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Abstract

Previous work has shown that it is possible to train deep neural networks with
low precision weights and activations. In the extreme case it is even possible to
constrain the network to binary values. The costly floating point multiplications are
then reduced to fast logical operations. High end smart phones such as Google’s
Pixel 2 and Apple’s iPhone X are already equipped with specialised hardware for
image processing and it is very likely that other future consumer hardware will also
have dedicated accelerators for deep neural networks. Binary neural networks are
attractive in this case because the logical operations are very fast and efficient when
implemented in hardware. We propose a transfer learning based architecture where
we first train a binary network on Imagenet and then retrain part of the network
for different tasks while keeping most of the network fixed. The fixed binary part
could be implemented in a hardware accelerator while the last layers of the network
are evaluated in software. We show that a single binary neural network trained on
the Imagenet dataset can indeed be used as a feature extractor for other datasets.

1 Introduction

Deep learning really took off in 2012 when Krizhevsky et al. showed record breaking results on the
Imagenet dataset [1]. They demonstrated that deep convolutional neural networks trained end to
end on large labelled datasets can beat most other techniques for image recognition. Deep learning
quickly became the default algorithm for image classification and now even achieves super-human
level performance [2]. Deep learning has also revolutionized other fields like speech recognition and
natural language processing [3].

The two key ingredients needed to successfully apply deep neural networks are large amounts of
labelled training data and powerful computing systems such as GPUs. Mobile devices including
smartphones, Internet-of-Things (IoT) devices or smart home assistants have very limited processing
power because of their intrinsic limitations on size and energy consumption. One possible solution is
to offload all computations to the cloud but this introduces a latency and potentially even a privacy
risk when sensitive data is processed remotely.

There is a considerable amount of active research on techniques to reduce the computa-
tional cost of deep learning models. One approach is to prune the network by removing redundant
weights. The idea of pruning already goes back to the eighties when LeCun et al. used second order
derivatives to calculate the impact of each weight on the loss of the network [4]. Weights with a small
impact are then removed from the network. More recently pruning was used on modern deep neural
networks. Song et al. proposed a pruning pipeline where first weights with a small magnitude where
removed after which the network was fine-tuned to recover the lost accuracy [5]. Network pruning is
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especially effective when a network is used for transfer learning. In transfer learning the model is first
trained on a large dataset such as Imagenet and is then fine-tuned on a small domain specific dataset.
Because the network was pretrained on a general dataset it will contain convolutional kernels that
are not useful for the domain specific dataset. Molchanov et al. introduced a criterion based on a
first-order Taylor expansion to decide which feature maps to remove and demonstrated impressive
results when used together with transfer learning [6].

Instead of compressing a trained model it is also possible to train efficient models from
scratch. The recently introduced MobileNets [7] use depthwise separable convolutions to reduce
the computational cost. Depthwise separable convolutions factorize a standard convolution into a
depthwise convolution and a 1x1 pointwise convolution. The depthwise convolution applies a single
convolution to each input channel while the pointwise convolution combines the information in the
different channels. Factorizing a traditional convolution into these two convolutions dramatically
reduces the computational cost and size of the network with only a minimal reduction in accuracy.

Most implementations of deep neural networks use 32 bit floating point numbers for weights and
activations. Various works have shown that this is not necessary and that it is possible to use 16 bit
[8] or 8 bit [9] numbers. In the extreme case it is even possible to use binary weights and activations.
Courbariaux et al. successfully trained convolutional neural networks for image recognition with
binary weights and activations [10]. This works surprisingly well for small scale datasets such as
CIFAR10 but there is still a large drop in accuracy for larger datasets such as Imagenet. Neural
networks with binary weights and activations are attractive because they replace the costly floating
point multiplications and additions with bitwise XNORs and left and right bit shifts. These operations
are very efficient to implement in hardware.

Another problem with deep learning is the need for large labelled datasets. Training a new
model from scratch requires a large amount of training data. A well known technique is to use
transfer learning where a model is first trained on a large dataset like Imagenet and afterwards the last
layer is removed and retrained using a small amount of new domain specific training data. Transfer
learning works because the first layers in the network learn to detect features such as color transitions
and basic shapes that are present in images from different domains [11].

2 A hybrid hardware-software architecture

We propose a hybrid hardware-software architecture based on this idea of transfer learning. We train
a neural network with binary weights and activations on the Imagenet dataset and use this network as
a fixed feature extractor that could be optimised on hardware level. The last layer is implemented
in software and is evaluated on the CPU (or GPU) of the device. Most of the computations are
offloaded to the custom circuit. Since we only need to retrain the last layer of the network it even
becomes feasible to train on the device itself instead of offloading the training to the cloud. This is
very attractive from a privacy point of view because the training data never leaves the mobile device.
Our architecture also allows app developers to embed custom neural networks into their apps. Right
now this is often impossible because a typical neural network quickly requires hundreds of megabytes
of storage just for the weights. If the device however is equipped with the fixed feature extractor we
only need to ship the last (domain specific) layer of the network with the app. A schematic overview
of our architecture is shown in Figure 1.
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Figure 1: Schematic overview of our proposed architecture. Most layers of a binary neural network
trained on Imagenet are embedded in a specialised circuit in hardware. This circuit is used as a fixed
feature extractor. The last layer is implemented in software and retrained for different applications.
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3 Experiments

In this section we show that it is possible to use a binary neural network trained on Imagenet as a
feature extractor for other datasets. We trained a binary version of the Alexnet architecture [1] on
the ILSVRC2012 training set following the binarization technique of Courbariaux et al. [10]. Our
binary network obtains a top 5 accuracy of 67% (42% top 1) while the floating point Alexnet obtains
a top 5 accuracy of 80% (57% top 1). We then retrained the last layer on the domain specific datasets
without changing the weights of the other layers. We report results for the three fine-grained image
datasets summarized in Table 1. For all our models we resized the input images such that the longest
side was of length 256. During training we took random 224 by 224 pixel crops. For the test set we
used center crops. The floating point networks where trained with stochastic gradient descent with
momentum. For the binary networks we found that Adam [12] gives better results which is consistent
with Courbariaux et al. [10].

Table 1: The different datasets used in our experiments. We pretrained our network on the Imagenet
dataset and then retrained the last layer on the three smaller domain specific datasets.

Dataset Number of classes Training images Testing images

ILSVRC2012 1000 1,200,000 50,000

Flowers [13] 102 6,149 1,020
UCSD Birds [14] 200 5,994 5,794
MIT Indoor scenes [15] 67 5.360 1,340

The results are summarized in Table 2. The first part of the table shows the accuracies for the baseline
floating point networks, either trained from scratch on the domain specific datasets or fine-tuned from
the Imagenet model. As expected the fine-tuned models consistently outperform the models trained
from scratch. The second part of the table shows the results for our binary models. The fine-tuned
models again outperform the models trained from scratch which shows that transfer learning also
works when the network uses binary weights and activations. For the last layer we can use binary
weights and activations (a) but because this layer is evaluated in software in our proposed architecture
we also experimented with floating point weights and activations (b). This consistently increases the
accuracy on all datasets and pushes the accuracy closer to the accuracy of the floating point models.

Table 2: The top 1 and top 5 accuracies for each domain specific dataset. We report results for the
binary network trained from scratch and for the fine-tuned networks, both with binary weights in the
last layer (a) and floating point weights (b). We compare to a floating point baseline.

Flowers Birds Indoor scenes
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

FP trained from scratch 71.7% 90.5% 32.4% 57.2% 29.7% 56.4%
fine-tuned 85.4% 97.2% 50.4% 79.6% 57.4% 86.8%

Binary
trained from scratch 63.2% 85.1% 13.8% 32.4% 29.0% 54.9%
(a) fine-tuned binary last layer 80.6% 94.5% 33.9% 62.9% 46.7% 77.4%
(b) fine-tuned FP last layer 84.0% 95.5% 36.7% 63.4% 48.3% 78.6%

4 Conclusion and future work

We introduced a hybrid hardware-software architecture where a binary neural network trained on
Imagenet can be embedded in a dedicated circuit. The last layer is implemented in software and is
retrained for each specific task. We showed that transfer learning works very well for binary neural
networks and experimented with a hybrid binary-floating point network where only the last layer uses
floating point operations. This is a good trade-off between accuracy and computational cost since
most of the computations can be offloaded to the fixed hardware accelerator. In future work we will
explore other hybrid architectures. We now only considered finetuning the last layer of the network
but we can also retrain more than one layer which should give a higher accuracy but will also incur a
higher computational cost since a larger part of the network is evaluated in software.
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