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ABSTRACT: Electron beam was irradiated on 10% and 20% hydroxypropylmethylcellulose (HPMC) 

aqueous solutions with different doses to make gel films. As increasing dose, the gel fraction of the film 

increased sharply above a critical dose and then decreased gradually after passing a maximum. The 

scission/cross-linking ratio and the critical dose were determined using the Charlesby-Rosiak equation as 

0.52 and 9 kGy for 10% gel and 0.43 and 14 kGy for 20% gel, respectively.  The gel fraction for 20% 

HPMC film was lower at low dose and higher at high dose than that for 10% film.  The behavior of the 

swelling ratio of the gel film was just opposite to that of the gel fraction.  The cross-linking density of the 

gel estimated from the Flory theory linearly increased with irradiation dose at low dose, passed a 

maximum around 100 and 160 kGy for 10% and 20% films, respectively, and decreased at high dose. 

These results suggest the competition of scission and cross-linking induced by indirect effect of 

irradiation. Dielectric relaxation measurement by time domain reflectometry and RF impedance/material 

analyzer revealed two characteristic relaxations of chain motions around 100MHz and of orientation of 

free water around 20GHz.  From the dose dependence of the relaxation parameters determined by fitting 

to a combined equation of Cole-Cole type and KWW type, a coupling of motions of HPMC molecules 

and water molecules was strongly suggested.  The critical dose for gelation was coincident with the dose 

for the maximum of  h and the minimum of h together with the minimum of  m and the maximum of 

m, where  h and h denote the relaxation time and the relaxation strength for free water molecular 

motion and  m and m the corresponding ones for HPMC molecular motion. The characteristic behavior 

was discussed in terms of the increase of affinity between HPMC and water and the constrained 

molecular motion in the gel network. 

Keywords: hydroxypropylmethylcellulose (HPMC); electron beam irradiation; gel fraction; swelling; 

dielectric spectroscopy; coupled molecular motion 
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Introduction  

     In radiation chemistry, polymers were classified into two types: scission polymers and cross-linking 

polymers, and most biopolymers were placed into the scission polymers1,2.  Recent developments in this 

field proved, however, that a variety of biopolymers could be cross-linked in aqueous solution or paste-

like state and modified to form hydrogels by irradiation of high-energy electromagnetic waves such as -

ray and -ray, only if the irradiation condition of the total irradiation dose, the dose rate, the temperature, 

the biopolymer concentration, and the coexisting cations was properly controlled3-7. Since the radiation-

induced hydrogels are prepared without any toxic chemical reagents or additives and the products are 

biodegradable, they have attracted growing attention as an environmentally-friendly materials for 

industrial and pharmaceutical applications6,7.    To control the physicochemical properties of the 

hydrogels it is necessary to study the relationship between the irradiation condition and the characteristics 

of the resultant materials. The hydrogel prepared by -ray irradiation consists of three-dimensional cross-

linked polymer network and enclosed aqueous solution of branched biopolymer molecules with a 

distribution of the degree of polymerization and branch.  In this study we measured the fraction of the 

polymer network f, the swelling ratio Qv and the dielectric properties of the hydrogel of one of cellulose 

derivatives, hydroxypropylmethylcellulose (HPMC) to characterize the electron beam radiation-induced 

hydrogel as a function of irradiation dose and HPMC concentration.  The critical dose for cross-linking is 

estimated from the observed gel fraction by using the Charlesby-Rosiak equation.  The cross-linking 

density of the polymer network q of the hydrogel is estimated from the swelling ratio of the dried 

hydrogel by assuming the Flory theory for equilibrium swelling.  Dielectric spectroscopy gives us the 

information of the molecular motion of the polymer network, the enclosed polymers and solvent water. 

To study the molecular motion of the molecules in the hydrogel is even challenging from academic aspect, 

since the interaction of the molecules such as hydrogen bonding and hydrophobic bonding plays 

important roles in stabilizing complex states observed in temperature-concentration phase diagrams8-11.  
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Extensive data already obtained for HPMC are useful for discussion of the physical properties of newly 

prepared hydrogels12-18.   

 

Experimental Section 

     HPMC (60SH-50) is a gift from Shin-Etsu Chemical Co. The viscosity-average molecular weight is 

10.4 x 104 and the nominal degree of substitution of methoxyl group (DS) and the molecular substitution 

of hydroxypropoxyl groups (MS) per anhydroglucose unit are 1.9 and 0.25, respectively, and the nominal 

density is 1.26 g/cm3.  In order to prepare 10 wt% and 20 wt% homogeneous solutions, HPMC was first 

dispersed in 2/3 of desired amount of MilliQ water at 80oC and then remaining 1/3 amount of water at 

4oC was added to it.  The final solution was obtained by dissolving thoroughly with gentle stirring at 4oC 

for two days.  For irradiation the solution was put into a nylon bag and heat-sealed after the removal of 

air by a vacuum pump to yield a liquid plate (1mm x 10cm x 10cm). Electron beam from a 2 MeV 

accelerator at Takasaki Radiation Chemistry Research Institute was used to prepare hydrogel films at the 

irradiation parameters of the current being 1mA, the voltage 2 MeV and the dose per pass 1 kGy.  A 

portion of the gel film was freeze-dried and the weight Wi was measured.  Then the freeze-dried gel film 

was soaked in a large amount of water to extract soluble parts in the gel film at 20 oC for two weeks.  

The remaining insoluble solid was freeze-dried again and the weight Wn was measured.  The gel fraction f 

was obtained from these values as f=Wn/Wi.  The final sample of the freeze-dried insoluble solid was 

soaked in water at 20 oC.  The weight of the swollen hydrogel was constant after 10 h.  The volume of 

the dried film Vn and that of the swollen gel Vs was calculated from the weights at the initial state and the 

equilibrium after 48 h soaking together with the densities of HPMC and water, and the swelling ratio 

Qv=Vs/Vn was determined.  Four sheets of the finally obtained hydrogel prepared from 10 wt% and 20 

wt% HPMC solutions was stacked in layers at high humidity condition to obtain the sample for dielectric 

spectroscopy study.  The dielectric measurements were performed using a combination of Time Domain 

Reflectometry (TDR)(Agilent Technologies, HP54120T)19 and RF Impedance/Material Analyzer (Agilent 
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Technologies, HP54120T) at 25 oC.  The observed dielectric spectroscopic data were fitted to the 

equation 

 

           

where 0, , ,  , , and  are the permitivity at limiting high frequency, the permitivity of vacuum, 

the DC conductivity, the relaxation strength, the relaxation time, and the shape parameter indicating the 

broadness of the relaxation curve, respectively.  Smaller  values (0< <1) give broader symmetric 

relaxation curves. The subscripts h, m, and l indicate the Cole-Cole type free water relaxation process, 

the KWW type micro-Brownian motion of HPMC, and the electrode polarization/ the counter ion 

process, respectively. The corresponding relaxations are hereafter called the h-, m- and l-relaxation.  The 

detailed analyzing procedure and the adequacy were reported elsewhere20-25.   

      

Results and Discussion  

      Figure 1 shows the dose dependence of gel fraction f of hydrogel prepared from HPMC aqueous 

solutions at 10 wt% and 20 wt%, which we hereafter call 10% gel and 20% gel, respectively. The dose 

dependence of sol fraction s=(1-f) is conventionally described by Charlesby-Rosiak equation26:  
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parameters of p0/q0, Dv and Dg were determined as 0.52, -4.04 kGy and 9.3 kGy, respectively, for 10% 

gel and 0.43, 4.16 kGy and 13.6 kGy for 20% gel, respectively.  The values of p0/q0<1 mean the 

predominance of cross-linking.  The dashed lines in Fig. 1 show the calculated ones using Eq. (2) with 

these parameters.   While Eq. (2) could express a monotonous increase of gel fraction, in the real 

experiment for the HPMC solution, however, as increasing dose the gel fraction of the film increased 

sharply above a critical dose and then decreased gradually after passing of a maximum.  Therefore, since 

Eq. (2) deviates from the real one to higher value of ss  at low dose, the critical dose Dg obtained 

using Eq. (2) should be taken as the lower minimum.  The solid lines in Fig. 1 were drawn for the guide 

of eyes.  The real Dg may be around 10kGy for 10% gel and 20 kGy for 20% gel.  The gel fraction for 

20% gel was lower at lower dose and higher at higher dose than that for 10% gel.  The cross-linking of 

polymer molecules is in general produced by direct effect due to the radical formation along the 

irradiated polymer molecules and indirect effect due to the attack of hydroxide radicals yielded in 

irradiated water molecules to the polymer molecules.  The higher sensitivity of more dilute (10%) 

solution to the irradiation dose at low dose suggests a larger contribution of indirect effect.  This result is 

common to cellulose derivatives6.  At high dose when the cross-linking density is quite high, the motility 

of polymer molecules decreases.  In that case since the diffusion of polymer radicals is requisite for cross-

linking, further cross-linking is difficult to yield but scission becomes predominant.  The deviation of 

observed gel fraction from that of Charlesby-Rosiak equation, especially the decrease of the gel fraction 

at high dose, could be attributed to this effect and/or the breaking of polymer network due to the 

brittleness resulting from excess inhomogeneity of cross-linking points.  It is known that polysaccharides 

are modified by gamma-ray, neutron ray and X-ray as typically by breaking of glycosidic linkages and the 

introduction of carboxyl and carbonyl groups1,27-29.  Although the concentration of radicals is usually 

much higher during electron beam irradiation than gamma-ray irradiation, the main breaking points along 

the polysaccharides may not be changed.   
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Figure 2 shows the swelling ratio as a function of irradiation dose.  As increasing dose the swelling 

ratio Qv decreases at low dose, passes a minimum and finally increases at high dose.  Qv for 10% gel is 

lower at low dose and higher at high dose than that for 20% gel.  These are just opposite to the behavior 

of gel fraction.  The uptake of water by the hydrogel is determined by the elastic force of the polymer 

network relative to the decrease of free energy due to the dilution, and vice versa.  The cross-linking 

density is estimated from the swelling ratio data by assuming the Flory equation as30   

 

 

 

 

where g, p,  Mc and  are the volume fraction of HPMC (dried HPMC gel), the density of HPMC, 

the molar volume of water, the average molecular weight of the chain between cross- linking points, and 

the thermodynamic interaction parameter.  was estimated from the reported empirical value of second 

virial coefficient A2, 1.38×10-3  cm3 mol/g2, for a similar HPMC sample (Mw=127,000, DS=1.9 and 

MS=0.15)31 as 0.468.  The dose dependence of q is shown in Fig. 3.  As increasing dose, q increases 

above the critical dose, passes a maximum and finally decreases.  The critical dose for the starting of 

swelling and the dose for the maximum q are obtained around 10kGy and 100kGy for 10% gel and 

20kGy and 160kGy for 20% gel, respectively.   The critical doses for the starting of swelling agree fairly 

well with the critical doses of gelation Dg determined from gel fraction by eye as shown in Fig. 1.  From 

the definition of q, the average number of monomer unit between the cross-linking points n is equal to 

1/q.  From Fig. 3, at the maximum cross-linking density condition, n is estimated around 100-500. If the 
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terminal point in the polymer network is around 100.  Measurements for gel fraction and swelling of 

HPMC (M~3.1-3.5x105, DS=1.4 and 1.9, MS=0.25 and 0.20) gels prepared by electron beam irradiation 

were performed by Pekel et al. in narrower range of irradiation dose18.  The behavior of gel fraction 
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agrees well with ours in the overlapping experimental region.  On the other hand, the swelling ratio is 

smaller than one third of ours, the considerable discrepancy of which cannot be attributed to the 

difference in the molecular weight M and the degree of substitution of methoxyl and hydroxypropoxyl 

groups.  This could be rather resulted from the difference of preparation procedure of dried samples, i.e., 

we dried the sample by means of freeze-drying but Pekel et al. dried in air and a vacuum oven. 

  A typical example of the dispersion and absorption curves in the dielectric spectroscopy is shown in 

Fig. 4 for the hydrogel prepared from 10 % gel at irradiation dose of 50 kGy.  Relaxation parameters for 

each process were obtained from fitting procedure of Eq. (1) to the experimental data.  The solid lines in 

Fig. 4 were calculated from Eq.(1) together with the parameters thus determined.  The dose dependences 

of the parameters for h-, m- and l-relaxation processes are shown in Fig. 5(a), (b), (c).  Lower frequency 

side of the l-relaxation process is not exactly analyzed in the present frequency region because of a lack 

of the longer time behavior than the observed time domain. However, relaxation parameters for l-

relaxation process were tentatively estimated to exactly determine other parameters for m- and h-

relaxation processes. The relaxation parameters thus obtained for the l-process are not discussed in the 

present paper.  The relaxation time of high frequency process h takes the value around 10ps, which 

corresponds to the rotational diffusion of free water32. The decrease in the relaxation strength of high 

frequency process h with increasing percentage of weight of HPMC also supports the relaxation 

mechanism of free water.   The tendency of the concentration dependence of h shown in Fig. 5(a) is 

similar to those usually obtained in various aqueous systems for which the h value decreases with 

increasing relaxation time25,33 and the relaxation time is conventionally explained by the free volume 

concept. Usually, the relaxation process observed around 100MHz is attributed to the reorientation of 

bound water molecules and/or chain motions.  Bound water has been considered to form two-

dimensional network via hydrogen bond on the surface of proteins and DNA. The concentration 

dependence obtained for the relaxation time of free water is not shown for bound water22. In the present 

case of HPMC aqueous solution, it is considered that the surface does not offer hydrogen-bonding sites 
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to form network structure of bound water. The large concentration dependence for the relaxation time 

obtained in the present study also suggests that the m-process is closely related with polymer chain 

motions, which is largely affected by the concentration. 

In this study, though hydration water is not directly reflected in the m-process, the chain dynamics is 

affected by hydration.  We cannot identify each contribution of free polymer molecules enclosed in the 

gel network and the side chains of the network polymer to the m-relaxation process at this stage.  

Therefore, full understanding awaits the study of the dielectric spectroscopy for the rehydrated gel from 

completely washed freeze-dried hydrogel, the study of which is performed in the near future.   

However, the present results show how relaxation parameters reflect the scission and cross-linking 

processes by electron beam irradiation for the first time.  In h-relaxation in Fig. 5(a), a maximum of  h 

and a minimum of h appear around 10kGy for 10% gel and around 20-30kGy for 20% gel.  The 

irradiation dose for the extreme values coincides with the critical dose for the starting of gelation and 

swelling both for 10% and 20% gels, as indicated by the arrows.  A hump in  h and a depression in h 

are found at higher dose both for 10% and 20% gels.  The dose for these small changes seems slightly 

lower for 10% gel than that for 20% gel, which might be related to the maximum of the gel fraction 

observed in Fig. 1.  h, the index of inhomogeneity of relaxation motion decreases with increasing dose 

from unity for no irradiation.  In m-relaxation in Fig. 5(b), a minimum in  m and a maximum in m are 

observed at 10kGy for 10% gel and 20-30kGy for 20% gel.  A slight depression in  m and a hump in m 

are also found at high dose around 100 kGy.  m monotonously decreases with increasing dose from 0.8 

at 0 dose (no irradiation).  The completely contrasting dose dependences of the relaxation time and the 

relaxation strength for h-relaxation and m-relaxation together with the increase of inhomogeneity with 

increasing dose strongly suggest a coupling of free water motion and polymer motion, i.e., a cooperative 

motion of different kind of molecular dynamics, resulting in slow dynamics of water.  In the irradiation of 

electron beam the cross-linking is predominant in the initial stage according to the value of p0/q0<1.  

Since the branching of polymer molecules results in smaller contact area with surrounding solvent 
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molecules and the free energy is lowered, the affinity between the polymers and the solvent water should 

be increased34.  The initial increase of  h and the decrease of h combined with the decrease of  m and 

the increase of m could be explained if we assume that an amount of free water with higher mobility is 

associated with polymer molecules to raise the mobility of them.   

Around 10kGy for 10% gel and around 20kGy for 20% gel, three-dimensional polymer network with 

infinite molecular weight appears. The motion of polymer chains is constrained by being fixed to the 

network at the one end of the polymer. In contrast the water molecules associated to polymer molecules 

could be liberated from the polymer chains. This brings about the following decrease of  h and the 

increase of h combined with the increase of  m and the decrease of m.  As the branching at the side 

chain of the network increases with further irradiation, then the affinity increase becomes gradually 

predominant again, resulting in the behavior similar to the initial irradiation process of the increase of  h 

and the decrease of h combined with the decrease of  m and the increase of m.  The small humps in  

h and m and the depressions in h and  m in the range of 50-150 kGy could be related to the maximum 

of gel fraction and cross-linking density and the minimum of swelling.  Therefore, the final decrease in  h 

and the increase of h combined with the increase of  m and the decrease of m could be related to the 

scission of the polymer network.  Similar results on a decrease in the relaxation strength from that 

estimated from the water amount were reported for emulsion with the wall materials of different lengths 

of glyceryl group of n-gryceryl monomyristate19.  Those emulsion systems and proteins35,36 also indicate 

that hydrophobic interaction decreases the relaxation strength for water, and this result corresponds well 

to the present dose dependence.  The validity of the picture of irradiation-induced gelation proposed in 

the above could be further investigated by a light scattering measurement of the polymer solution 

enclosed in the hydrogel.   
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Conclusions 

HPMC hydrogel was prepared in aqueous solution by indirect effect of electron beam irradiation.  The 

critical dose for gelation Dg and the cross-linking density of the hydrogel were determined from gel 

fraction and swelling ratio measurements.  Dielectric spectroscopy measurements strongly suggested 

cooperative change of motions of HPMC molecules and water molecules.  Characteristic sharp and 

moderate peaks in the relaxation time and the relaxation strength for h- and m-relaxations were related to 

Dg and the peaks of gel fraction as a function of irradiation dose.                 
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Figure 1. Furusawa et al. 
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Figure 2. Furusawa et al. 
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Figure 3. Furusawa et al. 
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Figure 4. Furusawa et al. 
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Figure 5. Furusawa et al. 
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Figure captions 

Figure 1  Gel fraction of hydrogel prepared from HPMC aqueous solutions at 10 wt% (○) and 20 wt% 

(▽).  Dashed lines are calculated from Eq. (2) with parameters given in the text and solid lines are drawn 

for the guide of eyes. 

 

Figure 2  Swelling ratio of hydrogel prepared from HPMC aqueous solutions at 10 wt% (○) and 20 

wt% (▽). 

 

Figure 3  Cross-linking density of hydrogel prepared from HPMC aqueous solutions at 10 wt% (○) and 

20 wt% (▽). 

 

Figure 4  Dielectric dispersion and absorption curve at 25 oC for hydrogel prepared at irradiation dose of 

50kGy from HPMC aqueous solutions at 10 wt% (○).  The solid lines are the calculated ones using Eq. 

(1). 

 

Figure 5  Dose dependence of dielectric parameters for h-relaxation (a), m-relaxation (b) and l-relaxation 

(c) for hydrogel prepared from HPMC aqueous solutions at 10 wt% (○) and 20 wt% (△).  The arrows 

indicate the critical dose for gelation determined from the measurement of gel fraction. 
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