900 msec. With the same value of the software as in

case (a), the actual prototype is tested as shown in Figure 5.8.

Fig.5. 7. Simulated AC output in case (a)

Stationary value

V

76

Fig.5. 8. Actual AC output in case (a)

The simulated and actual outputs in case (b) are presented in Figures 5.9 and 5.10,

respectively.

Fig.5. 9. Simulated output in case (b)

V
o

lt
ag

e

Time

77

Fig.5. 10. The actual output in case (b)

Here is both the virtual environment and the actual prototype when applying in case (c) as

shown in Figures 5.11 and 5.12, respectively.

Fig.5. 11. The simulated result in case (c)

Stationary value

Time

V
o

lt
ag

e

78

Fig.5. 12. The actual output in case (c)

By comparing the results of the MILS environment with the actual results, we can

conclude that the values of the PI control parameters are optimum as shown in case (c).

From these figures, it is clear that the shapes of the wave are visually identical. The actual

device reaches the desired stationary voltage after 550 msec., while the MILS environment

reaches the desired stationary AC voltage after 522 msec. It means that the simulation time

is less than the actual time by about 5.4%. We can conclude that the developed model can

simulate the actual prototype in a good way within very small difference comparing to the

traditional method of design. Further, the MILS environment is a good tool that can be

used to optimize the software parameters.

5.3.2. Pure Sine Wave Output Voltage and Frequency

All the software parameters which are optimized in MILS environment are described in

Table 5.2.

Table 5. 2: Inverter power supply parameters

Parameter Kp KI Dead time
Carrier

frequency

Required

frequency
RMS

Value 0.4 0.1 2µ sec 10 K Hz 60 Hz 100 V

79

Those parameters are tested in the actual prototype. Figures 5.13 and 5.14 shows the actual

sin wave output and the simulated sin wave output, respectively. By comparing the two

waveforms, it can be seen that by applying the proposed control algorithm, the efficiency

of the inverter power supply output reached can be improved. The output voltage meets

the standard requirement of the inverter power supply. Moreover, the efficiency of the

proposed model is 99% which is calculated by comparing the difference between the

actual and simulated peak voltage. So, the developed model can accurately model the

actual prototype. As well as, the developed MILS environment is good to optimize the

parameters of embedded programs.

Fig.5. 13. Actual sin wave output of inverter power supply

Fig.5. 14. The simulated sin wave output of inverter power supply

V
o

lt
ag

e

80

From Figure 5.15, it is apparent that the narrow pulse is generated when the modulating

signal is at its maximum or minimum values. This notification can be explained by

mathematical analysis of the PWM process as presented below.

Fig.5. 15. Relation between the modulating signal and the generated pulses

Consider a switching cycle shown in Figure 5.15, when vm is at the maximum value the

average of Vo of the pulse is equal to:

)1(
2

1
)12(mdVdV do (5.1)

Where: d is the ratio of the duration of the pulse at positive value (i.e., t1) to the period T,

Vd is the DC voltage and m is the modulation ratio as defined in Chapter 3.

The minimum pulse duration tmin can be calculated from the following equation:

 TmTmt)1(
2

1
)]1(

2

1
1[min (5.2)

From this equation, it is apparent that tmin decreased as m increased. We can conclude that,

when the modeled signal reached the maximum value the narrow pulse is produced.

Figures 5.16 to 5.18 illustrate the actual pulses taken from SH microprocessor output and

the MTU output pulse from the MILS environment, respectively.

81

Fig.5. 16. The actual control MTU pulses

Fig.5. 17. The actual MUT microprocessor output pulses

82

Fig.5. 18. The simulated MTU microprocessor unit pulses

Initial testing showed that the microprocessor functioned as required to produce the pulses

which controlled the operation of the inverter power supply.

The output voltage and frequency are tested as shown in Figures 5.19 and 5.20 which

describe the output of the inverter power supply with no load in both the actual

implementation and in the simulation environment, respectively.

Fig.5. 19. Actual sin wave output

83

Fig.5. 20. Simulated sin wave output

Comparing the two waveforms, it can be seen that the result obtained by the developed

model is in a good agreement with the actual result in both frequency and voltage

amplitude as shown in Figure 5.19. The output of the inverter power supply is 101.45

RMSV value and frequency equals to 60.1 Hz which meets the required specifications.

One of the most important parameters in the inverter power supply design is the selection

of the dead time value. It is a short time delay between turning on and off of the MOSFET

to prevent the short circuiting that may occur. The dead time value is optimized in the

virtual environment (MILS environment) and this value is used in the actual

implementation. Theoretically, the value of the dead time can be selected between 1 to 5

µsec. The shorter is the dead time is, the better is the inverter power supply response. Any

miss selection of the dead time value can lead to reduction in the desired voltage

amplitude due to the accumulated delay during an entire cycle. As well as, it can cause

distortion in the voltage output. Trial and error technique is used to optimize the dead time

value which is 2 µsec and this value can be tested in both the actual and simulated

environment as shown in Figures 5.21 and 5.22, respectively.

V
o

lt
ag

e

84

Fig.5. 21. The actual dead time value Td = 0.002ms

Fig.5. 22. The simulated value of the dead time

5.4. RESPONSE WITH LINEAR LOAD

The inverter power supply output distortion or the output voltage drops is considered a

very important issue in the design of the inverter power supply. There are many

85

regulations regarding the allowable voltage drop in the inverter power supply. For

example, based on the standard (IEC686) [1, 2], the allowed voltage drop is no more than

5% voltage against single parameter. Various techniques are used to compensate the effect

of the voltage drop in the inverter power supply design. One of the main techniques is to

apply the control system. The main duty of the inverter control system is to regulate the

output voltage against the entire possible disturbance and the load variations. As

mentioned before, the two layer control algorithm which consists of the feedback PI

controller plus the feedforward controller is proposed to control the inverter power supply.

The validity and usefulness of this controlling algorithm is tested in the existence of linear

load. Figure 5.23 and Figure 5.24 show the output of the inverter power supply with no

load in both the actual prototype and in the MILS environment, respectively. While Figure

5.25 and Figure 5.26 show, the inverter power supply output after connecting the load

resistance Rl = 60Ω. From Figure 5.25, we can see the voltage reduction at the moment

when the resistance is connected but due to the control algorithm the voltage can return to

its value within a very short time. We can conclude that the proposed control algorithm is

able to modify the distortion occurred due to the load in a very short time. So, using the

control algorithm can improve the inverter power supply‟s peformances.

Fig.5. 23. Inverter power supply output with no load

86

Fig.5. 24. Inverter power supply output with no load in the MILS

Fig.5. 25. The inverter power supply output with the linear load

0 1 2 3 4 5 6 7

x 10
5

-150

-100

-50

0

50

100

150
No load

V
o

lt
ag

e

Time

87

Fig.5. 26. The inverter power supply output with the linear load in MILS

Comparing the result with no load and the result with load, it seems that the shapes of the

wave forms are almost identical except in the moment that we connect the load resistance.

The voltage decreased by about 2% of no load voltage for a very short time around 100

msec. And then it returns to its normal value. So, we can conclude that the proposed

controlling algorithm is working well and can maintain the disturbance occurred due to the

load connection.

The inverter output with no load is illustrated in Figure 5.27 while the inverter output with

the linear load is illustrated in Figure 5.28. By comparing both figures, it is clear that there

is a very small voltage drop due to the wiring and the internal component resistance in

Figure 5. 26. The voltage drop is less than 1% which falls within acceptable range.

0 1 2 3 4 5 6 7

x 10
5

-150

-100

-50

0

50

100

150
load

V
o

lt
ag

e

Time

88

Fig.5. 27. Output of the inverter power supply with no load

Fig.5. 28. Output with the linear load

89

 One of the Model Based Design method‟s merits is the ability to test and check the

control system freely. In the conventional design method, the control algorithm is tested in

the actual prototype so stopping the control algorithm can lead to severe damage in the

device. Here, in this section, the inverter power supply was tested with the open loop case

and with the controlled case.

 (a) No load (b) linear (resistive) load

Fig.5. 29. Inverter power supply output with open loop

Figure 5.29 (a) describes the inverter power supply output with open loop control and with

no load in the MILS environment. The output is 100 RMSV. Then, the resistive load was

connected and the output is tested as in figure 5.29 (b). The output equals 90.9 RMSV. So,

it can be seen that the load voltage has reduced by 10% which results in reduced load

power as confirmed by the following equation:

 (5.3)

To show the effectiveness of the proposed control algorithm, the output of the inverter

power supply is tested as shown in Figure 5.30 (a) and 5.30 (b). These results were

compared with the results shown in Figure 5.29 (a) and 5.29 (b).

The output of the inverter power supply with the proposed control algorithm under no load

condition is shown in Figure 5.30 (a). The linear load voltage is presented in Figure 5.30

(b). The voltage reduction is less than 2% from the case with no load. Comparing these

results, it can be seen that the shape of the waveforms are almost identical. The main

differences are in the magnitudes of the waveforms. In case of the proposed controller, the

Time Time

V
o
lt

ag
e

V
o
lt

ag
e

90

load voltage distortion is decreased and this can improve the performances of the inverter

power supply.

 (a) No load (b) linear (resistive) load

Fig.5. 30. Inverter power supply output with control algorithm

5.5. SUGGESTION OF ARTIFICAL NEURAL NETWOK APPLICATION

 In the recent years, due to the pervasive development in computer software, the Artificial

Neural Networks (ANN) is introduced in many applications [3, 4]. The Artificial Neural

Networks (ANN) will be used to optimize the software parameters and to predict the

software error before the actual implementation. ANNs can be applied to the global

parameter optimization of both of the plant and the control part of embedded system. ANN

can be defined as a massively parallel distributed processor which is constructed from

interconnected processing elements called neurons. These neurons are simple emulation of

the biological neurons [5]. In the future work, we will use the ANN in the system

controller. It can be trained either online or off line. ANN is adaptive enough for the

environment changes. Furthermore, it has excellent merits for nonlinear behaviors.

Building on that, ANN will be used instead of the S-Function for the parameter

optimization. In the application of ANN to the actual problems, the learning speed and

accuracy are very important issues. The ANN with new learning algorithm based on the

simulated evolution is proposed in the inverter power supply application. The

performances of the proposed algorithm, called SimE-ANN, are checked comparing to the

conventional back propagation algorithm using the landslide materials as example data [3,

4]. So SimE-ANN will be applied to optimize the embedded software of inverter power

Time Time

V
o

lt
ag

e

V
o

lt
ag

e

91

supply as shown in Figure 5.31. By using this SimE-ANN, the learning time was

decreased by about 99% comparing to the traditional BP algorithm.

Fig.5. 31. Proposed ANN control for the inverter power supply

In this Figure, the input data in the input layer are the actual output voltage and current,

the target voltage, the error signal and the delay time. The ANN model will be trained off

line to optimize the embedded software parameters. Then the ANN model will be

connected to the inverter power supply circuits as a controller, then the performance of the

ANN model will be tested compared to the actual prototype implementations. The

proposed ANN control scheme must be evaluated as the future work.

92

REFERENCES

[1] M. Niroomand and H. R. Karshenas, “Review and Comparison of Control Methods for

Uninterruptible Power Supplies”, In Proceeding of Power Electronic & Drive Systems

& Technologies Conference (PEDSTC), IEEE, pp.18-23, May, 2010.

[2] D. Heng, O. Ramesh and S. Dipti, “Modeling and Control of Single Phase UPS

Inverters: A Survey”, In the Proceedings of Power Electronics and Drives System,

Vol.2, pp.848-853, Oct. 28th - Nov. 1st, 2005.

[3] M. A. El Dahb, Y. Zhou, U. F. Siddiqi and Y. Shiraishi, “Artificial Neural Network

based on Simulated Evolution and its application to Estimation of landslide”, In the

Proceeding of Mathematical Modeling and Problem Solving MPS Meeting, Okayama,

May 17, 2011.

[4] M. A. El Dahb, Y. Zhou, U. F. Siddiqi and Y. Shiraishi, “Artificial Neural Network

based on Simulated Evolution and its application to Estimation of landslide”, IPSJ

Transactions on Mathematical Modeling and Problem Solving, September, 2011 (to

appear).

[5] Mona A. El-Dahb, Yao Zhou and Yoich Shiraishi, “The Application Simulated

Evolution and Neural Network to Estimate of Ground Sliding”. In the Proceedings of

ICICIS International Conference 2011, Ain Shams Univeristy, Cairo, Egypt, June 30-

July 3, 2011.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5461629
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5461629

93

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1. CONCLUSIONS

In general, this research meets the challenges of the embedded system design by applying

the Model Based Design (MBD) method in the early design stage. Furthermore, the main

contribution of this research is to prove the potential of using the MBD method in the

optimization and verification of the embedded system software development. This study

proposed functional model of microprocessor in the early stage of the inverter power

supply development, which allows the full simulation of the system in the virtual

environment including the electrical circuit and software implementation.

Inverter power supply was taken as a case study of the embedded system design. We

developed entire model of the system including the electrical circuit and the

microprocessor using the MATLAB and Simulink package. All the software parameters

were optimized as well as newly applied controlling algorithm was evaluated using the

Model In the Loop Simulation (MILS) environment. The validity and the usefulness of the

proposed model were tested comparing with the actual prototype of the inverter power

supply. The developed model was shown to be well in agreement with the experimental

results. This method can be used to optimize the software parameters before the actual

design. Moreover, the models can be used to study and analyze the behaviors of the

system which meet the challenges of designing the digital control system. The results

show that the suggested models are promising and the models can be useful for optimizing

the performances in developing the embedded software.

Based on experimental and theoretical results, the advantages of the proposed environment

in the embedded system development can be drawn as follows:

1. Using the MBD method reduces the number of the development stages by

combining the design, implementation and testing in one process.

2. The reduction of the required steps will result in better project managements and

mitigation of the project risk.

3. The system which is designed with this approach may be able to reach the market

faster and reduce the end cost less than the system developed using the

conventional method.

4. This method shows a significant improvement in the software parameter

optimization.

94

5. The proposed method can be used to study and analyze the behaviors of the system

before the actual implementation which was considered very important in the

embedded system development.

6. The use of MBD method makes it easy to modify the system in the future.

7. In the virtual environment, the user can control the system freely without side

effects. For example stopping the entire control system, modifying the control

algorithm while if the real control system stops, this may result in a very serious

situation.

8. The control system designers can validate their control algorithm as well as

optimization and validation of the embedded software by using the MBD method

in early stage of design.

6.2. RECOMMENDATION FOR FUTURE STUDY

6.2.1. MILS Quality Improvement

In this study, we modeled the basic blocks in the microprocessor which controls the

operation of the inverter power supply. More complex models should be considered to

improve the accuracy of the environment. Analog to digital (A/D) and digital to analog

(D/A) converters of the microprocessor will be added to the MILS. As well as, the

performance of the inverter power supply will be tested with nonlinear loads.

6.2.2. Optimization of Software Parameters Based on Neural Network

The Artificial Neural Networks (ANN) will be used to optimize the software parameters

and to predict the software errors before the actual implementation. ANNs have been

employed in many applications in recent years. ANN is a massively parallel distributed

processor which is constructed from interconnected processing elements called neurons.

These neurons are simple emulation of the biological neurons. In the future work, we will

use simulated Evolution algorithm (SimE) to improve the performance of the conventional

back propagation algorithm then we will use this proposed SimE-ANN in the system

controller of the inverter power supply. It can be trained either online or off line. ANN is

adaptive enough for the environment changes. Furthermore, it has excellent merits for

nonlinear behavior. Building on that, ANN will be used instead of the S-Function for the

parameter optimization.

95

APPENDIX I

DC-DC Converter

* SH7047 C-MEX File code for the MMT description

* Function: Produce PWM pulse to drive the full bridge converter

*Also implement the control algorithm

===

 #define S_FUNCTION_NAME DCDC_Control

#define S_FUNCTION_LEVEL 2

 #include "simstruc.h"

#include "math.h"

#define U(element) (*uPtrs[element])

 /*Parameter definition*/

#define Kp0 mxGetPr(ssGetSFcnParam(S,0))

#define Ki0 mxGetPr(ssGetSFcnParam(S,1))

#define Kd0 mxGetPr(ssGetSFcnParam(S,2))

#define ANFA0 mxGetPr(ssGetSFcnParam(S,3))

#define dc_ref mxGetPr(ssGetSFcnParam(S,4))

/* Function: mdlInitializeSizes ===

 * Abstract:

 * Setup sizes of the various vectors.

 static void mdlInitializeSizes(SimStruct *S)

{ int ninputs=2;

 int noutputs=2;

 int nstates=4;

 ssSetNumSFcnParams(S, 5);

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return;

 }

 ssSetNumContStates(S, nstates);

 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 2)){

 return;

 }

 ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetInputPortWidth(S, 1, DYNAMICALLY_SIZED);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 ssSetInputPortDirectFeedThrough(S, 1, 1);

 if (!ssSetNumOutputPorts(S, 2)){

 return; }

96

 /*ssSetOutputPortWidth(S, 0, noutputs); // Width is set to private port */

 ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetOutputPortWidth(S, 1, DYNAMICALLY_SIZED);

 ssSetNumSampleTimes(S, 1); // sampling time

 ssSetNumRWork(S, 0); /* number of real work vector elements */

 ssSetNumIWork(S, 0); /* number of integer work vector elements */

 ssSetNumPWork(S, 0); /* number of pointer work vector elements */

 ssSetNumModes(S, 0);

 ssSetNumNonsampledZCs(S, 0); }

Function: mdlInitializeSampleTimes ===

static void mdlInitializeSampleTimes(SimStruct *S)

{ ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

 #define MDL_INITIALIZE_CONDITIONS

static void mdlInitializeConditions(SimStruct *S){

 int i,nstates=4;

 real_T *x0 = ssGetContStates(S);

 for(i=0;i<nstates;i++){

 x0[i] = 0;

 }}

/* Function: mdlOutputs ===

 static void mdlOutputs(SimStruct *S, int_T tid)

{ InputRealPtrsType time = ssGetInputPortRealSignalPtrs(S,0);

 InputRealPtrsType Vdc_feedback =ssGetInputPortRealSignalPtrs(S,1);

 real_T *pulse1 = ssGetOutputPortRealSignal(S,0);

 real_T *pulse2 = ssGetOutputPortRealSignal(S,1);

 real_T *x=ssGetContStates(S);

 double

sawtooth,PI,kp,ki,kd,anfa,m,Vdc_ref,sawtooth_period,k_trans,dc_error,dc_deadtime,sawtooth_freq,Vdc_in;

 int n_sawtooth_halfperiod;

 Vdc_ref=dc_ref[0];

 pi=3.1415926535898;

 AC_freq=60.0;

 sawtooth_freq = 10000.0;

 sine=sin(2*AC_freq*pi*(*time[0]));

 sawtooth_period=1/sawtooth_freq;

 dc_error=Vdc_ref-*Vdc_feedback[0];

97

 n_sawtooth_halfperiod=floor ((*time[0])/(sawtooth_period/2));

 dc_deadtime=0.000002;

 Vdc_in=24.0;

 k_trans=2*7.08;

 kp=Kp0[0];

 ki=Ki0[0];

 kd=Kd0[0];

 anfa=ANFA0[0];

 PI=ki/anfa*x[0]+(ki-kd/anfa/anfa-kp/anfa)*x[1]+(kd/anfa+kp)*dc_error;

 m=1-(Vdc_ref+PI)/(k_trans*Vdc_in);

 if ((n_sawtooth_halfperiod%2)==0)

 {

 sawtooth=((2/(sawtooth_period/2))*((*time[0])-(sawtooth_period/2)*n_sawtooth_halfperiod))-1;

 }

 else

 { sawtooth=1-((2/(sawtooth_period/2))*((*time[0])-((sawtooth_period/2))*n_sawtooth_halfperiod));}

 if(sawtooth>m){

 pulse1[0]=0;

 pulse2[0]=1;}

 else

 {if((0-m)<sawtooth)

 { pulse1[0]=0;

 pulse2[0]=0;}

 else

 {if(sawtooth<(0-m)){

 pulse1[0]=1;

 pulse2[0]=0;}}} }

#define MDL_DERIVATIVES

static void mdlDerivatives(SimStruct *S){

 double Vdc_ref,dc_error;

 real_T *dx = ssGetdX(S);

 real_T *x = ssGetContStates(S);

 InputRealPtrsType Vdc_feedback =ssGetInputPortRealSignalPtrs(S,1);

 //InputRealPtrsType clock = ssGetInputPortRealSignalPtrs(S,0);

 // long double sine=sin(2*50*3.14*(*clock[0]));

 double anfa=ANFA0[0];

 Vdc_ref=dc_ref[0];

 dc_error=Vdc_ref-*Vdc_feedback[0];

 dx[0]=x[1];

 dx[1]= -1/anfa*x[1]+dc_error;

98

}

 /* Function: mdlTerminate ===

static void mdlTerminate(SimStruct *S)

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

99

DC-AC Inverter

* SH 7047 C-MEX File code for the MTU description

* Function: Produce PWM pulse to drive the full bridge Inverter

*Also implement the control algorithm

*/===

#define S_FUNCTION_NAME DCAC_Control

#define S_FUNCTION_LEVEL 2

 #include "simstruc.h"

#include "math.h"

#define U(element) (*uPtrs[element])

/*Parameter Defination */

#define Kp mxGetPr(ssGetSFcnParam(S,0))

#define Ki mxGetPr(ssGetSFcnParam(S,1))

#define Kd mxGetPr(ssGetSFcnParam(S,2))

#define ANFA mxGetPr(ssGetSFcnParam(S,3))

#define ac_ref mxGetPr(ssGetSFcnParam(S,4))

/* Function: mdlInitializeSizes ===

static void mdlInitializeSizes(SimStruct *S)

{ int ninputs=2; // Num of input

 int noutputs=2;// Num of output

 int nstates=4; //

 ssSetNumSFcnParams(S, 5);

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; }

 ssSetNumContStates(S, nstates); // Number of instance

 ssSetNumDiscStates(S, 0); //

 if (!ssSetNumInputPorts(S, 2)){

 return; }//

 ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetInputPortWidth(S, 1, DYNAMICALLY_SIZED); // provide port

 ssSetInputPortDirectFeedThrough(S, 0, 1); //

 ssSetInputPortDirectFeedThrough(S, 1, 1);

 if (!ssSetNumOutputPorts(S, 2)){

 return;//

 }

 /*ssSetOutputPortWidth(S, 0, noutputs); // */

 ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetOutputPortWidth(S, 1, DYNAMICALLY_SIZED);

 ssSetNumSampleTimes(S, 1); //

100

 ssSetNumRWork(S, 0); /* number of real work vector elements */

 ssSetNumIWork(S, 0); /* number of integer work vector elements */

 ssSetNumPWork(S, 0); /* number of pointer work vector elements */

 ssSetNumModes(S, 0);

 ssSetNumNonsampledZCs(S, 0);

 }

/* Function: mdlInitializeSampleTimes ===

 * Abstract:

 * Specifiy that we inherit our sample time from the driving block.

static void mdlInitializeSampleTimes(SimStruct *S)

{ ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 ssSetModelReferenceSampleTimeDisallowInheritance(S);

}

 /*initialize the initial conditions*/

 #define MDL_INITIALIZE_CONDITIONS

static void mdlInitializeConditions(SimStruct *S){

 int i,nstates=4;

 real_T *x0 = ssGetContStates(S);

 for(i=0;i<nstates;i++){

 x0[i] = 0;

 }}

/* Function: mdlOutputs ===

 * Abstract:

static void mdlOutputs(SimStruct *S, int_T tid)

{ InputRealPtrsType time = ssGetInputPortRealSignalPtrs(S,0);

 InputRealPtrsType Vac_feedback =ssGetInputPortRealSignalPtrs(S,1);

 real_T *pulse1 = ssGetOutputPortRealSignal(S,0);

 real_T *pulse2 = ssGetOutputPortRealSignal(S,1);

 real_T *x=ssGetContStates(S);

 double

sine,sawtooth,PI,kp,ki,kd,anfa,m,Vac_ref,sawtooth_period,pi,ac_error,ac_deadtime,AC_freq,sawtooth_freq,

Vdc_out;

 int n_sawtooth_halfperiod;

 Vac_ref=ac_ref[0];

 pi=3.1415926535898;

 AC_freq=60.0;

 sawtooth_freq = 10000.0;

 sine=sin(2*AC_freq*pi*(*time[0]));

 sawtooth_period=1/sawtooth_freq;

101

 ac_error=Vac_ref*sine-*Vac_feedback[0];

 n_sawtooth_halfperiod=floor((*time[0])/(sawtooth_period/2));

 ac_deadtime=0.000002;

 Vdc_out=170.0;

 kp=Kp[0];

 ki=Ki[0];

 kd=Kd[0];

 anfa=ANFA[0];

 PI=ki/anfa*x[0]+(ki-kd/anfa/anfa-kp/anfa)*x[1]+(kd/anfa+kp)*ac_error;

 m=(Vac_ref+PI)/Vdc_out;

 if ((n_sawtooth_halfperiod%2)==0)

 {

 sawtooth=((2/(sawtooth_period/2))*((*time[0])-(sawtooth_period/2)*n_sawtooth_halfperiod))-1;

 }

 else

 { sawtooth=1-((2/(sawtooth_period/2))*((*time[0])-((sawtooth_period/2))*n_sawtooth_halfperiod));}

 if(sawtooth<m*sine){

 pulse2[0]=0;

 if ((sawtooth+((2*ac_deadtime)/(sawtooth_period/2)))<m*sine)

 {

 pulse1[0]=1;

 }

 else pulse1[0]=0;

 }

 else

 { pulse1[0]=0;

 if ((sawtooth-((2*ac_deadtime)/(sawtooth_period/2)))>m*sine)

 {

 pulse2[0]=1;

 }

 else pulse2[0]=0;

 }}

#define MDL_DERIVATIVES

static void mdlDerivatives(SimStruct *S){

 double Vac_ref,ac_error;

 real_T *dx = ssGetdX(S);

 real_T *x = ssGetContStates(S);

 InputRealPtrsType Vac_feedback =ssGetInputPortRealSignalPtrs(S,1);

 InputRealPtrsType time = ssGetInputPortRealSignalPtrs(S,0);

 double sine=sin(2*60*3.14159*(*time[0]));

102

 double anfa=ANFA[0];

 Vac_ref=ac_ref[0];

 ac_error=Vac_ref*sine-*Vac_feedback[0];

 dx[0]=x[1];

 dx[1]= -1/anfa*x[1]+ac_error;

}

 /* Function: mdlTerminate ===

 * Abstract:

 * No termination needed, but we are required to have this routine.

static void mdlTerminate(SimStruct *S)

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

103

APPENDIX II

Description of the actual embedded program for the inverter power supply

File name Type Description

Init.C C code file Starting CPU operation

Initsct.C C code file Initializing the variables

ADRS.C C code file This file used for the

symbolic debugging.

rtl.C C code file Low level interface

Invc.C C code file Combined AD control and

PWM

bkup.C C code file the module necessary for

using the flash memory

boot.C C code file This file used for re-writing

programs when they are

executing

dbg.C C code file a debugger

vect.C C code file Interruption

MAIN.C C code file Main program

Sys.h C header file Including Definitions of IO ,

some values for constants or

variables

104

Inverter Power Supply Main Embedded File

* Function: Produce PWM pulse to drive inverter power supply

*Also implement the control algorithm

INT pwm_sw; /* Control switch */

FIXED Klpf;

FIXED Klpf2; /* for the current lag */

FIXED maxaveV; /* Maximum voltage */

FIXED maxD; /* Maximum modulation rate */

FIXED Ksft; /* Modulation rate coefficients to convert from a value outside the specified */

FIXED Csft; /* constant */

int sft_goal; /* Goals and soft-start voltage */

int now_V; /* Current voltage */

FIXED sft_m; /* Voltage modulation rate for current issue */

int up_rate; /* Voltage rise */

FIXED D_min;

FIXED fp_ten;

/* -- PIControl --*/

FIXED Kp; /* Proportional gain */

FIXED Ki; /* Integral gain */

FIXED Vout_max; /* Output voltage to the maximum AD conversion to a numeric value*/

FIXED Vin_max; /* Input voltage to the maximum AD conversion to a numeric*/

FIXED TR_n2n1; /* transformer ratio */

FIXED lim_f_on; /* When feedforward limiter ON */

FIXED lim_f_off; /* when feedforward limiter OFF */

FIXED m_min,m_max; /* Minimum and maximum amount of operation*/

FIXED lpf_V; /* Filtered voltage */

FIXED fp_V_ref; /* Value of fixed-point directive */

FIXED fp_ad_V; /* Small number of points obtained voltage clamp AD converter */

FIXED dv; /*Command value and control deviations */

FIXED P_ctrl_val; /* P value control */

FIXED I_ctrl_val; /* I value control */

FIXED PI_ctrl_val; /* PI control values */

FIXED Vout; /* DC / DC output voltage (0 ~ 332V) */

FIXED Vin; /* Input voltage (0 ~ 59.3V) */

Int forward; /* Feed-forward */

FIXED pi_m; /* Modulation rate

// DCAC

FIXED Kp1; /* Proportional gain */

FIXED Ki1; /* Integral gain */

105

FIXED Kd1;

/*For debugging */

int Vout_int,Vin_int,dv_int,P_int,I_int ;

int pi_m_int; /*Check for pulse*/

FIXED fp_test1;

FIXED fp_test2;

FIXED fp_test3;

FIXED fp_test4; /* Analog Data */

FIXED prim_Vin; /* Input Voltage */

FIXED dcdc_Vout; /* DC / DC output voltage */

int dcdc_Vref; /* DC / DC reference value） */

FIXED dcac_Vout; /* DC / AC output voltage (analog value converted to FIXED） */

FIXED dcac_Iout = 0;

int now_V1 = 0;

FIXED ACMAX, ACMIN;

/*Sequence*/

enum {RUSH_PREVENTION=0,

 ERROR_RESET, /* Error reset */

 SOFT_START, /* Soft Start */

 MAIN_LOOP /* The main loop (PI control)*/

sequence; }

/* test variable*/

int che[10];

FIXED def [10];

extern int INTE[3];

FIXED tempD;

int TEMP_I;

int prim_Vin_chk;

int chk_sft_m;

/* ** */

/* Inverter operation MMT*/

/* ** */

#define PI 3.1415927

#define F1 60 /* Output Frequency */

#define FS 20000 /* carrier frequency for the MMT */

#define TD 2000 /* deadtime ns] */

#define FS1 10000 /* carrier frequency for the MTU */

#define VMAX_AC 100 /* DCAC output maximum*/

extern FIXED fp_zero;

extern FIXED fp_one;

106

extern FIXED fp_twopi;

FIXED fp_m,fp_u;

FIXED fp_dwt,fp_wt;

FIXED fp_m1, fp_u1; // MTU

FIXED fp_dwt1,fp_wt1; // MTU

FIXED fp_k,fp_rt2,fp_05;

INT tdcin, tdcout, tacout; // for test

/* MMT Start inverter operation

void inv0_start(void)

{ inv0_set_deadtime(TD); /* Dead time */

 inv0_init(0,1,FS); /* Modulation Mode */

 fp_dwt = fixedp(2.0*PI/FS*F1); /* Δωt */

 fp_wt = fp_zero; /* Default */

 fp_m = fp_zero; /* Modulation index starts at zero */

 fp_u = fp_zero; /* Default */

 fp_k = fixedp(0.05); /* Filter factor */

 fp_rt2 =fixedp(1.41421356); /* √2 */

 fp_05 = fixedp(0.5); /* Voltage rise coefficient*/

 //inv0_set_uvw(fp_zero,fp_zero,fp_zero); /* Initial value setting */

 inv0_set_uvw(fp_zero,fixedp(1.1),-fixedp(1.1));

 wait(100);

 inv0_start_int();}

/* MTU inverter start operation */

 void inv1_start(void)

{inv1_set_deadtime(TD); /* Dead time setting */

 inv1_init(0,1,FS1); /* The first argument: modulation mode *

 fp_dwt1 = fixedp(2.0*PI/FS1*F1); /* Δωt */

 fp_wt1 = fp_zero; /* Initial value */

 fp_m1 = fp_zero; /* Modulation rate from 0 */

 fp_u1 = fp_zero; /* Initial value */

 //inv1_set_uvw(fp_zero,fp_zero,fp_zero); /* Initialization */

 inv1_set_uvw(fp_zero,fixedp(1.1),-fixedp(1.1));

 wait(100); /* To enable the initial value over a period to wait for carrier */

 inv1_start_pwm();

 inv1_start_int(); /* start interrupt */

}

/*********************************

/* PI control

/* V_ref : Target voltage）

/* ad_Vin : After filtering the input voltage

107

/* ad_Vout : Output voltage after filtering

/**********************************/

void PIctrl(INT V_ref, FIXED ad_Vin, FIXED ad_Vout){

 fp_V_ref = TOFIX(V_ref); /* FIXED command value into */

 Vout = ad_val(ad_Vout,fp_zero,Vout_max); /* AD converted value in volts (however,

FIXED-type) AD 322 were the 1023 [V] */

 Vin = ad_val(ad_Vin,fp_zero,Vin_max); /* AD converted value in volts */

 dv = fp_V_ref - Vout; /* Deviation */

 /*For debugging*/

 Vout_int=TOINT(fpmuls(Vout,TOFIX(1000)));

 //Vout_double=Vout_int / 1000.0;

 Vin_int=TOINT(fpmuls(Vin,TOFIX(1000)));

 //Vin_double=Vin_int / 1000.0;

 dv_int=TOINT(dv);

 if(pwm_sw){

 P_ctrl_val = fpmuls(Kp,dv);

 /* P(Proportional) control */

 I_ctrl_val = I_ctrl_val + fpmuls(Ki,dv); /* I(integral) control */

 if(forward){ /* Presence of feed-forward */

 LIMITER(&I_ctrl_val,-lim_f_on,lim_f_on); /* ON-time limiting integral term*/

 }else{

 LIMITER(&I_ctrl_val,-lim_f_off,lim_f_off); /* OFF integral term at the limiter */

 }

 PI_ctrl_val = P_ctrl_val + I_ctrl_val;/* Control the value of PI = P + I */

 if(forward){ /* Presence of feed-forward */

LIMITER(&PI_ctrl_val,-lim_f_on,lim_f_on);/* PI limiter controls the ON time */

 }else{

 LIMITER(&PI_ctrl_val,-lim_f_off,lim_f_off); /* OFF-time PI control value limit */

 }

 /* For debugging */

 P_int = TOINT(fpmuls(P_ctrl_val,TOFIX(1000)));

 I_int = TOINT(fpmuls(I_ctrl_val,TOFIX(1000)));

 /* feed-forward element is now required */

 //nextV = Vout + PI_ctrl_val; /* Next target output voltage*/

 if(Vin > 0){

 pi_m=fpdivs(PI_ctrl_val+fpmuls(TOFIX(forward),fp_V_ref),fpmuls(Vin,TR_n2n1));}

 //pi_m = pi_m + fpdivs(fp_V_ref,fpmuls(Vin,TR_n2n1));

 pi_m = fp_one - pi_m;

 LIMITER(&pi_m,m_min,m_max);

 PE.DRL.BYTE.L = (pi_m >> 8) & 0xFF;

108

 inv0_set_uvw(0,pi_m,-pi_m);

 }else{I_ctrl_val = 0; /*Integral term initialization */

 }}

/*MTU PI Control*/

FIXED pi_m1, dv1;

FIXED fp_V_ref1, Vout1, Vin1;

FIXED P_ctrl_val1, I_ctrl_val1, PI_ctrl_val1;

FIXED D_ctrl_val1, PID_ctrl_val1;

FIXED dvp = 0; // Last Deviation

FIXED ACSUM = 0;

void PIctrl1(INT V_ref, FIXED ad_Vin, FIXED ad_Vout){

 fp_V_ref1 = TOFIX(V_ref);

 ACSUM = -ACMAX;

 Vout1 = ad_val(ad_Vout,-ACMAX,ACMAX); /* converted the analog value to Digital */

 Vin1 = ad_val(ad_Vin,fp_zero,Vout_max);

 dv1 = fpmuls(fp_V_ref1, fpsin(fp_wt1)) - Vout1; /* Deviation */

 if(pwm_sw){

 P_ctrl_val1 = fpmuls(Kp1,dv1); /* P (proportional) control*/

 // feed forward

 I_ctrl_val1 = I_ctrl_val1 + fpmuls(Ki1,dv1); /* I (integral) control */

 if(forward){ /* Present value of feed-forward */

 LIMITER(&I_ctrl_val1,-lim_f_on,lim_f_on); }/* limites of integral term */

else

{LIMITER(&I_ctrl_val1,-lim_f_off,lim_f_off);/* OFF-time limiting integral term */

 }

PI_ctrl_val1 = P_ctrl_val1 + I_ctrl_val1;/*the value of PI = P + I control value control*/

 if(forward){

LIMITER(&PI_ctrl_val1,-lim_f_on,lim_f_on); } /* ON time limites for PI */

else{

LIMITER(&PI_ctrl_val1,-lim_f_off,lim_f_off); /* OF limites for PI */ }

nextV = Vout + PI_ctrl_val; /* Next target output voltage */

 if(Vin > 0){ /*Avoid negative division */

 pi_m1 = fpdivs(PI_ctrl_val1, Vin1);

 }

pi_m1 = pi_m1 + fpdivs(fp_V_ref,fpmuls(Vin,TR_n2n1));

 pi_m1 = fp_one - pi_m1;

 LIMITER(&pi_m1,-fp_one,fp_one);/* Modulation rate limiter (-1 to 0 duty ⇒ 1% ~ 100%) */

 fp_m1 = pi_m1;

 inv1_set_uvw(0,pi_m1,-pi_m1);

 }else{I_ctrl_val1 = 0; /* Integral term initialization */

109

 }}

void parameter_init(void){

 //Kad = fpdivs(fp_3_1,fp200); /* Analog */

 //Kvacc = fixedp(204.8); /* 1024/5 (5V→1024) */

 //Kq16 = fpdivs(fp_1024,fp_5);

 ACMAX = TOFIX(170); // Maximum DC Output

 ACMIN = fixedp(0); // debug MTU

 dcdc_Vout = 0;

 prim_Vin = 0;

 sequence=RUSH_PREVENTION; /* The first sequence set */

 dcac_Vout = 0;

 Vset = 100;

 now_D = TOFIX(1);

 pwm_sw=0;

 lpf_V = 0;

 if(Vset1 > VMAX_AC)

 Vset1 = VMAX_AC;

 else if(Vset1 < 0)

 Vset1 = 0

 /* --- Filter-- */

 Klpf = fixedp(0.1);

 Klpf2 = TOFIX(1)-Klpf;

 maxaveV = fixedp(3.8); /* The maximum voltage */

 maxD = fixedp(0.475); /* The maximum modulation rate */

 Ksft = fpdivs(TOFIX(-1),TOFIX(170));

 Csft = fixedp(1.1);

 sft_goal = 170; /* Target Voltage */

 now_V = 0; /* Current Voltage */

 sft_m = TOFIX(1); /* Modulation rates*/

 up_rate = 100;

 D_min = fixedp(0.1);

 fp_ten = TOFIX(10);

 /* --- PIControl ………………………………. */

 Kp = fixedp(0.1); /* Proportional */

 Ki = fixedp(0.01); /* Integral */

 Vout_max = TOFIX(322);

 Vin_max = fixedp(59.3);

 lim_f_on = TOFIX(20);

 lim_f_off = TOFIX(200); /* Integral limiter*/

 TR_n2n1 = fixedp(7.2); /*transformer turns ratio*/

110

m_min = fixedp(0.1);/* The minimum value of modulation index = 0.1 (equivalent to 45% duty） */

 m_max = TOFIX(1);/* The maximum value of modulation index = 1.0 (equivalent to 0% duty) */

 forward = 0; /* Feedforward ON (0 = OFF) */

 /*- DC/AC -*/

 dcdc_Vref = 100; /* Target Voltage */

 Kp1 = fixedp(0.1); /* P control */

 Ki1 = fixedp(0.01); /* I control */

 Kd1 = fixedp(0.01);

 fp_test1 = fixedp(0.5);

 fp_test2 = fixedp(0.25);

 fp_test3 = TOFIX(0);

 fp_test4 = TOFIX(1);}

/* Voltage setting */

static void chg_volt(FIXED _vset, FIXED _dcv)

{static FIXED _setv;

 FIXED _delta;

 if(!Output){

 fp_m = fp_zero;

 _setv= fp_zero;

 return; }

// _delta = fp_one;

 _delta = fp_05;

 if (_vset>(_setv+_delta)){ /* Voltage Change */

 _setv += _delta;

 }else if (_vset<(_setv+_delta)) /* Voltage change of less than 1V*/

 {_setv -= _delta;

 }else{ _setv = _vset; /* The required voltage */

 }

 _vset = fpmuls(_vset,fp_rt2); /* √2times */

 fp_m = fpdivs(_vset,_dcv); } /* Modulation factor*/

/* Frequency setting */

static void chg_freq(FIXED _fset)

{static FIXED _setf;

 FIXED _delta;

 INT setf;

 if(_fset==_setf){ /* If the current frequency */

 return; }

 _delta = TOFIX(10); /* 10Hz/10msec (800Hz->2KHz:1.2sec) */

 if(!Output){

 _setf = _fset; /* Direct Frequency Change*/

111

 }else if (_fset>(_setf+_delta)){ /* Changing the frequency of 10Hz or higher/

 _setf += _delta;

 }else if (_fset<(_setf-_delta)){

 _setf -= _delta;

 }else{_setf = _fset; }

 setf = TOINT(_setf);

 fp_dwt = fixedp(2.0*PI/FS*setf); /* Δωt*/

 return;}

/* error JOB */

static WORD err_job(WORD err)

{static WORD timer,cntr,cntend;

 if(err){ /* If Error */

 cntend = err<<1; /* Double */

 cntr=0;

 timer = 25;

 LED0 = 1; /* LED OFF */

 LED1 = 1; /* LED Off */

 inv0_stop_pwm(); /* Inverter will stop */

// SET = 0; /* Output Suspended */

// PFCL = 0; /* DC/DC OFF */

 return (ST_ERR);}

 timer--;

 if(!timer){ /* Time */

 LED1 ^= 1; /*ON / OFF LED */

 cntr++;

 if(cntr==cntend){

 cntr=0;

 timer = 75; /*Interval level */

 }else

 timer = 25; /* Flashing period*/

 //if(Tmp_disp[0]>0x0f){Tmp_disp[0]=0;}

 //else{Tmp_disp[0]++;}}

 return(0); }

/* Display decimal */

static INT syousu2(FIXED fp)

{ fp &= 0xffff; /* Lower 16 bits */

 fp *= 100;

 fp /= 65536;

 return((INT)fp); }

/* main program

112

void main(BOOL ramerr)

{ INT i=0;

 WORD msts=0,mtimer;

 WORD stssv=0xff;

 FIXED _fsav,_vsav;

 static int r_cnt;

 static int prim_Vin2;

 int Vset_cntr = 0;

 if (ramerr){

 msts=err_job(RAM_ERR); } /* RAM error */

 //if(!rom_sum_chk()){ /* ROM Check sum error*/

 // msts=err_job(ROM_ERR); /* ROM error */

 //} init_cpu(); /*Initialize CPU registers*/

 initial(); /* Initialization WORK */

// dispini(); /* View: Initialization */

 dbg_init();

 parameter_init(); /* Variable Initialization */

 { WORD k;

 int j;

 for(j=0,k=1;k;k<<=1,j++){

 if(dbgsw & k){

 Dpsw[j]=TRUE;

 }}}

 stt_timer(); /* Start the timer interrupt-based */

 sttsci1(); /* SCI interrupt*/

 if(!msts){

 ad_init(0);

 inv0_start(); }

 inv1_start(); /* MTU Inverter operation starts */

 mtimer =10; /* Time to be confirmed AD */

 for(;;){if (Base_10m){ /* 10msec Timer */

 continue; }

 Base_10m = 1;

 WDT_tcnt = 0x5a00;

 if (dbg_task()){

 continue;

 }switch(sequence){

 case RUSH_PREVENTION :

 r_cnt++;

 if(r_cnt >= 200){

113

 r_cnt--;

 //break;

 if(r1_st()){

 sequence++;}}

 break;

 /* --- Error reset--- */

 case ERROR_RESET :

 PA.DRL.BIT.B4 = 1;

 PA.DRL.BIT.B11 = 1;

 wait(100);

 PA.DRL.BIT.B11 = 0;

 sequence++; /* Move to the next sequence */

 break;

 /* --- Soft Start--- */

 case SOFT_START :

 if(pwm_sw){ /* Switch control *ON */

 if(now_V/100 <= sft_goal){ /* Is less than the target value */

 sft_m = fpmuls(Ksft,TOFIX(now_V/100)) ;

 chk_sft_m = TOINT(fpmuls(sft_m,TOFIX(100)));

 now_V = now_V + up_rate;

 inv0_start_pwm(); /* PWM generator */

 }else if(now_V/100 > sft_goal){

 pi_m = sft_m;

 sequence++;

 }else{ now_V = 0;

 sft_m = TOFIX(1);

 break;

 case MAIN_LOOP:

 break;

 default:

 break;}

 #endif

