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1.1 Intensification of livestock production 

Intensification of livestock production represents an increased use of inputs to increase the output 

quantity and/or value of livestock production per unit of inputs (Bebe et al., 2002; Udo et al., 2011). It 

has been widely advocated as a solution to meet the increasing demands for livestock products, which 

are expected to double in the next 10-15 years as a response to population growth, urbanization, 

economic progress and changing consumer preferences (Thornton, 2010; Udo et al., 2011; Sakadevan 

and Nguyen, 2017). If not done in a sustainable manner, meeting the increased demand for livestock 

products places increased pressure on the environment. The livestock sector is currently responsible 

for 14.5% of all human-induced greenhouse gas (GHG) emissions (Sakadevan and Nguyen, 2017). 

Moreover, it generates large nutrient surpluses of on-farm nitrogen (N) and phosphorus (P) that may 

lead to a pollution of water bodies. With farmers managing almost half of the European Union (EU) land 

area, the EU agriculture is an example of how intensification can cause detrimental effects on the 

environment. Next to the environmental aspects, livestock intensification is also faced with i) the 

disturbed balance between number of animals and growing area for fodder production and ii) import of 

‘feed protein’ from other regions.  

1.2 The region of Flanders in a European context 

After the World War II, European society was damaged by the crippled agriculture and insufficient food 

supplies. As a result, the European farmers were encouraged to maximize their yields through the 

increased use of fertilizers and imported animal feed. This action was also supported by Treaty of Rome 

in 1957 (De Clercq et al., 2001; Huygens et al., 2011), when six founding countries of the European 

Economic Community (EEC; among which was Belgium) introduced the Common Agricultural Policy 

(CAP). The objectives of the CAP were set at increasing agricultural productivity, stabilizing market and 

ensuring exchange of agricultural goods at reasonable prices. These objectives were followed by 

Flemish (Belgium) agriculture which quickly developed to intensive livestock farming, leading to a high 

animal manure generation and its use in crop production.  

The first signals of unbalanced nutrient use in Flanders, and the consequent nitrate pollution of water 

bodies, were recognized in the early ’80 of the last century (De Clercq et al., 2001). The problem was, 

and still is in most of the European regions, the discrepancy between excess load of nutrients from 

livestock production and the possibility to apply these nutrients in an environmental way on agricultural 

land. On January 23, 1991, the Flemish government issued the first Manure Decree for the protection 

of waters against pollution by nitrates from agricultural sources (BS, 1991). The Decree was issued 

about one year prior the EU Nitrates Directive 91/676/EEC (December 12, 1991) whose enactment has 

led to i) identification of polluted waters; ii) designation of nitrate vulnerable zones (NVZs); iii) 

establishment of Codes of Good Agricultural Practice; iv) establishment of action programmes and v) 

obligatory national monitoring and reporting (EC, 1991). For the first time in history Flanders was 

confronted with restrictions on the use of nutrients from animal manure.  
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The most severe restrictions include a limitation on N application from animal manure up to maximum 

of 170 kg N ha-1 y-1 and limitation on presence of nitrates in water bodies up to maximum of 50 mg NO3
- 

l-1 (Nitrates Directive 91/676/EEC; Water Framework Directive 2000/60/EC). To identify the nitrate 

polluted waters, the Flemish monitoring network of covering 750 monitoring stations in surface waters 

and 2100 monitoring wells in phreatic groundwater was introduced (De Clercq et al., 2001). In the year 

2000, 60% of all measuring points exceeded the European Union (EU) norm of 50 mg NO3
- l-1 (De Clercq 

et al., 2001), with most of the excesses in areas of intensive livestock farming. To tackle all of these 

issues, the Flemish Manure Decree, considered as the implementation of the EU Nitrates Directive (EC, 

1991), has been adapted several times over the last 20 years as a result of different Manure Action 

Plans (MAP). After the first two MAPs the region of Flanders was condemned in 2005 by the European 

Court of Justice for not implementing the Nitrates Directive into Flemish legislation in a complete and 

correct way. The new MAP III (2007 - 2010) has resulted in designation of Flanders as a 100% NVZ and 

in imposing the obligation of processing animal manure surpluses. Currently MAP V (2015 - 2018) is 

on-going with the main objective to lower the percentage of all monitoring stations exceeding the 

threshold value of 50 mg NO3
- l-1 from the current 16% to maximum of 5% (Donoso et al., 2017). 

The processing of animal manure, as one of the main measures of the Flemish Manure Decree, can be 

met by treating manure in such way that a) the derivatives are exported out of Flanders, b) the nutrients 

are removed from the manure (i.e. conversion of N to N2 gas) or c) the nutrients are converted into a 

mineral fertilizer (Lebuf et al., 2013b). The first two options are the most commonly used at the moment. 

In 2015, 9.1 million kg N was exported out of the Flanders (VLM, 2017) whereas 12.7 million kg N was 

converted to N2 (VCM, 2016). Out of 118 operational installations for manure processing, the majority 

(81 installations) treat manure in a biological way involving the conversion of N to N2 (VCM, 2016). At 

the same time, however, the intensive crop production systems require a high input of nutrients to 

optimize yields. Due to the imposed limitation on the application of N from animal manure on the arable 

land, the allowable application of N from animal manure is lower than the crop N demand. To fill the gap 

synthetic N fertilizers are used by farmers to satisfy the crop N requirements. As a result, Flanders is 

faced with a nutrient paradox where despite existing N excess from animal manure around 70 million kg 

of N is applied annually on Flemish soil by using synthetic N fertilizers (Lenders et al., 2013). In this 

dissertation, synthetic fertilizers are defined as inorganic fertilizers that are synthesized via Haber-Bosch 

process (e.g. N fertilizers) or based on fossil ore deposits (e.g. P and K fertilizers).  

1.3 Cradle-to-cradle concept 

In livestock intensive regions the mineral input and output are not balanced, as illustrated in section 1.2. 

The crop production systems rely on synthetic fertilizers for fertilization, whereas livestock production 

systems face significant costs and problems in waste disposal. At the same time, the EU is aiming for a 

more sustainable agriculture in which available resources are used effectively by re-connecting crop 

and livestock production through recycling materials such as on-farm animal manure (Figure 1.1).  
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The processing of animal manure is recommended not only in Flanders, but also in other European 

regions with high livestock production (see Chapter 2). Different processing techniques will result in 

different bio-based materials which may have potential to substitute synthetic N fertilizers. However, 

their use is hampered by legal restrictions which categorize these bio-based materials as waste (i.e. 

animal manure) and as such limit their disposal on arable land.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Visualization of primary production nutrient flows and the cradle-to-cradle concept (Vaneeckhaute et al., 

2013b). 

1.4 Objectives and dissertation outline 

The EU has recently adopted an ambitious Circular Economy Package. One of the key principles of this 

package is the re-use of raw materials which are currently disposed as waste. This has placed bio-

based materials from manure processing under the spotlight. To support EU legislation in considering 

these materials as products and not as waste, scientific research is needed to determine whether their 

use as bio-based fertilizer can be supported both from an environmental (i.e. risk for nutrient losses) 

and agronomic (i.e. effect on crop yield) perspective. 

The overall aim of this PhD dissertation is to investigate the potential use of bio-based materials, derived 

from animal manure processing, as substitutes for synthetic N fertilizers. In particular, physicochemical 

characteristics of liquid fraction (LF) of digestate, air scrubber water (ASW) and mineral concentrate, 

and their impact on crop yield and soil properties will be addressed. The main hypothesis of the 

dissertation is that the use of LF of digestate, ASW and mineral concentrate will not cause significant 

differences in crop yield, nutrient uptake, soil N dynamics and soil properties as compared conventional 

synthetic N fertilizer. The following four research questions can be distinguished in this dissertation: 
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i. Do bio-based materials behave similarly to animal manure or similarly to synthetic N fertilizer 

with respect to N dynamics? (Chapter 3) 

ii. Does acidification increase N mineralization and N fertilizer replacement value of bio-based 

materials? (Chapter 4) 

iii. Can bio-based materials be used as synthetic N substitutes in commercial greenhouse 

production of vegetables? (Chapter 5) 

iv. What are single-year and multi-year effects of using bio-based materials on an open field 

scale production? (Chapters 6 and 7) 

The PhD dissertation consists of a general introduction (Chapter 1), literature review (Chapter 2), five 

research chapters (Chapters 3 – 7) and general conclusion which includes future research perspectives 

(Chapter 8). The interconnection of the different chapters is given in Figure 1.2.  

Chapter 2 presents the current status in utilization of bio-based materials as substitutes for synthetic N 

fertilizers. The chapter briefly introduces: a) the manure processing techniques that are currently 

available on the market, b) the relevant EU legislation that currently hampers the use of bio-based 

materials and c) the published scientific studies on utilization of LF of digestate, ASW and mineral 

concentrate. 

Chapter 3 deals with the first research question by assessing N dynamics (i.e. N release and N 

mineralization) of animal manure, digestate, LF of digestate derived from animal manure, LF of digestate 

derived from plant residues, mineral concentrate from LF of animal manure and mineral concentrate 

from LF of digestate. The chapter indicates which most commonly available bio-based materials behave 

more as synthetic N fertilizer and which tend to follow the trend of animal manure. ASW was not included 

in this experiment since it does not contain organic N, suggesting that from a perspective of N dynamics 

it will behave similarly as synthetic N fertilizer. 

Chapter 4 provides an answer on the second research question by evaluating the effect of acidification 

on: a) N dynamics via an incubation experiment, and b) marketable yield and N uptake of Lactuca sativa 

L. via a pot experiment. In Chapter 3 it is shown that animal manure, LF of animal manure, digestate 

and LF of digestate exhibit N dynamics that differ considerably from synthetic N fertilizer. Published 

studies suggest that acidification increases N mineralization and thus indirectly increases N fertilizer 

replacement value (NFRV) of bio-based materials. Therefore, these materials were subjected to 

acidification prior to the incubation and lettuce pot experiment, during which their performance was 

compared to synthetic fertilizers that are used in conventional horticulture. 

Chapter 5 examines the performance of LF of digestate and ASW as N fertilizers, struvite as P fertilizer 

and effluent from constructed wetlands (CW) as K fertilizer, in commercial greenhouse production of 

Lactuca sativa L. The performance of most commonly available bio-based materials was compared to 

their synthetic counterparts, with regard to crop growth, crop quality control and soil properties. In 

commercial greenhouse production synthetic N, P and K fertilizers are commonly used in the form of 

calcium ammonium nitrate (CAN), triple superphosphate and potassium sulfate, respectively. Hence LF 

of digestate and ASW, as N sources, were applied in combination with synthetic P and K fertilizer, but 

also in combination with struvite and effluent from CW.  
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Chapter 6 evaluates the impact of LF of digestate and mineral concentrate, as a single source of N or 

in combination with animal manure, in a single-year cultivation of Zea mays L. These fertilization 

strategies were compared to the single use of CAN and conventional fertilization of using animal manure 

and synthetic fertilizers.  

Chapter 7 determines the effects of three-year field application of LF of digestate as a (partial) substitute 

of synthetic N fertilizer. LF of digestate was applied in combination with animal manure and digestate, 

respectively. The performance of these proposed fertilization strategies was tested in cultivation of Zea 

mays L. and compared to conventional fertilization of using animal manure and synthetic N fertilizer. 

Chapter 8 provides the general conclusion of the main findings of this work, and identifies the future 

research needs. 

Text Box: Agri-environmental indicators related to fertilizer performance  

Agri-environmental indicators are a useful tool to determine fertilizer performance. The following agri-

environmental indicators that consider the productivity level were introduced in this dissertation: 

Apparent N recovery (ANR) = (N uptake TREATMENT (kg ha-1) – N uptake CONTROL (kg ha-1))      (Eq. 1) 

                                                                     Total N applied TREATMENT (kg ha-1) 

 

N fertilizer replacement value (NFRV; %) = ANR BIO-BASED TREATMENT                                 (Eq. 2) 

                       ANR REFERENCE 

 

Fertilizer use efficiency (FUE) = Nutrient uptake (kg ha-1)                                                        (Eq. 3) 

                                                     Total nutrient applied (kg ha-1)  

 

Fertilizer replacement use efficiency (FRUE; %) = FUE BIO-BASED TREATMENT                     (Eq. 4) 

                                 FUE REFERENCE 

 

where, ‘Control’ is unfertilized treatment, ‘Bio-based treatment’ is a treatment containing one 

of the tested bio-based materials and ‘Reference’ is a conventional fertilization of using solely 

synthetic fertilizers (Chapters 4, 5 and 6) or combination of synthetic fertilizers and animal manure 

(Chapters 6 and 7). 

As shown, there are similarities between ANR and FUE, and between NFRV and FRUE indicators. 

The main difference rises from the presence (Chapters 4 and 6) or absence (Chapters 5 and 7) of 

unfertilized treatment (i.e. control) in experimental design, and from the focus on assessed 

parameters. ANR and NFRV are solely related to N, whereas FUE and FRUE are associated also 

to phosphorus (P) and potassium (K).  

In literature, the use of the control (unfertilized) treatment in agri-environmental indicators is 

inconsistent. In the policy context, the presence of unfertilized treatment is not practical because the 

approach of using control treatment is only valid for long-term field trials, whereas in short-term field 

trials the unfertilized treatment can still benefit from previous fertilizer application (Brentrup and 

Palliere, 2010).  

x 100 

x 100 
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Figure 1.2 Overview and interconnection of the different dissertation chapters including the main parameters of interest (FUE: Fertilizer use efficiency; ANR: Apparent nitrogen 

recovery; NFRV: Nitrogen fertilizer replacement; FRUE: Fertilizer replacement use efficiency). Maize picture © Alamy Stock Photo.
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Sigurnjak, I., Vaneeckhaute, C., Michels, E., Meers, E. xxxx. Manure as a resource for nutrients and 

energy. In Meers, E., and Velthof, G. (Eds.) Nutrient recovery book. Wiley Press. Under major revision. 
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2.1 Nitrogen cycle 

Nitrogen (N) is a naturally occurring element that is essential for any life form on Earth. It is found in 

amino acids and nucleotides which are the building blocks of proteins and nucleic acids needed for the 

growth and reproduction of living organisms. Despite being one of the most abundant elements in the 

Earth’s atmosphere (Sutton et al., 2013), it is mostly present as rather inert di-nitrogen gas (N2). Majority 

of plants and animals require reactive N (Nr) forms such as nitrate (NO3
-) and ammonium (NH4

+). In 

general, Nr is defined as all N compounds except N2.  

The Nr is scarce in the natural environment since it is provided by limited sources as biological N fixation 

(BNF) and lightning (Figure 2.1): prior to industrial and agricultural revolution, atmospheric deposition 

was considered as a relatively unimportant source (Bobbink et al., 2010). The BNF is the primary non-

anthropogenic input of Nr that catalyzes the reduction of N2 into NH4
+ in the presence of the nitrogenase 

enzyme. The energy generated by lightning combines atmospheric N2 and oxygen gas to N oxides 

(NOx), which after reaction with rain form nitric acid (HNO3) that is carried to the earth in the form of NO3
- 

(Fields, 2004). The global natural sources of Nr (i.e. N fixation via lightning, terrestrial and marine BNF), 

prior to human influence on agricultural BNF and before the industrial revolution, are estimated at 203 

Tg N yr-1 (Fowler et al., 2013).  

 

 

 

 

 

 

 

 

In response to the population growth, mankind has sought for additional sources of Nr to sustain a global 

population by increasing the agricultural production. As a result, anthropogenic inputs of Nr were 

introduced in 1908, when the Haber-Bosch process was patented as a catalytic combination of 

dihydrogen gas (H2) with N2 to form ammonia (NH3) under high temperatures and pressures (Erisman 

et al., 2008). Nowadays, the anthropogenic inputs of N (i.e. cultivated BNF in agriculture, N2 fixation via 

Figure 2.1 Global nitrogen fixation, natural and anthropogenic in both oxidized and reduced forms through 

combustion, biological fixation, lightning and fertilizer and industrial production through the Haber-Bosch process 

for 2010. The arrows indicate a transfer from the atmospheric N2 reservoir to terrestrial and marine ecosystems. 

Green arrows represent natural sources, purple arrows represent anthropogenic sources (Fowler et al., 2013). 
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Haber-Bosch process, the burning of fossil fuels and forest fires) are estimated to be half (210 Tg N yr-

1) of the global (413 Tg N yr-1; Figure 2.1) N fixation (Fowler et al., 2013).  

The soil N cycle is an integral part of the global N cycle. Once in the soil, the following N processes 

occur: mineralization, immobilization, nitrification, denitrification, ammonia volatilization, N uptake by 

plants, leaching, erosion and run-off (Salomez, 2004; Butterbach-Bahl et al., 2011). Mineralization is 

the biological process by which microorganisms convert organic N to NH3 that stabilizes in most soils 

(except alkaline soils) as NH4
+. This occurs mostly during the decomposition of N rich substrates. The 

rates of mineralization vary with soil temperature, moisture and the amount of oxygen in the soil. In the 

presence of low soil temperature and limiting moisture, mineralization rates will be slower (Salomez, 

2004). Immobilization is the opposite of mineralization where NO3
- and NH4

+ are taken up by 

microorganisms and therefore become unavailable to crops. This occurs mostly during the 

decomposition of substrates that are poor in N. Nitrification is the process where relatively immobile 

NH4
+ is oxidized via nitrite (NO2

-) to highly mobile NO3
-. This process is often considered as a key 

process in N cycling with regard to its relevance for N loss (Butterbach-Bahl et al., 2011), because newly 

formed NO3
- is more susceptible to leaching than NH4

+. Denitrification is the process where NO3
- is 

converted to gaseous forms such as nitric oxide, nitrous oxide and eventually to N2. The process occurs 

in soil under anaerobic conditions when NO3
- replaces oxygen as the electron acceptor in soil microbial 

respiration. Ammonia volatilization is the loss of N through the conversion of NH4
+ to NH3 gas, which 

is released to the atmosphere. The volatilization losses increase at higher soil pH and conditions that 

favor evaporation, such as high temperature and wind. Leaching is the loss of water soluble nutrients 

from the soil that occurs due to heavy rainfall or excessive irrigation. In the context of N, leaching refers 

to the loss of NO3
- because anion exchange capacity of soils is lower than that for cations (Butterbach-

Bahl et al., 2011). As a result, NO3
- easily moves with water in the soil. Erosion is a process that results 

in the transfer of soil from arable land (mostly in hilly regions) to adjacent land. This process may 

transport large amounts of particulate N (i.e. N adsorbed on sediment particles), especially organic N 

and NH4
+ that is adsorbed mainly on clay-sized particles (Salomez, 2004). Conversely, run-off is a 

process that results in the transfer of water from arable land to water courses. As compared to NO3
- 

leaching, small amounts of dissolved N are found in run-off water because during the heavy rainfall NO3
- 

is more prone to leaching (Salomez, 2004). 

The soil N pool is continuously supplied with N inputs, but N is also leaving the system. In natural 

ecosystems the N cycle tends to be rather “closed” since inputs and outputs are very small as compared 

to the active N pool. In agricultural ecosystems the N cycle is however dominated by anthropogenic N 

inputs, making the inputs and outputs very significant compared to the active N pool, i.e. the N cycle is 

“open”. As a result, agriculture is currently the largest sector driving Nr creation. 
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2.2 Fertilizer production and consumption 

The availability of Nr via the Haber-Bosch process has led to increased crop production, intensification 

of livestock production and an increased world population. A recent estimate (Figure 2.2) showed that 

48% of the current human population is supported by Nr from Haber-Bosch process (Erisman et al., 

2008). Currently, the process is accountable for the production of 120 Tg N y-1 (Sutton et al., 2013). With 

a continuous growth of the global population, the demand for Nr from the Haber-Bosch process is 

expected to increase to 165 Tg N yr-1 by 2050 (Galloway et al., 2004). As a result, the Haber-Bosch 

process seems to be indispensable for the global food security. The process is however energy intensive 

and fossil fuel dependent. Synthetic N production roughly consumes 1-2% of the world’s annual primary 

energy supply and generates more than 300 Tg of fossil-derived CO2 per year (Tanabe and 

Nishibayashi, 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

At the same time, the intensification of the livestock production has resulted in local overproduction of 

animal manure. Animal manure is known as a source of Nr whose unbalance redistribution may 

consequently lead to environmental problems. The estimated global amount of manure N ranges 

between 75 and 138 Tg N y-1 (Oenema and Tamminga, 2005; Oenema, 2006; Liu et al., 2016), and is 

as large as or larger than the synthetic N fertilizer use in the world, which ranges between 70 and 80 Tg 

N y-1 (Oenema, 2006). However, N from animal manure is considered to be less effective than N from 

synthetic fertilizer, mostly due to the slow release of organically bound N and the lower concentration of 

Figure 2.2 Trends in world population (%), average fertilizer input (kg N ha-1 yr-1) and meat production (kg person-

1 yr-1) throughout the twentieth century. From the total world population (millions), an estimate is made of the number 

of people that could be sustained without reactive nitrogen from the Haber–Bosch process, also expressed as a 

percentage of the global population (Erisman et al., 2008). 
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readily available N (i.e. NO3
-+NH4

+). Therefore, N over-application often occurs in order to maximize the 

crop yield, whether through synthetic fertilizer or animal manure application. This occurs mostly in 

regions with intensive agriculture such as North America, Europe, South and South East Asia.  

The increasing N inputs lead to losses of Nr, which have a detrimental effect on the environment and 

human health. The NO3
- leaching pollutes water courses, while the gaseous losses of NH3 and NOx to 

the atmosphere reduce the quality of the air (i.e. particulate matter and smog). Animal excretion is the 

biggest contributor to these losses, accounting for 95 Tg N y-1 of N loss via NO3
- leaching and runoff 

(Sutton et al., 2013) and 45-75 Tg N y-1 of gaseous N loss (Oenema, 2006).  

 

 

 

 

 

 

 

 

 

 

As a one of the world’s largest and most productive supplier of food and fibers, Europe was the first to 

recognize and deal with the issues of Nr loss. In 1991, the Nitrates Directive (91/676/EEC) was 

implemented with the aim to protect water bodies by limiting the application of N from animal manure 

up to 170 kg N ha-1 y-1 in Nitrate Vulnerable Zones (NVZs) (EC, 1991). The NVZs are areas of land 

which drain into polluted waters (i.e. exceeding a concentration of 50 mg NO3
- l-1 in surface waters or 

groundwater bodies) or waters at risk of pollution and which contribute to NO3
- pollution. These areas 

are mostly located in European regions known for the intensive livestock production (i.e. high livestock 

density), such as Flanders (Belgium), the Netherlands, Denmark, Brittany (France), Po Valley (Italy), 

Ireland, Aragon and Catalonia (Spain) (Figure 2.3). 

As a result of the legal limitation on N application from animal manure, these regions need to (a) process 

their manure surplus and (b) improve the efficiency of N utilization from animal manure in order to 

minimize N losses.  

Figure 2.3 Soil nitrogen (kg N ha-1 y-1 of utilized agricultural area) surplus in the EU-27 in 2010 according to 

MITERRA-Europe model. (Hou, 2016)   
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2.3 Techniques for nutrient and energy recovery from animal manure 

Animal manure is composed out of animal excreta dissolved in water or mixed with straw. It is a 

substance made up of organic matter (OM) and used as an organic fertilizer in agriculture, where it 

contributes to the fertility of the soil by adding plant nutrients and OM (Sommer, 2013). In the EU, any 

excess of animal manure should be transported to the N deficient areas or further treated. Transport of 

manure, which is often more than 90% water, is usually over considerably long distances and at a large 

financial and ecological cost. Processing of animal manure into bio-based materials with low water 

content facilitates transport, and additionally serves goals related to waste reduction and energy 

production from renewable wastes in the EU (Ehlert and Schoumans, 2015). Nowadays, the EU is trying 

to orient towards a circular economy that aims to "close the loop" of product lifecycles through greater 

recycling and re-use, and bring benefits for both the environment and economy (EC, 2015). Currently, 

this is impossible to achieve on the European level due to the continous import of nutrients from abroad, 

however, closing the loop on the smaller scale such as on farm level should be possible. This mindset 

has triggered the development of nutrient and bioenergy recovery techniques and their subsequent 

implementation into the manure management chain, where maximal amount of nutrients (NPK) and 

renewable energy is recovered. As such, livestock waste is reduced and renewable energy and minerals 

are produced. This section reviews current knowledge on the nutrient and bioenergy recovery 

techniques from livestock manure by providing an overview of most commonly used technologies and 

a classification of the resulting end-materials that can be used as bio-based fertilizers (Figure 2.4).  

2.3.1 Classic processing of animal manure surplus 

Composting is one of the oldest waste disposal methods that converts the biodegradable OM in the 

manure to oxidized end-products, primarily carbon dioxide (CO2), water and compost with stabilized OM 

(Sweeten and Auvermann, 2008). As compare to earlier years, nowadays composting occurs under 

controlled temperature, moisture, nutrient and oxygen conditions. In regions with nutrient surpluses, this 

technique does not allow the reduction of the existing nutrient excess since it converts manure in more 

stable bio-based material containing N, P and potassium (K). 

In order to reduce the costs of transporting the surplus of animal manure, farmers started to use 

mechanical separation as a first step in classic manure processing. The mechanical separation, by 

means of centrifuge, a screw press or a sieve band press, separates animal manure in NK-rich liquid 

and carbon (C) and P-rich solid fraction (SF) (Hjorth et al., 2010). The SF can be composted or dried 

and exported as a soil enhancer, while the LF either is applied directly to the agricultural land or is 

subjected to biological treatment where it undergoes nitrification followed by denitrification. In high N 

pressure regions (Figure 2.3), application of the LF directly on the agricultural land might be seen as a 

competition with the application of animal manure, since both materials fall under the limitation of 170 

kg N ha-1 y-1. Hence, some regions (eg. Flanders, Brittany and Po Valley) try to eliminate N via biological 

treatment involving nitrification and denitrification, where N is finally converted to atmospheric N2. The 

resulting fraction can be used as a K-fertilizer (Figure 2.4).  
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Since the main goal of the biological treatment is a reduction of the N content and the biological oxygen 

demand (BOD) of the LF of manure (Lebuf et al., 2012), this technique is usually complemented with 

constructed wetlands as a tertiary treatment. The remaining N, P and OM are removed through 

interactions between microorganisms, soil and plants, leaving dischargeable water with concentrations 

lower than Flemish discharge limits of 2 mg P l−1, 15 mg N l−1 and 125 mg COD l−1 (Meers et al., 2008). 

This “classical” manure processing is not a sustainable way of recovering nutrients present in manure, 

as N is converted to N2 and lost to the atmosphere. In the bio-based economy it is important to fully 

recover nutrients present in manure. Next to nutrients, manure is also seen as a potential source for 

energy recovery. In that regard, bioenergy recovery techniques have been introduced in the classical 

manure management chain in the last decade (Figure 2.4). 

2.3.2 Bioenergy recovery techniques 

The energy content of animal manure can be estimated from its higher heat value (HHV): a total heat 

generated when a substance is combusted, including the latent heat which is released upon the water 

vapor condensation (Choi et al., 2014). HHV of animal manure can differ depending on the type of 

livestock manure and its characteristics, for example, ranging from 7.9 MJ kg dry matter (DM)-1 for soil 

surfaced feedlot manure to 18.2 MJ kg DM-1 for flushed dairy manure (i.e. homogenized flushed manure 

liquid consisting of raw manure and rinsing water) (Cantrell et al., 2007; Ro et al., 2009). Ro et al. (2009) 

estimated the annual energy content of the 35 million dry tonnes of manure produced in USA to be 

c.0.43 EJ, providing renewable energy with an approximate worth of 0.7 billion US dollars per year. In 

EU-28, with an estimation of 104 million dry tonnes of manure being available for recycling and re-use 

(Liu et al., 2017), the financial benefits could even be higher. These findings demonstrate that effective 

utilization of livestock waste as a renewable energy source can have significant impact on the country’s 

agricultural energy budget and economy.  

The renewable energy from animal manure can be extracted via biological and thermochemical 

conversion (TCC) processes. Biological processes convert manure for the production of methane (CH4) 

by utilizing microorganisms, whereas TCC processes utilize heat at high temperature with or without the 

presence of air or oxidant. Both of these technologies have a dual function, to reduce the organic waste 

and to produce energy out of it. Only anaerobic digestion will be explained because TCC processes and 

their resulting end-materials are not within scope of this work. 
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Figure 2.4 Systematic overview of manure and digestate bioenergy and nutrient processing techniques. Nutrient recovery techniques are highlighted in grey. The green 

boxes present the by- or end-material of the respective technique that can be applied on the agricultural land. The blue boxes indicate techniques that generate bioenergy. 

The square dot dashes indicate the gaseous flow of N recovery via acid air scrubber. 
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Anaerobic digestion. Anaerobic digestion (AD) is a bioenergy recovery technique that involves the use 

of microorganisms or enzymes to convert animal manure into biogas and nutrient rich digestate. The 

digestion process starts with bacterial hydrolysis of the input materials, insoluble organic polymers such 

as carbohydrates are broken down to a range of organic compounds that are used by other bacteria. In 

a second phase, acidogenic bacteria convert the sugars and amino acids into CO2, hydrogen (H2), NH3, 

and organic acids. In the third stage, acetogenic bacteria convert the resulting organic acids (i.e. the 

propionic acid and butyric acid) and alcohols into acetic acid, along with additional NH3, H2, and CO2. 

Finally, methanogens convert the products of acetogenesis to methane (CH4) and CO2 (Bhatia, 2014). 

AD of animal manure, as a single substrate (mono-digestion), can inhibit the process of methanogens, 

due to the low organic loads and high NH4
+-N concentration in animal manure. Adding one or more 

additional substrates (e.g. organic biological waste from food industry, energy maize, sludge, grass, 

etc.) in so called anaerobic co-digestion can overcome the limitations of mono-digestion, while improving 

the economic viability of AD plants due to higher CH4 production (Mata-Alvarez et al., 2014).  

During AD about 20–95% of the feedstock OM is degraded (depending on feedstock composition) 

(Möller and Müller, 2012) and transformed into CH4 and CO2 (Möller and Müller, 2012). This implies that 

the OM and DM content decrease in the digestate. However, only easily degradable OM is decomposed 

while less degradable OM, such as lignin, remains in the digestate that retains soil improving qualities 

(Lebuf et al., 2013a). Furthermore, the AD process converts a higher proportion of manure N into 

ammonium-N (NH4
+-N) (Table 2.1), especially for feedstock with a high degradability, producing a 

digestate with high NH4
+-N proportion in total N of above 80% (Möller and Müller, 2012; Sørensen and 

Jensen, 2013). The higher the share of NH4
+-N is, the higher N fertilizer efficiency of digestate will be. 

Next, more than 90% of the volatile fatty acids (VFA) is decomposed, which leads to significantly lower 

odour emissions during the field application of digestate in comparison to pig slurry (Lebuf et al., 2013a). 

On the other hand, decomposition of VFA results in a pH increase, which causes a higher risk for NH3 

volatilization. This volatilization during fertilization can be reduced by injection or incorporation of the 

digestate into the soil. The P content of the input streams is not changed during the AD process. 

Therefore, the P content of the digestate is entirely defined by the ingoing streams (Lebuf et al., 2013a). 

Similarly, the AD does not alter the heavy metal content. However, during digestion DM content 

decreases which consequently increases the concentration of heavy metals in digestate. This is a 

particular attention point for zinc (Zn) and copper (Cu) during mono-digestion of pig slurry since the final 

levels in digestate can be above legally allowed limits. Impurities such as weed seeds and pathogens 

can be killed off during the digestion process. The extent to which this inactivation is sufficient depends 

entirely on temperature (mesophilic or thermophilic), residence time in the digester and the type of 

organism (Lebuf et al., 2013a). 
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Table 2.1 Range of main physicochemical characteristics of digestate (raw, liquid (LF) and solid (SF) fractions from mechanical separation) in comparison with undigested animal 

manure (raw, LF and SF from mechanical separation), and range of main characteristics of air scrubber water (obtained with H2SO4) and mineral concentrate (modified on the 

basis of EC, 2014). 

Parameter 

Digestatea LF of digestateb SF of digestateb 
Air scrubber 

waterc 

Mineral 

Concentrated 

Absolute 
values 

Difference with 
manure 

Absolute 
values 

Difference with     
LF manure 

Absolute 
values 

Difference with     
SF manure 

Absolute 
values 

Absolute 
values 

DM (%) 1.5-13.2 -1.5 to -5.5 1.6-6.6 -0.6 to -0.9 13.4-24.7 -0.3 to +0.3 26-36 1.4-5.2 

Total C (% DM) 36-45 -2 to -3 33-48 -0.7 to -10.7 40-43 +0.8 to +1.0 ND ND 

Total N (g kg-1 FW) 1.20-9.10 ≈ 0 2.0-5.1 ≈ 0 4.2-6.5 ≈ 0 27-42 4.2-8.7 

NH4
+-N/Ntotal (%) 44-81 +10 to +33 40-80 +6 to +13 26-49 +3 to +5 100 90-100 

C:N ratio 3.0-8.5 -3 to -5 2.4-4.8 -1.6 to -3.1 11-19 -2.9 to +0.1 ND ND 

Total P (g kg-1 FW) 0.4-2.6 ≈ 0 0.2-1.0 -0.24 1.7-2.5 +0.4 to +0.8 <0.05 <0.3 

Total K (g kg-1 FW) 1.2-11.5 ≈ 0 2.6-5.2 -0.13 to -0.17 2.4-4.8 +0.5 to +0.6 <0.18 5.4-8.5 

pH 7.3-9.0 +0.5 to +2 7.9-8.4 +0.66 to +1.19 8.5-8.7 +0.5 to +0.7 1.4-2.5 7.8-8.8 

EC (mS cm-1) 36-42 ND 34-47 ND ND ND 157-297 19-63 

DM: dry matter; FW: fresh weight; EC: electrical conductivity; ND: not determined 

a Data from Möller and Müller (2012)  

b Data from Möller and Müller (2012), Monaco et al. (2010; cited in EC 2014) and unpublished data on EC from Ghent University  

c Data from Vaneeckhaute et al. (2014) and unpublished data from Ghent University 

d Data from Schröder et al. (2014) and unpublished data from Ghent University
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2.3.3 Nutrient recovery techniques 

As described before, AD results in nutrient rich by-material called digestate, next to the energy as a 

main output. The digestate, that is a result of animal manure processing, competes with animal manure 

for the disposal on arable land because both materials are considered as animal manure and as such 

currently fall under the legislative limit of 170 kg N ha-1 y-1. As a result of legislation, the N applied from 

animal manure and digestate is often lower than the crop N requirements. This is usually corrected by 

additional supply of synthetic N fertilizer that does not fall under the imposed legislative limit. Moreover, 

the Nitrates Directive indirectly also limits P fertilization rates. For some European regions (e.g. 

Flanders, Estonia, Brittany, Germany, Ireland, Northern Ireland, Norway, Sweden and the Netherlands) 

at the risk of soil with a high P status, this P limitation is not sufficient. Depending on the crop type and 

the soil P, the total P fertilization rates in these regions can be additionally imposed in range from 0-125 

kg P ha-1 y-1 (Amery and Schoumans, 2014). In order to tackle the P issue, digestate is often separated 

into LF and SF. Due to its high P content, SF is usually composted and exported out of NVZs, or dried 

and subjected to TCC process. LF of digestate can be subjected to the similar valorization pathways as 

LF of animal manure. 

In order to replace synthetic fertilizers, we need to tailor products that have similarities with synthetic 

fertilizer characteristics, where the most of N is present in mineral form (e.g. calcium ammonium nitrate, 

ammonium nitrate). Figure 2.4 shows a range of techniques suitable for manure and digestate 

processing, but not all of them can be considered as nutrient recovery techniques. Nutrient recovery 

techniques are defined as techniques that (a) create an end-product with higher nutrient concentrations 

than the raw digestate/manure or (b) separate the envisaged nutrients from organic compounds, with 

the aim to produce an end-product that is fit for use in chemical or fertilizer industry or as a mineral 

fertilizer replacement (Lebuf et al., 2013b). These techniques make it possible to re-use the nutrients 

and close the nutrient cycle. Since the dissertation focuses on N recovery, only nutrient recovery 

techniques (i.e. ammonia stripping/scrubbing and membrane filtration) that generate N-rich bio-based 

materials are discussed (Figure 2.4).  

Ammonia stripping and scrubbing. NH3 removal from N-rich waste streams (eg. LF of 

digestate or LF of animal manure) usually involves two steps: stripping and scrubbing. First, NH3 is 

stripped (i.e. removed) by blowing air or steam through the waste stream in a packed bed tower (Figure 

2.5A). As a result, NH3 is transferred from the aqueous phase to a gas phase (Guštin and Marinšek-

Logar, 2011). The released NH3 is removed in a chemical air scrubber by washing it with a strong acidic 

solution (Figure 2.5B). To obtain optimal removal, often pH of the waste stream and temperature are 

adjusted to 10 and 70°C, respectively (Lemmens et al., 2007). This technique can reach NH3 removal 

efficiency of 99% (Melse and Ogink, 2005; Van der Heyden et al., 2015). 

Because of the low price, most often sulfuric acid (H2SO4) is used as an acidic solution. Ammonia can 

also be removed with hydrochloric (HCl), nitric (HNO3) and phosphoric (H3PO4) acid. The reaction of 

NH3 with H2SO4 results in ammonium sulfate (NH4)2SO4 (also known as air scrubber water (ASW): the 

term includes all NH4
+-N rich waters obtained after scrubbing NH3 saturated air) that can be used as a 

NS-fertilizer. As a NS-fertilizer, ASW is characterized by acidic pH and a high salt content (Table 2.1). 
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In the system, deposition of the formed (NH4)2SO4 can take place when the maximum solubility of the 

salt is exceeded. This leads to clogging and subsequently increases energy requirement during the 

production phase. To prevent this effect, in Flanders (Belgium) and the Netherlands, the N content in 

the ASW is not legally allowed to exceed 58.8 g N l-1, which is about three times lower than the maximum 

solubility of the salt (164 g N l-1;(Van der Heyden et al., 2015). Next to the removal of NH3 from waste 

streams, NH3 can also be recovered from livestock or manure operations such as housing, separation, 

composting and drying units. The ASW from livestock or manure operations contains N completely in 

mineral N form and as such is recognized in Flanders (VLM, 2014a) via national derogation as a 

substitute for synthetic N fertilizer. On the other hand, the ASW obtained by stripping and scrubbing 

ammonia from animal waste streams is still seen as animal manure despite having same product 

characteristics. The ‘animal manure’ status is currently assigned to this material because its use has not 

been regulated on the European level (VCM, personal communication). 

 

 

 

Figure 2.5 Ammonia stripping (A; Guštin and Marinšek-Logar, 2011) and scrubbing (B; Van der Heyden et al., 

2015) tower.   

(A) 

(B) 
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Membrane filtration. Membrane filtration is seen as an attractive supplement to mechanical 

separation by concentrating N present in LF of digestate and/or LF of animal manure in a more mineral 

N form. This can be achieved by subjecting LF to membrane filtration process where the waste stream 

is forced through the membrane by means of pressure (Figure 2.6). The material that is retained on the 

membrane is called retentate or mineral concentrate (Table 2.1), and is known for containing N (NH4
+-

N/Ntotal = 0.9-1.0) almost completely in NH4
+-N form (Schröder et al., 2014; Velthof, 2015). There are 

several types of membranes used in manure/digestate processing: microfiltration (MF; pores >0,1 µm, 

0,1-3 bar), ultrafiltration (UF; pores 5-200 nm, 2-10 bar) and reverse osmosis (RO; no pores, 10-100 

bar) membranes (Christensen et al., 2013).  

 

 

 

 

 

 

 

 

 

 

In a MF-concentrate suspended solids are retained, while in a UF-concentrate also macromolecules are 

retained. Both filtration steps can be used as a pre-treatment for RO, in order to prevent that either 

suspended solids or macromolecules block the RO-membrane (Lebuf et al., 2013a). Another technique 

that can be used prior to RO is dissolved air flotation (DAF), a technique in which small air bubbles are 

blown through the LF, entraining suspended solids to the surface where they form a crust. This crust is 

then scraped off (Vaneeckhaute, 2015). When using DAF coagulants (eg. Fe(III)Cl3, PAC 

(polyaluminium chloride)) and flocculants (eg. Chitosan) are often added. The permeate of RO, which 

consists mainly of water and small ions, can be discharged or used as a process water. The biggest 

problem reported in membrane filtration is the blocking of the membrane. During MF and UF, this is 

mainly caused by suspended solids that form a cake on the surface of the membrane. Most of 

installations reduce the blocking of the membrane pores by continuously dosing acid solution to the RO-

system, which is the most efficient way to reduce scaling and fouling (Lebuf et al., 2013a).  

 

 

Figure 2.6 Reverse osmosis filtration for concentration of ions in liquid manure (Christensen et al., 2013). 
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2.4 Legal framework of utilizing bio-based materials as N fertilizers 

As indicated before, animal manure processing leads to a variety of bio-based materials (e.g. digestate, 

LF of digestate, ASW and mineral concentrate) that might have potential to substitute synthetic N 

fertilizer (Figure 2.4). Their use and trade is currently governed by different European regulations. If 

European regulations do not apply, national regulations are in effect (Ehlert and Schoumans, 2015). As 

such, the legal framework for utilizing bio-based materials as N fertilizer is a complex combination of 

European Directives and National regulations. For example, ASW obtained from livestock or manure 

operations (i.e. housing, separation, composting and drying units) is currently accepted as a mineral 

fertilizer in the Flemish and Dutch national fertilizer regulation, but not on the European level. The 

European regulations that apply to end- and by-materials of animal manure processing are the Waste 

Framework Directive (2008/98/EC), the Animal By-Products regulation (EC/1069/2009), the Fertilizer 

regulation (EC/2003/2003), the Registration, Evaluation, Authorization and Restriction of Chemicals 

(REACH) regulation (EC/1907/2006) and the Nitrates Directive (91/676/EEC).  

2.4.1 Waste Framework Directive 

The Waste Framework Directive (WFD) regulates waste management in EU, and explains when waste 

ceases to be waste and becomes a secondary raw material (EC, 2008). According to Article 6 (1) and 

(2), a certain specified waste shall cease to be waste when it has undergone a recovery operation 

(including recycling) and complies with specific criteria to be developed in line with certain legal 

conditions, in particular:  

(a) the substance or object is commonly used for specific purposes; 

(b) there is an existing market or demand for the substance or object;  

(c) the use is lawful (substance or object fulfils the technical requirements for the specific purposes 

and meets the existing legislation and standards applicable to products);  

(d) the use will not lead to overall adverse environmental or human health impacts.  

These requirements are generally met by animal manure and bio-based materials of animal manure 

processing, if an environmental and agronomic sound application is possible (Ehlert and Schoumans, 

2015). However, the WFD distinguishes between the animal manure and bio-waste (eg. waste from food 

industry) category. Since digestate is usually obtained via co-digestion of animal manure and bio-waste, 

it is categorized as biodegradable waste and as such must comply with End-of-waste (EoW) criteria. 

These criteria have not yet been implemented in EU regulations, but are currently being developed and 

proposed for compost and digestate. For other derivatives of animal manure (digestate) processing, 

these criteria are still missing.  

2.4.2 Animal By-products regulation 

The Animal By-products regulation prevents pathogen transmission from animals to humans by 

stipulating certain conditions towards the production, collection, transport, storage, use and disposal  of 

animal by-products (EC, 2009). In the case of exporting animal by-products in the EU, exports need to 
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be certified under this regulation by their National responsible entity. One of the preconditions for the 

export of products is pasteurization (i.e. heating products for minimum 1h at 70°C). 

2.4.3 Fertilizer regulation 

The Fertilizer regulation (2003/2003) ensures free movement in the single market for conventional 

synthetic fertilizers from primary raw materials by regulating the quality of the fertilizing material (EC, 

2003). The regulation currently excludes products originating from organic or secondary raw materials, 

and as such conditions for the free movement of materials from nutrient recovery techniques have not 

yet been adapted. This regulation is currently under revision and it seems that new regulation will be 

imposed in future with the aim to broaden the scope by including organic fertilizers, biostimulants, soil 

improvers, growing medium, etc.  

2.4.4 REACH regulation 

The REACH regulation ensures a high level of protection for human health and the environment by 

requesting registration, evaluation, authorization and restriction of the properties of chemical substances 

(EC, 2006). All EU synthetic fertilizers are registered in REACH. Waste is excluded from REACH, but 

the REACH obligation comes into force once the EoW status is reached (Ehlert and Schoumans, 2015). 

Compost and biogas are exempted from the obligation to register. However, there is still confusion which 

materials from animal manure processing should be registered as in the case of digestate which 

currently is not exempt from REACH. The article 2(7)(d) of REACH states that a conditional exemption 

is provided for substances "which are recovered" in the EU from certain REACH requirements. In order 

to benefit from this exemption, a recovery operator must be able to demonstrate 1) that his recovered 

substance is the same as a substance that has already been registered under REACH and 2) that safety 

information on that substance is available to the recovery operator (EC, 2006). With that regard, 

products from manure processing (air scrubber water, struvite, etc.) could possibly be seen in the future 

as ‘recovered substances’ (VCM personal communication). 

2.4.5 Nitrates Directive 

The Nitrates Directive is the most crucial legislation on the utilization of N from animal manure. Currently, 

the Directive limits the use of N from animal manure and defines materials from animal manure 

processing as a waste rather than a product: ‘livestock manure means waste products excreted by 

livestock or a mixture of litter and waste products excreted by livestock, even in processed form’ (Article 

2(g) of the Nitrates Directive 91/676/EC). This hinders the utilization of materials from animal manure 

processing. Currently, there is an indication that beginning of 2018 the revision process of the Nitrates 

Directive might take place. 

In general, EU legislation on manure utilization should develop further by taking into consideration the 

last developments in manure processing. However, for this to occur scientific research on bio-based 

fertilizer utilization and performance is needed to prove the environmental and agronomic sound 

utilization of these bio-based materials. 
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2.5 Agricultural use of bio-based materials as substitutes for synthetic 

N fertilizers 

The recognition of bio-based materials as potential substitutes for synthetic N fertilizers will only take 

place once their environmental and agronomic sound application is scientifically proven. In order to 

achieve this aim, the performance of materials from animal manure processing should be compared to 

the performance of synthetic N fertilizers, with respect to plant availability, efficiency and risk of losses. 

This type of investigations are quite recent and still relatively few, especially if compared with those on 

animal manure (Nkoa, 2014). In the following sections an overview of the current knowledge on the 

utilization of digestate, LF of digestate, ASW and mineral concentrate, as a potential substitute for 

synthetic N fertilizer, is given. 

2.5.1 Digestate 

Current research on bio-based fertilizer utilization aimed mostly at evaluating the fertilization value of 

digestate as compared to animal manure and mineral N fertilizers as a reference. Findings across a 

wide range of studies (EC, 2014b) have indicated that a higher availability of N can be expected in 

digestate as compared to animal manure. This is attributed to the higher presence of N in NH4
+-N form 

as a result of the AD process (see section 2.3.2). Next to the NH4
+-N increase, AD increases the pH of 

digestate. Thus, a higher risk of NH3 volatilization should be anticipated when using digestate as a 

fertilizer. With regard to NO3
- losses, it is expected that the reduced content of organic N in the digestate 

results in reduced potential for long-term NO3
- leaching as compared to animal manure. Current findings 

indicate that in the short-term digestate has a similar NO3
- leaching potential as animal manure (Svoboda 

et al., 2013). With regard to NH3 losses, they can be prevented by utilizing a proper method of digestate 

application (e.g. injection or incorporation). Moreover, it was reported that by injecting or incorporating 

digestate a higher crop N uptake can be observed as compared to animal manure (Webb et al., 2013). 

Experiments in which digestate performance was compared to the use of synthetic N fertilizers, point 

out that sometimes similar crop N use efficiencies can be achieved with digestate and synthetic N 

fertilizer (EC, 2014b; Tampio et al., 2016). These results were observed mostly in the first-year of 

application. Experimental results on N use efficiency of long-term digestate applications are lacking thus 

far. In general, the potential environmental problems that are associated with digestate utilization as a 

fertilizer are similar to the ones caused by utilizing animal manure. In order to create products which 

resemble more to synthetic N fertilizers, digestate should be further processed in, for example, LF of 

digestate, ASW and mineral concentrate. 

2.5.2 Liquid fraction of digestate 

In the last decade, only few field scale studies investigated the agronomic and environmental 

performance of LF of digestate as a potential synthetic N substitute. Literature findings indicate that LF 

of digestate can result in equal (Cavalli et al., 2014; Cavalli et al., 2016; Riva et al., 2016) or even higher 

(Walsh et al., 2012; Vaneeckhaute et al., 2014) grass, grass-clover and maize yields as compared to 
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the use of synthetic N fertilizer. However, only in two studies the N fertilizer value of LF of digestate was 

reported (Vaneeckhaute et al., 2014; Cavalli et al., 2016). 

The N fertilizer value of the certain material can be determined by calculating the apparent N recovery 

(ANR) and N fertilizer replacement value (NFRV). The ANR (Eq. 1; Chapter 1), also known as N use 

efficiency (NUE), is defined as the amount of applied total N that can be taken up by the crop on top of 

what is taken up by an unfertilized control in a single season of fertilizer application (Schröder et al., 

2013; Cavalli et al., 2016; Tampio et al., 2016). The NFRV (Eq. 2; Chapter 1) or mineral fertilizer 

equivalent (MFE) is the ratio between the ANR of the bio-based fertilizer and that of the synthetic fertilizer 

ANR expressed as percentage (Schröder et al., 2013; Cavalli et al., 2016). In a two-year field maize 

experiment (Montanaso Lombardo, Italy) by Cavalli et al. (2014), the ANR of LF of digestate (≈ 20% in 

2011 and ≈ 25% in 2012) was lower as compared to the ANR (68% in 2011 and 82% in 2012) of 

ammonium sulfate that was used as a synthetic N fertilizer, resulting in NFRV of 30% for LF of digestate. 

This study was conducted on loam soil (0-30 cm soil layer: sand 47%, silt 39%, clay 14%, pH (H2O) 5.8, 

total N and organic carbon (C) (% DM) 0.10 and 0.84, extractable phosphorus (P) (Bray and Kurtz 

method) 61 mg kg–1, exchangeable potassium (K) 167 mg kg–1, and bulk density 1.49 g cm–3) and in 

region characterized by an annual rainfall of about 800 mm and an average annual mean air temperature 

of 12.5 °C. In the same time period, a two-year field experiment was conducted in Flanders (Belgium: 

soil characteristics and weather data available in Chapter 7) in which LF of digestate was applied in 

maize cultivation (Vaneeckhaute et al., 2014). The LF of digestate was applied on top of a) animal 

manure with (35% of total N applied came from LF of digestate in 2011) or without (60% of total N 

applied came from LF of digestate in 2012) start synthetic N addition and b) in combination with digestate 

(24% and 31% of total N applied came respectively from LF of digestate in 2011 and 2012) 

(Vaneeckhaute et al., 2014). The performance of both treatments was compared to the conventional 

fertilization strategy where animal manure is applied in combination with synthetic N fertilizer. The 

reported NUE (i.e. in this case, crop N uptake/total N applied; in Chapter 5 and 7 introduced as N fertilizer 

use efficiency (FUE)) of conventional and newly proposed fertilization strategies did not differ from each 

other. Moreover, NUE values for all treatments tended to exceed 100%, indicating that N uptake by the 

plant was higher than the available amount brought via bio-based fertilizer application (Vaneeckhaute 

et al., 2014). The determination method of N fertilizer value of LF of digestate from these two studies 

differed with regard to unfertilized control treatment that was present in study by Cavalli et al. (2014), 

but not in Vaneeckhaute et al. (2014). As a result, the percent of applied N that was exported by maize 

varied from c.20% (Cavalli et al., 2014) to above 100% (Vaneeckhaute et al., 2014). As such, it is difficult 

to draw conclusions from these studies due to the differences in methodology. 

Next to the agronomic performance, an environmental impact of using LF of digestate was determined 

with respect to NH3 emissions and NO3
- losses. NH3 emissions from LF of digestate (cattle manure + 

energy crops) applied via injection were similar on average to those measured for urea application (Riva 

et al., 2016). As expected, the surface application of LF of digestate led to serious NH3 losses as 

compared to urea utilization that is the common fertilization practice used in Italy (Riva et al., 2016). In 

general, NH3 reduction can be obtained by: a) slurry/digested injection, b) anaerobic digestion of slurries 
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and c) mechanical separation of digestate (Riva et al., 2016). With regard to potential risk of NO3
- losses, 

the soil mineral N content at harvest time in maize cultivation did not differ between the LF of digestate 

and synthetic N fertilizer treatment (Cavalli et al., 2014; Vaneeckhaute et al., 2014; Cavalli et al., 2016). 

The only difference was reported in a grassland pot experiment where it was observed that application 

of inorganic fertilizer, rather than LF of digestate, could lead to higher NO3
- concentration in the soil 

(Walsh et al., 2012). This experiment was conducted in controlled environment, while observed results 

could differ on the field scale due to the weather conditions, application method, timing and load of 

fertilizer application (Walsh et al., 2012). 

2.5.3 Air scrubber water 

To date, only Vaneeckhaute et al. (2013b; 2014) investigated the use of ASW as a potential substitute 

for synthetic N fertilizer. In a two-year field experiment, ASW was applied in maize cultivation on top of 

a) animal manure and start synthetic N (19% and 25% of total N applied came respectively from ASW 

in 2011 and 2012), b) animal manure (35% and 51% of total N applied came respectively from ASW in 

2011 and 2012), c) mixture of LF of digestate and raw digestate (29% of total N applied came from ASW 

in 2011) and d) raw digestate (19% of total N applied came from ASW in 2011). The performance of 

these treatments was compared with the conventional fertilization strategy where animal manure is 

applied in combination with synthetic N fertilizer. With respect to crop yield no differences were reported 

between the conventional and newly proposed fertilization strategies. The NUE, as in the case of LF of 

digestate (see section 2.5.2), tended to exceed 100%. Finally, there were no differences among the 

treatments at harvest time with regard to soil NO3
- content. 

2.5.4 Mineral concentrate 

The currently available studies on agronomic and environmental performance of MC from LF of animal 

manure were conducted in the Netherlands (Klop et al., 2012; Schröder et al., 2013; Schröder et al., 

2014). It was found that the effect of MC on crop yield is highly dependent on the method of fertilizer 

application. Klop et al. (2012) observed that surface application of MC, in a 26-day greenhouse 

experiment, lead to lower ryegrass yield as compared to CAN performance. If MC was injected, not only 

an increase in crop yield was observed but also an increase in ANR. The ANR of MC increased from 

38% (surface application) to 59% (injection application) as compared to observed ANR of CAN which 

amounted in the same conditions to 62% and 64%, respectively. During a 4-year period (2009-2012), 

the performance of MC was investigated in six field experiments where potato and maize were used as 

test crops by Schröder et al. (2013; 2014). In all experiments, similar amounts of MC-derived N and 

CAN derived-N resulted in comparable yields. The NFRV values of injected MC in all six experiments 

ranged between 72-84% (Schröder et al., 2014). If the NH4
+-N/Ntotal ratio (0.90 – 1.00) of MCs is taken 

into consideration, the NFRV is relatively small (Schröder et al., 2013).The observed reduction in NFRV 

was seen as the result of enhanced NH3 losses despite of injecting the bio-based material, which was 

also confirmed in this study by reduced amounts of residual soil mineral N after using MCs. It seems 

even when injected, MCs may lose NH3 from the injection slots due to the high pH and high NH4
+-N 

concentration (Table 2.1; Schröder et al., 2013; Schröder et al., 2014).
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PVC tubes, containing mixture of soil and bio-based materials, incubated 

in 120-day incubation experiment (Pictures: Sigurnjak I.) 

 

 

 

 

 

This chapter has been redrafted after: 
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and mineralization potential of derivatives from nutrient recovery processes as substitutes for fossil fuel 

based nitrogen fertilizers. Soil Use and Management 33, 437–446.



Chapter 3 

 

46 
 

Abstract 

The need to meet rapidly-increasing demands for synthetic nitrogen (N) while reducing dependence on 

fossil fuels has been driving widespread attention to the recuperation and reuse of nutrients present in 

digestate and animal manure. The N release and mineralization potential of animal manure (AM), 

digestate (DIG), liquid fraction of digestate (LFDIG) and mineral concentrate (MC) were assessed in 

comparison with N availability from calcium ammonium nitrate (CAN) as reference. The release was 

highly dependent on the material NH4
+-N/Ntotal ratio, while mineralization occurred only for bio-based 

materials containing more than 5 % of organic N. The magnitude of the released N, on average after 

120 days of an incubation experiment, was in the order: CAN > MC > LFDIG > DIG ≥ AM. These results 

indicate that only the N release from MC exhibited patterns similar to CAN, suggesting that this material 

will provide plant available N in a similar fashion as synthetic fertilizers. The N release from LFDIG was 

higher than AM, but did not closely follow the pattern of CAN. The N availability in LFDIG may be 

increased by using substrates richer in N, such as animal manure or waste food and not only plant 

residues.  

3.1 Introduction 

European agriculture has evolved towards increasingly intensive plant production systems, resulting in 

increasing demand for mineral fertilizers. In 2014, mineral fertilizer use in Europe (EU-27) amounted to 

10.7 million tonnes of N, 2.5 million tonnes of phosphate (P2O5) and 2.7 million tonnes of potash (K2O) 

(FE, 2015). European (EU-27) livestock production generates around 1,400 million tonnes of manure 

each year (Flotats et al., 2013). Currently, 7.8 % of all livestock manure in Europe is processed. This 

involves 108 million tonnes of animal manure containing 556,000 tonnes N and 139,000 tonnes 

phosphorus (P) (Flotats et al., 2013).  

Even though processing of animal manure is meant to increase the overall agronomic nutrient use 

efficiency, bio-based materials such as digestate, liquid fraction of digestate and mineral concentrate 

derived from it continue to be subject to the legal definition of livestock manure in the Nitrates Directive. 

Consequently, these materials are subject to the same restrictions on N application as animal manure, 

which hinders the profitable development of the European biogas sector (Lebuf et al., 2012; EC, 2013).  

In order to enhance the production of renewable energy and the sustainability of agriculture, it has 

become crucial to evaluate the performance of these materials in order to determine their potential as 

bio-based N fertilizer. The information gained from N mineralization studies is key in assessing N 

availability from bio-based materials and efficiently predicting the need for N fertilization (De Neve and 

Hofman, 1996; Alburquerque et al., 2012a). To date, research has mostly focused on N availability and 

N efficiency of digestate and animal manure (Azeez and Van Averbeke, 2010; Grigatti et al., 2011; 

Abubaker et al., 2012; Alburquerque et al., 2012a; Rigby and Smith, 2013). Less is known about the 

composition and N fertilizer properties of digestate derivatives such as the liquid fraction of digestate 

and mineral concentrate, compared to synthetic N fertilizers. Determining the main properties affecting 
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N dynamics in soil upon addition of these processed materials can help to better and more sustainably 

valorize these materials as synthetic N substitutes. Moreover, these results can indicate how digestate, 

liquid fraction of digestate and mineral concentrate behave compared to “reference” materials (either 

animal manure or synthetic N fertilizer). Thus, this chapter aimed to (1) characterize the physicochemical 

composition of animal manure, digestate, liquid fraction of digestate and mineral concentrate, (2) 

determine their N release and mineralization potential and (3) assess their potential as N source with 

reference to the conventional mineral fertilizer calcium ammonium nitrate (CAN). It was hypothesized 

that (1) the N release and mineralization dynamics will differ depending on the type of processed material 

added and (2) the processed materials such as liquid fraction of digestate and mineral concentrate will 

behave more similarly to synthetic N fertilizer than animal manure. 

3.2 Materials and methods 

3.2.1 Soil collection and analysis 

The soil used for the incubation experiment was collected from the surface layer (0-30 cm) of an arable 

field in Roeselare, Belgium. The soil is an Eutric Retisol loamic (WRB classification;(Dondeyne et al., 

2014) and contains 9% clay, 32% loam and 59% sand fraction. Its texture is classified as sandy-loam 

(USDA texture triangle). Maize and chicory were cultivated in 2012 and 2013, respectively. The soil 

sample was obtained on April 1 2014 before the fertilizer application and sowing of a new maize crop. 

A subsample of field-moist soil was taken for the determination of the moisture content, organic carbon 

(OC), pH-KCl, pH-H2O and mineral N (NO3
--N and NH4

+-N). The moisture content was determined by 

weight loss after drying the soil sample to constant weight at 105 °C for at least 24 h. OC was determined 

in two steps: first organic matter (OM) was measured using a muffle furnace for 4 h at 550 °C, and 

secondly the calculated OM was divided by factor 2 to obtain the OC level in the soil samples (Sleutel 

et al., 2007). Soil potential acidity (pH-KCl) was measured using an Orion-520A (USA) pH-meter after 

adding 50 ml of 1M KCl to 10 g of soil and allowing it to equilibrate for 10 minutes (Van Ranst et al., 

1999). Soil actual acidity (pH-H2O) was measured using the same device (i.e. Orion-520A USA) after 

10 g of soil was allowed to equilibrate in 50 ml demineralized water for 16 h (Van Ranst et al., 1999). 

Total N content in soil was determined using the Kjeldahl destruction method, while nitrate N (NO3
--N) 

(ISO 13395:1996) and ammonium N (NH4
+-N) (ISO 11732:1997) in soil were analyzed from 1M KCl 

extract using a continuous flow auto-analyzer (Chemlab System 4, Skalar, the Netherlands). The soil 

used for the N incubation experiment was air-dried and stored in the laboratory before use. 

3.2.2 Collection and analysis of bio-based materials 

Six bio-based materials were investigated: (1) animal manure (AM); (2) digestate (DIG); (3) liquid 

fraction of digestate from animal origin (LFDIG_AM); (4) liquid fraction of digestate from non-animal 

(plant) origin (LFDIG_PLT); (5) mineral concentrate (MC_LFDIG) obtained after reverse osmosis (RO) 

treatment of liquid fraction of digestate; (6) mineral concentrate (MC_LFAM) obtained after RO treatment 

of liquid fraction of animal manure. AM used in the trial was collected at a local pig farm in Beitem, 

Belgium. DIG and LFDIG_AM were sampled from Bioelectric (Beernem, Belgium), a thermophilic (54°C) 
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anaerobic co-digestion plant (capacity: 60,000 tonnes y-1, 2.46 MWel) with a retention time of 45 – 60 

days, and with an input feed consisting of 16 % animal manure, 12 % energy maize and 72 % organic 

biological waste originating from the food industry (e.g. starch from potatoes, biological sludge, glycerin, 

unpacked products from supermarket). LFDIG_AM was obtained after the decanter centrifuge of the 

DIG. LFDIG_PLT was sampled from Agrogas (Geel, Belgium), a mesophilic (38°C) anaerobic co-

digestion plant (capacity: 60,000 tonnes y-1, 2.98 MWel) with a retention time of 50 days, and with an 

input feed consisting of 50 % energy maize and 50 % organic biological waste originating from the food 

industry (e.g. leek leaves, onion and starch from potatoes). LFDIG_PLT was obtained after the 

centrifuge of a digestate. MC_LFDIG was sampled at the site of Ampower (Pittem, Belgium), a 

thermophilic (54°C) anaerobic co-digestion plant (capacity: 180.000 tonnes y-1, 7.44 MWel) with a 

retention time of 45 – 60 days, and with an input feed consisting of 10 % animal manure and 90 % 

organic biological waste originating from the food industry (e.g. starch from potatoes, carrots, biological 

sludge, glycerin, unpacked products from supermarket). The digestate from this installation was 

subjected to decanter centrifuge to obtain LF of digestate that was subsequently sent to a dissolved air 

flotation (DAF) unit. The DAF unit clarifies the LF of digestate by removing suspended organic material 

using micro bubbles which force particles to float on the surface and form a layer of sludge that is 

scraped off and sent back to the centrifuge. The LF of digestate after DAF is subjected to a RO system, 

resulting in MC_LFDIG. MC_LFAM was obtained from a pig farm Houbraken (Bergeijk, the Netherlands) 

whose system subjects pig manure to DAF unit from where sludge is subsequently separated by means 

of a sieve band press. The LF of animal manure from separation and LF of animal manure from the DAF 

unit are subjected to microfiltration (50 µm pore size) and afterwards to RO, resulting in MC_LFAM. 

All bio-based materials were collected in polyethylene sampling bottles (2 L), stored (4 °C) and 

characterized (Table 3.1) to determine the required fertilizer dosage. Dry matter (DM) content was 

determined as the residual weight after 72 h drying at 80°C. OM was measured after incineration (loss 

on ignition) of the samples during 4 h at 550°C in a muffle furnace. The loss of mass on ignition was 

considered as the OM and subsequently used to determine OC content according to CMA/2/IV/3 method 

(VITO, 2012). Electrical conductivity (EC) and pH were determined on fresh sample using a WTW-LF537 

(GE) conductivity electrode and an Orion-520A pH-meter (USA), respectively. Total N was determined 

using Kjeldahl destruction, and NH4
+-N was determined using a Kjeltec-1002 distilling unit (Gerhardt 

Vapodest, GE) after addition of MgO to the sample, and subsequent titration (Van Ranst et al., 1999). 

NO3
--N was determined by using a continuous flow auto-analyzer (Chemlab System 4, Skalar, the 

Netherlands) from a 1M KCl extract. Organic N was calculated as a difference in the values of total and 

mineral (NH4
+-N + NO3

--N) N. After wet digestion (2 ml HNO3 and 1 ml H2O2), total P was analyzed using 

the colorimetric Scheel method (Van Ranst et al., 1999), while total K, Ca, Mg and Na were analyzed 

using Inductively coupled plasma optical emission spectrometry (ICP-OES) (Varian Vista MPX, USA). 
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Table 3.1 Characterization of bio-based materials on fresh weight basis. 

Parameters AM DIG LFDIG_AM LFDIG_PLT MC_LFDIG MC_LFAM 

Dry matter (g kg-1) 85 70 23 63 49 35 

Organic matter (g kg-1) 58 48 13 35 31 17 

Organic carbon (g kg-1) 32 27 7.1 19 17 9.2 

pH 7.9 8.0 8.7 8.1 8.2 8.1 

EC (mS cm-1) 28 38 20 33 59 55 

Ntotal (g kg-1) 5.6 4.3 4.7 6.6 4.0 7.3 

NH4
+-N (g kg-1) 3.3 2.2 3.6 4.1 3.8 5.9 

NO3
--N (g kg-1) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

Norganic (g kg-1) 2.3 2.1 1.1 2.5 0.2 1.4 

Ptotal (g kg-1) 2.1 1.1 0.027 1.2 0.021 0.31 

Ktotal (g kg-1) 3.3 2.2 3.0 4.4 3.4 7.3 

Catotal (g kg-1) 4.9 2.0 0.10 2.1 0.10 0.13 

Mgtotal (g kg-1) 1.6 0.7 0.002 0.21 0.17 0.023 

Natotal (g kg-1) 1.0 0.72 1.8 3.8 3.0 2.2 

C/Ntotal 5.7 6.2 1.5 2.9 4.3 1.3 

C/Norganic 13.9 12.9 6.5 7.6 85 6.6 

N/P 2.7 4.1 168 5.6 190 24 

NH4
+-N/Ntotal 0.59 0.51 0.76 0.62 0.95 0.80 

Norganic /Ntotal 0.41 0.49 0.24 0.38 0.05 0.20 

AM: animal manure; DIG: digestate; LFDIG_AM: liquid fraction of digestate from animal origin; LFDIG_PLT: liquid 

fraction of digestate from non-animal (plant) origin; MC_LFDIG: mineral concentrate from liquid fraction of digestate; 

MC_LFAM: mineral concentrate from liquid fraction of animal manure. 

3.2.3 N incubation experiment 

The air-dried soil was pre-incubated at 35 % water filled pore space (WFPS) for one week at 25 °C in 

the dark. At the start of the incubation experiment, liquid fractions, mineral concentrates and CAN were 

thoroughly mixed with 260 g of pre-incubated soil (equivalent to 237 g of air-dried soil) at a rate of 150 

kg of effective N ha-1 (Table 3.2), in agreement with the Flemish manure regulation for the cultivation of 

maize on non-sandy soils (FMD, 2011) where the maximum allowable rate of 80 kg P2O5 ha-1 was 

respected (FMD, 2011). Due to a low N/P ratio in AM and DIG, the N application rate had to be limited 

to 56 and 86 kg effective N ha-1, respectively (instead of 150 kg effective N ha-1) in order to comply with 

the maximum application rate of 80 kg P2O5 ha-1 (Table 3.2). The effective N is the amount of N from 

applied bio-based material that is expected to be available for crop uptake in the season of application 

(Webb et al., 2010). According to Flemish manure regulation the amount of effective N in animal manure 

and digestate was legally accepted to be 60 % of the total N content. For liquid fractions of digestate 
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and mineral concentrates it was hypothesized that 100 % of total N present in these materials would be 

available during the experiment, which is similar to that expected from the application of synthetic N 

fertilizer. 

 

Table 3.2 Application rates of bio-based materials, on fresh weight basis, used in 120-day incubation experiment. 

Material tonnes ha-1 total N (kg ha-1) effective N (kg ha-1) P2O5 (kg ha-1) OC (kg ha-1) 

AM 16.7 93 56a 79.9 534 

DIG 33.3 143 86a 79.9 899 

LFDIG_AM 31.9 150 150 2.0 226 

LFDIG_PLT 22.7 150 150 61.4 431 

MC_LFDIG 37.5 150 150 1.8 637 

MC_LFAM 20.6 150 150 14.6 189 

CAN 0.56 150 150 0 0 

OC: organic carbon; AM: animal manure; DIG: digestate; LFDIG_AM: liquid fraction of digestate from animal origin; 

LFDIG_PLT: liquid fraction of digestate from non-animal (plant) origin; MC_LFDIG: mineral concentrate from liquid 

fraction of digestate; MC_LFAM: mineral concentrate from liquid fraction of animal manure; CAN: calcium 

ammonium nitrate. 

a N application rate of AM and DIG had to be limited to 56 and 86 kg effective N ha-1, respectively (instead of 150 

kg effective N ha-1) in order to comply with the Flemish manure regulation for cultivation of maize on non-sandy 

soils where maximum application rate of 80 kg P2O5 ha-1 needs to be respected (FMD, 2011). 

 

 

The homogenous mixture of soil and bio-based material was placed in PVC tubes with a diameter of 4.6 

cm and 18 cm in length (Figure 3.1). The soil was brought to a bulk density of 1.4 Mg m-3 by compacting 

the mixture to a height of 10 cm. Next to the six treatments where bio-based materials were tested as a 

potential synthetic N fertilizer replacement, a treatment with CAN (27% of mineral N) was added and 

used as a reference for the conventional fertilizer. For the control, bare soil was used which went through 

the same procedure as the soil in the amended treatments. The moisture content of the soil for the 

incubations was adjusted to 50 % of WFPS, and the tubes were covered with a single layer of pin-holed 

gas permeable parafilm to minimize water loss whilst allowing air exchange. The total weight of the 

tubes was recorded and subsequently incubated at 15°C. The moisture content was monitored weekly 

during the incubation period by weighing the tubes and maintaining them at 50 % WFPS by adding 

demineralized water when needed. Four separate replicates of seven treatments and the control were 

analyzed at day 20, 40, 60, 80, 100 and 120 by removing intact tubes. The mineral N in the control 

treatment was determined again at day 0 in order to include any effects of soil air-drying and re-wetting. 

The soil was removed from the tubes, mixed thoroughly, and analyzed for soil NO3
--N and NH4

+-N (see 

section 3.2.1. for the description of the analysis). Note that in these experimental conditions ammonia 

volatilization is considered to be negligible due to the homogenous mixing of materials and soil, and the 

lack of airflow at the soil surface during the incubation (de la Fuente et al., 2010; Alburquerque et al., 

2012a). 
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3.2.4 Data analysis 

Both the net N release (Nrel,net) from the added materials and the net N mineralization (Nmin,net) were 

calculated. The Nrel,net is the difference between the mineral N measured in the amended soil minus the 

mineral N measured in the control (i.e. unamended soil), calculated according to De Neve and Hofman 

(1996), as follows: 

Nrel,net (%) = 
([NO3−−N,treatment]−[NO3−−N,control])+([NH4+−N,treatment]−[NH4+−N,control])

Ntotal applied
x 100   

At t=0, the Nrel,net (%) equals the product Nmineral/Ntotal ratio x 100. Nmin,net (%) is the N mineralized from 

the organic fraction of the product (expressed as a percentage of total N in the product), and is calculated 

by subtracting the amount of mineral N already present in the products at t=0, as follows:  

      Nmin,net (t; % total N) = (Nrel,net (t) – Nrel,net (t=0))                                                                          (Eq. 6)  

A positive Nmin,net value indicates net mineralization, whereas a negative Nmin,net value indicates net N 

immobilization.  

Treatment effect during the incubation period on Nrel,net and Nmin,net was assessed by one-way ANOVA 

and Tukey’s post-hoc test. The condition of normality was checked using the Shapiro-Wilk test, whereas 

the homogeneity was tested with the Levene Test. The Nrel,net kinetics was estimated by linear 

regression. Pearson’s correlation analysis was performed to test relationship between Nrel,net, Nmin,net and 

physicochemical properties of applied bio-based (organic) materials. All statistical analyses were 

performed using SPSS statistical software (version 22.0; SPSS Inc., Chicago, IL). 

Figure 3.1 Experimental setup of N incubation experiment for determination of N release and N mineralization 

(photo’s: Sigurnjak, I.). 

(Eq. 5) 
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3.3 Results  

3.3.1 Soil characteristics 

The soil characteristics of the 0-30 cm soil layer prior to the experiment were pH-KCl = 6.6; pH-H2O = 

7.3; OC = 1.2 %; NO3
--N = 0.95 mg kg-1; NH4

+-N = 5.1 mg kg-1; DM = 83 %. The mineral N in the soil 

was low at the time of sampling and mainly in the form of NH4
+-N. As such, the soil was suited for the 

mineralization experiment since it did not exceed recommended criteria (Nmineral < 20 mg NO3
--N kg-1 

soil, pH-KCl between 5.0 - 7.5 and OC < 1.5 % (VITO, 2010b) to be used in this type of trial. 

3.3.2 Characteristics of bio-based materials and application rates 

Contents of DM, OM, OC, P, Ca and Mg were higher in AM compared to end- and by-materials obtained 

from animal manure processing (Table 3.1). Animal manure processing techniques such as anaerobic 

digestion, mechanical separation and reverse osmosis generally result in a reduction of the DM content 

of the input stream. The DM content of the tested materials varied between 23 - 85 g kg-1, with AM 

exhibiting the highest concentration. A similar trend was observed for OM and OC content. The pH-

values were in the same range for all bio-based materials, while EC values increased with processing 

and the highest values were measured in mineral concentrates. EC is an indication of soluble salts, 

which include all ions that are contained in the liquid part of tested materials. Because K and Na salts 

are most soluble, they remain in higher concentrations in liquid fractions of digestate and mineral 

concentrates as compare to AM and DIG. On the other hand, Ca and Mg concentrations decrease with 

further treatment since they are mostly present in crystalline form with P or adsorbed onto particles 

(Bachmann et al., 2016). Thus, after mechanical separation, P, Ca and Mg will remain in higher 

proportions in the solid fraction of separated animal manure or raw digestate. 

In general, end- and by-materials of animal manure processing are richer in Ntotal, NH4
+-N, K and Na. As 

a first step, anaerobic digestion releases some organically bound N as NH4
+-N. Mechanical separation 

and reverse osmosis remove additional organic N that is still present in their input streams. This results 

in higher efficiency of liquid fractions of digestate and mineral concentrates as a N fertilizer by increasing 

their NH4
+-N/Ntotal ratio, which in this chapter ranged from 0.62 - 0.76 and 0.80 - 0.95, respectively. DIG 

and AM had a lower NH4
+-N/Ntotal ratios of 0.51 and 0.59, respectively. Moreover, these materials had a 

lower N/P ratio. Since Flemish soil is quite P rich, the high P content is the limiting factor for the amounts 

of bio-based materials that can be applied under current nutrient legislation. The N application rate of 

AM and DIG had to be limited to 56 and 86 kg effective N ha-1, respectively (instead of 150 kg effective 

N ha-1) in order to comply with the maximum application rate of 80 kg P2O5 ha-1 (Table 3.2). This led to 

a N application lower than the crop N requirements, which in practice would be corrected with an 

additional application of synthetic N. However, liquid fractions of digestate and mineral concentrates can 

satisfy crop N requirements without exceeding imposed legal limits for P. As such they have a potential 

to be used as a replacement for synthetic N. 
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Figure 3.2 Evolution of mineral N (mg kg-1) in an unamended soil and soil treated with bio-based and synthetic 

fertilizers (n=4) during 120-day incubation experiment (mean ± standard deviation; where absent, error bars fall 

within symbols). AM: animal manure; DIG: digestate; LFDIG_AM: liquid fraction of digestate from animal origin; 

LFDIG_PLT: liquid fraction of digestate from non-animal (plant) origin; MC_LFDIG: mineral concentrate from liquid 

fraction of digestate; MC_LFAM: mineral concentrate from liquid fraction of animal manure; CAN: calcium 

ammonium nitrate. 
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3.3.3 N dynamics in the soil 

At day 0 all bio-based materials supplied significant amounts of N to the soil in the form of NH4
+-N (Figure 

3.2). During the initial stage of the incubation experiment, there was a slightly larger build-up of NH4
+-N 

in the unamended soil up to day 20 (4.4 ± 0.7 mg NH4
+-N kg-1) compared to the amended treatments 

(0.90 - 1.55 mg NH4
+-N kg-1). This suggests that the addition of these materials stimulated nitrification, 

or that mineralization of native soil organic N was faster in the unamended soil up to day 20. From 40 

days of incubation onwards, the NH4
+-N content of the soil with and without amendments was at a similar 

level, between 0.5 – 1.2 mg NH4
+-N kg-1. These very small NH4

+-N concentrations indicate that there 

were no anaerobic conditions during the incubation period (De Neve and Hofman, 1996). The nitrification 

of NH4
+-N added via the materials was complete within 20 days as the NH4

+-N content had become 

almost negligible, while the NO3
--N content in the soil had more than doubled or tripled. The NO3

--N 

content continued to increase for all treatments throughout the duration of the experiment (Figure 3.2). 

The pattern of nitrification was similar for all treatments to that of total mineral N, indicating that any 

NH4
+-N produced was quickly nitrified (De Neve et al., 2004). 

3.3.4 N release  

The Nrel,net from the bio-based and synthetic fertilizers as a percent of added total N is shown in Figure 

3.3. During the initial stage of the incubation experiment, reduction in Nrel,net was observed at day 20. 

This temporary immobilization can be seen as a transient phenomenon probably associated with the 

soil manipulations (drying and rewetting) prior to the start of the incubation experiment (De Neve et al., 

2003). From day 20 to the end of the experiment, Nrel,net increased again from this minimum value for all 

treatments. The highest Nrel,net (%) was measured in CAN treatment amounting to 103 ± 4 at day 120. 

There was no significant difference between mineral concentrate obtained from liquid fraction of 

digestate and the one obtained from liquid fraction of animal manure. At day 120, these treatments 

exhibited on average only a 10 % lower Nrel,net compared to CAN (Figure 3.3). A significant difference 

was detected in Nrel,net between liquid fractions of digestate. The lowest Nrel,net was observed for DIG and 

AM treatment, where 61 ± 1 and 66 ± 4 % of applied N was released at day 120, respectively.  

In order to compare Nrel,net kinetics of amended treatments, a linear regression was fitted to the Nrel,net 

(%) data. Significance of the regression (p < 0.05) was used as the criterion for fit. The linear regression 

was only significant (p = 0.026) in MC_LFAM treatment, and indicated that 89 % of applied total N 

(equals 134 kg N ha-1) from MC_LFAM was available after 120 days (y = 0.114x+76). For other 

treatments the regression was not significant (p > 0.05), and for these treatments we estimate potential 

Nrel,net (%) by averaging all Nrel,net (%) values over the entire incubation period (including t=0). According 

to the proposed estimation, CAN, MC_LFDIG, LFDIG_AM and LFDIG_PLT with the potential Nrel,net of 

94 ± 9, 88 ± 6, 73 ± 12 and 65 ± 10%, will on average release 141, 132, 110 and 98 kg of N ha-1, 

respectively, under the conditions of the incubation experiment. In the DIG treatment, P was a limiting 

factor for the N application rate, which led to the reduction of N dosage from 150 to 86 kg effective N ha-

1. On the basis of total N applied (Table 3.2), it means that with potential Nrel,net of 52 ± 6% only 74 kg of 
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N ha-1 will be released on average from 143 kg of applied total N ha-1. P also limited the amount of N 

applied in the AM treatment, with an average potential Nrel,net (%) of 59 ± 6 (equals 55 kg N ha-1). 

3.3.5 N mineralization 

The Nmin,net (expressed as % of organic N applied) from amended treatments on 120 day was 0%, 16%, 

28% 19%, 25% and 69% for MC_LFDIG, LFDIG_PLT, LFDIG_AM, AM, DIG and MC_LFAM, 

respectively (graph not shown). Obviously the amount of applied organic N differed greatly between 

tested materials and was mostly low, which leads to large variabilities in the estimation of Nmin,net data. 

Alternatively, Nmin,net can also be obtained as the difference between Nrel,net (%) at t=0 and Nrel,net (%) 

observed at a given sampling moment (Figure 3.3; section 3.2.4). A negative difference thus implies net 

N immobilization which occurred in all amended treatments from the start, but was less pronounced with 

LFDIG_PLT, MC_LFAM, DIG and AM. The net N immobilization in LFDIG_PLT, LFDIG_AM, MC_LFAM, 

DIG and AM remained relatively constant until half way through (60 – 80 days) the experiment when 

remineralization of N started towards the end of the incubation period. The Nmin,net (when expressed as 

% of total N applied) from amended treatments on 120 day was 3±4%, -3±3%, 6±2%, 7±3% 8±4%, 

12±1% and 14±2% for CAN, MC_LFDIG, LFDIG_PLT, LFDIG_AM, AM, DIG and MC_LFAM, 

respectively.  

The effect of bio-based material characterization on N dynamics is presented in Table 3.3. The effect of 

C/Ntotal (r = -0.675, p = 0.142), C/Norganic (r = 0.284, p = 0.585) and NH4
+-N/Ntotal (r = 0.693, p = 0.127) on 

Nrel,net was not significant. The strongest correlation was found between the Nrel,net (%) and the amount 

of applied NH4
+-N (r = 0.898, p = 0.015) and Ntotal (r = 0.929, p = 0.007). On the contrary, Nmin,net (%) 

exhibited the strongest correlation with the C/Norganic (r = -0.847, p = 0.033) ratio of applied bio-based 

materials.  
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Figure 3.3 N release (Nrel,net; %) relative to the N input of added materials in 120-day incubation experiment. Value 

plotted at t=0 indicates the percentage of mineral N in applied material and is presented with straight line throughout 

120 days of incubation time. Values observed above the line indicate net N mineralization, while values below the 

line indicate net N immobilization. Error bars indicate standard deviations (n=4). Lower-case letters indicate 

significant different means (Tukey’s Test (p<0.05)) between materials per each sampling time (t=20, 40, 60,…,120). 

AM: animal manure; DIG: digestate; LFDIG_AM: liquid fraction of digestate from animal origin; LFDIG_PLT: liquid 

fraction of digestate from non-animal (plant) origin; MC_LFDIG: mineral concentrate from liquid fraction of digestate; 

MC_LFAM: mineral concentrate from liquid fraction of animal manure; CAN: calcium ammonium nitrate. 
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Table 3.3 Significant correlations among parameters related to bio-based material composition and N release and mineralization dynamics (n=6) 

Parameters OC Ntotal NH4
+-N C/Ntotal C/Norganic NH4

+-N/Ntotal Norganic/Ntotal Nrel,net Nmin,net Ntotal added NH4
+-N added OC added 

OC 1            

Ntotal -0.212 1           

NH4
+-N -0.635 0.767 1          

C/Ntotal 0.928** -0.518 -0.776 1         

C/Norganic 0.021 -0.564 -0.080 0.252 1        

NH4
+-N/Ntotal -0.653 -0.104 0.544 -0.504 0.681 1       

Norganic/Ntotal 0.653 0.104 -0.544 0.504 -0.681 1.000** 1      

Nrel,net -0.863* 0.016 0.500 -0.675 0.284 0.693 -0.693 1     

Nmin,net 0.018 0.053 0.163 -0.120 -0.847* -0.583 0.583 -0.158 1    

Ntotal added -0.730 -0.032 0.281 -0.545 0.160 0.425 -0.425 0.929** -0.103 1   

NH4
+-N added -0.786 -0.096 0.525 -0.598 0.587 0.933** -0.933** 0.898** -0.488 0.722 1  

OC added 0.762 -0.625 -0.792 0.929** 0.356 -0.409 0.409 -0.381 -0.179 -0.196 -0.386 1 

OC: organic carbon (g kg-1); Ntotal: total N (g kg-1); Norganic: organic N (g kg-1); NH4
+-N: ammonium nitrogen (g kg-1); Nrel,net (%): mineral N released after 120 days of incubation (% 

of Ntotal applied); Nmin,net (%): mineral N mineralized after 120 days of incubation (% of Ntotal applied); Ntotal added: total N amount added via material application (mg); NH4
+-N 

added: NH4
+-N amount added via material application (mg); OC added: OC amount added via material application (mg). 

 * Significant at probability level p < 0.05 

** Significant at probability level p < 0.01  
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3.4 Discussion 

As expected, the highest Nrel,net (%) was observed in the CAN treatment, given that all N in CAN is 

present as mineral N. The Nrel,net pattern of mineral concentrates was similar to CAN. These observations 

are in line with our hypothesis that the Nrel,net of mineral concentrates will more closely follow the pattern 

of synthetic N fertilizer, and as such is not equal to the ones of animal manure. The average potential 

Nrel,net from mineral concentrates was higher as compared to other bio-based fertilizers. In the case of 

liquid fractions of digestate, the Nrel,net (%) was higher as compared to AM, but did not closely follow the 

pattern of synthetic N fertilizer. Moreover, a significant difference that was detected between Nrel,net (%) 

of liquid fractions of digestate, was probably caused by the input streams that were fed to the digester. 

LFDIG_AM contained 16% animal manure and 72% food waste compared to LFDIG_PLT which was 

the product of only plant (vegetable) inputs (50% energy maize and 50% food waste). Both animal 

manure and food waste are input streams known to increase NH4
+-N/Ntotal ratio of digestate. The food-

based digestate can contain c.80% of total N in the form of NH4
+-N (WRAP, 2016; Nicholson et al., 

2017). This could probably explain the higher amount of available N in LFDIG_AM compared to 

LFDIG_PLT (Table 3.1), which at the end led to higher Nrel,net. With Nrel,net (%) of 84 ± 3 and 68 ± 2, 

LFDIG_AM and LFDIG_PLT scored respectively 19 and 35 % lower Nrel,net as compared to CAN (Figure 

3.3). The N availability in liquid fractions of digestate may be increased by using animal manure or food 

waste as one of the feeds for anaerobic digestion, and not only plant (vegetable) residues. The Nrel,net 

from DIG was within the range reported by Alburquerque et al. (2012), where 44 – 84 % of total N 

present in four digestates was converted in NO3
--N after 56 days of incubation. Finally, the Nrel,net from 

AM and DIG was in accordance with Flemish and European legislation that assumes 60 % of applied 

total N from these materials is available for the crop in the growing season (Webb et al., 2010; FMD, 

2011). 

Along with the mineral N, bio-based materials may contain significant amounts of organic N which upon 

mineralization may also contribute to plant N availability. Addition of mineral N fertilizer to the soil has 

been reported to lead to a priming effect (Kuzyakov et al., 2000), resulting in increased N mineralization 

from soil organic matter as compared to unamended soil (Raun et al., 1998; Mulvaney et al., 2009). In 

the CAN treatment a maximum Nmin,net (%) of 3 ± 4 was recorded on day 120, i.e. no additional 

mineralization from SOM as compared to the control treatment, indicating throughout entire duration of 

the experiment that CAN application did not lead to a priming effect. In treatment MC_LFDIG, where 5 

% of applied total N was organic N, there was no Nmin,net. Similar behaviour was reported by Velthof 

(2015), where no clear difference was detected in N availability between the mineral concentrate 

(containing 5 - 10% organic N) and CAN during an incubation period of 54 days, suggesting that addition 

of mineral concentrate did not affect immobilization or mineralization of N in the soil. In the current study, 

MC_LFAM (20 % of organic N) reached the highest Nmin,net (% of total N applied) on day 120, amounting 

to 14 ± 1%. This can be seen as a result of applied treatment techniques. In the case of MC_LFDIG, 

anaerobic digestion was introduced in the treatment chain. This allowed conversion of organic N to 

NH4
+-N, subsequently reducing Norganic/Ntotal ratio in MC_LFDIG. However, this was not the case for 

MC_LFAM were anaerobic digestion was absent, leading to higher Norganic/Ntotal ratio and consequent 
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Nmin,net of the present organic N. Next, LFDIG_AM and LFDIG_PLT reached Nmin,net (%) of 6.8 ± 1.5 and 

6.1 ± 1.6, respectively, on day 120. The Nmin,net was faster in LFDIG_PLT treatment where already from 

day 60 onwards Nmin,net was detected. This can be attributed to a high Norganic/Ntotal and low NH4
+-N/Ntotal 

ratio in LFDIG_PLT compared to LFDIG_AM. Similar mineralization patterns were observed in AM and 

DIG treatments where Nmin,net (%) of 7.7 ± 1.5 and 12.2 ± 2.1, respectively, were reached on day 120.  

It is known that the Nrel,net and Nmin,net (%) are usually influenced by C/N and NH4
+-N/Ntotal ratio of applied 

bio-based materials (Azeez and Van Averbeke, 2010; Grigatti et al., 2011; Abubaker et al., 2012). In 

this chapter, we distinguished between the C/Ntotal and the C/Norganic ratio. According to the observed 

correlations, bio-based materials with relatively low C/Norganic and high NH4
+-N/Ntotal ratio would likely 

result in similar performance as synthetic N fertilizers. Finally, it is important to highlight that this 

experiment was conducted in the absence of plants whose presence might affect N mineralization and 

immobilization processes in soil. Thus, it is important to test these materials on a field scale with respect 

to their impact on crop yield and potential nitrate leaching.   

3.5 Conclusion 

The selected bio-based materials differed in their ability to release and mineralize N, depending on their 

feed characteristics and applied processing technique(s). The N release from MC was similar to CAN 

performance due to the high NH4
+-N/Ntotal ratio of these materials. Net N mineralization was observed 

for all materials containing more than 5% of organic N. However, additional release by mineralization 

contributed only to a limited extent (6-14%) on top of mineral N initially present in the materials. Overall, 

materials with relatively low C/Norganic and high NH4
+-N/Ntotal ratio might exhibit similar performance as 

synthetic N fertilizers.  
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Lettuce fertilized with synthetic N (CAN), acidified liquid fraction of digestate (LFDIG_A),  

non-acidified liquid fraction of digestate (LFDIG) and without fertilization (control) at harvest time 

(Picture: Mosaso Egbe, S.) 
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Abstract 

Acidification of manure, digestate and their processed derivatives has been proposed as a technique 

to, amongst others, mitigate ammonia (NH3) emissions related to application in the field. The current 

study investigated whether acidification of (i) animal manure (AM), (ii) liquid fraction of animal manure 

(LFAM), (iii) digestate (DIG) and (iv) liquid fraction of digestate (LFDIG) increases their nitrogen (N) 

fertilizer replacement value (NFRV) as compared to non-acidified counterparts, a mineral fertilizer 

control (calcium ammonium nitrate; CAN) and an unfertilized control. Performance of materials was 

evaluated from the perspective of (I) crop growth (yield, nutrient uptake and crop quality assessment) 

via a pot experiment with Lactuca sativa L. and (II) soil N dynamics (net N release (Nrel,net) and net N 

mineralization) via a soil incubation experiment. Crop yield of pots receiving bio-based materials 

performed ‘on par’ with CAN as compared to unfertilized control. This implies that mineral fertilizer 

substitutes derived from digestate or manure could potentially play a role in replacing fossil fuel based 

fertilizers, also in horticultural applications. However, our findings also suggest that acidification did not 

result in an increased use efficiency of applied N: NFRV of acidified materials were below those of non-

acidified materials and CAN control alike with crop yield on average 6-13% and 11-18% lower compared 

to non-acidified materials and the CAN treatment, respectively. A possible explanation for lower 

performance as compared to non-acidified materials could be an inhibitory delay in the Nrel,net, which in 

our experimental design proved to be negative for crops with short production cycles. This pattern was 

revealed in the incubation experiments in which Nrel,net in acidified materials remained below that of non-

acidified, in this study tentatively attributed to immobilization of mineral N. However, this negative effect 

on N availability should be reaffirmed in crops with longer production cycles. Finally, some interesting 

findings in regards with plant composition also warrant further in-depth investigation – e.g. crop Zn 

concentration in acidified treatments was significantly higher than that of non-acidified treatments. This 

implies that material pre-treatment may play a future role in biofortification and amelioration of (trace) 

element composition of crops (arguably for crops with longer production cycles).  

4.1 Introduction 

During and after application of animal manure to the soil, more than 50% of the applied N can be lost 

by NH3 emissions during the first 24h (Fangueiro et al., 2015; Insam et al., 2015). In the case of digestate 

and LF of digestate, the risk for NH3 volatilization may even be higher because anaerobic digestion 

increases the ammonium (NH4
+) concentration and the pH (Webb et al., 2013; Insam et al., 2015) as 

compared to untreated animal manure. Furthermore, a large proportion of N present in these materials 

is organically bound and needs to be mineralized before becoming available to plants. However, the 

synchronization of organic N mineralization and crop N demand is not always optimal (Schröder et al., 

2014). Potential losses of NH4
+ and nitrate (NO3

-) can reduce the apparent N recovery (ANR) and the N 

fertilizer replacement value (NFRV) of LF of animal manure, digestate and LF of digestate. The NFRV 

is highly dependent on the ratio of mineral and organic N. Hence, the NFRV of LF of animal manure, 
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digestate and LF of digestate is generally lower and more variable compared to synthetic N fertilizers 

(Schröder et al., 2014) which contain N only in mineral form. Moreover, as shown in Chapter 3, bio-

based materials with lower NH4
+-N/Ntotal ratio might result in lower N release.  

Acidification of animal slurry reduces the NH3 concentration relative to NH4
+ and thus may reduce NH3 

volatilization and subsequently increase NFRV (Kai et al., 2008; Sørensen and Eriksen, 2009; Fangueiro 

et al., 2015). Previous studies have shown that incorporation of acidified slurry can affect N dynamics 

in soil by stimulating N mineralization, decreasing potential N immobilization and delaying or inhibiting 

nitrification (Fangueiro et al., 2009; Fangueiro et al., 2010; Fangueiro et al., 2013). The mechanism 

behind these observations, however, is not yet clear (Fangueiro et al., 2015). Moreover, there is still a 

lack of knowledge on how acidification affects the nutrient availability and crop yield as pH reduction 

does not only affect changes in N dynamics, but also plant availability of other nutrients, including sulfur 

(S), phosphorus (P) and heavy metals. Current studies mostly focused on efficacy assessment of slurry 

acidification towards NH3 losses (Fangueiro et al., 2015). Less is known about the impact on NFRV, 

crop yield, N dynamics (i.e. N availability) in soil and plant availability of P, S, copper (Cu) and zinc (Zn).  

The aim of the chapter is to evaluate if acidification can increase the NFRV of (i) animal manure (AM), 

(ii) LF of animal manure (LFAM), (iii) digestate (DIG) and (iv) LF of digestate (LFDIG) in lettuce (Lactuca 

sativa L.) cultivation compared to the performance of the original materials (i.e. non-acidified) and 

calcium ammonium nitrate (CAN). This was done through the assessment of (i) lettuce growth (i.e. crop 

yield, crop nutrient uptake and crop quality assessment) and (ii) N dynamics in soil via a pot and an 

incubation experiment. In the pot experiment, lettuce was chosen as a test crop because of its high 

demand for N over a short time period (Leogrande et al., 2013) shallow rooting system, salt-sensitivity, 

high potential for metal absorption and the lack of knowledge on the effects of bio-based fertilizers on 

horticultural crops in particular (Montemurro et al., 2010; Leogrande et al., 2013; Montemurro et al., 

2015). The performance of selected materials was evaluated and compared to the conventional use of 

CAN and a control (i.e. no fertilization) treatment. It was hypothesized that acidified materials would 

have: i) higher NFRV, ii) higher yield, iii) lower potential for N immobilization and iv) higher crop S, P, 

Cu and Zn concentration, as compared to non-acidified materials. 

4.2 Materials and methods 

4.2.1 Bio-based material collection, analysis and acidification 

Raw and LF of AM were collected at a pig farm (Pittem, Belgium), whereas DIG and its LF were obtained 

from an anaerobic co-digestion plant (Deinze, Belgium). The feed of the installation (capacity: 60,000 

tonnes y-1, 3.51 MWel) consisted of agricultural waste (20% animal manure and 30% other agricultural 

residues) and waste from the food industry (50%). The LFAM and LFDIG were obtained through a 

centrifuge. All bio-based materials were collected in polyethylene sampling bottles (2 L), stored (4 °C) 

and analyzed to determine their physicochemical characteristics (Table 4.1).  
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Product DM, OM, OC, EC, pH, total N, NH4
+-N and NO3

--N were determined as described in section 

3.2.2 (Chapter 3). After determination of OM, samples were subjected to hot plate mineralization 

digestion (5 ml 6N HNO3 and 5 ml 3N HNO3) and filtered (Van Ranst et al., 1999). From filtered 

suspension total P was analyzed using the colorimetric Scheel method (Van Ranst et al., 1999), while 

total K, S, Cu and Zn were analyzed using Inductively coupled plasma optical emission spectrometry 

(ICP-OES) (Varian Vista MPX, USA).  

One part of the organic material was preserved at the original pH, while another part was acidified to pH 

5.5. This pH value is considered as a target pH for commercial in-house acidification systems (Fangueiro 

et al., 2015) and as has also been selected in previously published studies on slurry acidification 

(Sørensen and Eriksen, 2009; Fangueiro et al., 2016). To this end, ± 250 ml of fresh sample was 

transferred to a 500 ml media storage bottle, and acidified by the addition of 5M H2SO4 (96% H2SO4) 

under continuous stirring and pH monitoring using a Metrohm titration device. Titration was done one 

day prior to the experiment at low addition rate to avoid foaming and allow sufficient time for pH 

stabilization. Acidified materials were stored at 4°C and approximately one hour prior to the experiment 

pH was measured to determine any potential pH increase due the buffer capacity of the materials. The 

pH increase was observed by c. 0.5 units and subsequently adjusted to pH 5.5. The non-acidified 

treatments were treated in exactly the same way, with the exception of acid addition. To reduce the 

initial pH (≈ 8) of materials to the pH level of 5.5, 18 g H2SO4 l-1 material-1 was required for AM and its 

LF, while 27 g H2SO4 l-1 material-1 was added for acidification of DIG and LF of digestate. These 

quantities are in agreement with the ones reported by Schoumans et al. (2014), but higher than the ones 

reported by Kai et al. (2008) and Sørensen and Eriksen (2009). The required amount of acid can differ 

for different types of manure, because animal type, feed type and duration of storage influences the 

composition and hence the buffer capacity of manure (Schoumans et al., 2014). In co-digestion, the 

type of used substrates next to the animal manure influences additionally the buffer capacity of 

digestate.  

After titration, the media storage bottles were closed with screw caps that had an opening hole through 

which a rubber tube was connected to perform NH3 measurements. The bottles were left for half an hour 

to stabilize after the titration. During this stabilization period the rubber tubes were closed with tubing 

pinch plastic clamps to prevent loss of NH3. After the stabilization period NH3 was measured by using 

gas aspirating pump connected to a NH3 gas detector tube with a 0.2-20 ppm sampling range (Kitagawa, 

Japan), where NH3 concentration can be read directly in ppm using the detection tube calibrated scale. 

For non-acidified materials measured NH3 concentrations were above (> 20 ppm) the reagent tube 

detection limit, while for acidified materials they fell below the detection limit of 0.2 ppm. 
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Table 4.1 Characterization of bio-based materials (n=2) on fresh weight (FW) basis. 

Parameter AM AM_A LFAM LFAM_A DIG DIG_A LFDIG LFDIG_A 

DM (g kg-1) 32 ± 0 ND 19 ± 0 ND 139 ± 1 ND 92 ± 1 ND 

OM (g kg-1)  17 ± 0 ND 8.9 ± 0.3 ND 85 ± 0 ND 53 ± 0 ND 

OC (g kg-1)  9.5 ± 0.1 ND 4.9 ± 0.2 ND 47 ± 0 ND 30 ± 0 ND 

pH 7.9 5.6 8.1 5.5 8.1 5.4 8.4 5.5 

EC (dS m-1) 26 ND 29 ND 36 ND 42 ND 

Ntotal (g kg-1) 4.96 ± 0.14 5.13 ± 0.13 4.37 ± 0.09 4.39 ± 0.04 5.66 ± 0.23 5.50 ± 0.34 4.10 ± 0.37 4.10 ± 0.29 

NH4
+-N (g kg-1) 2.79 ± 0.25 2.96 ± 0.05 2.80 ± 0.08 2.71 ± 0.06 3.25 ± 0.11 3.11 ± 0.10 3.35 ± 0.05 3.27 ± 0.08 

NO3
--N (g kg-1) <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 

NH4
+-N/ Ntotal 0.56 0.58 0.64 0.62 0.57 0.56 0.82 0.80 

Ptotal (g kg-1) 0.5 ± 0.0 ND 0.1 ± 0.0 ND 2.4 ± 0.1 ND 1.6 ± 0.1 ND 

Ktotal (g kg-1) 3.0 ± 0.1 ND 3.1 ± 0.1 ND 3.5 ± 0.2 ND 3.7 ± 0.3 ND 

Stotal (g kg-1) 0.2 ± 0.0 ND 0.3 ± 0.0 ND 0.9 ± 0.0 ND 0.7 ± 0.0 ND 

Cutotal (mg kg-1) 31 ± 1 ND 24 ± 2 ND 17 ± 0 ND 15 ± 1 ND 

Zntotal (mg kg-1) 46 ± 3 ND 24 ± 8 ND 32 ± 0 ND 26 ± 4 ND 

DM: dry matter; OM: organic matter; OC: organic carbon; EC: electrical conductivity; ND: not determined; AM: animal manure; LFAM: liquid fraction of animal manure; DIG: 

digestate; LFDIG: liquid fraction of digestate; _A: acidified. 
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4.2.2 Soil collection and analysis 

All experiments involved a loamy sand (USDA texture triangle: 4% clay, 75% sand and 21% loam 

fraction) soil, randomly collected from the surface layer (0-30 cm) of an arable field in Beernem, Belgium. 

The preceding crop was maize which was harvested three months before soil sampling. Subsamples of 

field-moist soil were taken for the physicochemical determination. The soil moisture content, OM, OC, 

pH-KCl, total N, NO3
--N and NH4

+-N were determined as described in section 3.2.1 (Chapter 3). Soil EC 

was measured with a WTW-LF537 (Germany) electrode after equilibration for 30 min in deionized water 

at a 5:1 liquid to dry sample ratio and subsequent filtration (MN 640 m, Macherey–Nagel, Germany). 

After aqua regia digestion (1 g sample + 7.5 ml HCl, 2.5 ml HNO3 and 2.5 ml demineralized water), at 

harvest time, total P was analyzed using the colorimetric Scheel method (Van Ranst et al., 1999), while 

total K, S, Cu and Zn were analyzed using ICP-OES. The soil to be used for the pot trial and the 

incubation experiment was air-dried, sieved to 2 mm and stored before use. 

4.2.3 Pot experiment and plant analysis 

A pot experiment with lettuce (Lactuca sativa L., cv. Cosmopolia) was conducted in 1.7 l conical pots of 

13 cm height with bottom and top diameters of 12 cm and 16 cm, respectively. Each pot contained 1.7 

kg of air-dried soil, corresponding to 10 cm of pot height. One day prior to the pot experiment, 100 ml of 

demineralized water was added per 1 kg of air-dried soil in order to assure homogenous mixing with 

materials. The pots were filled in two steps. First 500 g of soil was added directly to the pots. The 

remaining soil was mixed with the respective fertilizer materials (Table 4.2) and subsequently added to 

the pots. In total, 10 different fertilization treatments in triplicate pots were tested: control (i.e. not 

fertilization), CAN, non-acidified (AM) and acidified (AM_A) AM, non-acidified (LFAM) and acidified 

(LFAM_A) LFAM, non-acidified (DIG) and acidified (DIG_A) DIG, non-acidified (LFDIG) and acidified 

(LFDIG_A) LFDIG. The fertilization advice on a per-hectare basis was recalculated on a weight basis 

(equivalent to the weight of soil per pot). The material application rate was calculated (Table 4.2) 

according to the nutrient requirements for lettuce (210 N, 125 P2O5 and 240 K2O kg ha−1; personal 

communication PCG) by taking into consideration the nutrient value of fertilizers (Table 4.1). In each pot 

an equal amount of Ntotal was applied amounting to 77 mg N pot-1. Due to a technical error, 72 mg N pot-

1 was added in LFDIG and LFDIG_A treatment. This was taken into consideration while calculating ANR. 

In order to achieve an equal application of P and K in all treatments, triple superphosphate (TSP; 46 % 

P2O5) and potassium sulfate (PAT; 30 % K2O, 10 % MgO and 42.5 % SO3) were added as additional 

sources of P and K, respectively (Table 4.2). It should be noted that while satisfying the Ntotal 

requirements of lettuce in DIG, DIG_A, LFDIG and LFDIG_A treatments, P was applied in excess via 

material application (i.e. no need for additional TSP application). After fertilization, one lettuce plant with 

a 5 cm soil block was transplanted in each pot and additional water was added to reach 60 % water 

holding capacity (WHC). The WHC was measured according to Meers et al. (2006). Pots were placed 

on a metal shelf where they were exposed to artificial light (Brite-grow bio-growth light) of 2000 lx for 12 

h day-1. The pots were kept at 20°C for 54 days. On daily basis water was added to maintain soil moisture 

at 60 % of WHC. The pots were randomized once a week. 
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Table 4.2 Material (g pot-1; pot = 1.7 kg of soil) and total nutrient (mg pot-1) application per pot for tested treatments 

(n=3). The same amount of the material was added in acidified and non-acidified treatments.  

Treatment 
Material amount (g pot-1)b Total applied (mg pot-1) 

CAN TSP PAT AM LFAM DIG LFDIG Ntotal Mineral N P2O5 K2O 

Control - - - - - - - - - - - 

CAN 0.28 0.10 0.29 - - - - 77 77 46 87 

AM / AM_A - 0.06 0.11 15.43 - - - 77 43 46 87 

LFAM / LFAMA - 0.09 0.07 - 17.54 - - 77 49 46 87 

DIG / DIG_A - - 0.10 - - 13.53 - 77 44 73 87 

LFDIG / LFDIG_A - - 0.03 - - - 17.54a 72 a 59 a 63 a 82 a 

CAN: calcium ammonium nitrate; TSP: triple superphosphate; PAT: potassium sulfate; AM: animal manure; LFAM: 

liquid fraction of animal manure; DIG: digestate; LFDIG: liquid fraction of digestate; _A: acidified. 

a Due to the technical error, 17.54 g of material was applied instead of 18.67 g. Hence, fewer nutrients were applied 

as compared to other treatments. 

b Material amount on hectare basis corresponds to 0.78, 42, 48, 37 and 51 tonnes ha-1 for CAN, AM / AM_A, LFAM 

/ LFAM_A, DIG / DIG_A, LFDIG / LFDIG_A, respectively.  

 

After 54 days, the lettuce was harvested. Prior to harvest, crop quality control was conducted with 

respect to tipburn, basal rot, yellow leaves, presence of bremia, crop volume and uniformity as described 

in Sigurnjak et al. (2016; Chapter 5, section 5.2.3). At harvest, the plants were clipped from the root with 

a knife and cleaned with demineralized water from soil particles where needed. The fresh weight (FW) 

was recorded and DM was determined by oven drying at 60oC for 48 h. The dried samples were ground 

and sieved to <1 mm using a Culatti DCFH 48 grinder (GE), and subsequently incinerated for 4 h at 

550°C to determine the ash content. The measured macro- and micronutrients were analyzed after hot 

plate mineralization digestion as described in section 4.2.1, except for total S content for which 0.2 g of 

plant material mixed with 2.5 ml H2O2 and 2.5 ml HNO3 was allowed to stand for 12 h followed by 

microwave heating (CEM MARS 5, BE) at 600W for 10 min at 55°C, 10 min at 75°C and 30 min at 100°C 

(Van Ranst et al., 1999). The NO3
- in lettuce was determined according to Anderson and Case (1999). 

Finally, in order to evaluate the fertilizer value of tested materials in terms of N, ANR and NFRV were 

determined as described in Chapter 1. 

4.2.4 N incubation experiment 

The same soil as in the pot experiment was used for the incubation experiment, but was first pre-

incubated at 35 % water filled pore space (WFPS) for one week at 25°C in the dark. At the start of the 

incubation experiment, materials were thoroughly mixed with 260 g of pre-incubated soil (equivalent to 

234 g of air-dried soil) at a rate of 210 kg N ha-1, calculated on a weight basis as in the pot experiment, 

and the mixture of soil and material was placed in PVC tubes with a diameter of 4.6 cm and 18 cm in 

length. The soil was brought to a bulk density of 1.4 Mg m-3, by compacting the mixture to a height of 10 

cm. The same ten treatments were used as in the pot experiment, but no additional P and K was added. 

The moisture content of the soil for the incubations was adjusted to 50 % of WFPS, and the tubes were 
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covered with a single layer of pin-holed gas permeable parafilm to minimize water loss whilst allowing 

air exchange. The total weight of the tubes was recorded and subsequently incubated at 15°C. The 

moisture content was monitored weekly during the incubation period by weighing the tubes and 

maintaining them at 50 % WFPS by adding demineralized water when needed. Three separate 

replicates of the nine treatments and the control were analyzed at day 20, 40, 60, 80, 100 and 120 by 

removing intact tubes. The soil was removed from the tubes, mixed thoroughly, and analyzed for soil 

NO3
--N and NH4

+-N as described in section 3.2.1 (Chapter 3). 

4.2.5 Data analysis 

The net N release (Nrel,net) from the added materials and the net N mineralization (Nmin,net) were 

calculated according to Eq. 5 and Eq. 6 (section 3.2.4, Chapter 3). Statistical analysis was performed 

using SPSS statistical software (version 22.0; SPSS Inc., Chicago, IL). One-way ANOVA was used to 

determine the effect of the applied fertilizers on soil properties along with the effect on crop yield and 

crop nutrient concentration, based on the obtained physicochemical data. When significant differences 

between means were observed, additional post hoc assessment was performed using Tukey’s Test (p 

< 0.05, n=3). The condition of normality was checked using the Shapiro-Wilk test, whereas the 

homogeneity was tested with the Levene Test. Significant parameter correlations were determined using 

the Pearson correlation coefficient (r).  

4.3 Results 

4.3.1 Initial properties of soil and materials 

The soil characteristics of the 0-30 cm soil layer prior the experiment were pH-KCl = 4.9; EC = 0.092 dS 

m-1; OC = 1.3%; NO3
--N = 0.65 mg kg-1; NH4

+-N = 1.05 mg kg-1; Ntotal = 1.1 g kg-1. The relatively low 

mineral N levels of the test soil allowed for the impact of applied materials on N dynamics to be more 

clearly observed. 

With respect to material properties, acidification did not influence Ntotal, NH4
+-N and NO3

--N concentration 

of the materials (Table 4.1). This observation is in agreement with other studies on acidification of pig 

slurry (Sørensen and Eriksen, 2009; Fangueiro et al., 2016). From the NH4
+-N/Ntotal ratio of tested 

materials, it is clear that mechanical separation up-concentrates mineral N. Hence, LFAM and LFDIG 

had 12% and 30% higher NH4
+-N/Ntotal ratio than their corresponding raw fractions.  

4.3.2 Pot experiment 

Crop yield, nutrient concentration and NFRV 

The lowest crop FW yield of 38 g pot-1 was recorded in the control (Table 4.3). Non-acidified treatments 

had similar crop yields as the CAN treatment. The only exception was LFDIG treatment (p < 0.05) which 

had a 12%, 9%, 11% and 9% higher crop yield as compared to CAN, AM, LFAM and DIG treatments, 
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respectively. On average, lower crop yields were recorded in acidified treatments. Treatments LFAM_A, 

DIG_A and LFDIG_A had 13%, 10% and 12% lower crop yield (p < 0.05), respectively, as compared to 

their non-acidified fractions (i.e. non-acidified treatments). Only in AM_A the FW yield was not 

significantly (p > 0.05) lower from the FW yield in the AM treatment. The lettuce DM yield was lower in 

DIG, DIG_A, LFDIG and LFDIG_A treatments compared to other fertilization scenarios, including the 

control (Table 4.3). With regard to the observed influence of tested treatments on crop yield and crop N 

uptake, the lowest ANR values, and consequently NFRV values, were obtained for acidified treatments 

(Table 4.3). The highest ANR value was observed for CAN, followed by untreated materials. 

The highest Ntotal concentration on average was measured in CAN and non-acidified treatments (Table 

4.3). Even though there were no significant differences between acidified and non-acidified fraction of 

the tested materials with respect to crop Ntotal concentration, the measured crop Ntotal concentration in 

acidified treatments was significantly lower (p<0.05) compared to the CAN treatment. With respect to 

crop Ptotal and Ktotal concentration, there were no differences between acidified and non-acidified fraction 

of the respective materials. Fertilization with CAN and acidified materials led to similar Stotal 

concentration in lettuce. These concentrations of Stotal were significantly higher (p<0.05) than the ones 

detected in non-acidified treatments. Significantly higher Zntotal concentrations were found in lettuce that 

was fertilized with acidified materials, but there was no influence of treatments on crop Cutotal 

concentration. The former may be relevant for biofortification and amelioration of (trace) elements of 

crops. 

No differences were observed between the fertilizer treatments with respect to tipburn (average score: 

6.8 ± 0.6), basal rot (average score: 6.2 ± 0.6), yellow leaves (average score: 6.4 ± 0.6), presence of 

bremia (average score 9 ± 0), crop volume (average score: 6.1 ± 0.6) and uniformity (average score: 

6.5 ± 0.5). Quality parameters with a high score such as those observed for bremia indicate complete 

absence of the disease. The control treatment scored lower with respect to head volume and yellow 

leaves (Table 4.4) as a result of N deficiency. The NO3
- concentration in lettuce was in the order: CAN 

> non-acidified treatments > acidified treatments > control. 
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Table 4.3 Mean values ± standard deviation of plant fresh weight (FW), dry matter (DM), plant nutrient concentration (on DM basis), apparent nitrogen recovery (ANR) and 

nitrogen fertilizer replacement value (NFRV) for ten different treatments (n=3) at harvest.  

Control: no fertilization; CAN: calcium ammonium nitrate; AM: animal manure; LFAM: liquid fraction of animal manure; DIG: digestate; LFDIG: liquid fraction of digestate; _A: 

acidified. Mean values denoted by the same letter in a row are not statistically different according to Tukey’s test at the 5% probabili ty level. The difference is denoted only by 

comparing the acidified and non-acidified fraction of the tested material with (or without in the case of NFRV) the control and CAN treatment. CAN treatment as a reference was 

considered to be 100% efficient.

Parameter Control CAN AM AM_A LFAM LFAM_A DIG DIG_A LFDIG LFDIG_A 

FW (g pot-1) 38 ± 4a 69 ± 2c 71 ± 2c 67 ± 3c 69 ± 5c 60 ± 2b 71± 2c 64 ± 2b 78 ± 0d 69 ± 4c 

DM (%) 8.5 ± 0.6c 7.8 ± 0.7bc 7.5 ± 0.6c 7.3 ± 0.7c 7.5 ± 0.6c 8.5 ± 0.5c 6.3 ± 0.5a 7.1 ± 0.4ab  6.2 ± 0.4a 6.6 ± 0.3a 

N total (g kg-1) 15.2 ± 1.2a 22.7 ± 1.6c 21.2 ± 2.0bc 20.3 ± 0.7b 20.7 ± 0.7bc 18.7 ± 1.3b 22.1 ± 1.8bc 20.0 ± 0.7b 22.1 ± 1.7bc 19.8 ± 0.7b 

P total (g kg-1) 4.0 ± 0.1a 5.2 ± 0.4c 4.7 ± 0.2bc 4.7 ± 0.3bc 4.2 ± 0.2a 4.0 ± 0.0a 4.4 ± 0.1ab 4.5 ± 0.3bc 4.8 ± 0.3bc 4.4 ± 0.1a 

K total (g kg-1) 35 ± 2a 32 ± 1a 35 ± 3ab 39 ± 1b 38 ± 1ba 39 ± 1b 39 ± 1b 40 ± 5ba 34 ± 4ba 42 ± 4b 

S total (g kg-1) 1.7 ± 0.1a 2.8 ± 0.2c 2.4 ± 0.1b 2.7 ± 0.1c 2.4 ± 0.1b 2.8 ± 0.2c 2.2 ± 0.1b 2.6 ± 0.0c 2.2 ± 0.1b 2.6 ± 0.1c 

Cu total (mg kg-1) 8.3 ± 2.0ab 8.4 ± 1.2b 7.0 ± 1.3ab 6.5 ± 0.3a 6.1 ± 0.2a 8.3 ± 0.7b 7.3 ± 1.1b 7.2 ± 0.7b 7.3 ± 1.3b 6.8 ± 0.4b 

Zn total (mg kg-1) 43 ± 4a 51 ± 4ab 44 ± 4a 61 ± 6b 53 ± 6a 75 ± 10c 46 ± 3a 77 ± 8c 54 ± 5b 83 ± 8c 

ANR - 0.94 ± 0.00c 0.82 ± 0.03a 0.65 ± 0.15a 0.74 ± 0.04b 0.61 ± 0.08a 0.65 ± 0.05a 0.55 ± 0.05a 0.79 ± 0.03b 0.58 ± 0.07a 

NFRV (%) - 100a 87 ± 4b 69 ± 16b 78 ± 4b 64 ± 9a 69 ± 5a 58 ± 6a 84 ± 3b 61 ± 7a 
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Table 4.4 Observation score for lettuce volume (1 = small volume, 9 = voluminous) and yellow leaves (1 = much 

and 9 = absent) during the growing period (day 34) and at harvest, including crop nitrate concentration (mg NO3 kg-

1 FW), as a part of crop quality assessment for ten different fertilization treatments (n=3).  

Treatment 

 During growing period  Harvest 

 Volume Yellow leaves  Volume Yellow leaves mg NO3 kg-1 FW 

Control  4.67 a 6.33 a  2.67 a 4.33 a 11 ± 3 a 

CAN  7.67 b 8.33 b  6.63 b 6.67 b 295 ± 32 d 

AM  7.33 b 7.67 b  6.67 b 5.67 b 114 ± 26 c 

AM_A  7.33 b 7.67 b  5.67 b 6.33 b 40 ± 13 b 

LFAM  7.67 b 8.00 b  6.67 b 6.33 b 126 ± 31 c 

LFAM_A  7.33 b 8.00 b  6.00 b 7.00 b 53 ± 4 b 

DIG  6.67 b 8.00 b  6.00 b 6.67 b 145 ± 31 c 

DIG_A  7.33 b 7.67 b  5.33 b 6.00 b 61 ± 10 b 

LFDIG  7.67 b 8.00 b  6.67 b 6.67 b 128 ± 28 c 

LFDIG_A  7.00 b 8.33 b  6.00 b 6.63 b 51 ± 20 b 

Control: no fertilization; CAN: calcium ammonium nitrate; AM: animal manure; LFAM: liquid fraction of animal 

manure; DIG: digestate; LFDIG: liquid fraction of digestate; _A: acidified. Mean values denoted by the same letter 

in a column are not statistically different according to Tukey’s test at the 5% probability level.  

 

Soil properties at harvest 

There was no difference in soil pH between acidified bio-based materials and their respective non-

acidified fraction, except for DIG and DIG_A (Table 4.5). The lowest concentrations of soil EC5:1 and 

Stotal were measured in the control, while the highest concentrations were detected in acidified 

treatments. There were no significant differences in soil Ptotal and Ktotal concentrations observed among 

the ten treatments. With regard to Cutotal and Zntotal concentration, small variations were observed for 

Zntotal concentration in soil, but they were not significant (p>0.05). 

 

4.3.3 N release and mineralization 

 

Application of acidified or non-acidified materials led to significant increases in soil NH4
+-N 

concentration, which decreased over time and from day 20 reached values lower than 5 mg NH4
+-N kg-

1 (Figure 4.1). The NO3
--N content of used materials was negligible (except for CAN), and as such NO3

-

-N concentration of amended treatments at day 0 equals to that of unfertilized treatment. The 

concentration of NO3
--N in non-acidified treatments was always significantly (p < 0.05) higher than in 

soils amended with acidified materials (Figure 4.1). 
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Table 4.5 Soil characterization as mean ± standard deviation of three independent samples at harvest. Soil nutrient concentrations are expressed on dry matter (DM) basis. 

Parameter Control CAN AM AM_A LFAM LFAM_A DIG DIG_A LFDIG LFDIG_A 

Moisture (%) 18 ± 1a 15 ± 0c 17 ± 1ab 16 ± 0b 15 ± 1c 16 ± 1ac 15 ± 0c 15 ± 0c 14 ± 1c 16 ± 1ac 

OM (%) 2.6 ± 0.0a 2.5 ± 0.1a 3.0 ± 0.4a 2.6 ± 0.0a 2.8 ± 0.0b 2.8 ± 0.1b 2.7 ± 0.0b 2.7 ± 0.1ab 2.8 ± 0.2ba 3.0 ± 0.3b 

pH-KCl 4.8 ± 0.1c 4.6 ± 0.0b 4.7 ± 0.0c 4.6 ± 0.1bc 4.6 ± 0.1abc 4.5 ± 0.0a 4.7 ± 0.1c 4.4 ± 0.0a 4.6 ± 0.0b 4.5 ± 0.1b 

EC 5:1 (dS m-1) 0.05 ± 0.00a 0.09 ± 0.00b 0.08 ± 0.01b 0.15 ± 0.02d 0.06 ± 0.00a 0.13 ± 0.00d 0.07 ± 0.01c 0.16 ± 0.01d 0.06 ± 0.00a 0.17 ± 0.01d 

N total (g kg-1) 1.1 ± 0.1 1.0 ± 0.1 1.1 ± 0.0 1.0 ± 0.1 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.1 

P total (mg kg-1) 775 ± 40 755 ± 29 772 ± 22 783 ± 27 769 ± 38 799 ± 14 753 ± 41 742 ± 24 753 ± 24 770 ± 51 

K total (mg kg-1) 609 ± 77 658 ± 22 692 ± 92 670 ± 13 664 ± 29 620 ± 63 685 ± 11 702 ± 40 656 ± 36 684 ± 90 

S total (mg kg-1)  143 ± 3a 159 ± 9b 189 ± 8c 253 ± 10d 212 ± 7c 255 ± 4d 193 ± 18c 236 ± 10d 167 ± 9bc 236 ± 16d 

Cu total (mg kg-1) 16 ± 0 16 ± 2 16 ± 0 16 ± 0 15 ± 1 15 ± 1 16 ± 0 15 ± 1 16 ± 0 15 ± 1 

Zn total (mg kg-1) 23 ± 1b 26 ± 2bc 25 ± 0c 24 ± 1bc 21 ± 2b 21 ± 1b 20 ± 1a 20 ± 1a 21 ± 1a 21 ± 2ab 

OM: organic matter; EC5:1: electrical conductivity (L:S ratio = 5:1); Control: no fertilization; CAN: calcium ammonium nitrate; AM: animal manure; LFAM: liquid fraction of animal 

manure; DIG: digestate; LFDIG: liquid fraction of digestate; _A: acidified. Mean values denoted by the same letter in a row are not statistically different according to Tukey’s test 

at the 5% probability level. The difference is denoted only by comparing the acidified and non-acidified fraction of the tested material with the control and CAN treatment.  
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The average N release over the entire incubation experiment, was in the order: CAN > non-acidified 

treatments > acidified treatments (Figure 4.2). In the non-acidified treatments the highest Nrel,net was 

observed for LFDIG (88±2%), followed by AM (81±2%), LFAM (76±2%) and DIG (76±8%). The average 

Nmin,net (% of added total N) measured in LFDIG, AM, LFAM and DIG at day 120 was 6±2%, 25±2%, 

12±2% and 19±8%, respectively. For acidified treatments N immobilization occurred from the start of 

the incubation experiment, and no net N mineralization was observed throughout the incubation 

experiment. After 60 to 80 days, levels of soil mineral N in LFAM_A, AM_A and DIG_A reached 

approximately the initial mineral N level present at t=0. Only in LFDIG_A, mineral N continued to be 

immobilized, and at the end (t=120) was 34±5 % lower compared to the initial mineral N concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Evolution of mineral N (mg kg-1 soil) in an unamended soil and soil treated with bio-based and synthetic 

fertilizers (n=3) during 120-day incubation experiment (mean ± standard deviation; where absent, error bars fall 

within symbols). AM: animal manure; DIG: digestate; LFDIG: liquid fraction of digestate; LFAM: liquid fraction of 

animal manure; CAN: calcium ammonium nitrate; _A: acidified.
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Figure 4.2 N release (Nrel,net; %) relative to the N input during the incubation experiment. The Nrel,net at t=0 is the percentage of mineral N initially present in the material (dashed 

line for CAN and solid line for tested material). Values observed above the line indicate net N mineralization, while values below the line indicate net N immobilization. Error bars 

indicate standard deviation (n=3). AM: animal manure; DIG: digestate; LFDIG: liquid fraction of digestate; LFAM: liquid fraction of animal manure; CAN: calcium ammonium 

nitrate; _A: acidified.  
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4.4 Discussion 

4.4.1 Effect of acidification on N release and mineralization 

Acidification is primarily used as a tool to reduce NH3 volatilization from the manure/digestate 

management chain, which might indirectly induce changes in soil N dynamics and NFRV upon land 

application of acidified materials. Findings from previous studies with regard to the impact of acidified 

pig slurry on N dynamics relative to untreated slurry have been variable. While Sørensen and Eriksen 

(2009) found no particular effects, Fangueiro et al. (2009; 2010; 2013) observed a stimulation of N 

mineralization and a delay or inhibition of nitrification with acidified pig and cattle slurry on sandy soil. In 

the present study on loamy sand soil, acidification led to N immobilization in all acidified treatments, 

while in non-acidified treatments N mineralization was detected (Figure 4.2). This is in contrast to our 

third research hypothesis and to previously reported observations (Fangueiro et al., 2009; Fangueiro et 

al., 2010; Fangueiro et al., 2013). However, a recent study by Fangueiro et al. (2016) reported that the 

application of acidified slurry can lead to a more significant immobilization and as such have little effect 

on N mineralization, depending on soli characteristics. It has been proposed that the effect of slurry 

acidification might be mitigated in soils with a high buffer capacity, high carbonate content and in which 

no change in pH occurs following the application of acidified materials (Fangueiro et al., 2016). 

Moreover, we cannot exclude the possibility that acidification might have triggered the release of 

substances that inhibited the activity of microorganisms or their enzymes, consequently causing the 

observed N immobilization in acidified treatments. This type of negative priming effect was reported by 

Kuzyakov et al. (2000) and was attributed to the release of substances that are toxic for microbial 

community. Currently, there is a significant lack of knowledge regarding the effect of acidification on the 

microbial community (Fangueiro et al., 2015), which should be definitely tackled in the future to clarify 

the mechanisms behind these observations.  

Acidification resulted in a significant and consistent decrease in Nrel,net (%) as compared to non-acidified 

materials. While in most of the acidified treatments the initial mineral N level present in materials at t=0 

was reached from day 60, in LFDIG_A treatment strong N immobilization was detected throughout the 

entire incubation experiment. The reason probably lies in the amount of applied NH4
+-N, which was on 

average 20-30% higher in LFDIG_A treatment as compared to other acidified treatments. Moreover, a 

negative correlation (r= -0.989, p<0.05) was found between applied NH4
+-N and Nmin,net (%) among 

acidified treatments, meaning the lower amount of NH4
+-N is applied the higher Nmin,net (%) will be.  

As expected, the highest Nrel,net (%) on average at day 120 was observed with CAN application. During 

the 120 days (with an exception on the day 100) of the incubation experiment, the Nrel,net (%) in CAN 

treatment was significantly higher as compared to DIG, AM and LFAM treatments. A significant 

difference between LFDIG and CAN treatment was observed only during the first 20 days. Afterwards, 

there was no significant difference in Nrel,net (%) between these two treatments. The high Nrel,net (%) in 

LFDIG treatment was probably influenced by the initially present amount of mineral N (82% of total N), 

which was the highest of all non-acidified treatments.  
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The inhibition or in this case the reduction of the Nrel,net (%) in acidified treatments is of high importance 

considering the potential risk of NO3
- leaching that might occur by applying bio-based fertilizers in an 

open field cultivation. This is especially relevant at the beginning of the growing season when plants are 

too small to take up large amounts of N and excess mineral N might be leached in case of excess 

precipitation. However, N leaching losses may be increased if Nrel,net is postponed too long after the peak 

in crop N uptake. 

4.4.2 Effect of acidification on crop growth and soil properties 

In contrast to our hypothesis, acidification did not indirectly lead to an increase of lettuce FW yields, but 

rather had a tendency towards moderate decrease of the marketable yield (Table 4.3). The reduction of 

NH3 losses via acidification may not necessarily be reflected in an increase of the crop yield. The impact 

of other parameters on lettuce yield should be investigated.  

As a salt sensitive crop, lettuce can react negatively on the increase of soil salt content. In this study, by 

the direct addition of H2SO4, soil EC5:1 (Table 4.5) and consequently crop Stotal concentration (Table 4.3) 

increased by 46-68% and 15%, respectively, compared to non-acidified treatments. Nevertheless, no 

correlations were found between crop FW yield and soil EC5:1 content. Also, the measured EC5:1 values 

remain far below the upper limit value of 1.8 dS m-1 set for the lettuce (Sigurnjak et al., 2016; Chapter 

5). The lettuce FW yield in fertilized treatments was positively correlated with the crop Ntotal concentration 

(r=0.513, p<0.01) which on average was lower with acidified materials (Table 4.3). This can be attributed 

to the decrease of Nrel,net (%; r=0.629, p<0.01) as observed after the application of acidified materials 

(Figure 4.2). This was especially evident in the N incubation test where for all acidified materials fast N 

immobilization occurred within the first 20 days after application, followed by a period of decrease in net 

N immobilization. Nevertheless, the Nrel,net (%) of acidified materials did not reach the initial (t=0) level of 

mineral N before day 60. Taking into consideration that the crop cultivation cycle was 54 days, it seems 

that lettuce in acidified treatments did not receive an equal amount of plant available N despite equal 

mineral N application rate as in non-acidified treatments (Table 4.2). This occurred probably due to the 

reduced N availability, as also evident in the crop NO3
- concentration which was the lowest in acidified 

treatments and the control (Table 4.4). Therefore, acidification might not indirectly lead to a higher NFRV 

of bio-based fertilizers applied in crops with a short cultivation cycle such as lettuce. 

On the other hand, when comparing the performance of non-acidified materials with CAN, only the 

application of LFDIG increased the lettuce FW yield on average by 10% as compared to CAN application 

(Table 4.3). LFDIG is a non-acidified material with the highest amount of initially present mineral N (NH4-

N/Ntotal ratio = 82%) and also a material whose P contribution exceeded the crop P requirements (i.e. 

125 kg P2O5 ha-1). The impact of P over-fertilization on crop FW yield can be excluded since DIG 

treatment with similar P levels exhibited lower FW yield as compared to LFDIG treatment. Note that 

LFDIG was also the material whose application brought the amount of mineral N comparable to the one 

applied via CAN application. On top of that, Nmin,net (%) from organic N in LFDIG might additionally 

increase the Nrel,net (%) from this material. In the N incubation test it can be seen that between day 40 – 

60 (i.e. the time that corresponds to the end of lettuce growth (54 days), there was no significant 
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difference between the Nrel,net (%) of CAN and LFDIG (Figure 4.2). Hence, it is possible that application 

of LFDIG with high mineral N content slightly increase the lettuce FW yield. These results are supported 

by Tampio et al. (2016) where in a pot experiment 5 different urban digestates produced 5-30% higher 

ryegrass yields compared to synthetic N fertilizer (NH4NO3) with a similar N concentration, and equal P 

and K levels to maintain N as the only responsive nutrient. In order to calculate the ANR and NFRV 

values, the crop N concentration and yield data were taken into consideration. The lower lettuce FW 

yield and crop N uptake in acidified treatments led on average to a lower ANR of acidified materials as 

compared to untreated materials and CAN. Consequently, untreated materials resulted in higher NFRV. 

Furthermore, the pH decrease of bio-based fertilizers might lead to higher plant availability of heavy 

metals as Cu and Zn (Tampio et al., 2016). In our study only an increase of Zntotal concentration in the 

crop was observed. Lettuce in acidified treatments AM_A, LFAM_A, DIG_A and LFDIG_A had on 

average 28%, 29%, 40% and 30% higher Zntotal concentration than the lettuce fertilized with untreated 

materials, respectively (Table 4.3). There were no differences observed in Cutotal concentration of the 

lettuce. These observations can be explained by the bioavailability of Zn that is strongly dependent on 

the low pH of soil or in this case on the low pH of acidified materials. Even though Cu bioavailability is 

also regulated by pH, in soils rich in OM, bioavailability of Cu will be more dependent on the OM content 

rather than on pH itself (Reichman, 2002). In this study, both Cu and Zn concentrations of lettuce were 

below the critical threshold of 10-30 mg Cu kg-1 DM and 100-500 mg Zn kg-1 DM, respectively, that may 

lead to growth depression of the crop (Kabata-Pendias and Pendias, 2011). The soil Zn concentrations 

were below the Flemish soil environmental quality standard of 62 mg Zn kg-1 DM, while the soil Cu 

concentrations, including the control, were close to the imposed threshold of 17 mg Cu kg-1 DM (FSD, 

2006).The relatively high Cu concentration in the soil is attributed to the long-term application of animal 

manure and inorganic fertilizers. The observed increase of crop Zn concentration in the acidified 

treatments might be of interest for Zn biofortification. 

Finally, crop quality assessment showed no negative impact of applied fertilizer treatments with respect 

to tipburn, basal rot, yellow leaves, presence of bremia, crop volume and uniformity. The crop NO3
-

concentration as an important crop quality criterion was in all treatments below the maximum levels for 

NO3
- as laid down in European Commission Regulation No 1881/2006 (EC, 2006).  

4.5 Conclusion 

Acidification did not increase the NFRV of bio-based fertilizers applied in the cultivation of lettuce as a 

consequence of FW yield and crop N uptake reduction that was caused by an observed delay in Nrel,net 

(%). Of course, we cannot generalize on effects of acidification on crop yield and NFRV based on this 

single investigation. Yet, current findings suggest that acidified bio-based fertilizers might be less 

suitable for crops with short growth cycle. Thus, experiment should be done on other horticultural crops 

with a longer cultivation period and on plot level. Crops that might be of interest are the one with higher 

demand for sulphur such as cauliflower. In the current setup, acidification did affect N dynamics of 

applied materials by delaying or reducing Nrel,net (%). The negative correlation between applied amount 
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of NH4
+-N amount and Nmin,net (%) among acidified treatments, indicates that acidification of materials 

with high NH4
+-N content will lead to a longer delay or more profound reduction of Nrel,net (%). Finally, 

acidification increased the crop Zn concentration, implying that material pre-treatment may play a role 

in biofortification and melioration of (trace) element composition of crops (arguably for crops with longer 

production cycles). 
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CHAPTER 5: LIQUID FRACTION OF 

DIGESTATE AND AIR SCRUBBER 

WATER AS NITROGEN FERTILIZERS IN 

COMMERCIAL GREENHOUSE 

PRODUCTION OF LACTUCA SATIVA L. 
 

 

 

 

 

 

 

 

 

 

 

Struvite (top left), liquid fraction of digestate (top right), effluent from constructed wetlands (bottom left) and air 

scrubber water (bottom right) (Pictures: Sigurnjak, I.) 
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derivatives from nutrient recovery processes as alternatives for fossil-based mineral fertilizers in 

commercial greenhouse production of Lactuca sativa L. Scientia Horticulturae 198, 267-276. 
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Abstract 

The production of vegetables relies on the use of mineral fertilizers which are based either on fossil fuel 

(e.g. nitrogen fertilizers based on the Haber-Bosch process) or on fossil ore deposits (phosphate rock). 

On the other hand, nutrient recovery processes generate various end and side materials that can provide 

a sustainable alternative for fossil-based fertilizers. Their use however, is currently limited by insufficient 

knowledge about the properties and the impact of these materials on soil properties and crop yield. This 

research was aimed to evaluate the use of the liquid fraction of digestate, effluent from constructed 

wetlands originating from a manure/digestate treatment facility, air scrubber water and struvite in the 

cultivation of lettuce (Lactuca sativa L.) compared to their conventional fossil-based counterparts. In 

accordance with the crop nutrient requirements, different fertilization treatments were set up in which 

individual bio-based materials and combinations were tested. At harvest time, assessment of soil 

properties was conducted, along with crop quality control. Fertilizer use efficiencies (FUE) were 

determined and an economic assessment was done. There were no significant differences in crop yield 

and soil properties at harvest time between conventional fossil-based mineral fertilizers and selected 

bio-based mineral alternatives. Nitrogen and potassium FUE were slightly lower in treatments with bio-

based fertilizers. Moreover, economic assessment showed bio-based alternatives to be more beneficial 

for the farmer compared to the use of synthetic fertilizers only.  

5.1 Introduction 

Increasing demand to reduce our dependence on fossil fuels and currently depleting nutrient resources 

has been driving widespread attention to valorization and nutrient recovery from biomass (Gonzáles-

Ponce et al., 2009; Leogrande et al., 2013; Vaneeckhaute et al., 2013a). Animal waste offers potential 

as both, an input to produce renewable energy and as a fermentation residue, called digestate, to be 

used as a soil amendment. Many studies have investigated the fertilizer potential of digestate (Fuchs et 

al., 2008; Alburquerque et al., 2012a; Leogrande et al., 2013; Vaneeckhaute et al., 2013b; Nicoletto et 

al., 2014). Far less is known about the fertilizer potential of manure and digestate derivatives obtained 

via nutrient recovery processes that could be used as substitutes for synthetic fertilizers, potentially 

entailing significant economic benefits (Vaneeckhaute et al., 2013a; Nicoletto et al., 2014).  

In previous chapters (Chapter 3 and 4), bio-based materials were tested on a laboratory scale. In order 

to investigate their environmental and agronomic sound application in practice, the experimental scale 

needed to be expanded to a commercial level. This chapter aimed to determine the potential use of 

liquid fraction (LF) of digestate, effluent from constructed wetlands (CW), air scrubber water (ASW) and 

struvite as substitutes for fossil-based mineral fertilizer in commercial cultivation of lettuce. Air scrubber 

water, LF of digestate and effluent from CW are end and side bio-based materials from manure and 

digestate processing. ASW results from the treatment of indoor air from animal housing, where NH3 in 

the air is captured in sulfuric acid. LF of digestate is a P-poor and NK-rich material obtained by 
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mechanical separation of raw digestate. Effluent from CW is the end-material of tertiary treatment of 

livestock wastewater. In Flanders it assumes the treatment of liquid fraction of pig manure after 

mechanical separation and subsequent biological treatment (an activated sludge reactor with nitrification 

and denitrification processes). As a last step in manure treatment, effluent from CW complies with the 

Flemish legal discharge criteria of 2 mg P l−1, 15 mg N l−1 and 125 mg COD l−1 (Meers et al., 2008). This 

end-material is colorless, odorless and although characterized by reduced nutrient concentrations, still 

can potentially be used as a K-source. Finally, struvite is currently obtained as an end-material of 

phosphorus recovery from industrial or agricultural wastewater (Gonzáles-Ponce et al., 2009; Antonini 

et al., 2012). It can be considered as a slow release granular P-fertilizer. There is currently not yet a full-

scale struvite crystallization plant as part of manure treatment in the region of Flanders (Belgium).  

These bio-based materials were evaluated with respect to their effect on soil properties, crop yield 

quality and nutrient concentration as compared to mineral fertilizers including calcium ammonium nitrate 

(CAN; 27% N), triple superphosphate (TSP; 46% P2O5) and potassium sulfate (PAT; 30% K2O, 10% 

MgO and 42% SO3). We hypothesized that the use of these bio-based materials will not cause significant 

differences in crop yield, crop quality, nutrient concentration and soil properties compared to the use of 

conventional synthetic fertilizers. 

5.2 Materials and Methods 

5.2.1 Soil and bio-based materials 

The study was carried out in two experimental greenhouses at the Vegetable Research Centre (PCG) 

in Kruishoutem, Belgium. Prior to the experiment, soil flushing was performed as a common practice by 

farmers. Soil flushing is usually done between cropping cycles during the summer months to avoid build-

up of salt concentrations, or after soil disinfection. Six hours of irrigation were spread over a period of 8 

days: 1 min of irrigation equals 180 ml/m2. As such a homogenous nitrate and salt poor sand soil was 

obtained from the plow layer (0-30 cm) in greenhouse 1 (pH-H2O, 6.3; EC, 0.4 dS m-1; NH4
+-N, <1.5 mg 

kg-1; NO3
--N, 1.7 mg kg-1; K, 11 mg kg-1; P, 1.7 mg kg-1; S, 56 mg kg-1; Cu, <0.02 mg kg-1 and Zn, <0.01 

mg kg-1) and greenhouse 2 (pH-H2O, 6.2; EC, 0.5 dS m-1; NH4
+-N, <1.5 mg kg-1; NO3

--N, 5.2 mg kg-1; K, 

11 mg kg-1; P, 1.3 mg kg-1; S, 65 mg kg-1; Cu, <0.02 mg kg-1 and Zn, <0.01 mg kg-1). These analyses 

were performed on fresh soil in 1:2 (v/v) water extract and analyzed by an external laboratory.  

The LF of digestate (LFDIG) was sampled at the site of Sap Eneco Energy (Merkem, Belgium), a 

mesophilic (37°C) anaerobic co-digestion plant (capacity: 60,000 tonnes y-1, 2.83 MWel) with an input 

feed consisting of 30 % pig manure, 30 % energy maize and 40 % organic waste originating from the 

food industry (i.e. carrots, starch from potatoes, unpacked products from supermarket, etc.). The 

digester is a continuously stirred reactor tank (CSTR) with a hydraulic retention time of 35 days. The LF 

of digestate underwent an obligatory hygenization step (1h at 70°C) and separation step (sieve band 

press). Struvite was collected at the site of the potato factory Agristo (Harelbeke, Belgium), whereas the 

effluent from CW was collected at a pig farm in Langemark (Belgium) and ASW from a stable air washing 
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installation at a pig farm in Merkem (Belgium). All bio-based materials were collected in polyethylene 

bottles (2L), stored (<4°C) and characterized to determine the required total N application rate for the 

different cultivation treatments based on the total N demand of lettuce. Physicochemical characterization 

of the products showed that LF of digestate, effluent from CW, struvite and ASW have a high fertilizer 

potential as NK, K, P and NS-fertilizer, respectively (Table 5.1).   

Their potential applications as substitutes for fossil-based fertilizers were evaluated by means of a full 

scale greenhouse experiment for commercial production. The greenhouse is a VENLO type glass 

greenhouse with a column height of 4 m, truss size of 3.2 m with a column every 6.4 m. It is covered 

with 4 mm thick floating glass. Ventilation of the greenhouse is regulated through windows in the roof of 

which opening and closing is managed by the climate computer. Heating of the greenhouse is done by 

a gas burner that is fixed to the roof construction. There is no artificial lightning in the greenhouse. 

Through sensors (wet bulb temperature) that are installed in the greenhouse and that are connected 

with the climate computer, temperature and relative hydration are monitored. 

Table 5.1 Physicochemical characterization of bio-based materials applied as fossil-based mineral fertilizer 

replacements for lettuce cultivation. Results are expressed on fresh weight (FW) basis as means ± standard 

deviation of two independent samples.  

Parameter LFDIG CW effluent Struvite ASW 

Dry matter (%) 3.27 ± 0.05 0.46 ± 0.03 92 ± 0 32.7 ± 0.4 

Organic matter a (%) 47 ± 0 6.4 ± 0.0 48 ± 0 100 ± 0 

pH  8.6 ± 0.0 7.8 ± 0.0 7.3 ± 0.0 b 2.4 ± 0.0 

EC (dS m-1)  41 ± 0 7.1 ± 0.0 0.93 ± 0.00 b 262 ± 0 

Total N (g kg-1) 5.3 ± 0.1 0.02 ± 0.00 52 ± 4 86 ± 3 

NH4
+-N (g kg-1) 4.56 ± 0.04 0.002 ± 0.000 0.97 ± 0.02 86 ± 3 

NO3
--N (g kg-1) 0.002 ± 0.00 0.001 ± 0.000 0.24 ± 0.00 - 

Total P (g kg-1) 0.38 ± 0.01 0.002 ± 0.000 93 ± 2 0.05 ± 0.00 

Extractable P c (%) 100 ± 0 8 ± 0 100 ± 0 17 ± 0 

Total K (g kg-1) 3.36 ± 0.07 1.2 ± 0.0 9.1 ± 0.8 0.2 ± 0.0 

Extractable K d (%) 100 ± 0 100 ± 0 10 ± 0 100 ± 0 

Total S (g kg-1) 0.45 ± 0.01 0.04 ± 0.00 0.07 ± 0.01 53 ± 2 

Total Cu (mg kg-1) 0.28 ± 0.01 0.01 ± 0.00 1.6 ± 0.4 0.3 ± 0.0 

Total Zn (mg kg-1) 1.26 ± 0.04 0.02 ± 0.00 9 ± 1 2.9 ± 0.1 

EC: electrical conductivity; LFDIG: liquid fraction of digestate; CW: constructed wetlands; ASW: air scrubber water. 

a Organic matter (OM) calculated on a dry matter basis. b pH and EC of struvite was measured at a 5:1 liquid to dry 

sample ratio, other (liquid) products were analyzed directly. c Ammonium lactate extractable P (%): percent of total 

P that is plant available. d 0.01 M CaCl2 extractable K (%): percent of total K that is plant available.  
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5.2.2 Experimental design 

The experiment was set-up according to a fully randomized block design with four replicate plots of 10 

m2 (4 m x 2.5 m) per treatment. Eight different fertilization treatments were established over the two 

greenhouses (Table 5.2). In greenhouse 1, single replacement treatments were conducted. In each 

treatment synthetic fertilizer was replaced by one bio-based material with similar characteristics. In 

greenhouse 2, synthetic fertilizer was partially or completely replaced by a combination of different bio-

based material. In each greenhouse, a treatment with conventional fossil-based fertilizer (treatments 

Ref G1 and Ref G2) was included as a reference to eliminate effects of the greenhouse. The required 

total application dosage was calculated (Table 5.2) according to the nutrient requirements for lettuce by 

taking into consideration the nutrient content of fertilizers (Table 5.1). The nutrient requirements of 210 

N, 125 P2O5 and 240 K2O kg ha-1 for lettuce were based on the practical experience of PCG. 

On June 13 2013, one day before transplanting the lettuce, the liquid bio-based materials were manually 

applied by using a watering can or a sprayer depending on the necessary amount of fertilizers according 

to the application rate (Table 5.2). The liquid materials were always applied first to avoid any detrimental 

effects on lettuce (e.g. burning of leaves) associated to the low pH of ASW and higher salt content. On 

June 14 2013, struvite and synthetic fertilizer (CAN, TSP and PAT) were applied by hand to ensure high 

precision of the applied dosage. To facilitate homogeneous application of liquid materials in low amount, 

ASW was diluted by adding tap water. The incorporation of liquid and solid materials was done manually 

in the soil upper level (depth 10 cm) to ensure their uniform distribution and avoid mixing soil of one plot 

with the other. Finally, lettuce (Lactuca sativa L. cv. Cosmopolia) was transplanted with a 5 cm soil block 

using a planting distance of 27 x 27 cm, leading to a plant density of 126 plants per plot (10 m2). During 

the entire growing period water supply was provided by means of irrigation (Figure 5.1). 

 

Figure 5.1 Temperature and irrigation events during the growing period (14/06/2013 – 17/07/2013). 
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Table 5.2 Fertilizer and macronutrient dosage per ha applied for the eight different fertilization treatments (n=4, plot size = 10m2) in greenhouse 1 (G1) and greenhouse 2 (G2). 

Treatments Ref G1 and Ref G2 present conventional fertilization with synthetic fertilizers (CAN+TSP+PAT) as a reference of the respective greenhouse. CAN: calcium ammonium 

nitrate (27% N); TSP: triple superphosphate (46% P2O5); PAT: potassium sulfate (30% K2O, 10% MgO ad 42% SO3); STR: struvite; ASW: air scrubber water; CW: effluent from 

constructed wetlands; LFDIG: liquid fraction of digestate. 

 

 

TRT 

Synthetic fertilizer                                        Bio-based fertilizer  

 Total applied 
CAN TSP PAT  Struvite  Air scrubber water  Effluent from CW  LFDIG  

kg 
N 

kg 
P2O5 

kg  
K2O  kg 

kg  
N 

kg  
P2O5 

kg  
K2O  tonnes 

kg 
N 

kg  
P2O5 

kg  
K2O  tonnes 

kg  
N 

kg  
P2O5 

kg  
K2O  tonnes 

kg 
N 

kg  
P2O5 

kg  
K2O 

 kg 
N 

kg  
P2O5 

kg  
K2O 

kg  
S 

G
re

e
n

h
o

u
s
e

 1
 

Ref G1 211 124 240  - - - -  - - - -  - - - -  - - - - 
 

211 124 240 116 

CAN+STR+PAT 176 - 234  587 30 126 6.4  - - - -  - - - -  - - - - 
 

206 126 240 111 

ASW+TSP+PAT - 124 240  - - - -  2.4 210 0.27 0.4  - - - -  - - - - 
 

210 124 240 246 

CAN+TSP+CW 211 124 -  - - - -  - - - -  161 3.2 0.64 240  - - - - 
 

214 125 240 8.8 

LFDIG+TSP+PAT - 97 75  - - - -  - - - -  - - - -  39 210 34 173 
 

210 131 248 55 

G
re

e
n

h
o

u
s
e

 2
 Ref G2 211 124 240  - - - -  - - - -  - - - -  - - - - 

 
211 124 240 116 

ASW+STR+CW - - -  587 30 126 6.4  2.0 172 0.22 0.4  157 3.1 0.63 233  - - - - 
 

205 127 240 113 

LFDIG+STR+PAT - - 81  450 23 96 4.9  - - - -  - - - -  35 187 30 154 
 

210 126 240 54 

ASW+STR+PAT - - 225  587 30 126 6.4  2.0 172 0.22 0.4  - - - -  - - - - 
 

202 126 232 213 
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5.2.1 Plant and soil sampling 

On July 17 2013, after a fresh yield of 500 g was reached (i.e. the commercial weight), the plants were 

harvested. A comparison of the production data (crop height and fresh weight) was made among 

treatments along with an assessment of nutrient concentrations in lettuce. Representative plant material 

samples for fresh weight (FW) determination were obtained by harvesting twelve random plants per plot, 

not taking into account the plants that were located in the border line of plots.  

Composite soil samples were obtained as a mixture of five random sample points per plot, taken from 

the 0-30 cm soil layer. Furthermore, each soil sample was divided into two fractions, one of which was 

immediately stored (-23°C) without drying for NO3
--N, NH4

+-N and dry matter (DM) analysis. The other 

fraction was air-dried and sieved to < 2mm for further physicochemical analysis. 

5.2.2 Physicochemical analysis 

Product analysis 

DM content was determined after drying to a constant weight for 96 h at 105°C. Organic matter (OM) 

was measured after incineration of the samples during 4 h at 550°C in a muffle furnace, where the loss 

of mass on ignition was addressed as the OM. EC and pH were determined by using a WTW-LF537 

(WTW GmbH, GE) conductivity electrode and an Orion-520A (Orion Research Inc, USA) pH-meter. For 

liquid samples, EC and pH measurements were performed without prior equilibration and filtration, while 

for solid samples equilibration in deionized water for 1 h at a 5:1 liquid to dry sample ratio was performed 

along with subsequent filtration (MN 640 m, Macherey-Nagel, GE). Total N and NH4
+-N were determined 

as described in section 3.2.2 (Chapter 3). Nitrate-N was determined by flow analysis (CFA and FIA) and 

spectrometric detection (ISO 13395: 1996) from an 1M KCl extract (BRAN+LUEBBE AA3, GE). After 

wet digestion (2 ml HNO3 and 1 ml H2O2), total P, S, K, Cu and Zn were measured as described in 

section 3.2.2 (Chapter 3). Plant available amounts of P and K were analyzed using the colorimetric 

Scheel method and using ICP-OES (Varian Vista MPX, USA) after ammonium lactate extraction at pH 

3.75 (VITO, 2010) and 0.01 M CaCl2 extraction (Van Ranst et al., 1999), respectively. 

Soil analysis 

The soil moisture content and OM were determined as described in section 3.2.1 (Chapter 3). Soil EC2:1 

was measured with a WTW-LF537 (GE) electrode after 1h equilibration in deionized water at a 2:1 (v/v) 

liquid to dry sample ratio (Sonneveld and van den Ende, 1971) and subsequent filtration (MN 640 m, 

Macherey-Nagel, GE). For pH measurement, potential soil acidity (pH-KCl) was measured as described 

in section 3.2.1 (Chapter 3). Soil conductivity and pH were monitored on weekly basis. Total N-content 

in soil was determined using the Kjeldahl destruction method, while nitrate-N (ISO 13395:1996) and 

ammonium-N (ISO 11732:1997) in soil were analyzed from 1M KCl extract using flow analysis (CFA 

and FIA) and spectrometric detection (BRAN+LUEBBE AA3, GE). Soil total P, K, S, Cu and Zn were 

analyzed according to section 4.2.2 (Chapter 4), while plant available amounts of P and K were analyzed 

as described in previous paragraph (section ‘Product analysis’). 
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Plant analysis 

At harvest, twelve plant samples per plot (collected for FW determination) were cut in half and afterwards 

oven-dried at 60°C for determination of the DM content. The dry samples were ground and sieved to <1 

mm using a Culatti DCFH 48 grinder (GE), and subsequently incinerated for 4 h at 550°C to determine 

the ash content. After hot plate mineralization digestion (5 ml 6 M HNO3 and 5 ml 3 M HNO3), total P, 

K, Cu and Zn were analyzed as described in section 4.2.1 (Chapter 4), while total S content was 

determined as described in section 4.2.3 (Chapter 4). Finally, total N was analyzed using the Kjeldahl 

method (Van Ranst et al., 1999). 

5.2.3 Crop quality assessment 

As a part of crop quality control, a more extended assessment including tipburn, basal rot, yellow leaves, 

presence of bremia, volume, uniformity, crop filling, colour and crop closure was conducted. These 

parameters were determined by a trained observer and evaluated on a scale basis (1-9), not taking into 

account the plants that were located in the border line of plots. A high score indicates a positive effect 

while a lower score represents the negative impact of the fertilization treatment on the tested parameter. 

For some criteria, like diseases and physiological deficiencies, the highest score is given when there is 

total absence of disease.  

5.2.4 Economic assessment 

A basic economic comparison of conventional synthetic fertilizers and their bio-based alternatives was 

conducted by summing up the fertilization costs from the view of the arable farmer. The fertilization cost 

includes the fertilizer retail price, transport and application cost. The retail price of CAN, TSP and PAT 

includes production, packing and transport cost. It was based on the average market price in 2013 

amounting to 28.40 € 100kg-1 (1.05 € kg-1 N-1), 45.10 € 100kg-1 (2.25 € kg-1 P-1) and 36.85 € 100kg-1 

(1.48 € kg-1 K-1), respectively (LEI_Wageningen, 2014). For bio-based materials, ASW, effluent from 

CW and LF of digestate, the retail price at this time is zero due to the fact that in a surplus market these 

materials are exchanged at zero cost. For ASW, the zero cost was based on the fact that Flemish 

livestock farmers are legally obliged to reduce ammonia emissions coming from animal and digestate 

facilities (VLM, 2010). The reduction is usually achieved with acid air scrubbers resulting in ASW, a side 

bio-based material. Next, zero cost for effluent from CW was based on the wetland construction and 

maintenance costs (3 - 4 € t-1 of pre-treated manure coming from biological treatment) which are in the 

range with the costs (3 - 5 € t-1) to spread the effluent from the biological treatment on arable land (Meers 

et al., 2008). In this case, the investment cost for CW is regained by the free discharge cost. Further, 

zero cost for LF of digestate was based on the fact that livestock farmers use mechanical separation 

primary to reduce the water content in manure and digestate, which allows them easier export of P rich 

materials. Finally, struvite production cost of 50 € t-1 (personal communication, NuReSys 2015) was 

based on the market prices encountered in practice. Next to these costs, it is important to remark that 

an arable farmer in a surplus market might gain financial benefits for accepting LF of digestate as bio-

based fertilizer. These benefits, however, were not included in calculations due to the price uncertainty 

which might vary from 5 – 10 € tonnes-1 FW-1 (Vaneeckhaute et al., 2013a; personal communication, 
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VCM 2015). For all used liquid bio-based materials, a specific density of 1000 kg m3 was assumed. For 

bio-based materials a transport cost of 0.075 € FW-1 tonnes-1 km-1 (Van der Straeten and Buysse, 2013) 

was assumed, whereas an application cost of 2.5 € FW-1 tonnes-1 was considered for applying bio-based 

liquid materials (Van der Straeten and Buysse, 2013; Vaneeckhaute et al., 2013a). The application cost 

for granular fertilizers (i.e. synthetic fertilizers and struvite) was assumed to be zero because most of 

the arable farmers have their own equipment to apply conventional fertilizers (INAGRO, personal 

communication). However, arable farmer has costs in the form of the lost leisure time, fuel cost and 

depreciation cost of the used machinery which in this assessment are considered to be negligible.  

In general, the fertilization cost of the arable farmer can vary depending on the transport distance and 

whether he owns the application equipment or not. To tackle these effects, a sensitivity analysis was 

introduced where fertilization cost was calculated for all tested treatments under two different case 

scenarios (Sc.): 

 Sc. 1: transport distance is 5 km and arable farmer owns equipment to apply bio-based 

liquid materials  

 Sc. 2: transport distance is 40 km and arable farmer hires a contractor to apply bio-based 

liquid materials  

These two scenarios represent the most favourable (Sc.1) and the least favourable (Sc. 2) conditions 

for arable farmer. Finally, potential changes in fertilizer policy might lead to the recognition of N bio-

based materials as substitutes for synthetic N fertilizers. To assess these effects, it was assumed that 

in the case of recognition the retail price for N coming from LF of digestate and ASW might amount to 

50%, 75% or 100% of the current market price paid per kg of N. These percentages correspond to the 

percentages of mineral N (i.e. NH4
+-N/Ntotal ratio) that can be found in common N bio-based materials 

such as digestate (c. 50-70%), LF of digestate (c. 60-80%), mineral concentrate (c. 90-100%) and air 

scrubber water (100%). Since the main focus of the dissertation is on N fertilizers, the above described 

economic assessment was only done for the reference treatment (Ref G1 and Ref G2) and treatments 

where LF of digestate and ASW were used as N sources. The treatments CAN+STR+PAT and 

CAN+TSP+CW were not economically assessed since economic effect of using struvite and effluent 

from CW can be seen also from the treatments where these products were applied in combination with 

LF of digestate or ASW. 

5.2.5 Data analysis 

The fertilizer use efficiency (FUE) and Fertilizer replacement use efficiency (FRUE %) of each treatment 

were calculated using Eq. 3 and Eq. 4, respectively (Chapter 1). FRUE was obtained as the ratio of the 

FUE of the treatments with bio-based material(s) to the FUE of a reference of the respective greenhouse 

(Ref G1 and Ref G2). For the calculation purposes of comparing efficiency of bio-based materials and 

synthetic fertilizers, the FRUE of 100% has been assigned to the conventional fertilization practice of 

using synthetic fertilizers (Ref G1 and Ref G2). The assigned value of 100% corresponds to the NH4
+-

N/Ntotal ratio of synthetic N fertilizers. 
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Statistical analyses were performed using SPSS statistical software (version 22.0; SPSS Inc., Chicago, 

IL). One way ANOVA was used to determine the effect of the applied fertilizers on soil properties, crop 

yield and nutrient concentration, based on the obtained physicochemical data. Additional post hoc 

assessment was performed using Tukey’s Test (p < 0.05, n=4) when significant differences between 

means were observed. The condition of normality was checked using the Shapiro-Wilk test.  

5.3 Results 

5.3.1 Soil properties and NO3
--N residue  

During the growing period (data not shown) and at harvest time (Table 5.3), no statistical differences 

with respect to soil EC2:1 and potential acidity (pH-KCl) were observed among the eight different 

fertilization treatments. For the individual treatment substitutions, as hypothesized, results showed no 

statistical difference (p > 0.05) among treatments in greenhouse 1 with respect to total macronutrients 

(NPKS), plant available nutrients (NO3
--N, NH4

+-N, P, K) and heavy metals (Cu, Zn). Thus, no significant 

differences were observed in a soil properties between treatments with bio-based materials and the 

treatment Ref G1 (Table 5.3).  

In contrast, a strong statistical effect (p = 0.002) on the NO3
--N residue in the soil was observed in 

greenhouse 2 (Table 5.3) where complete substitution of synthetic fertilizers in treatment 

ASW+STR+CW resulted in a significantly lower NO3
--N concentration with respect to the treatment Ref 

G2 (p = 0.046) and treatment LFDIG+STR+PAT (p = 0.001). Furthermore, the combination treatments 

significantly (p = 0.010) influenced plant available K in greenhouse 2. This observation is a result of 

differences between treatments ASW+STR+CW, LFDIG+STR+PAT and ASW+STR+PAT in which bio-

based materials were applied (Table 5.3). Individually, treatments ASW+STR+CW, LFDIG+STR+PAT 

and ASW+STR+PAT are not statistically different as compared to the reference, with p-values of 0.805, 

0.059 and 0.993, respectively. Finally, treatments in greenhouse 2 did not lead to (p > 0.05) a significant 

difference in soil DM, total macronutrients (NPKS), plant available NH4
+-N and P, and heavy metals (Cu, 

Zn).  

5.3.2 Crop production 

Determination of the fresh and dry matter yield of lettuce for the eight different fertilization treatments 

(Table 5.4) over the two greenhouses, showed no differences (p > 0.05) in crop yield production. For 

crop N, P, K, S, Cu and Zn concentration, no significant effects (p > 0.05) were observed in treatments 

with bio-based materials as compared to conventional fertilization (Table 5.4). Additionally, the obtained 

plant nutrient concentration values were compared with the available reference values from the Hill 

Laboratories (HL, 2002) which indicate the appropriate range of macro- and micronutrients in lettuce 

grown within the greenhouse. 
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Table 5.3 Soil characterization for the applied fertilization treatments in greenhouse 1 and greenhouse 2 at harvest (17/07/2013). Results are expressed on dry matter (DM) basis 

as means ± deviation of the four independent samples. Treatments Ref G1 and Ref G2 present conventional fertilization with synthetic fertilizers (CAN+TSP+PAT) as a reference 

of the respective greenhouse. CAN: calcium ammonium nitrate (27% N); TSP: triple superphosphate (46% P2O5); PAT: potassium sulfate (30% K2O, 10% MgO ad 42% SO3); 

STR: struvite; ASW: air scrubber water; CW: effluent from constructed wetlands; LFDIG: liquid fraction of digestate. 

According to ANOVA, mean values observed among the treatments in greenhouse 2 for NO3
--N and Available K are significant at the probability level p<0.05. However, ANOVA 

does not tell at which factor levels these effects manifest. For that purpose Tukey’s post-hoc test was used in order to denote which means are significantly different and which 

not. Where ANOVA indicted significant factor effects (p<0.05) different letters indicate significant differences between the means according to Tukey’s test at the 5% probability 

level.

Parameter 

Treatments in Greenhouse 1 Treatments in Greenhouse 2 

Ref G1 
CAN+STR 
+PAT 

ASW+TSP 
+PAT 

CAN+TSP 
+CW 

LFDIG+TSP 
+PAT 

Ref G2 
ASW+STR 
+CW 

LFDIG+STR 
+PAT 

ASW+STR 
+PAT 

Moisture (%) 14 ± 2   14 ± 1  14 ± 2  14 ± 1  14 ± 1  12 ± 1  13 ± 2  14 ± 1  13 ± 1  

Organic matter (%) 7.0 ± 0.1   7.4 ± 0.5 7.3 ± 0.6  7.1 ± 0.6  7.1 ± 0.6  6.4 ± 0.2  6.4 ± 0.5  6.9 ± 0.5  6.5 ± 0.4  

pH-KCl 6.1 ± 0.1   6.1 ± 0.1   6.0 ± 0.1   6.2 ± 0.1   6.1 ± 0.2   6.2 ± 0.1   6.3 ± 0.0   6.3 ± 0.1   6.2 ± 0.1   

EC2:1 (dS m-1)  0.6 ± 0.2 0.7 ± 0.1 0.8 ± 0.2 0.7 ± 0.1 0.8 ± 0.2 0.7 ± 0.2 0.7 ± 0.1 1.0 ± 0.2 0.9 ± 0.3 

Total N (g kg-1) 2.0 ± 0.1    2.2 ± 0.3    2.0 ± 0.2    2.2 ± 0.4    2.2 ± 0.2    1.9 ± 0.1    1.9 ± 0.1    2.0 ± 0.2    2.1 ± 0.1   

NH4
+-N (mg kg-1) 2.8 ± 0.7    3.2 ± 1.4    3.3 ± 0.8    3.3 ± 2.1    6.4 ± 5.6    2.8 ± 0.6    2.9 ± 0.4    4.8 ± 2.7    3.5 ± 1.0    

NO3
—N (mg kg-1) 31 ± 11    35 ± 4    30 ± 11    39 ± 29    36 ± 28    35 ± 14 bc  12 ± 7 a   52 ± 12 c   25 ± 8  ab  

Total P (mg kg-1) 789 ± 103 735 ± 34 724 ± 25 738 ± 14 777 ± 17 749 ± 37 781 ± 27 742 ± 39 765 ± 53 

Available P (mg kg-1) 0.50 ± 0.05 0.46 ± 0.03 0.51 ± 0.03 0.49 ± 0.04 0.50 ± 0.05 0.51 ± 0.02 0.50 ± 0.03 0.53 ± 0.06 0.52 ± 0.05 

Total K (mg kg-1) 643 ± 19 633 ± 64 623 ± 26 625 ± 33 655 ± 33 630 ± 56 584 ± 44 572 ± 41 536 ± 38 

Available K (mg kg-1)  43 ± 5 40 ± 11 54 ± 7 45 ± 10 50 ± 10 72 ± 22 abc 63 ± 8 a 100 ± 13 c 66 ± 7 ab 

Total S (mg kg-1) 329 ± 26 360 ± 39 403 ± 38 345 ± 63 353 ± 62 318 ± 48 317 ± 28 371 ± 49 365 ± 76 

Total Cu (mg kg-1) 7.6 ± 0.6 7.6 ± 0.2 7.1 ± 0.5 7.7 ± 0.2 7.3 ± 0.4 7.3 ± 0.4 7.6 ± 0.9 7.1 ± 0.4 8.0 ± 1.4 

Total Zn (mg kg-1) 28 ± 1 28 ± 0 27 ± 1 28 ± 0 27 ± 1 27 ± 2 28 ± 2 27 ± 3 27 ± 2 
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Table 5.4 Mean values ± deviation of fresh weight (FW), dry matter (DM) and plant nutrient concentration (measured on DM basis) for the eight different fertilization (n=4, size 

10m2) treatments in greenhouse 1 and greenhouse 2 at harvest (17/07/2013). Treatments Ref G1 and Ref G2 present conventional fertilization with synthetic fertilizers 

(CAN+TSP+PAT) as a reference of the respective greenhouse. CAN: calcium ammonium nitrate (27% N); TSP: triple superphosphate (46% P2O5); PAT: potassium sulfate (30% 

K2O, 10% MgO ad 42% SO3); STR: struvite; ASW: air scrubber water; CW: effluent from constructed wetlands; LFDIG: liquid fraction of digestate. 

aAnalyzed parameters were subjected to ANOVA by comparing treatments with the reference (Ref G1 and Ref G2) of their respective greenhouse. No significant factor effects 

(p<0.05) were observed at the probability level p<0.05. 

b Reference values from the Hill Laboratories (HL, 2002) which indicate the appropriate range of macro- and micro- nutrients in lettuce grown within the greenhouse. 

Parameter a 

Treatments in Greenhouse 1 Treatments in Greenhouse 2 

Proposed range b 

Ref G1 
CAN+STR 
+PAT 

ASW+TSP 
+PAT 

CAN+TSP 
+CW 

LFDIG+TSP 
+PAT 

Ref G2 
ASW+STR 
+CW 

LFDIG+STR 
+PAT 

ASW+STR 
+PAT 

FW (kg 40m-2)  246 ± 46 245 ± 32 254 ± 36 244 ± 14  250 ± 21 222 ± 18 236 ± 10 229 ± 12 224 ± 3 - 

DM (%) 5.5 ± 1.0 5.2 ± 0.7 5.4 ± 0.8 4.9 ± 0.3 5.1 ± 0.4 5.2 ± 0.4 4.8 ± 0.2 5.0 ± 0.3 5.2 ± 0.1 - 

Total N (g kg-1) 45 ± 1 43 ± 3 43 ± 2 43 ± 1 41 ± 1 45 ± 2 41 ± 2 44 ± 3 44 ± 5 31 - 45 

Total P (g kg-1) 3.7 ± 0.2 4.0 ± 0.2 4.1 ± 0.6 3.9 ± 0.2 4.1 ± 0.5 3.5 ± 0.3 3.6 ± 0.1 3.5 ± 0.2 3.6 ± 0.4 3.5 - 6.0 

Total K (g kg-1) 52 ± 7 51 ± 4 56 ± 5 57 ± 8 44 ± 9 66 ± 10 68 ± 4 72 ± 4 62 ± 5 45 - 80 

Total S (g kg-1) 3.1 ± 0.3 3.0 ± 0.3 3.3 ± 0.3 3.2 ± 0.0 3.1 ± 0.4 3.2 ± 0.3 3.3 ± 0.1 3.3 ± 0.2 3.2 ± 0.2 2 - 3 

Total Cu (mg kg-1) 7.5 ± 1.6 7.6 ± 0.9 7.0 ± 0.9 8.0 ± 0.9 8.3 ± 2.3 7.7 ± 0.6 7.5 ± 1.8 6.8 ± 1.2 6.6 ± 1.0 7 - 80 

Total Zn (mg kg-1) 72 ± 12 69 ± 10 80 ± 12 86 ± 9 76 ± 22 60 ± 4 62 ± 9 67 ± 9 63 ± 7 25 - 250 
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5.3.3 Lettuce quality control assessment 

During the entire growing period, the lettuce uniformity and volume was significantly lower in treatments 

LFDIG+TSP+PAT and LFDIG+STR+PAT. Those treatments were the only two treatments where LF of 

digestate was added as a substitute of synthetic N fertilizer. However, at harvest time no difference in 

crop volume between the eight different fertilization treatments including the scenarios with LF of 

digestate was noted (Table 5.5). Only lettuce uniformity in treatment LFDIG+TSP+PAT was still 

significantly lower at harvest time with respect to treatment Ref G1. Furthermore, marketable yield 

assessment indicated that the crop FW yield and DM (%) were not negatively influenced by the 

application of bio-based materials. Finally, crop quality assessment (data not shown) for typical lettuce 

diseases showed that none of the eight different fertilization treatments had a significantly negative or 

positive effect on basal rot, bremia (Bremia lactucae L.), yellow leaves and tipburn.  

Table 5.5 Observation score for crop volume (1 = small volume, 9 = voluminous) and uniformity (1 = heterogeneous 

and 9 = homogenous) during the growing period (21/06/2013 and 04/07/2013) and at harvest (17/07/2013) as a 

part of crop quality assessment. Treatments Ref G1 and Ref G2 present conventional fertilization with synthetic 

fertilizers (CAN+TSP+PAT) as a reference of the respective greenhouse. CAN: calcium ammonium nitrate (27% 

N); TSP: triple superphosphate (46% P2O5); PAT: potassium sulfate (30% K2O, 10% MgO ad 42% SO3); STR: 

struvite; ASW: air scrubber water; CW: effluent from constructed wetlands; LFDIG: liquid fraction of digestate. 

a Mean values denoted by the same letter in a column are not statistically different according to Tukey’s test at the 

5% probability level.  

 

 
 

Treatment 

            21/06/2013    04/07/2013      16/07/2013 

  Volume Uniformity Volume Uniformity Volume Uniformity 

G
re

e
n

h
o

u
s
e

 1
 

Ref G1 6.50     cd      7.25 6.75 abc 6.25 bcd 8.00 a 8.00 a 

CAN+STR+PAT 6.75   bcd      7.00 7.25 abc 6.25 bcd 7.75 a 7.50 ab 

ASW+TSP+PAT 7.25 abc      7.25 7.50 ab 6.75 Bc 7.75 a 7.50 ab 

CAN+TSP+CW 7.75 abc      7.00 6.25   bc 5.25 bcd 7.00 ab 7.00 abc 

LFDIG+TSP+PAT 6.00       d      6.25 6.25   bc 5.00   cd 7.00 ab 6.75   bc 

G
re

e
n

h
o

u
s
e

 2
 Ref G2 6.75   bcd      7.00 7.25 abc 6.50 Bc 8.00 a 7.00 abc 

ASW+STR+CW 8.00 a      7.00 7.50 ab 6.75 Bc 7.00 ab 7.50 ab 

LFDIG+STR+PAT 5.75       d      6.25 6.00     c 4.50     d 7.50 a 6.25     c 

ASW+STR+PAT 7.25 abc      7.25 7.25 abc 7.00 B 8.00 a 7.75 ab 
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5.3.4 Fertilizer replacement use efficiency of bio-based materials 

A balanced use of NPK nutrition has a remarkable influence on crop growth and yield. Table 5.6 gives 

more insight into fertilizer replacement use efficiency (FRUE) of each treatment as compared to the 

reference of their respective greenhouse. According to the Nitrates Directive (91/767/EEC) it has been 

assumed that mineral fertilization (Ref G1 and Ref G2) is 100% efficient. Hence, results in Table 5.6 

indicate that N FRUE of air scrubber water was similar (treatment ASW+TSP+PAT) or slightly higher 

(treatment ASW+STR+PAT) with respect to CAN, while LF of digestate resulted in moderately lower N 

FRUE in treatments LFDIG+TSP+PAT and LFDIG+STR+PAT. For struvite, P FRUE was higher than 

the P FRUE of triple superphosphate, while application of effluent from CW resulted in similar (treatment 

ASW+STR+CW) or slightly lower (treatment CAN+TSP+CW) K FRUE as compared to potassium 

sulfate. 

 

Table 5.6 Fertilizer use efficiency (FUE) and its relation to the mineral fertilization reference Ref G1 and G2 as 

being 100% efficient in their respective greenhouse (i.e. FRUE = fertilizer replacement use efficiency). Treatments 

Ref G1 and Ref G2 present conventional fertilization with synthetic fertilizers (CAN+TSP+PAT) as a reference of 

the respective greenhouse. CAN: calcium ammonium nitrate (27% N); TSP: triple superphosphate (46% P2O5); 

PAT: potassium sulfate (30% K2O, 10% MgO ad 42% SO3); STR: struvite; ASW: air scrubber water; CW: effluent 

from constructed wetlands; LFDIG: liquid fraction of digestate. 

 Treatments in Greenhouse 1 Treatments in Greenhouse 2 

 
Ref 
G1 

CAN+STR 
+PAT 

ASW+TSP 
+PAT 

CAN+TSP 
+CW 

LFDIG+TSP 
+PAT 

Ref 
G2 

ASW+STR 
+CW 

LFDIG+STR 
+PAT 

ASW+STR 
+PAT 

N           

FUE 0.72 0.67 0.70 0.61 0.62 0.61 0.56 0.60 0.64 

FRUE 
(%) 

100a 94 99 86 87 100a 92 97 103 

P          

FUE 0.25 0.29 0.30 0.27 0.29 0.22 0.23 0.22 0.23 

FRUE 
(%) 

100a 116 120 108 116 100a 105 100 105 

K          

FUE 0.88 0.82 0.96 0.86 0.69 0.97 0.97 1.04 0.95 

FRUE 
(%) 

100a 93 109 98 77 100a 101 107 99 

 

 

 

 

 

 

 



Greenhouse trial with Lactuca sativa L. 

93 
 

5.4 Discussion 

5.4.1 Effects on NO3
--N residue and soil properties  

Excessive nutrient inputs could negatively affect the environment through leaching or gaseous losses. 

Nitrate residues are of interest as they can be indicative for unwanted leaching losses after harvest. This 

parameter is environmentally relevant in open air cropping, but also in a greenhouse settings nutrient 

losses by leaching should be minimized. In this study, the NO3
--N content in the soil was significantly (p 

= 0.002) different only among treatments in greenhouse 2, where treatment ASW+STR+CW with 

complete synthetic fertilizer replacement (air scrubber water, struvite and effluent from CW as NPK-

fertilizer) exhibited a statistically significant effect in comparison to the Ref G2 (p = 0.046). This may be 

partially a consequence of soil saturation and consequent nitrate leaching by applying at once high liquid 

volume based on nutrient concentration: 157 L of effluent from CW and 2 L of air scrubber water as a K 

and N-fertilizer on a surface area of 10 m2. To a certain extent, it might have been as well influenced by 

short-term microbial N transformations in soil, since there were no differences observed with respect to 

crop N- concentration, total N and NH4
+-N content in soil as compared to Ref G2. Furthermore, if we 

look at other treatments where ASW and LF of digestate were applied as N-fertilizer, no statistical 

differences were reported in crop N- concentration and soil total N as compared to reference treatments 

G1 and G2. Similar results have been obtained in a maize trial by Vaneeckhaute et al. (2013b), where 

ASW and LF of digestate were used as a NS-fertilizer and N-fertilizer, respectively. These results 

demonstrate that ASW and LF of digestate can be a valuable substitute for mineral N fertilizer.  

For soil total and plant available P, as expected, no significant differences were observed among the 

eight different fertilization treatments at harvest time. Additionally, struvite as a substitute for mineral P 

(TSP) exhibited similar yields in comparison to mineral fertilization. These findings indicate that struvite 

can be a valuable substitute for mineral P (Gonzáles-Ponce et al., 2009), which is of great importance 

in the frame of global P resource depletion over the course of coming centuries.  

Furthermore, for soil total and plant available K, significant statistical differences were observed only 

with respect to plant available K in greenhouse 2. This is a result of a high plant available K in treatment 

LFDIG+STR+PAT by applying products with higher plant available K content: LF of digestate, struvite 

and potassium sulfate (Table 5.1). An important nuance however is that no difference in comparison to 

the Ref G2 was found, only between treatments where bio-based materials were used as a synthetic 

fertilizer replacement.  

In this study, S was supplied through ASW, LF of digestate and potassium sulfate. Since a high dose of 

sulfate can lead to salt accumulation in soils (Vaneeckhaute et al., 2013b), special attention concerning 

the soil EC2:1 was given to treatments where ASW and LF of digestate were applied. Results of EC2:1 

weekly assessment and soil analysis indicate higher EC2:1 values in treatments with ASW and LF of 

digestate, along with slightly higher soil and crop S concentrations at harvest. However, these 

observations were not statistically significant and EC2:1 values did not exceed the upper limit value of 

1.8 dS m-1 set for this crop. Nevertheless, special attention should be given to these materials for 
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potential salt stress during the fertilization (Alburquerque et al., 2012a; Vaneeckhaute et al., 2013a), 

especially in the cultivation of a salt-sensitive crop as lettuce. In order to avoid any detrimental effects 

on plant growth such as leaf burning, ASW and LF of digestate should be applied at least one day before 

planting (Vaneeckhaute et al., 2013b), as it was done in the current study.  

Even though Cu and Zn are in fact plant micronutrients, their accumulation in the soil could eventually 

lead to phytotoxicity which may have negative influence on plant growth (Alburquerque et al., 2012a). 

In this study, characterization of soil and plant material did not show any significant differences among 

the eight different fertilization treatments with respect to soil and crop Cu and Zn concentration. This 

observation is even more important due to fact that lettuce is a plant known for metal accumulation 

(Peijnenburg et al., 2000). Nevertheless, digestate as a residue of anaerobic digestion may contain 

significant amounts of Cu and Zn whose concentration is increased remarkably when animal manure is 

used as a substrate in anaerobic co-digestion (Alburquerque et al., 2012a; Vaneeckhaute et al., 2013b; 

Saveyn and Eder, 2014). In this study LF of digestate was used, which contains a relatively low amount 

of Cu and Zn due to the fact that heavy metals are mostly concentrated in the solid fraction (SF). 

Moreover, LF of digestate complies with environmental quality standards for all heavy metals that are 

specified in currently proposed End-of-waste criteria (Saveyn and Eder, 2014). However, potential risks 

of phytotoxicity could be overcome by defining the optimal ratio of input substrates in anaerobic co-

digestion which result in lower concentrations of heavy metals, and as such reduce the risk of 

phytotoxicity toward plants.  

5.4.2 Effects on crop yield and nutrient concentration 

The use of ASW and LF of digestate resulted in a slightly higher mean fresh weight yield compared to 

the reference and the other treatments (Table 5.4). However, no significant statistical differences (p > 

0.05) were observed among the eight different fertilization treatments with respect to both DM and FW 

yield, demonstrating that mineral fertilizers could be safely substituted by bio-based materials without 

adversely affecting productivity. Similar results have been reported by other authors, where in open field 

trials lettuce was fertilized with digestate from wine distillery and olive pomace compost (Montemurro et 

al., 2010) and digestate from fruit and wine distillery wastes (Nicoletto et al., 2014). Vaneeckhaute et al. 

(2013b) also reported small improvement in maize yield where ASW and a mixture of digestate and LF 

of digestate were applied as N-source in comparison to synthetic N reference.  

Furthermore, the nutrient assessment of lettuce showed no significant differences in crop nutrient 

concentration among the eight different fertilization treatments (Table 5.4). Moreover, crop nutrient 

concentration values were within the expected range of macro and micronutrients that are present in 

lettuce grown within the greenhouse (HL, 2002). This indicates that applied bio-based materials can 

fulfil the total nutrient requirements of the crop.  

Nowadays, with an increasing public concern about food quality along with crop nutritional value, it is 

important to assess the safety aspects with respect to different plant diseases that may affect crop 

health. In frame of crop quality control, only in treatments LFDIG+TSP+PAT and LFDIG+STR+PAT 

where LF of digestate was used as N- source, lettuce had a difficult start that was visible in crop volume 
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and uniformity. At harvest time, this negative influence was still notable in lettuce uniformity of the 

treatment LFDIG+TSP+PAT as compared to the Ref G1 (Table 5.5). This could be result of two crucial 

variables in LF of digestate application, namely EC and presence of ammonia. The former may be the 

limiting variable in the case where the acceptable salt tolerance of lettuce for this particular cultivar would 

be below 1.3 dS m-1 since that was the maximum observed value in treatment LFDIG+STR+PAT. On 

the other hand, in treatment LFDIG+TSP+PAT with LF of digestate, the measured soil EC2:1 values were 

lower as compared to treatments ASW+TSP+PAT and ASW+STR+PAT with air scrubber water. 

Therefore, we can conclude that the affected lettuce volume and uniformity in treatments with LF of 

digestate could not be attributed to high salt content since volume and uniformity of crop in treatments 

with ASW was not affected by the presence of even higher EC2:1 values. Until now researchers have 

reported contradictory results concerning digestate phytotoxicity, implicating NH4
+-N and organic acid 

concentrations in digestate as limiting factors in plant growth (Fuchs et al., 2008; Möller and Müller, 

2012). No data about the expected duration of phytotoxic effects were found. Nevertheless, it is believed 

that phytotoxicity should decrease within a short time period after field application of digestate (Möller 

and Müller, 2012). Moreover, Wong et al. (1983) reported that plant growth might be inhibited not only 

due to ammonia but also in a lesser extent by ethylene oxide in animal manure. These findings may 

give indications about the difficult start of the lettuce that occurred in treatments with LF of digestate. It 

is however important to remark that in this study no significant differences as compared to a reference 

were observed at harvest time with respect to crop yield and volume. The negative influence was only 

visible in lettuce uniformity which was less homogeneous in comparison to the reference. Finally, it 

should be noted that this negative effect on lettuce uniformity and volume was not observed in previous 

study (Chapter 4), where LF of digestate was applied as a N source in pot cultivation. This might be a 

result of lower material dosage that is given on laboratory scale (dosage on weight basis vs. dosage on 

hectare basis). Conversely, on commercial scale higher dosage of material is required, hence leading 

to more visible effects on crop production. 

5.4.3 Economic assessment 

Optimizing use of nutrient resources is one of the biggest challenges facing sustainable agriculture. 

Economic assessment is therefore a vital tool, since it can enumerate the potential costs and value the 

anticipated benefits of the proposed fertilization treatments. In this study, regardless of the potential 

acceptance of N bio-based materials as substitutes for synthetic N fertilizer, LF of digestate or ASW as 

a N source seemed to be more profitable choice for an arable farmer if the transport distance is not 

larger than 5 km and the farmer owns application equipment (Sc. 1; Figure 5.2). Moreover, under these 

conditions LF of digestate appeared to be economically better N source than ASW since it contains not 

only N, but also K and in a lesser extent P. In LFDIG+TSP+PAT treatment, for example, application of 

LF of digestate resulted not only in absence of CAN application, but also in a reduction of TSP and PAT 

by 27 kg P2O5 ha-1 and 165 kg K2O ha-1, respectively.  
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Figure 5.2 Fertilization cost (€ ha-1) of the applied treatments under two case scenarios (Sc. 1 and Sc. 2). 

Treatments Ref G1 = Ref G2 present conventional fertilization with synthetic fertilizers (CAN+TSP+PAT). 

Treatments with bio-based N materials were additionally assessed with regard to the potential changes of their retail 

price: zero cost (P=0% N), 50% (P=50% N), 75% (P=75% N) and 100% (P=100% N) of the market price for kg of 

N. CAN: calcium ammonium nitrate (27% N); TSP: triple superphosphate (46% P2O5); PAT: potassium sulfate (30% 

K2O, 10% MgO and 42% SO3); STR: struvite; ASW: air scrubber water; CW: effluent from constructed wetlands; 

LFDIG: liquid fraction of digestate. 

 

As expected, the lowest fertilization cost under Sc.1 conditions was observed with ASW+STR+CW 

treatment where complete replacement of synthetic fertilizers occurred. Conversely, this treatment 

under Sc. 2 conditions (transport distance = 40km; arable farmer hires contractor) resulted in the highest 

fertilization cost regardless of the potential changes in retail price of ASW. This is a consequence of 

transporting and applying effluent from CW, a material with a low nutrient concentration which led to 
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significantly higher transport and application cost (Sc. 2; Figure 5.2). Therefore, the more bio-based 

material is up concentrated, the lower fertilization cost will be generated. Finally, despite of observed 

increases in application and transport cost of LF of digestate under Sc. 2, LFDIG+TSP+PAT treatment 

still resulted in slightly lower fertilization cost than ASW+TSP+PAT treatment. This indicates that 

potential economic value of using bio-based materials as substitutes for synthetic fertilizers is quite 

material specific, depending mostly on the nutrient concentration, presence of economically valuable 

nutrients and water content in the material. 

5.5 Conclusion 

Air scrubber water and struvite gave the best results with respect to all tested parameters concerning (i) 

crop nutrient concentration, (ii) crop quality, (iii) marketable crop yield and (iv) soil properties. 

Nevertheless, additional research is required to assess the role of sulfur in air scrubber water when 

consistently using this substitute instead of CAN in subsequent crop cycles on the same soil/substrate. 

Analogously, nutrient use efficiency of phosphorus in struvite should be investigated in consecutive crop 

cycles to ascertain the P FRUE remains at the initial (high) level as was observed in the current study. 

Effluent from CW from manure treatment facilities can be considered as a valuable K- source for plant 

production. However, for economic reasons it is advised to apply the product in more concentrated form 

(e.g. after membrane filtration) to avoid high transport and fertilization costs. LF of digestate can be 

considered as a valuable N-source for plant production. However, in horticulture it may have a negative 

effect on crop uniformity. This issue should be investigated further by conducting biological assays to 

identify potential phytotoxic effects on plant growth. 
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Experimental site in Roeselare (Belgium)(Picture: Vervisch, B.) 
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Abstract 

Liquid fraction of digestate (LFDIG) and mineral concentrate (MC) are bio-based materials with relatively 

high N/P and NH4
+-N/N ratio, and as such have the potential to be used as N fertilizers. Their fertilizer 

performance with respect to maize yield and soil properties was evaluated in a single-year field 

experiment, with reference to calcium ammonium nitrate (CAN). Treatments included the individual 

material application i.e. LFDIG, MC and CAN, and combination with animal manure (AM), i.e. 

LFDIG+AM, MC+AM and CAN+AM. No significant differences were observed among individual and 

combination treatments with respect to maize yield, crop nutrient uptake and soil properties at harvest 

time, suggesting that LFDIG and MC have a potential to replace synthetic N fertilizers. Fertilizer use 

efficiency (FUE), apparent N recovery (ANR) and N fertilizer replacement value (NFRV) where lower in 

combination treatments due to the observed N over-fertilization. The N over-fertilization was caused by 

the application of AM whose concentration of N varied significantly between two sampling moments of 

the bio-based materials: i) before fertilization to determine application dosage and ii) during the actual 

fertilization. Finally, economic assessment indicated that the use of LFDIG and MC as N source can 

result in economic benefits for an arable farmer. 

6.1 Introduction 

End- and by-materials of animal manure processing currently attract considerable attention in the 

European Union (EU) due to the ongoing revision of the Fertilizer regulation 2003/2003. It has been 

estimated that 43.7 million tonnes of liquid fraction (LF) is produced annually from raw animal manure 

and/or raw digestate in the EU (Flotats et al., 2013). Despite of favorable N/P ratio of the material, LF of 

digestate is defined currently as a waste (i.e. animal manure). Consequently, farmers in manure surplus 

areas need to process this bio-based material further. In 2015, 81 out of 118 manure processing 

installations in Flanders (Belgium) used biological treatment as primary technique, accounting for the 

loss of around 12.7 million kg N in the form of N2 (VCM, 2016). In the emerging bio-based economy, the 

loss of N from biological treatment should be prevented by utilizing LFs as N fertilizers or by upgrading 

them via reverse osmosis to a mineral concentrate solution where most of the water and organic material 

is removed (Klop et al., 2012; Schröder et al., 2014). 

Mineral concentrate may exhibit similar N dynamics as synthetic N fertilizer (Sigurnjak et al., 2017a). 

For LF of digestate, a higher N release was observed as compare to animal manure, but it was still lower 

than the one observed for mineral concentrate and calcium ammonium nitrate (CAN). The pattern of N 

release depends on the NH4
+-N/Ntotal ratio of the material (Sigurnjak et al., 2017a; Sigurnjak et al., 2017b; 

Tambone and Adani, 2017). However, laboratory incubations are conducted in the absence of plants 

whose presence might additionally affect N dynamics in the soil. Importantly, in contrast to incubation, 

greenhouse or pot-trials, field trials are conducted under uncontrolled conditions where weather is seen 

as a key factor in determining the agricultural productivity. Therefore, before recommending these 
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materials as an equivalent to synthetic N fertilizer, their efficacy in open field cultivation should be tested 

by determining N fertilizer replacement value (NFRV) of these bio-based materials as compare to 

synthetic N fertilizer. The aim of this chapter was to evaluate the impact of using LF of digestate and 

mineral concentrate as replacements for synthetic N fertilizer in fodder maize field cultivation. Fodder 

maize is one of the most important crops grown in Belgium. It has a dual purpose, as a silage for animals 

or as an input stream for anaerobic digestion (i.e. as an energy maize). Currently, around 5000 ha of 

land in Flanders is used for energy maize production (De Vliegher et al., 2012; EC, 2014a). The 

performance of LF of digestate and mineral concentrate was evaluated with reference to CAN via 

application of the individual materials and via combination treatments involving application of LF of 

digestate and mineral concentrate on top of animal manure. It is hypothesized that the use of these bio-

based materials in individual or combination treatments will not cause significant differences in maize 

yield, nitrate leaching and soil properties as compared to CAN and conventional practice of using animal 

manure supplemented with synthetic fertilizers. 

6.2 Materials and methods 

6.2.1 Experimental set-up 

The field experiment was performed on a sandy-loam soil in Roeselare (50° 54′ 53″N, 3° 6′ 41″E), 

Belgium. The soil characteristics of the 0-30 cm soil layer prior to the experiment were organic carbon 

(OC) = 1.2 % on dry matter (DM); NO3
- -N = 19 kg ha-1; NH4

+-N = 21 kg ha-1; ammonium lactate 

extractable P (P-AL) = 420 mg kg-1 DM and ammonium lactate extractable K (K-AL) = 204 mg kg-1 DM. 

The NO3
--N amount in soil prior to the experiment was 7 kg ha-1 per each soil layer (i.e. 30-60 and 60-

90 cm), whereas for NH4
+-N 11 kg ha-1 was measured in 30-60 cm and <4 kg ha-1 in 60-90 cm soil layer. 

Note that soil from this field was also used for incubation experiment in Chapter 3. As a test crop, fodder 

maize (Zea mays L.) cv. Atletico KWS (FAO Ripeness Index: 280), was grown in 2014. The preceding 

crop in 2013 and 2012 was chicory (i.e. Belgian endive) and fodder maize, respectively. The monthly 

rainfall and average soil temperature during the experimental period were collected at the meteorological 

station within 16 km from the site, and is presented in Table 6.1. 

Experimental treatments were tested in a randomized block design with quadruplicate plots of 7 m x 7 

m (n = 4) spread across the field to minimize potential influence of variable soil conditions on the results 

(Figure 6.1). Since Flemish soils are rich in P and located in the NVZ, the P2O5 and effective N 

application rates are limited by legislation. In this study according to the Flemish manure regulation for 

the cultivation of maize on non-sandy soils (FMD, 2011), the application dosage was set at 150 kg 

effective N, 80 kg P2O5, 220 kg K2O and 60 kg MgO ha-1. The amount of effective N in animal manure 

was accepted to be 60 % of the total N content, according to the Flemish manure regulation. For LF of 

digestate and mineral concentrates it was hypothesized (as in Chapter 3) that 100 % of total N present 

in these bio-based materials would be available during the experiment. This is similar to what is expected 

from the application of synthetic N fertilizer. 
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Table 6.1 Average rainfall (mm) and soil temperature (°C) measured at Zarren station (16 km from the field location) 

during the experimental year (Source: Waterinfo.be). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Overview of plots on the experimental site. The different colours and patterns indicate where animal 

manure (yellow pattern), liquid fraction of digestate (red striped pattern) and mineral concentrate (grey shaded area) 

were applied. 

As it can be seen from Table 6.2, the Ntotal and Ptotal concentration of animal manure (AM) was, 

respectively, 31% and 75% higher during the actual fertilization as compare to analysis obtained before 

fertilization. As a result, N and P2O5 over-fertilization occurred in [AM+CAN], [AM+MC] and [AM+LFDIG] 

treatments. The nutrient composition of LF of digestate (LFDIG) and mineral concentrate (MC) was far 

more stable. Finally, in order to make N as the only responsive nutrient, synthetic P and K fertilizers 

were added in control treatment in the form of triple superphosphate (TSP; 46 % P2O5) and potassium 

sulfate (PAT; 30 % K2O, 10 % MgO and 42 % SO3), respectively. The aim was for all treatments, 

Year 2014 Rainfall (mm) Temperature (°C) 

January 68 5.8 

February 90 5.8 

March 29 7.8 

April 25 11.9 

May 74 14.1 

June 60 18.5 

July 117 19.4 
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September 5 16.4 

October 49 14.2 

November 50 10.1 

December 59 6.2 
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including the control, to receive at least 65 kg P2O5 ha-1 and 210 kg K2O ha-1 regardless of the nutrient 

source. Nutrient application rates for seven different treatments are summarized in Table 6.3. 

AM, LFDIG and MC were applied on May 2 2014, by use of PC controlled injection (Bocotrans, NL). The 

PC controlled injection allows the driver to control the amount of slurry that is injected per ha from the 

tractor, whereas in the conventional system the driver needs to perform a certain balance between 

speed and pumping dosage. The synthetic N and K fertilizers were applied on May 12, while synthetic 

P fertilizer was applied on May 19. All synthetic fertilizers were applied to the plots by hand-application. 

Fodder maize was sown on May 6 2014 at a seed density of 100 000 ha-1.  

Table 6.2 Characterization of bio-based materials before (14/04/2014) and during the field application (02/05/2014) 

based on the fresh weight. Value between brackets indicate the content of bio-based materials measured during 

the fertilization. 

Parameters Animal manure Liquid fraction of digestate Mineral concentrate 

Dry matter (g kg-1) 34 (121) 28 (34) 32 (49) 

Organic matter (g kg-1) 20 (78) 17 (21) 14 (31) 

Organic carbon (g kg-1) 11 (43) 9 (12) 8 (17) 

Ntotal (g kg-1) 4.2 (6.1) 4.2 (4.9) 4.0 (3.9) 

NH4
+-N (g kg-1) 2.9 (3.7) 2.9 (3.8) 3.8 (3.5) 

Norganic (g kg-1) 1.3 (2.4) 1.3 (1.1) 0.2 (0.4) 

Ptotal (g kg-1) 0.63 (2.6) 0.26 (0.41) 0.03 

Ktotal (g kg-1) 2.9 (3.0) 2.9 3.3 (3.2) 

Catotal (g kg-1) 1.57 (8.8) 0.25 (0.54) 0.11 (0.10) 

Mgtotal (g kg-1) 0.40 (2.1) 0.06 (0.09) 0.19 (0.17) 

Natotal (g kg-1) 1.0 (0.96) 1.6 (1.8) 2.8 

Cutotal (mg kg-1) 15 (68) 1.4 (1.6) < 1.6 

Zntotal (mg kg-1) 29 (156) 4.9 (8.1) < 0.79 

C/Ntotal 2.6 (7.1) 2.2 (2.4) 2.0 (4.4) 

C/Norganic 8.5 (18) 6.9 (11) 40 (43) 

N/P 6.6 (1.4) 16 (9.3) 126 (120) 

NH4
+-N/Ntotal 0.69 (0.61) 0.69 (0.78) 0.95 (0.90) 

Norganic /Ntotal 0.31 (0.39) 0.31 (0.22) 0.05 (0.10) 
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Table 6.3 Dosage of total nitrogen (kg ha-1) applied for the seven (n = 4) different fertilization treatments; K2O and P2O5 contribution (kg ha-1) brought to the field via applied 

fertilization regime of total nitrogen; additional application of synthetic K2O and P2O5 (kg ha-1) in order to obtain similar application rate in all treatments. Values present the 

intended dosage and values between brackets present the actual dosage, indicating the difference caused in variability between sampling at farm/digester and sampling during 

the actual fertilization. The contribution of effective N (kg ha-1) from animal manure amounts to 60% of the total N applied, while for mineral concentrate and liquid fraction of 

digestate amounts to 100%. 

Treatment 
Animal 
manure N 

Synthetic 
N 

Mineral 
concentrate 
N 

Liquid 
fraction of 
digestate N 

K2O 
contribution 

P2O5 

contribution 

Synthetic 
K2O 
addition 

Synthetic 
P2O5 

addition 
Total N 

Effective 
N 

Total 
P2O5 

Total 
K2O 

AM + CAN 170 (246) 48 - - 141 (145) 59 (242) 65 0 218 (295) 196 65 (242) 210 

AM + MC 170 (246) - 48 (47) - 189 (192) 59 (243) 18 0 218 (293) 195 65 (243) 210 

AM + LFDIG 170 (246) - - 48 (56) 181 (185) 65 (253) 25 0 218 (302) 204 65 (253) 210 

CAN - 150 - - - - 210 65 150 150 65  210 

MC - - 150 (146) - 150 (146) 2.7 (2.5) 64 63 150 (146) 146 65  210 

LFDIG - - - 150 (175) 125 21 (34) 85 32 150 (175) 175 65 210 

Control - - - - - - 210 65 - - 65 210 

AM: animal manure; CAN: calcium ammonium nitrate; MC: mineral concentrate; LFDIG: liquid fraction of digestate; Control: application of synthetic P2O5 and K2O.
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6.2.2 Bio-based material sampling and analysis 

AM used in the trial was collected at a local pig farm in Beitem, Belgium. LFDIG was sampled from an 

anaerobic co-digestion plant at the site of Bioelectric (Beernem, Belgium; denoted as LFDIG_AM in 

Chapter 3), whereas MC was sampled at the site of Ampower (Pittem, Belgium; denoted as MC_LDIG 

in Chapter 3). These products were also used in Chapter 3 where their N dynamics were evaluated on 

soil that was sampled from the field on which the current experiment occurred. For more information on 

the description of biogas installations, please see Chapter 3 section 3.2.2. All products were collected 

in polyethylene sampling bottles (2 L), stored (4 °C) and characterized (Table 6.2) to determine the 

required application dosage. Product characterization was done as described in section 3.2.2 (Chapter 

3). Product Cu and Zn content was determined and analyzed in the same manner as K, Mg, Ca and Na 

(section 3.2.2, Chapter 3). 

6.2.3 Soil sampling and analysis 

Soil samples were taken during (September 24 2014) and after the harvest (October 1, October 22 and 

November 14 2014). At each soil sampling moment, homogenized soil subsamples were taken per plot 

at three depths (0-30 cm, 30-60 cm, 60-90 cm) using an auger. In order to obtain a representative soil 

sample in each plot, samples were collected from five sampling points (the center and the 4 corners) of 

7.5m2 area which was located in the middle of the plot (49 m2 area) and corresponds to the area that 

was harvested for determination of maize FW yield. The samples were collected in polyethylene 

sampling bags and transported from the test site to the laboratory where each sample was divided into 

two fractions. A fresh fraction was sealed in polyethylene cups and stored in the freezer (-18°C) for the 

mineral N and DM determination, while the second fraction of the soil sample was air-dried at room 

temperature (25°C).Soil moisture content, OC, pH, total N and mineral N were determined as described 

in section 3.2.1 (Chapter 3), whereas soil conductivity and total P, K, Ca, Mg, Na, S, Cu and Zn were 

analyzed as described in section 4.2.2 (Chapter 4). 

6.2.4 Plant sampling and analysis 

Maize was harvested on September 24 2014. The 7.5m2 area in the middle of each plot was measured, 

and the maize within that surface area was harvested manually by use of trimming scissors. The FW 

biomass yield of the maize within 7.5 m2 area was determined at the field. Ten maize plants (stem with 

cob and leaves) per plot were taken to the lab, chopped and homogenously mixed. From this mixture 

200 – 350 g of sample was oven-dried at 55 °C for determination of the DM (%) content. The dry samples 

were grinded to pass a 1 mm sieve (Retsch SM-2000, Germany) and incinerated at 550 °C during 4 h 

in order to determine the OC content. Plant nutrient concentrations were determined and analyzed as 

described in section 4.2.3 (Chapter 4). 

6.2.5 Economic assessment 

Fertilization cost was determined according to the methodology described in Chapter 5 (section 5.2.4). 

As compared to the greenhouse trial (Chapter 5), larger quantities of bio-based materials were applied 
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in this study due to the larger experimental area. This requirement led to the visible differences in nutrient 

variability between intended and actual applied dosages. The economic assessment was based on the 

intended dosage since in practice the arable farmer would base his acceptance/purchase decision on 

the results of the most recent laboratory report, and that is before fertilization. 

6.2.6 Data analysis 

Based on the physicochemical data, the apparent N recovery (ANR) and N fertilizer replacement value 

(NFRV) were determined according to Eq. 1 and Eq. 2 (Chapter 1). NFRV of individual treatments was 

compared to CAN treatment, whereas for combination treatments comparison was made with AM+CAN 

treatment. In order to compare different experimental designs (with and without unfertilized treatment) 

N fertilizer use efficiency (FUE) was determined according to Eq. 3 (Chapter 1). 

An additional way to assess the fertilizer efficiency is to measure post harvest nitrate residue, which 

corresponds to residual nitrate that is left in 0-90 cm soil layer, between October 1 and November 15. 

The measured nitrate residue gives an estimation of the nitrate amount that can potentially leach to 

ground and surface water. This instrument is used in Flanders (Belgium) since 2004, and in Bretagne 

(France) since 2014 (Buysse, 2015).  

Statistical analyses were performed using SPSS statistical software (version 22.0; SPSS Inc., Chicago, 

IL). One way ANOVA was used to determine the effect of the applied fertilizers on soil properties along 

with the effect on crop yield and nutrient uptake, based on the obtained physicochemical data. When 

significant differences between means were observed, additional post hoc assessment was performed 

using Tukey’s Test (p < 0.05, n=3). The condition of normality was checked using the Shapiro-Wilk test, 

whereas the homogeneity was tested with the Levene Test. Significant parameter correlations were 

determined using the Pearson correlation coefficient (r).  

Note that during the fertilization a technical error occurred when two replicates (plot 207 and 407) of 

control treatment, located at the edge of the experimental area (Figure 6.1), received N fertilizer. This 

error was confirmed by observed differences between maize yield and nitrate residue among 4 

replicates of the control treatment. Therefore, the mean and standard deviation for control treatment is 

based only on two replicates. As a result, the control treatment was not subjected to ANOVA analysis. 

6.3 Results 

6.3.1 Maize yield and nutrient uptake 

The lowest crop FW and DM yield was observed in the control treatment (Table 6.4). When comparing 

proposed fertilization treatments, no significant differences with respect to FW and DM yield were 

observed among the combination treatments (reference AM+CAN) nor among individual treatments 

(reference CAN). The lowest crop nutrient uptake was observed on average in control treatment (Table 

6.4). No significant differences were recorded with respect to crop nutrient uptake among individual and 

combination treatments. 
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Table 6.4 Mean ± standard deviation of maize fresh weight, dry weight, nutrient uptake, N fertilizer use efficiency (N FUE), Apparent N recovery (ANR) and N fertilizer replacement 

value (NFRV) for the seven different fertilization treatments (n = 4; for control n=2) at harvest time.  

Parameter AM + CAN AM + MC AM + LFDIG CAN MC LFDIG Control 

Fresh weight (tonnes ha-1) 83 ± 3 76 ± 8 81 ± 5 78 ± 3 77 ± 3 80 ± 2 59 ± 2 

Dry weight (tonnes ha-1) 24 ± 1 24 ± 3 23 ± 1 23 ± 1 23 ± 1 23 ± 0 19 ± 1 

Total N (kg ha-1) 282 ± 17 274 ± 33 262 ± 20 256 ± 18 261 ± 19 264 ± 26 216 ± 17 

Total P (kg ha-1) 42 ± 3 41 ± 7 36 ± 7 39 ± 3 42 ± 5 39 ± 4 32 ± 1 

Total K (kg ha-1) 309 ± 19 298 ± 29 315 ± 49 320 ± 55 333 ± 59 287 ± 50 237 ± 4 

Total S (kg ha-1) 25 ± 3 24 ± 2 20 ± 7 22 ± 1 22 ± 3 23 ± 2 19 ± 1 

Total Ca (kg ha-1) 37 ± 6 31 ± 3 38 ± 9 39 ± 7 40 ± 13 32 ± 9 27 ± 4 

Total Mg (kg ha-1) 29 ± 1 24 ± 3 26 ± 1 26 ± 2 28 ± 6 24 ± 6 21 ± 1 

Total Na (kg ha-1) 5.0 ± 1.0 4.0 ± 0.8 5.4 ± 1.1 5.3 ± 0.8 6.6 ± 2.3 4.0 ± 1.2 4.1 ± 0.2 

N FUE (%) 96 ± 6 94 ± 11 87 ± 7 171 ± 12 179 ± 13 151 ± 15 - 

ANR 0.22 ± 0.06 0.20 ± 0.11 0.15 ± 0.07 0.27 ± 0.12 0.31 ± 0.13 0.28 ± 0.15 - 

NFRV (%) 100 89 69 100 115 104 - 

Analyzed parameters were subjected to a one-way ANOVA by comparing separately individual (i.e. MC and LFDIG vs. CAN) and combination (i.e. AM+M and, AM+LFDIG vs. 

AM+CAN) treatments. No significant different means between fertilizer treatments (Tukey’s Test (p <0.05)) were detected. Treatments AM+CAN and CAN, as references, were 

considered to be 100% efficient (i.e. NFRV = 100). AM: animal manure; CAN: calcium ammonium nitrate; MC: mineral concentrate; LFDIG: liquid fraction of digestate; Control: 

application of synthetic P2O5 and K2O.
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Even though there were no differences observed with respect to crop N uptake, the calculated N FUE 

indicates that the relative export of N with harvest was higher in CAN, MC and LFDIG treatments than 

in combination treatments (Table 6.4). As a result, higher ANR was observed on average in treatments 

with individual product application. Nevertheless, due to the high standard deviations ANR of individual 

treatments and ANR of combination treatments was not statistically (p>0.05) different. On average, 

AM+MC and AM+LFDIG treatments resulted in lower NFRVs as compared to AM+CAN, while individual 

application of MC and LFDIG has led to higher NFRV as compared to CAN. 

6.3.2 Soil properties and NO3
--N residue  

The post-harvest NO3
--N residue was measured on three moments between October 1 and November 

15, in order to determine the potential risk for NO3
- leaching. On all three occasions, the measured NO3

-

-N residue was below the legally stipulated limit of 80 kg NO3
--N ha-1 for all treatments (Figure 6.2). On 

average higher NO3
--N residue was observed in treatments where LFDIG was applied. 

 

Figure 6.2 NO3
--N residue (kg ha-1) in soil layer 0-90 cm for the seven (AM: animal manure; CAN: calcium 

ammonium nitrate; MC: mineral concentrate; LFDIG: liquid fraction of digestate; Control: application of synthetic 

P2O5 and K2O) different fertilization treatments after the harvest. The dash line indicates the maximum allowable 

level of nitrate residue in soil (80 kg NO3
--N ha-1 for sandy-loam soil in 2014) between October 1st and November 

15th according to Flemish environmental standard. Error bars indicate standard deviations (n=4; for control n=2). 

At harvest time, no significant effects of fertilizer treatment were observed with respect to soil pH, EC5:1 

and soil total N, P, K, S, Ca, Mg, Cu and Zn (Table 6.5). The effect of the fertilizer treatment was notable 

only in individual fertilized treatments, where a significantly higher soil total Na amount was measured 

at harvest time in MC treatment as compared to CAN reference.  
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Table 6.5 Total mean ± standard deviation of soil moisture content (%; on soil fresh weight basis), pH-H2O, EC5:1 and nutrient amounts (0-30 cm; on soil dry weight basis) at 

harvest time for the seven different fertilization treatments (n=4; for control n=2). 

 
Parameters 
 

AM + CAN AM + MC AM + LFDIG CAN MC LFDIG Control 

Moisture (%) 14 ± 1 14 ± 0 14 ± 0 15 ± 1 14 ± 0 14 ± 0 14 ± 1 

Total N (g kg-1) 1.09 ± 0.10 1.04 ± 0.06 1.03 ± 0.12 1.00 ± 0.04 1.03 ± 0.05 0.99 ± 0.02 0.99 ± 0.02 

Total P (mg kg-1) 766 ± 75 807 ± 76 814 ± 80 855 ± 64 766± 41 734 ± 17 840 ± 76 

Total K (g kg-1) 2.00 ± 0.07 2.02 ± 0.21 1.96 ± 0.05 2.00 ± 0.14 2.06 ± 0.12 2.07 ± 0.13 1.97 ± 0.16 

Total S (mg kg-1) 443 ± 53 449± 55 417 ± 46 435 ± 50 441± 77 423 ± 58 423 ± 46 

Total Ca (g kg-1) 2.38 ± 0.15 2.33 ± 0.14 2.23 ± 0.16 2.41 ± 0.22 2.25 ± 0.22 2.20 ± 0.15 2.11 ± 0.19 

Total Mg (g kg-1) 1.64 ± 0.09 1.60 ± 0.08 1.54 ± 0.06 1.65 ± 0.17 1.55 ± 0.10 1.54 ± 0.07 1.52 ± 0.11 

Total Na (mg kg-1) 173 ± 12 188 ± 10 197 ± 40 171 ± 14a 195 ± 9b 197 ± 29ab 154 ± 4 

Total Cu (mg kg-1) 17 ± 1 17 ± 2 16 ± 1 16 ± 1 16 ± 1 16 ± 0 16 ± 0 

Total Zn (mg kg-1) 44 ± 2 44 ± 3 42 ± 2 42 ± 1 42 ± 1 41 ± 1 41 ± 0 

pH-H2O 6.99 ± 0.07 6.92 ± 0.11 7.03 ± 0.06 6.97 ± 0.06 6.87 ± 0.05 6.96 ± 0.06 6.87 ± 0.15 

EC5:1 (µS cm-1) 114 ± 26 106 ± 35 91 ± 10 110 ± 24 116 ± 10 107 ± 32 88 ± 7 

Analyzed parameters were subjected to a one-way ANOVA by comparing separately individual (i.e. MC and LFDIG vs. CAN) and combination (i.e. AM+M and AM+LFDIG vs. 

AM+CAN) treatments. Lower-case letters (a and b) in a single row indicate significant different means between fertilizer treatments - Tukey’s Test (p <0.05). AM: animal manure; 

CAN: calcium ammonium nitrate; MC: mineral concentrate; LFDIG: liquid fraction of digestate; Control: application of synthetic P2O5 and K2O.
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6.4 Discussion 

6.4.1 Nutrient variability of bio-based materials and sampling 

Bio-based materials are known for a high variability in nutrient composition (Galvez et al., 2012; EC, 

2014a) as compared to manufactured synthetic fertilizers. Materials used in the current study exhibited 

important differences in their nutrient composition between sampling prior to the fertilization and the 

sampling on the day of the fertilization itself. The highest variability in nutrient composition was observed 

with AM which during the field application contained four times more P than the sample of AM that was 

taken from the same storage three weeks earlier to determine the application dosage of the material 

(Table 6.2). In general, nutrient variability can occur due to the variation in diet, use of cleaning water, 

ammonia losses from storage and sampling strategies. The variation in diet can be detected from 

manure solids concentration which are related to nutrient concentration: the higher solids concentration 

is, the higher nutrient concentration will be (Lorimor et al., 2004). This was noted also with AM which 

during the fertilization, next to the four times more P, contained also almost four times higher DM content 

than the analyzed AM before fertilization. The DM content is dependent on the animal feed and water 

intake. If feed contains less salt or crude protein pigs will consume less water, resulting in manure with 

higher DM content (Kendall et al., 2000). In this study, however, no significant changes in feed strategy 

were expected during the three week period between sampling moments. Effect of cleaning water and 

ammonia losses would lead respectively to dilution of nutrient concentrations and reduction of NH4
+-N, 

which did not occur in this study (Table 6.2). Therefore, the most likely cause for observed nutrient 

variability lies in sampling strategies. The issue is that most of the manure storages in practice are not 

mixed, which leads to settling and consequently makes it challenging to obtain homogeneous sample. 

Variability in nutrient composition was also observed for LFDIG and MC, however, to a lesser extent. 

For these bio-based materials the variability is mostly attributed to non-stable feeding patterns of co-

digesters, which occurs due to the dependence on feedstock market availability. In general, these 

observations were briefly noted in other studies (Schröder et al., 2013; Schröder et al., 2014; Cavalli et 

al., 2016), but their relevance and impact on the conducted field experiments was not discussed since 

only application rates during the actual fertilization were reported. In this study, the observed variability 

with AM led to N and P over-fertilization in all combination treatments, where on average 27% more N 

was added as compared to what was stipulated (Table 6.3). Consequently, the exceedance of the 

maximum stipulated limit for P application rate occurred by applying four times more P than it is legally 

allowed. The variability in nutrient composition of the bio-based materials needs to be tackled in the 

future to prevent the potentially negative effects of over-fertilization on the environment. Possible 

solutions would be to keep the time between the first sampling and the actual fertilization the shorter as 

possible (<3 weeks) and consider the use of Near Infra-Red (NIR) devices which would allow to adapt 

the application dosage during fertilization. 
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6.4.2 Effects on maize yield and nutrient uptake 

As hypothesized, the use of LFDIG and MC as an individual N source or in combination with AM did not 

cause any differences in maize yield nor maize nutrient uptake as compared to CAN and AM+CAN 

treatment, respectively. Nevertheless, despite the similar N uptake of maize, the observed N FUE (%) 

differed significantly between the individual and combination treatments, with individual treatments 

exhibiting on average 45% higher N FUE (Table 6.4). This can be attributed to the N over-fertilization 

which occurred in combination treatments and the fact that N FUE largely accounts for differences in N 

application rate (Klop et al., 2012). The observed negative correlation (r=-0.995, p<0.05) between 

applied rate of total N and N FUE (%) was also reflected on ANR and NFRV values which tended to be 

higher for individual treatments. However, due to the high standard deviations ANR and NFRV values 

did not differ significantly among fertilized treatments (Table 6.4), suggesting that LFDIG and MC have 

a fertilizer value similar to that of synthetic N fertilizer. The NFRVs of MC reported in this chapter are in 

agreement with the ones reported by Dutch researchers (Klop et al., 2012; Schröder et al., 2013; 

Schröder et al., 2014) whose NFRV value of soil injected mineral concentrate ranged from 72 – 96% as 

compared to CAN being 100% efficient. For LF of digestate, Cavalli et al. (2016) reported that NFRVs 

of tested LF of digestate varied on average across the three year field trial from 20-75% as compared 

to ammonium sulfate as a synthetic N source. In general, studies on NFRVs tend to show a notable 

variation across different field experiments. This variation stems from the effects of variable weather 

conditions on the performance of both bio-based materials and the used references (Schröder et al., 

2013).  

Despite the lack of N fertilization, control treatment resulted in 19 tonnes DM ha-1 and N export of 216 

kg N ha-1. It is quite known that unfertilized control can benefit from previous fertilizer application 

(Brentrup and Palliere, 2010; Riva et al., 2016), especially in regions with historical manure utilization 

such as Flanders. According to Flemish demonstration project ‘Nitrogen monitoring network’ that was 

on-going for 4 years, the following assumptions for the N mineralization from SOM were made (VLM, 

2014b): i) a standard mineralization rate of 0.8 kg N ha-1 day-1 can be considered, ii) on poor land where 

only occasionally animal manure was used, an average mineralization rate of 0.5 kg N ha-1 day-1 seems 

to be more appropriate, iii) on plots where in past a lot of animal manure was applied, an average 

mineralization rate of 1 kg N ha-1 day-1 is more appropriate. The latter is in agreement with our prediction 

which was based on incubation of bare soil in Chapter 3. Incubation results showed that 93 kg N ha-1 

would be mineralized during the growing period of maize (141 days) on top of 69 kg mineral N ha-1 that 

was present in soil prior to the experiment (section 6.3.1). This prediction of 162 kg N ha-1 is in agreement 

with calculations of N mineralization at harvest time as follows (D’ Haene et al., 2014): N uptake + 

mineral N at harvest – mineral N at the start – N deposition = 216 + 17 – 69 – 9 = 155 kg N ha-1. The N 

deposition was 23.8 kg N y-1 in 2014 (MIRA, 2017). As shown, N mineralization in nutrient surplus 

regions can be considerable. In this study, the potential effect was taken into consideration by 

accounting for maize N uptake in control treatment when determining ANR and NFRV. In the absence 

of control treatment, as it occurs in practice, it is assumed that field is homogenous and the effect of N 

mineralization will be similar on all tested treatments.  
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6.4.3 Effects on NO3
--N residue and soil properties 

N which is not taken up by the plant is prone to leaching thus causing environmental concern. The 

determination of the NO3
--N residue in soil is therefore seen as an important parameter to assess the 

nitrogen load in the environment. The post-harvest NO3
--N residue was measured on three moments 

between October 1 and November 15, and on all three occasions was below the legally stipulated limit 

of 80 kg NO3
--N ha-1 for all treatments (Figure 6.2). This indicates that utilization of LF of digestate and 

mineral concentrate as N fertilizers should not additionally increase the risk of nitrate leaching compared 

to synthetic N fertilizer during the winter period, used individually or in combination with animal manure.  

As hypothesized, the use of LFDIG and MC as an individual N source or in combination with AM did not 

cause differences in soil properties as compared to the respective references (Table 6.5). However, 

treatments with LFDIG and MC at harvest time tended to have on average higher amount of total Na in 

soil. In MC treatment the measured amount of Na in soil was significantly (p<0.05) higher than the one 

in CAN treatment. In general, LF of digestate and mineral concentrate contain considerable amounts of 

Na, which in this study were two to three times higher than the ones detected in AM (Table 6.2). Thus, 

when using these bio-based materials a significant amount of Na is applied. Some arable crops such as 

sugar beet respond positively to applied Na (Velthof, 2015), while some such as grass might exhibit 

scorching effect if salt concentrations of applied materials are too high and too close to the grass roots 

(Klop et al., 2012). Moreover, if Na in soil dominates significantly over Ca and Mg, soil pores might clog 

resulting in limited water infiltration (Horneck et al., 2007). This problem, however, is not expected in 

regions with temperate climate (e.g. Flanders) where precipitation exceeds evaporation, but might be 

an issue in arid regions where evaporation is often greater than precipitation. 

6.4.4 Economic assessment 

The use of bio-based materials as substitutes for their mineral counterparts can result in significant 

economic benefits for the farmer (Vaneeckhaute et al., 2013a; Dahlin et al., 2015). In this study, under 

the most favorable scenario (Sc. 1: transport distance = 5 km; arable farmer owns application 

equipment) for an arable farmer, the highest fertilization cost was observed in the conventional 

fertilization regime that uses manure and synthetic fertilizers (AM+CAN and CAN treatments) as a 

nutrient source for plants (Figure 6.3). This was mostly due to high purchase costs of synthetic fertilizers. 

Under the least favorable scenario (Sc. 2: transport distance = 40 km; arable farmer hires contractor) 

treatments with MC and LFDIG are still economically better option if, in the case of market acceptance, 

their retail price does not exceed 75% of the current market price paid for 1 kg of N. If the retail price of 

N from MC and LFDIG is equal to the one currently paid for N from CAN, bio-based treatments become 

2-5% more expensive for the arable farmer under conditions of Sc. 2. In this case, arable farmer might 

still decide to use MC or LFDIG if there is an option to buy them from the closer location (< 40 km) or 

with higher N up-concentration (i.e. higher NH4
+-N/Ntotal ratio). This reduction in transport costs would 

compensate for 2-5% higher fertilization costs. Also, if the retail price for bio-based materials is positive, 

livestock farmers/biogas plant owners (i.e. producers of bio-based materials) might aim to produce bio-

based fertilizers with higher NH4
+-N/Ntotal ratio in order to remain competitive on the fertilizer market. 
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Finally, nutrient variability might be better controlled because arable farmer would want to know the 

exact amount of N that he is receiving for his payment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Fertilization cost (€ ha-1) of the applied treatments under two case scenarios (Sc. 1 and Sc. 2). 

Treatments AM+CAN and CAN present conventional fertilization with synthetic fertilizers. Treatments with bio-

based N materials were additionally assessed with regard to the potential changes of their retail price: zero cost 

(P=0% N), 50% (P=50% N), 75% (P=75% N) and 100% (P=100% N) of the market price for kg of N. CAN: calcium 

ammonium nitrate (27% N); TSP: triple superphosphate (46% P2O5); PAT: potassium sulfate (30% K2O, 10% MgO 

and 42% SO3); AM: animal manure; MC: mineral concentrate; LFDIG: liquid fraction of digestate. 
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6.5 Conclusion 

In a single-year field maize cultivation, mineral concentrate and LF of digestate proved to be effective 

substitutes for conventional fertilizers applied in arable crops. Moreover, economic assessment 

indicated that their use can lead to economic benefits for an arable farmer, even in the case of their 

acceptance on the fertilizer market. Future perspectives indicate that point of attention for using the 

liquid fraction of digestate and mineral concentrate as substitutes for synthetic N fertilizer should at least 

focus on variability of their nutrient composition. By reducing the variability, potential N over-application 

and N loss during the crop growth could be reduced as well. 
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Abstract 

Following changes over recent years in fertilizer legislative framework throughout Europe, phosphorus 

(P) is taking over the role of being the limiting factor in fertilizer application rate of animal manure. This 

results in less placement area for spreading animal manure. As a consequence, more expensive and 

energy demanding synthetic fertilizers are required to meet crop nitrogen (N) requirements despite 

existing manure surpluses. Anaerobic digestion followed by mechanical separation of raw digestate, 

results in liquid fraction (LF) of digestate, a bio-based material poor in P but rich in N and potassium (K). 

A 3-year field experiment was conducted to evaluate the impact of using the LF of digestate as a (partial) 

substitute for synthetic N fertilizer. Two different fertilization strategies, the LF of digestate in combination 

with respectively animal manure and digestate, were compared to the conventional fertilization regime 

of raw animal manure with synthetic NK-fertilizers. Results from the 3-year trial indicate that the LF of 

digestate may substitute synthetic N fertilizers without crop yield losses. Through fertilizer use efficiency 

assessment it was observed that under-fertilization of soils with a high P status might reduce P 

availability and consequently the potential for P leaching. Under conditions of lower K application, more 

sodium was taken up by the crop. In arid regions, this effect might reduce the potential risk of salt 

accumulation that is associated with organic fertilizer application. Finally, it seems that the nutrient 

variability in bio-based fertilizers will be one of the greatest challenges to address in the future utilization 

of these materials. 

7.1 Introduction 

In 2014, the average synthetic fertilizer use in Europe (EU-27) reached 10.7 million tonnes of nitrogen 

(N), 2.5 million tonnes of phosphate (P2O5) and 2.7 million tonnes of potash (K2O) (FE, 2015). Contrary 

to this, the European (EU-27) agri-food sector is yearly generating 12 million tonnes of N and 2.5 million 

tonnes of phosphorus (P) via production of animal manure, sewage waste and food chain waste 

(Buckwell and Nadeu, 2016). At the moment, small part of nutrients in these waste streams is recovered 

and reused. In the case of animal manure, only 7.8% of all livestock manure in Europe is currently 

processed (Flotats et al., 2013). This is often done via anaerobic co-digestion process, resulting in 

valuable biogas and nutrient rich digestate. The latter has the potential to be used as a fertilizer, 

however, the current European legislation limits its use by identifying it as a waste rather than a product 

(Article 2(g) of the Nitrates Directive 91/676/EC; EC, 1991). This implies that digestate from co-digestion 

with animal manure retains the status of animal manure (Schröder et al., 2013; Vaneeckhaute et al., 

2013a; EC, 2014a) and thus directly competes with animal manure for possible disposal on arable land. 

This disposal is limited in nitrate vulnerable zones by the maximum allowable N application rate of 170 

kg N ha-1 y-1 (Nitrates Directive 91/676/EC; EC, 1991), and as such constitutes a serious obstacle for 

profitable development of the biogas sector (Galvez et al., 2012; Lebuf et al., 2012; EC, 2013).   



Multi-year field trial Zea mays L. cultivation 
 

117 
 

In order to enhance both the production of renewable energy and the sustainability of the agro-food 

value chain, it has become an important challenge to adopt biorefinery concepts in which nutrients 

present in animal manure and digestate are maximally recovered (Alburquerque et al., 2012a; Galvez 

et al., 2012) by generating various end- and by-materials that can be used as substitutes for synthetic 

fertilizers. As part of the Circular Economy Package, the European Union is revising its regulatory 

framework (Fertilizer Regulation 2003/2003) around mineral fertilizers with the intention to include bio-

based fertilizers into the market. However, insufficient knowledge about the properties and the impact 

of these materials on soil characteristics and crop yield limit their use. This study aimed to evaluate the 

fertilizer potential of liquid fraction (LF) of digestate, a by-material of anaerobic digestion, and its impact 

on soil and crop production during three consecutive years of fodder maize cultivation.  

Until now, many studies have investigated the fertilizer potential of digestate (Garfí et al., 2011; 

Alburquerque et al., 2012b; Herrmann et al., 2013; Svoboda et al., 2013; Bachmann et al., 2014; Vanden 

Nest et al., 2015). However, little is known, about the fertilizer potential of the LF of digestate (Riva et 

al., 2016). In 2011, Vaneeckhaute et al. (2013b) conducted a field trial aimed at evaluating the fertilizer 

performance of LF of digestate as an alternative to synthetic N fertilizer. In this study, results on the 

leaching potential were however inconclusive due to unfavorable weather conditions which led to an 

exceedance of the Flemish legally allowed limit for NO3
--N ha-1 residue in 0-90 cm soil layer for all tested 

treatments.  

Field trial assessment is indispensable to determine the impact of newly proposed fertilizers on crop 

yield and soil characteristics. Moreover, in order to stimulate the legislative changes related to 

agronomic use of the LF of digestate as a potential replacement of synthetic N fertilizer, multi-year field 

assessments (> 1 year) are of utmost importance. The current study reports the results from three 

consecutive growing seasons (2011 – 2013) and aims to compare on the longer term the impact of LF 

of digestate application on soil properties and maize production with conventional treatment of raw 

animal manure supplemented with synthetic fertilizers. It is hypothesized that the three year use of LF 

of digestate in combination with animal manure or digestate will not cause significant differences in 

maize yield, nitrate leaching and soil properties as compared to conventional fertilization practice of 

using animal manure supplemented with synthetic fertilizers. 

7.2 Materials and methods 

7.2.1 Experimental set-up 

The field experiment was performed on a sandy soil in Wingene (51° 3′ 0″N, 3° 16′ 0″E), Belgium for 

three consecutive years (2011, 2012 and 2013). The soil characteristics of the 0-30 cm soil layer prior 

to the experiment were organic carbon (OC) = 1.9 % on dry matter (DM); ammonium lactate extractable 

P (P-AL) = 820 mg kg-1 DM and ammonium lactate extractable K (K-AL) = 120 mg kg-1 DM. The NO3
--

N amount in 0-30, 30-60 and 60-90 cm of soil layer was 25, 10 and 5 kg ha-1, respectively. The NH4
+-N 

amount was 4, 6 and 5 kg ha-1 for 0-30, 30-60 and 60-90 cm, respectively. As test crops, fodder maize 
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(Zea mays L.) cv. Atletico KWS (FAO Ripeness Index: 280), Fernandez (FAO Ripeness Index: 260) and 

Millesim (FAO Ripeness Index: 240) were grown in 2011, 2012 and 2013, respectively. During the 

experimental period, Italian rye grass was mechanically sown as a catch crop at a seeding rate of 40 kg 

ha-1, every year (October 22 2011, November 13 2012, October 8 2013) after the harvest of maize. The 

use of catch crops is a common practice in Western Europe where farmers use them with the aim to 

reduce the potential risk of nitrate leaching during the winter period. In this study, Italian rye grass was 

incorporated back to the field before fertilization in April. The monthly rainfall and average air 

temperature during the experimental period are presented in Table 7.1. The temperate marine climate 

of the region, with an average annual precipitation of 800 mm and an average annual air temperature 

of 10 °C (RMI), is favorable for high crop yields but entails conditions favorable for N leaching. 

 Table 7.1 Weather conditions in Flanders in the period 2011 – 2013 and degree of abnormality by means of the 

statistical characteristics (SC) based on the reference period: 1833 – 2010 for 2011, 1833 – 2011 for 2012 and 

1833 – 2012 for 2013.  

SC = statistical characteristic: n = normal, a = abnormal (averages one time in 6 years), va = very abnormal 

(averages one time in 10 years), e = exceptional (averages one time in 30 years), ve = very exceptional (averages 

one time in 100 years). All data is determined and available by RMI (Royal Meteorological Institute of Belgium). 

As previously mentioned in Chapter 6, bio-based fertilizers are known for their high variability in nutrient 

composition (Galvez et al., 2012; EC, 2014b). Accordingly, product sampling and characterization were 

done at two moments. Before fertilization, all materials were collected to determine the required 

application rate for the test crops, while respecting the legal limits imposed by the Flemish Manure 

Decree (FMD, 2011). During the actual fertilization, bio-based materials were again sampled and 

analyzed (Table 7.2) to determine the nutrient content applied to the field (Table 7.3). Digestate and LF 

of digestate were sampled at Sap Eneco Energy (Merkem, Belgium; for more information on description 

of the biogas installation, please see Chapter 5, section 5.2.1). The digestate (DIG) and consequently 

the LF of digestate (LFDIG) underwent a hygenization step (1 h at 70 °C) and received a quality 

certification according to the quality standards of the Flemish compost organization (VLACO). The LF 

 Average temperature (°C) Total rainfall (mm) 

2011 SC 2012 SC 2013 SC 2011 SC 2012 SC 2013 SC 

January 4.0 n 5.1 n 2.1 n 90.5 n 86.4 n 53.6 n 

February 5.4 n 0.7 va 1.4 a 44.0 n 30.0 n 55.3 n 

March 7.7 n 8.9 va 3.0 ve 22.4 e 32.9 n 64.2 n 

April 14.1 ve 8.4 va 9.0 n 25.8 n 104.1 va 25.8 n 

May 14.8 n 14.3 n 11.1 a 22.5 ve 63.4 n 132.5 ve 

June 16.8 n 15.4 n 15.8 n 72.3 n 133.1 ve 55.3 n 

July 16 e 17.3 n 20.2 a 55.6 n 115.7 a 65.6 n 

August 17.3 n 19.2 n 18.6 n 189.3 ve 22.5 va 48.3 n 

September 16.5 a 14.5 n 14.8 n 83.1 n 51.6 n 58.1 n 

October 12.1 n 11.1 n 12.8 a 48.8 n 119.4 va 77.5 n 

November 8.6 a 7.1 n 6.4 n 8.5 ve 44.7 a 102.6 a 

December 6.1 e 5.1 n 6.1 e 152.1 a 172.7 ve 77.1 e 

Mean/Sum 11.6  10.6  10.1  814.9  976.5  815.9  
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of digestate was obtained via a sieve band press separator. Both materials were collected from mixed 

storage tanks. Animal manure (AM) used in the field trial was collected at a local pig farm (Huisman; 

Aalter, Belgium), from non-mixed storage. The collection of bio-based materials from storage tanks was 

done according to the official sampling procedure from the Flemish institute for technological research 

(VITO, 2014), where it is advised to take several samples from different sampling points (i.e. bottom, 

middle and top of the storage tank) and mix them to obtain a homogenous sample. All materials were 

collected in polyethylene sampling bottles (5 L) and stored at 4 °C. As a reference treatment, calcium 

ammonium nitrate (CAN; 27 % N) and potassium sulfate (PAT; 30 % K2O, 10 % MgO and 42 % SO3), 

which in Flanders are commonly used synthetic N and K fertilizers, were applied in combination with 

animal manure.  

 Table 7.2 Characteristics of bio-based materials (n=2) applied as fertilizer in fodder maize cultivation. Data is 

presented on fresh weight (FW) basis within a range of all three experimental years. 

LF: liquid fraction; DM: dry matter; EC: electrical conductivity. 

a 50 vol % digestate and 50 vol % liquid fraction of digestate in 2011, 40 vol % digestate and 60 vol % liquid fraction 

of digestate in 2012 and 2013. 

7.2.2 Fertilization strategies and experimental design 

Based on the soil characteristics and crop demand, fertilizer application dosage was advised by the 

Provincial Advice Centre for Agriculture and Horticulture (INAGRO, Beitem, Belgium) at 150 kg effective 

N ha-1, 180 kg K2O ha-1 and 30 kg MgO ha-1 in 2011, and 135 kg effective N ha-1, 250 kg K2O ha-1 and 

60 kg MgO ha-1 in 2012 and 2013. The effective N is the amount of N from the applied product that is 

expected to be available for crop uptake in the season of application (Webb et al., 2010). In accordance 

with Flemish legislation, the effective N from organic fertilizers (pig manure, digestate and LF of 

digestate) was set at 60 % of the total N content. The maximum allowable rate of 80 kg P2O5 ha-1 for 

maize cultivation was respected (FMD, 2011). 

Experimental treatments were tested in a fully randomized block design with three replicates of 9 m x 

7.5 m each, spread across the field to minimize potential influence of variable soil conditions on the 

Parameter Animal manure 
Raw digestate/LF of 
digestate mixturea 

LF of digestate 

DM (%) 4.3 - 11.0 6.2 - 7.1 2.5 - 4.3 

EC (dS m-1) 31 - 35 29 – 35 33 – 34 

pH 7.7 - 7.8 8.0 - 8.2 7.4 - 7.8 

Total N (g kg-1 FW) 5.3 - 8.3 4.7 - 7.2 3.6 - 7.2 

NH4
+-N (g kg-1 FW) 3.2 - 5.6 3.1 - 4.3 2.8 - 6.2 

P (g kg-1 FW) 1.0 - 2.4 0.87 - 1.57 0.27 - 0.74 

K (g kg-1 FW) 2.4 - 5.6 2.2 - 3.8 2.5 - 3.7 

Ca (g kg-1 FW) 1.9 - 4.1 1.3 - 2.1 0.11 - 0.64 

Mg (g kg-1 FW) 1.1 - 1.4 0.34 - 0.86 0.02 - 0.30 

Na (g kg-1 FW) 1.3 - 2.2 2.0 - 3.4 2.7 - 3.1 

S (g kg-1 FW) 0.42 - 0.80 0.39 - 0.84 0.11 - 0.27 

N/P 3.5 - 5.0 4.6 - 5.4 10 – 13 
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results. The same treatments were tested on the same test plots in the consecutive years. Nutrient 

application rates for the different treatments over three years are summarized in Table 7.3. Treatment 

[SF+AM]REF represents the reference treatment where only pig manure and synthetic fertilizers (CAN, 

PAT) were used. In treatment [LFDIG+DIG], mixtures (see below for detail) of digestate and LF of 

digestate obtained from anaerobic co-digestion of animal manure, energy crops and organic waste were 

spread on the field, with (2011 and 2013) or without (2012) supplemented addition of synthetic fertilizers 

(CAN, PAT) depending on crop requirements. In the reference treatment, P2O5 was the limiting nutrient 

for manure application, while in the treatment [LFDIG+DIG] N became the limiting nutrient. Based on 

the product characterizations an optimal combination of raw digestate and its LF after mechanical 

separation was determined to create a concentrated mixture with high effective N content but reduced 

P2O5 content, thereby reducing synthetic N requirements (2011: 50/50 digestate/LF of digestate; 2012-

2013: 40/60 digestate/LF of digestate). Finally, in the treatment [LFDIG+AM], LF of digestate was 

applied as P-poor fertilizer in combination with pig manure, and with the additional supply of synthetic 

starter N during the maize sowing. Synthetic starter N is usually applied in practice to correct for the 

lower content of available N in organic fertilizers at the start of the growing period, which might otherwise 

cause a delay in maize development. 

Fertilizers were applied to the soil over a period of three days (April 28 - 30 2011, May 28 - 30 2012 and 

April 26 - 28 2013) due to logistic reasons. On the first day of fertilization, LF of digestate was applied 

manually to ensure high precision for the targeted application on the test plots. The adequate amount 

was applied using watering cans, and within 2 hours incorporation was done with standard farming 

equipment. The mixture of digestate and LF of digestate, as well as pig manure were applied to the field 

by use of PC controlled injection (Bocotrans, NL) during the second day of the fertilization. Finally, on 

the third day synthetic fertilizers were applied to the plots by hand-application. All fertilizers were 

incorporated or injected at 5-10 cm depth, which is considered as an adequate measure to reduce the 

extent of ammonia volatilization (Webb et al., 2010). 

In 2012, the fertilization was conducted at a later date than usual due to very exceptional wet weather 

conditions in spring of that year (Table 7.1). Fodder maize was sown on May 5 2011, June 2 2012 and 

May 3 2013 at a seed density of 102 000 ha-1, 100 000 ha-1 and 100 000 ha-1, respectively. The synthetic 

start N fertilizer was applied together with maize seeds to boost the development of plant at the 

beginning of the growing period. Crops were harvested on October 7 2011, November 9 2012 and 

October 4 2013.  
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Table 7.3 Dosage of total nitrogen (kg ha-1) applied for the three (n = 3) different fertilization treatments (TRT); K2O, MgO and P2O5 amount (kg ha-1) brought to the field via applied 

fertilization regime of total nitrogen; additional application of synthetic K2O (kg ha-1) in order to obtain similar application rate in all treatments; the total and effective amount of 

applied N for each TRT. Values present the intended dosage and values between brackets present the actual dosage, indicating the difference caused in variabili ty between 

sampling at farm/digester and sampling during the actual fertilization. 

TRT Year 
Synthetic 

start N 
Synthetic 

N 
Animal 
manure 

Digestate/LF of 
digestate 
mixture 

LF of 
digestate 

K2Oa 

 
MgOa P2O5

a 
Synthetic 

K2O 
Total N 
applied 

Effective N 
applied 

[SF+AM]REF 2011 25 29 160 (163)   95 69 80 (108)d 78 217 151 

 2012 30 30 125 (97)   75 30 80 (45) 161 157 118 

 2013 30 30 125 (152)   122 50 80 (96) d 128 212 151 

[LFDIG+DIG] 2011 25 18  178b (175)  139 86 81 (75) 29 218 148 

 2012    223c (232)  231 60 80 (101)d 0 232 139 

 2013    225c (305)  193 72 80 (150) d 57 305 183 

[LFDIG+AM] 2011 25  140 (143)  58 (60) 142 85 77 (105)d 33 228 147 

 2012 33  112 (87)  58 (65) 127 76 76 (49) 121 185 124 

 2013 29  118 (143)  58 (110) 184 95 80 (117) d 66 282 181 

[SF+AM]REF: synthetic fertilizer + animal manure = reference; [LFDIG+DIG]: liquid fraction of digestate + digestate; [LFDIG+AM]: liquid fraction of digestate + animal manure. 

a No synthetic K2O, MgO and P2O5 was added;  

b Mixture of 50 vol % raw digestate and 50 vol % LFDIG;  

c Mixture of 60 vol % LFDIG and 40 vol % raw digestate;  

d Maximum allowable fertilization level of 80 kg ha-1 was exceeded. 
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7.2.3 Plant and soil sampling 

Soil samples were taken at harvest time (October 2011, November 2012 and October 2013) and in 

November 2011 and 2013. At each sampling time, homogenized soil subsamples were taken per plot 

at three depths (0-30 cm, 30-60 cm, 60-90 cm) using an auger. In 2011 one soil sample from the middle 

of the plot was taken, whereas in 2012 four random sampling points were chosen (Vaneeckhaute et al., 

2013b; Vaneeckhaute et al., 2014). In 2013, a representative soil sample in each plot was obtained from 

five sampling points (the center and the 4 corners) of 7.5m2 area which was located in the middle of the 

plot and corresponds to the area that was harvested for determination of maize fresh weight (FW) yield. 

The maize was harvested with a maize chopper. The crop FW yield (i.e. above ground plant) was 

determined at the field by hand harvesting 6.5 m2, 10 m2 and 7.5 m2 per plot in 2011, 2012 and 2013, 

respectively. The samples were collected in polyethylene sampling bags and transported from the test 

site to the laboratory. In the laboratory, the replicate samples were stored at 1 °C to 5 °C until further 

analysis. 

7.2.4 Physicochemical analysis 

Bio-based material analysis. Product DM, OM, total N and NH4
+-N content were determined 

as described in section 3.2.2 (Chapter 3). Conductivity and pH were determined potentiometrically using 

a WTW-LF537 (Germany) conductivity electrode and an Orion-520A pH-meter (USA), respectively, 

without prior product equilibration and filtration. Nitrate-N was determined by flow analysis (continuous 

flow analysis (CFA) and flow injection analysis (FIA)) and spectrometric detection (BRAN+LUEBBE 

AA3, Germany) from a 1M KCl extract (ISO 13395: 1996). After wet digestion (2 ml HNO3 and 1 ml 

H2O2), total P was analyzed using the colorimetric Scheel method (Van Ranst et al., 1999), while total 

S, K, Ca, Mg and Na were analyzed using Inductively coupled plasma optical emission spectrometry 

(ICP-OES) (Varian Vista MPX, USA). 

Soil analysis. Soil moisture, OM, OC, pH-KCl, EC and total N content were determined as 

described in section 3.2.1 (Chapter 3), whereas soil nitrate-N content was analyzed as described in the 

previous paragraph (‘Bio-based product analysis’). After aqua regia digestion (1 g sample + 7.5 ml HCl, 

2.5 ml HNO3 and 2.5 ml demineralized water), total P, K, S, Cu and Zn were analyzed as described in 

section 4.2.2 (Chapter 4). Finally, plant available amounts of P, K and Na were analyzed after filtering 

(MN 640 m, Macherey–Nagel, Germany) a suspension of 2.5 g sample and 50 ml ammonium lactate 

(AL) at pH 3.75 (VITO, 2010a) that was previously shaken for 4 h. The Sodium Adsorption Ratio (SAR) 

was determined from a water extract of a saturated soil paste (Van Ranst et al., 1999) in terms of meq 

l-1 and reported according to Horneck et al. (2007): 

𝑆𝐴𝑅 =  
[𝑁𝑎+]

√0.5([𝐶𝑎2+] +  [𝑀𝑔2+])
 

 

SAR is used as a parameter to assess salt-affected soil. When Na dominates over Ca and Mg (high 

SAR), soil pores clog and water infiltration is limited (Horneck et al., 2007). 
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Plant analysis. Plant samples (i.e. above ground plant) collected in the field were weighed for 

determination of the FW biomass yield and oven-dried at 55 °C for determination of the DM content. 

The dry samples were ground to pass a 1 mm sieve (Retsch SM-2000, Germany) and used for further 

analysis. Total N was determined using the Kjeldahl method. Total P was determined using the method 

of Scheel (Van Ranst et al., 1999) after incineration of the dry samples during 4 h at 550 °C and digestion 

of the residual ash (1 g ash + 5 ml 3 mol HNO3 L−1 + 5 ml 6 mol HNO3 L−1). Na, K and metals in the 

digested samples were determined using ICP-OES.  

7.2.5 Data analysis 

Based on the physicochemical data, the fertilizer use efficiency (FUE) of each treatment was determined 

using the Eq. 3 (Chapter 1). Fertilizer use efficiencies were evaluated throughout time for N, P and K. A 

value above 1 implies a deficit of the relevant nutrient while a value below 1 indicates a surplus on the 

soil balance. Furthermore, the fertilizer replacement use efficiency (FRUE) was obtained as the ratio of 

the FUE of the treatments with bio-based materials to the FUE of conventional fertilization with mineral 

fertilizers and animal manure (Eq. 4; Chapter 1). As previously (Chapter 4, 5 and 6), it was assumed 

that the conventional fertilization practice is 100% efficient. 

Statistical analyses were performed using SPSS statistical software (version 22.0; SPSS Inc., Chicago, 

IL). The data from the plant and soil analysis corresponding to the 3 replicates were first subjected to 

one-way ANOVA for each year separately to measure the effect of treatment on yearly basis (due to the 

observed variability in nutrient application between treatments and the experimental years). When 

significant differences between means were observed, additional post hoc assessment was performed 

using Tukey’s Test (p < 0.05, n=3). These differences are indicated by the different lower case letters. 

In order to examine the effect of the treatments and the experimental year over the 3-year field study, 

all data was subjected to a two-way ANOVA, considering year and replication as random and fertilizer 

treatments as fixed factors. Compound symmetry was used as a covariance structure. When a 

significant factor effect was observed, additional post hoc assessment was performed using Tukey’s 

Test (p < 0.05, n=3). These differences are indicated by the different upper case letters. The condition 

of normality was checked using the Shapiro-Wilk test, whereas the homogeneity was tested with the 

Levene Test. Significant parameter correlations were determined using the Pearson correlation 

coefficient (r).  
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7.3 Results 

7.3.1 Maize yield and nutrient uptake 

A treatment effect on the fresh weight (FW) based yield was only observed in 2011, when the treatment 

[LFDIG+AM] resulted in a higher FW yield as compared to the conventional fertilization regime (i.e. 

[SF+AM]REF; Table 7.4). This effect did not recur in the following years. Overall, no significant effects of 

the fertilizer treatments were observed over the 3-year field experiment with respect to crop FW and dry 

matter (DM) based yield (Table 7.4). The experimental years however significantly (p < 0.05) influenced 

the maize yield, indicating the effect of environmental conditions on treatment performance and maize 

development. This is a result of the unfavorable weather conditions in 2012, characterized by a wet 

spring, which delayed the planting date (Table 7.1) and led to the lowest crop yields over the 3-year 

period. Nevertheless, no significant differences (p > 0.05) were observed for DM content (%) over the 

3-year period. The average DM content at harvest was 28 ± 1 % in 2011, 29 ± 0 % in 2012 and 28 ± 1% 

in 2013. 

Modest effects of the treatments on a yearly basis were observed with respect to crop P, K and Na 

uptake (Table 7.4). However, these effects did not persist throughout the 3-year field experiment. As a 

result, no significant effects of the fertilizer treatments were measured with respect to crop nutrient 

uptake over the 3-year field study. In line with the observation for maize yield, weather conditions in 

2012 significantly (p < 0.05) influenced the crop nutrient uptake as compare to 2011 and 2013 (Table 

7.4). There were no systematic differences in trace element uptake. 

7.3.2 NO3
--N residue and soil properties 

Significant differences (p < 0.05) in the soil NO3
--N residue among treatments were only observed in 

2013, when the treatment [LFDIG+DIG] resulted in a higher NO3
--N residue as compared to the 

reference (i.e. [SF+AM]REF; Figure 7.1). However, NO3
--N levels were still below the legislative maximum 

allowable level of 80 kg NO3
--N ha-1 (0-90 cm soil layer) for 2012 (VLM, 2013) and 2013 (VLM, 2014). 

In 2011, NO3-N levels exceeded the limit for all treatments, including the reference.
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Table 7.4 Effects of fertilizer treatment and year on maize fresh weight (FW) yield, dry matter (DM) yield and crop nutrient uptake in the 3 year field experiment. Results of two-

way mixed effect ANOVA and post hoc comparison of means (mean ± standard deviation; n=3). 

 

 
FW (t ha-1)  DM (t ha-1)  N (kg ha-1)  P (kg ha-1)  K (kg ha-1) 

2011 2012 2013  2011 2012 2013  2011 2012 2013  2011 2012 2013  2011 2012 2013 

Treatment (TRT)                

[SF+AM]REF B81±2a A60±4 B83±4  B22±2 A18±2 B24±1  B293±40 A140±23 B322±11  AB56±8 A42±14 B58±2b  A280±28a A225±76 A278±5a 

[LFDIG+DIG] B84±1a A58±6 B79±7  B23±1 A17±2 B22±1  B316±25 A146±9 B298±31  B60±5 A46±7 A48±6a  B353±6b A236±93 A290±28ab 

[LFDIG+AM] B86±1b A56±2 B84±10  B25±1 A16±2 B23±3  B344±51 A106±40 B323±45  A66±10 A51±6 A60±4b  B306±17a A211±73 B323±16b 

Significance of the p-values                 

TRT 0.892  0.713  0.958  0.126  0.399 

Year 0.001  0.003  0.001  0.025  0.027 

TRT x Year 0.423  0.211  0.185  0.567  0.530 

 Na (kg ha-1)  Cu (g ha-1)  Zn (g ha-1) 

 2011 2012 2013  2011 2013  2011 2013 

Treatment (TRT)       

[SF+AM]REF B6.2±1.9ab A1.6±0.4 B4.3±0.7  81±14 140±22  646±153 904±47 

[LFDIG+DIG] C5.7±0.7a A1.3±0.2 B3.5±0.8  96±3 100±31  601±16 694±166 

[LFDIG+AM] C7.4±0.3b A1.3±0.4 B4.1±1.3  77±8 118±24  716±100 908±23 

Significance of the p-values        

TRT 0.256  0.790  0.187 

Year  0.001  0.164  0.063 

TRT x Year 0.475  0.086  0.408 

Lower-case letters (a and b) in a single 

column indicate significant different means 

between fertilizer treatments within single 

year; upper-case letters (A, B and C) indicate 

significant different means between years; 

Tukey’s Test (p <0.05; n=3); [SF+AM]REF: 

synthetic fertilizer + animal manure = 

reference; [LFDIG+DIG]: liquid fraction of 

digestate + digestate; [LFDIG+AM]: liquid 

fraction of digestate + animal manure. 
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Figure 7.1 NO3
--N residue (kg ha-1) in soil layer 0-90 cm for the three ([SF+AM]REF: synthetic fertilizer + animal 

manure = reference; [LFDIG+DIG]: liquid fraction of digestate + digestate; [LFDIG+AM]: liquid fraction of digestate 

+ animal manure) different fertilization treatments in November for each experimental year. The line indicates the 

maximum allowable level of nitrate residue in soil (80 kg NO3
--N ha-1 for sandy soil in 2012 and 2013) between 

October 1st and November 15th according to Flemish environmental standard. In 2011 the maximum allowable level 

of nitrate residue in soil was 88 kg NO3
--N ha-1. Error bars indicate standard deviations (n=3), and lower-case letters 

(a and b) indicate significant different means between fertilizer treatments within single year. 

 

Fertilizer treatments did not cause significant differences in the soil available nutrient pool (Table 7.6), 

the soil total nutrient pool, pH-KCl or EC5:1 (Table 7.5) at harvest time. However, a significant effect of 

the experimental year on soil available P-AL and total K was observed in 2012. A year effect was also 

measured in 2013 when a significant decrease in K-AL and a significant increase of the total Na in the 

soil was detected. Consequently, a negative correlation was found between soil K-AL and total Na 

amount (r = - 0.643, p = 0.00). Furthermore, the potential three year impact of the proposed fertilization 

strategies on Na build-up was examined through SAR analysis. Results showed that in July 2013, the 

[LFDIG+DIG] treatment resulted in a significantly (p < 0.05) higher SAR ratio of 1.22 ± 0.28 as compared 

to the conventional fertilization regime [SF+AM]REF exhibiting a SAR ratio of 0.75 ± 0.12. The SAR ratio 

of treatment [LFDIG+AM] was 1.03 ± 0.31. 
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Table 7.5 Effects of fertilizer treatment and year on soil pH-KCl, EC5:1, and soil total N, P and K amount (0-30 cm; expressed on dry matter basis) at harvest time in the 3 year 

field experiment. Results of two-way mixed effect ANOVA and post hoc comparison of means (mean ± standard deviation; n=3). 

 
pH - KCl  EC5:1 (µS cm-1)  N (g kg-1)  P (g kg-1) 

2011 2012 2013  2011 2012 2013  2011 2012 2013  2011 2012 2013 

Treatment (TRT)               

[SF+AM]REF 5.4±0.1 5.7±0.6 5.1±0.2  104±12 75±7 74±23  2.2±0.0 2.1±0.5 2.1±0.2  1.6±0.1 1.0±0.7 1.6±0.3 

[LFDIG+DIG] 5.4±0.1 5.5±0.3 5.3±0.3  106±15 85±13 71±18  2.2±0.0 2.7±0.6 2.1±0.2  1.6±0.1 1.4±0.1 1.5±0.1 

[LFDIG+AM] 5.3±0.1 5.8±0.3 5.5±0.1  106±4 83±11 113±49  2.1±0.2 2.9±0.1 2.2±0.0  1.6±0.1 1.5±0.1 1.7±0.1 

Significance of the p-values              

TRT 0.402  0.387  0.488  0.474 

Year  0.086  0.182  0.163  0.173 

TRT x Year 0.524  0.329  0.164  0.311 

 

 
K (mg kg-1)  Na (mg kg-1)  Cu (mg kg-1)  Zn (mg kg-1)  

2011 2012 2013  2011 2012 2013  2011 2012 2013  2011 2012 2013 

Treatment (TRT)               

[SF+AM]REF B497±68 A315±52 B515±74  B80±7 A52±8a C101±11a  34±2 NA 31±1  52±5 NA 50±4 

[LFDIG+DIG] B524±67 A361±47 B573±45  B86±7 A74±2b C121±8b  34±4 NA 30±1  51±6 NA 47±5 

[LFDIG+AM] B549±49 A372±60 B579±19  AB78±4 B76±15ab B113±23ab  34±2 NA 32±1  45±2 NA 52±2 

Significance of the p-values              

TRT 0.142  0.093  0.629  0.813 

Year  0.001  0.003  0.072  0.867 

TRT x Year 0.992  0.404  0.561  0.089 

Lower-case letters (a and b) in a single column indicate significant different means between fertilizer treatments within single year; upper-case letters (A, B and C) indicate 

significant different means between years; Tukey’s Test (p <0.05; n=3); [SF+AM]REF: synthetic fertilizer + animal manure = reference; [LFDIG+DIG]: liquid fraction of digestate + 

digestate; [LFDIG+AM]: liquid fraction of digestate + animal manure. 
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Table 7.6 Effects of fertilizer treatment and year on available soil P, K and Na amount extracted through ammonium lactate (AL) at harvest time (0-30 cm) in the 3 year field 

experiment. Results of two-way mixed effect ANOVA and post hoc comparison of means (mean ± standard deviation; n=3). 

 
P-AL (mg kg-1)  K-AL (mg kg-1)  Na-AL (mg kg-1) 

2011 2012 2013  2011 2012 2013  2011 2012 2013 

Treatment (TRT)            

[SF+AM]REF B915±44 A405±270 B941±92  B143±33 B146±18 A93±13  43±2 37±8 57±44 

[LFDIG+DIG] B908±138 A544±104 B959±134  B155±55 B141±39 A114±25  60±20 52±12 55±10 

[LFDIG+AM] B903±68 A600±24 B1054±70  B193±7 B165±2 A93±6  49±7 45±4 90±29 

Significance of the p-values            

TRT 0.222  0.347  0.396 

Year  0.001  0.022  0.193 

TRT x Year 0.623  0.373  0.328 

Upper-case letters (A, B and C) indicate significant different means between years; Tukey’s Test (p <0.05; n=3); [SF+AM]REF: synthetic fertilizer + animal manure = reference; 

[LFDIG+DIG]: liquid fraction of digestate + digestate; [LFDIG+AM]: liquid fraction of digestate + animal manure. 
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7.3.3 Fertilizer replacement use efficiency 

The fertilizer use efficiency (FUE) and fertilizer replacement use efficiency (FRUE) of each treatment as 

compared to the conventional fertilization regime [SF+AM]REF are presented in Table 7.7. FUE values 

above 1 indicate that during the first growing season more nutrients were taken up by the crop than 

were added to the field. During 2012 and 2013, treatments [LFDIG+DIG] and [LFDIG+AM] resulted in 

moderate N FRUE ratios as compared to the reference (i.e. [SF+AM]REF). During the same period, 

treatment [LFDIG+DIG] resulted on average in 50% lower P FRUE ratio, which is probably the result of 

higher P application rates in this treatment and the observed negative correlation between the applied 

P dosage and P FUE of the tested treatments (r = - 0.950, p = 0.00).  

Table 7.7 Fertilizer use efficiency (FUE; as a ratio) and its relation to the conventional fertilization treatment (i.e. 

[SF+AM]REF) as a reference (FRUE; as a %) assuming that the latter is 100% efficient (FRUE [SF+AM]REF =100%). 

ND: not determined; [SF+AM]REF: synthetic fertilizer + animal manure = reference; [LFDIG+DIG]: liquid fraction of 

digestate + digestate; [LFDIG+AM]: liquid fraction of digestate + animal manure. 

a Assumption that conventional fertilization treatment is 100% efficient. 

7.4 Discussion 

7.4.1 Fertilization regime and applied nutrient dosage 

An important prerequisite for efficient organic fertilizer use is accurate knowledge of nutrient 

concentration, especially with respect to N and P. Over the course of this 3-year experiment, it was 

observed that the actual N doses varied in some instances from the intended N doses (Table 7.3). This 

was caused by differences in organic fertilizer composition between sampling at the farm/digester versus 

sampling during the actual fertilization. As a limiting factor in N fertilization, the applied dosages of P 

were positively correlated (r = 0.907, p = 0.00) with applied N, which led to exceedances of the maximum 

legal level of 80 kg P2O5 ha-1 (FMD, 2011) in 2011 and 2013 for all treatments, except for [LFDIG+DIG] 

 2011 
 

2012 
 

2013 

 
[SF+AM]

REF 
[LFDIG 
+DIG] 

[LFDIG 
+AM] 

 [SF+AM]

REF 
[LFDIG 
+DIG] 

[LFDIG 
+AM] 

 [SF+AM]

REF 
[LFDIG 
+DIG] 

[LFDIG 
+AM] 

N             

FUE  1.35 1.43 1.51  0.89 0.63 0.57  1.52 0.98 1.14 

FRUE 100a 106 112  100a 71 64  100a 64 75 

P             

FUE  1.19 1.83 1.42  2.09 1.05 2.39  1.38 0.73 1.17 

FRUE 100a 153 119  100a 50 114  100a 53 85 

K             

FUE  1.95 2.53 2.10  1.15 1.23 1.02  1.34 1.40 1.56 

FRUE 100a 130 108  100a 107 89  100a 104 116 
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in 2011. In 2012, the actual applied dosages of P were below the maximum legal level for all treatments, 

except for treatment [LFDIG+DIG]. These observations indicate that nutrient variability in bio-based 

fertilizers will be one of the greatest challenges to address in the future utilization of these materials.  

7.4.2 Effect of fertilization strategies on biomass yield and nutrient uptake 

As hypothesized, the three year use of LF of digestate in combination with animal manure or digestate 

did not cause significant differences in maize FW or DM yield as compared to conventional fertilization. 

However, there was a significant effect (p < 0.05) of the experimental year. The lowest FW and DM 

maize yields were observed in 2012 as compared to the other experimental years as a result of wet 

weather conditions (Table 7.1;(Boerenbond, 2012) and delayed planting which may lead to delayed leaf 

area index (LAI) development. Interestingly, there were no differences noted in the DM (%) content, 

although each year a different cultivar (Atletico KWS in 2011, Fernandez in 2012 and Millesim in 2013) 

was grown. As a plant that uses C4 carbon fixation, maize is most sensitive to drought at the time of silk 

emergence, when the flowers are ready for pollination (Wang et al., 2010). Due to unfavorable weather 

conditions in the spring of 2012, maize was sown relatively late (June 2 2012). The first two months of 

its growing period were characterized by exceptionally heavy rainfall (249 mm) and the pollination stage 

occurred in August when the lowest rainfall (22.5 mm) during the maize growing period 2011 – 2013 

was recorded (Table 7.1). It is likely that the heavy rainfall at the beginning of the maize cropping period 

has influenced the crop uptake by leaching N and other essential nutrients out of the crop root zone and 

making them less available, leading to lower fresh yields. However, the characteristics of the C4 pathway 

suggest that maize with limited water supply during the period of active growth might exhibit a high DM 

(%) content, while at the same time lower fresh yields are obtained. This is a result of the high water 

use efficiency in C4 plants, which allows them to produce biomass and to set seed on a limited amount 

of water (Sage, 2005). When comparing season 2011 and 2013, treatments [LFDIG+DIG] and 

[LFDIG+AM] in 2013 on average received 20% more effective N (Table 7.3). The increase in effective 

N rate, however, did not lead to higher maize yield. This can probably be explained by a yield dose 

response curve and the fact that increase in effective N dose will not simultaneously lead to a yield 

increase if the maximum yield has already been reached. This was also observed in a study on maize 

response curve by D’ Haene et al. (2014) where application of effective N above 150 kg effective N ha-

1 did not lead to a visible yield response.   

Similar to the maize yield, no effect of fertilization treatment was observed with respect to crop nutrient 

uptake. The effect of unfavorable weather conditions in 2012 was however reflected in a reduced 

nutrient uptake for all treatments, including the reference. In 2013, maize nutrient concentrations again 

reached similar levels as these of 2011 (Table 7.4), further supporting that the observed decrease of 

nutrient uptake was a consequence of exceptional weather conditions and not an effect of the applied 

fertilization. 

7.4.3 Nitrogen use efficiency 

In general, organic fertilizers such as animal manure, digestate and LF of digestate are more susceptible 

to nitrate leaching due to the asynchrony between crop demand versus the slow release of organically 
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bound N (Schröder et al., 2013; Svoboda et al., 2013). N that is not taken up by the plant is prone to 

leaching and therefore is of environmental concern. In order to assure efficient N use, N losses should 

not exceed those of synthetic fertilization if we aim to (partially) substitute them in the future. In Flanders, 

the level of NO3
--N residue (kg ha-1) in the soil profile (0 – 90 cm) in the post-harvest period between 

October 1st and November 15th is used as an indicator for quantifying unwanted leaching to surface and 

ground water. The legal maximum allowable NO3
--N level has been reduced from 88 in 2011 (VLM, 

2012) to 80 kg NO3
--N ha-1 in 2012 (VLM, 2013), and 75 kg NO3

--N ha-1 in 2014 (VLM, 2015). The results 

of this study indicate that the effect of the experimental year was stronger (p < 0.05) than the effect of 

the treatment. In the first year of this study, the maximum allowable NO3
--N level was exceeded for all 

treatments, including the reference scenario. This was attributed to unfavorable weather conditions, an 

exceptionally dry spring followed by a moist summer, which has led to the exceedance of maximum 

allowable NO3
--N level in 40% of all taken measurements in West Flanders (Vaneeckhaute et al., 

2013b). In the following years, the NO3
--N residue for all treatments was below the legal stipulated limit. 

Catch crops are sown with the aim to reduce potential NO3
--N leaching during the winter period. An 

effect of Italian rye grass on the NO3
--N residue dynamics was not observed over the 3-year field 

experiment because the date of sowing catch crop was too close to the legally stipulated date of 

measuring the post harvest NO3
--N residue (i.e. November 15th). The impact of Italian rye grass on NO3

-

-N residue dynamics after November 15th was not the focus of this chapter. In general, we do not expect 

for the practice of growing catch crops to have an impact on the agronomic nor environmental 

performance of the maize under the tested fertilization scenarios. The effect of fertilizer type on the NO3
-

-N residue was only significant in November 2013 (p < 0.05) as a result of 93 kg N ha-1 over-fertilization 

in treatment [LFDIG+DIG] above that of the conventional fertilization where N import was 212 kg N ha-1 

(Table 7.3). The over-fertilization was caused by the above mentioned nutrient variability in bio-based 

fertilizers. Regardless of the over-fertilization in 2013, results of the NO3
--N residue indicate that 

derivatives of digestate processing have similar nitrate leaching potential as conventional fertilization 

treatment (Figure 7.1), which is in accordance with the findings of Svoboda et al. (2013).  

Next, since all treatments had a similar crop N uptake, the over-fertilization in 2013 ([LFDIG+DIG] > 

[LFDIG+AM] > [SF+AM]REF) reflected the N FRUE, which was 36 % and 25 % lower for [LFDIG+DIG] 

and [LFDIG+AM] treatments, respectively, as compared to the reference scenario (assumption FRUE = 

100%; Table 7.7). A similar decrease in N FRUE was observed in 2012 as a result of exceptional 

weather conditions, which led to a lower crop N uptake and subsequently to low N FRUE levels. In this 

respect, the high N FRUE for bio-based fertilization in 2011 was not validated in the following two years. 

This indicates that the FRUE observed for bio-based fertilizers depends on many factors, such as soil 

texture (appears to be low in sand sites), weather conditions, as well as the variability in nutrient 

composition. It seems that in the open field experiments FRUE might not be the best efficiency indicator 

and other ways of assessing FRUE are needed. Nevertheless, fertilization strategies where the LF of 

digestate was used as a bio-based N fertilizer have resulted in similar agronomic and environmental 

values as compared to conventional fertilization of using synthetic N and animal (pig) manure. 



Chapter 7 

 

132 
 

7.4.4 Phosphorus use efficiency 

In general Flemish soils are quite rich in P due to the long-term application of animal manure and 

inorganic fertilizers. Over the course of this 3-year experiment, a negative correlation was found between 

the P application and the P FUE of the treatments (r = - 0.950, p = 0.00). This indicates that the less P 

applied to the soil (< 80 kg P2O5 ha-1 via [LFDIG+DIG] in 2011 and [LFDIG+AM] in 2012), the higher P 

FUE will be. This opportunity to reduce P leaching in soils with high P status was also reported by 

Vanden Nest et al. (2015) who stated that introducing zero P-fertilizer application on soils with high P 

status can reduce P availability and consequently lower the potential for P leaching in an arable crop 

rotation without decreasing crop yields. However, in this 3-year experiment, no significant differences in 

soil ammonium lactate extractable P (P-AL) available pool were observed in time, except in 2012, when 

a decrease in P-AL was detected, probably due to lower P application rates. This is in good agreement 

with the study of Vanden Nest et al. (2015) who observed no effects of P fertilizer rate and organic 

amendments on the P-AL level during a 4-year experimental trial on Flemish soil. 

7.4.5 Potassium and sodium use efficiency 

 

Application of LF of digestate in [LFDIG+DIG] and [LFDIG+AM] treatments led to significantly lower or 

no use of synthetic K as compared to the reference scenario. This can result in significant economic and 

ecological benefits (Miyamoto et al., 2012; Vaneeckhaute et al., 2013b). Moreover, after three years of 

fertilization the K supply was negatively correlated with the crop Na uptake (r = - 0.708, p = 0.00) and 

positively with the soil total Na (r = 0.516, p = 0.001) at harvest time. This effect was clearly visible in 

2013 when at increased K dosage, less Na was taken up by the crop and soil total Na amounts were 

the highest over time for all treatments. Simultaneously, the mean values of K-AL have decreased while 

Na-AL increased, but, due to high variability, the Na-AL levels were not significantly different from these 

in 2011 and 2012. This is in accordance with Alam (1999) who observed that addition of K suppressed 

the rice and tomato Na uptake. As such, the observation is of practical importance for bio-based 

materials whose utilization might be restricted by their salinity (Alburquerque et al., 2012b), particularly 

in arid regions. In the case of LF of digestate, it would mean that under lower K conditions less Na is 

applied while crop Na uptake is higher, subsequently reducing the potential risk of salt build up in the 

soil. This relationship between K and Na is based on the fact that in their ionic form both are similar in 

charge and as such might compete for crop uptake since many K+ transporters do not discriminate 

sufficiently between these two cations (Pardo and Quintero, 2002). 

In order to assess salt-affected soils, SAR and EC5:1 are used as parameters to indicate potential 

problems related to soil dispersion (Horneck et al., 2007). Although the total Na in the soil increased 

significantly in 2013, no significant effect of the fertilizer type was observed on total and plant available 

Ca and Mg (exception 2012 due to exceptional weather conditions; data not shown). As such, SAR 

remained far below the critical threshold value of 5 (Horneck et al., 2007). Salt accumulation in soils can 

also occur by a high dose of sulfate (Vaneeckhaute et al., 2013b; Sigurnjak et al., 2016). After three 

years of fertilization, no significant effect of the fertilizer type was observed with respect to the soil total 

and plant available S (data not shown). During the entire field experiment, soil EC5:1 values (Table 7.5) 
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were significantly below the critical threshold value of 4 dS m-1 (Horneck et al., 2007). These 

measurements indicate that the tested substitutes for synthetic fertilizer did not pose a risk for 

degradation of soil properties and fertility after three years of consecutive fertilization. This low risk is 

largely related to the temperate marine climate, which tends to leach salts from the soil and prevent their 

accumulation. 

7.4.6 Fate of trace metals 

Along with the potential salinity problem, the use of bio-based materials might also require close 

assessment of the micronutrient and heavy metal amount, in particular Cu and Zn (Alburquerque et al., 

2012b; Sigurnjak et al., 2016) when animal manure is used as a substrate in anaerobic co-digestion. 

The presence of Cu and Zn in co-digested animal manure originates from their addition to livestock feed 

as metabolic enhancers. Although Cu and Zn are essential plant micronutrients, their accumulation in 

the soil could eventually lead to phytotoxicity. Flemish soil environmental quality standards for Cu (17 

mg Cu kg-1 DM;(FSD, 2006) and Zn (62 mg Zn kg-1 DM; FSD, 2006) have been imposed, and in this 

study they were exceeded for Cu in all scenarios, including the reference. Even though no significant 

effect of fertilizer type was observed when comparing soil Cu and Zn concentrations between seasons 

2011 and 2013, it is interesting that in treatment [LFDIG+DIG] where the highest dose of the LF of 

digestate was applied (50 % in 2011 and 60 % in 2012 and 2013) the lowest mean values of Cu and Zn 

soil levels were observed (Table 7.5). This is associated to the fact that most of Cu and Zn ends up in 

solid fraction and thus their addition in relation to the NPK added is lower in LF of digestate as compared 

to digestate and animal manure. As such no adverse effects on Cu and Zn soil levels are expected when 

applying LF of digestate as compared to animal manure (whose historical application has contributed to 

exceedance for Cu in Flemish soil). Moreover, the LF of digestate complies with the European 

environmental quality standards (100-200 mg Cu kg-1 DM and 400-600 mg Zn kg-1 DM) for all heavy 

metals that are specified in the currently proposed End-of-waste criteria (Saveyn and Eder, 2014). 

7.5 Conclusion 

In this 3-year field trial, LF of digestate as a NK- source in treatments with animal manure or digestate 

had similar effects on biomass yields and soil properties as the classical fertilization regime which uses 

animal manure and synthetic NK- fertilizers. Nevertheless, experiments on longer term (> 3 years) may 

be required to fully evaluate the effects of continuous application of LF of digestate on crop growth and 

soil fertility. Next, due to the high nutrient variability of all bio-based fertilizers (animal manure, digestate 

and LF of digestate), product sampling should be taken on two occasions, before and during fertilization. 

In order to move towards replacing mineral fertilizers, a higher composition reliability will be required for 

bio-based materials. FRUE assessment for open field conditions appeared not to be the best indicator 

to assess environmental efficiency, since it was highly influenced by weather conditions. Finally, current 

findings may support recognition of the LF of digestate as a valuable N fertilizer. 
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8.1 Introduction 

Bio-based materials from nutrient recovery processes have the potential to be used as substitutes for 

synthetic nitrogen (N) fertilizers. However, their fertilizer performance with regards to crop yield and soil 

properties remains unclear. As a result, their use is currently hampered by legal restrictions which 

categorize these materials as waste (i.e. animal manure). The aim of this dissertation was to investigate 

both short-term and multi-year effects of using, in particular, liquid fraction (LF) of digestate, air scrubber 

water and mineral concentrate as N fertilizers in horticulture (test crop: Lactuca sativa L.) and agriculture 

(test crop: Zea mays L.). This evaluation was conducted through a series of experiments (laboratory, 

greenhouse and field scale) and compared to utilization of calcium ammonium nitrate (CAN) as one of 

the most widely used types of synthetic N fertilizers. The main hypothesis of the current dissertation is 

that LF of digestate, air scrubber water (ASW) and mineral concentrate will not cause significant 

differences in crop yield, nutrient uptake, soil N dynamics and soil properties as compared to the use of 

CAN. In this concluding chapter, the main findings of the dissertation are synthesized, recommendations 

are given and answers are provided for the four research questions:  

i. Do bio-based materials behave similarly to animal manure or similarly to synthetic N fertilizer 

with respect to N dynamics? (section 8.2) 

ii. Does acidification increase N mineralization and N fertilizer replacement value of bio-based 

materials? (section 8.3) 

iii. Can bio-based materials be used as synthetic N substitutes in commercial greenhouse 

production of vegetables? (section 8.4) 

iv. What are single-year and multi-year effects of using bio-based materials on an open field 

scale production? (section 8.5) 

Suggestions for future research are given in section 8.6. 

8.2 Do bio-based materials behave similarly to animal manure or similarly 

to synthetic N fertilizer with respect to N dynamics? 

The Nitrates Directive (91/676/EC) poses one of the main obstacles for recognition of bio-based 

materials as valuable products as it categorizes their fertilizer performance equal to animal manure. 

Consequently, the utilization of LF of digestate and mineral concentrate (derived from animal manure) 

as potential substitutes for synthetic N fertilizers is currently hampered.  

Through an incubation experiment (Chapter 3) it was shown that animal manure processing increases 

the N availability of LF of digestate and mineral concentrates as compared to unprocessed raw manure. 

N release from mineral concentrates exhibited patterns similar to CAN, suggesting that this type of bio-

based material could provide plant available N in a similar fashion as synthetic N fertilizers. The N 

release from LF of digestate (derived from animal manure origin) was higher as compared to raw animal 
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manure, but it followed to a lesser extent (19% lower N release) the pattern of CAN. In general, the 

observed N release was positively correlated with the amount of NH4
+-N (r=0.898, p=0.015) and Ntotal 

(r=0.929, p=0.007) that was added through the bio-based materials. Although no significant correlation 

(r=0.693, p>0.05) was observed between N release and NH4
+-N/Ntotal ratio, it still appears by taking into 

consideration the observed significant correlations with applied NH4
+-N and Ntotal that the higher NH4

+-

N/Ntotal ratio is, the higher N release will be. This was confirmed by the second incubation experiment 

(Chapter 4) where LF of digestate with higher NH4
+-N/Ntotal ratio (NH4

+-N/Ntotal = 0.82), as compared to 

tested LF of digestate in Chapter 3 (NH4
+-N/Ntotal = 0.76), exhibited a similar N release pattern as CAN. 

Increasing the NH4
+-N/Ntotal ratio in LFs of digestate can be achieved through different practices, such 

as increasing the proportion of animal manure and food waste in anaerobic co-digestion and/or 

performing mechanical separation of digestate at higher separation efficiencies (e.g. combination of low 

efficient separation with subsequent centrifuge). With regard to the N mineralization potential, a negative 

correlation was observed with the C/Norganic ratio (r = -0.847, p = 0.033) of the applied bio-based 

materials. As a result, net N mineralization was not observed for mineral concentrate that contained only 

5% of organic N, whereas it was observed for mineral concentrate with 20% of organic N. In general, 

the contribution from mineralization to total mineral N availability was very limited (6-14%) compared to 

the mineral N initially present in the bio-based materials. Overall, Chapter 3 indicates that bio-based 

materials with relatively low C/Norganic and high NH4
+-N/Ntotal ratio exhibit similar N dynamics in soil as 

synthetic N fertilizers. Air scrubber water was not included in the incubation experiment as its N is entirely 

in mineral form, suggesting that from a N dynamics perspective it will behave similarly as synthetic N 

fertilizer.  

Recommendation. Due to a high variability in nutrient composition of bio-based materials, most of the 

Member states throughout the EU have introduced in their national legislation a so called N working 

coefficient, in previous chapters referred to as effective N. In Flanders, a N working coefficient of 60% 

is currently set for LF of digestate (Chapter 7). Results from this dissertation (Chapter 3 and 4) indicate 

that in practice the N release of LF of digestate can be higher than 60%. This could potentially lead to 

unwanted over-application of effective N, suggesting that revision of N working coefficients is required. 

Results of this dissertation indicate that effective N should be based on the actual mineral N content (i.e. 

NH4
+-N/Ntotal ratio) of the used bio-based materials rather than a fixed percentage. Moreover, results 

from the single-year field trial (Chapter 6) indicate that LF of digestate, with effective N experimentally 

set at 100%, provides similar amounts of N to the crop as CAN. The potential acceptance of LF of 

digestate as synthetic N substitute on a European level will in future definitely require setting criteria 

stating when this bio-based material should be considered as synthetic N replacement and when not. 

These criteria will probably take into consideration dry weight, organic carbon, total N and NH4
+-N/Ntotal 

ratio as the main parameters. The results from this dissertation indicate that the NH4
+-N/Ntotal ratio of LF 

of digestate should be above 0.80, if we want this product to exhibit similar N release as synthetic N 

fertilizer. 

Mineral concentrate, as stated earlier (Chapter 2), is of interest in the Netherlands due to the on-going 

project that aims to examine the performance of mineral concentrate as synthetic N substitute. The 

assessment has started in 2009 (Velthof, 2015) and currently the decision of the EU is expected to see 
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if the project on mineral concentrate will continue or terminate. The first indications suggest that the EU 

will impose an obligation on the sum of total N and K concentration in mineral concentrate, which should 

be c.5-7% (WUR, personal communication). At the moment, mineral concentrate contains 1-2% of total 

N and 1-2% of total K (Chapter 3 and 6). As such, it seems an impossible mission to reach the limit of 

5-7% that probably will be stipulated by the EU. The potential decision of the EU is already 

acknowledged by some Dutch processing installations, whose focus is shifting from NK mineral 

concentrate to K mineral concentrate (Nijhuis Industries, personal communication). This will be achieved 

by integration of the stripper/scrubber unit before membrane filtration to recover N as ASW, and 

integrating the evaporation unit after the membrane filtration to up-concentrate K. This approach of up 

concentrating N and K at high cost (i.e. stripping/scrubbing + membrane filtration + evaporator) is of 

interest in the case if transportation over long distances is required. Otherwise for direct land use, up-

concentration of N at lower cost via efficient separation (i.e. NH4
+-N//Ntotal ratio of LF of digestate > 80%) 

or stripping/scrubbing unit (NH4
+-N//Ntotal ratio of ASW = 100%) would be sufficient.  

Finally, it should be noted that the Nitrates Directive was implemented in 1991 with the aim to protect 

an environment and not to stimulate a fertilizer market. Nevertheless, the Directive should acknowledge 

that in last 16 years quite some progress has been made in the field of manure processing and that 

nowadays certain processed manure (i.e. liquid fraction of digestate, mineral concentrate and air 

scrubber water) can behave similarly as synthetic N fertilizers. The ‘need for change’ has been 

recognized by the DG Environment, which has recently initiated a 2 year study (2018-2020) with the 

Joint Research Centre (JRC) to: i) assess the performance of processed manure on the basis of the 

available scientific literature, and ii) determine if certain modifications in the Article 2(g) of the Nitrates 

Directive can be made.  

 

 

8.3 Does acidification increase N mineralization and N fertilizer 

replacement value of bio-based materials? 

The N mineralization potential from mineral concentrate, LF of digestate, digestate and animal manure 

is quite limited (6-14%) as compared to the mineral N initially present in these bio-based materials 

(Chapter 3). Regardless of the low N mineralization, mineral concentrate still exhibits similar N dynamics 

as CAN due to the high initial NH4
+-N/Ntotal ratio, whereas other bio-based materials tend to exhibit a 

General conclusions of Research question No. 1: 

 N dynamics of LF of digestate and mineral concentrate tend to better follow the pattern of 

synthetic N fertilizer than animal manure 

 N release from bio-based materials over the course of the growing season is highly 

dependent on the initial NH4
+-N/Ntotal ratio  

 NH4
+-N/Ntotal ratio seems to be a better indicator of effective N than the currently imposed N 

working coefficient of 60% for LF of digestate 
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lower N release. Several studies indicated that acidification of bio-based materials stimulate N 

mineralization, decrease potential N immobilization and delay or inhibit nitrification (Fangueiro et al., 

2009; Fangueiro et al., 2010; Fangueiro et al., 2013). Chapter 4 investigated if acidification of animal 

manure, LF of animal manure, digestate and LF of digestate increases N mineralization and the N 

fertilizer replacement value (NFRV) of these bio-based materials. 

Incubation experiment (Chapter 4) showed that acidification of bio-based materials actually led to a 

delay in N release, resulting in lower N uptake and a lower fresh yield of Lactuca sativa L (pot 

experiment). Consequently, lower NFRV values were observed in acidified treatments as compared to 

non-acidified materials and CAN. A recent study by Fangueiro et al. (2016) reported that the application 

of acidified slurry can lead to a more significant immobilization than application of non-acidified slurry 

and as such reduce the potential N mineralization, especially in soils with a high buffering capacity. The 

study also mentions the possibility that acidification reduces the activity of nitrifies since the levels of 

CO2, as their sole source of carbon, are decreased as a result of CO2 emissions that occur during 

acidification process. In the case of reduced nitrification we should have seen higher presence of NH4
+-

N in the soil (Figure 4.1), except if NH4
+-N as an energetically favourable mineral N source has been 

quickly immobilized. Moreover, it cannot be excluded that acidification triggers the release of substances 

that inhibit the activity of microorganisms or their enzymes, negatively affecting N mineralization as 

observed in acidified treatments. This type of negative priming effect was reported by Kuzyakov et al. 

(2000) and was attributed to the release of substances that are toxic to the microbial community. 

Potential explanation might be that addition of H2SO4 stimulated lignin degradation and resulted in 

release of polyphenols. Polyphenols are known to reduce the microbial activity (toxic to a number of 

bacteria) and form complexes with amino compounds which are very stable and hence not bio-available. 

This toxic effect has been reported more with regard to N release and N mineralization of crop residues 

(Agneessens et al., 2014), and at the moment there is no indication if this might be the case with acidified 

manure. Another toxic effect might have resulted from addition of sulphur and potential increase of 

aluminium concentration due to pH reduction. In poultry industry, often aluminum sulfate [alum; 

Al2(SO4)3] is added to bedding material to reduce environmental pollution from poultry production. 

Gandhapudi et al. (2006) observed in N incubation experiment that i) alum retarded the nitrification by 

lowering pH of soil and reducing the potential enzyme activity and ii) acidification of slurry environment 

could briefly inhibit mineralization by suppressing population of soil organisms. In our study, there was 

no difference in soil pH between acidified and non-acidified treatments at t=20 and t=120 of the 

incubation experiment. As such, we can exclude pH effect of acidified materials on microbial community 

and conclude that observed immobilization was more likely result of material modification in terms of 

potential CO2 reduction, release of polyphenols or aluminum and sulfur interaction. Finally, the initial 

mineral N present in acidified bio-based materials at t=0 was reached from day 60 for acidified materials 

with lower NH4
+-N/Ntotal ratio (< 0.65). The exception was acidified LF of digestate that was characterized 

by an NH4
+-N/Ntotal ratio of 0.80 where strong N immobilization was observed throughout the entire 

incubation experiment. The higher the NH4
+-N/Ntotal ratio of an acidified bio-based materials is, the higher 

N immobilization will occur (r = - 0.989, p < 0.05).  
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Recommendation. In this experiment, acidification did not stimulate N mineralization and thus did not 

increase NFRV of bio-based materials. Rather, acidification of materials rich in mineral N might inhibit 

or immobilize the mineral N. The immobilization of mineral N could be of interest considering the 

potential risk of NO3
-leaching that may occur by applying bio-based materials in an open field cultivation. 

This is especially relevant at the beginning of the growing season when plants are too small to take up 

large amounts of N and excess mineral N might leach in case of excess precipitation. However, N 

leaching losses may be increased if N release is postponed too long after the peak in crop N uptake.  

 

8.4 Can bio-based materials be used as synthetic N substitutes in 

commercial greenhouse production of vegetables? 

The laboratory incubations (Chapter 3 and 4) were conducted in the absence of plants to avoid their 

potential effects on N dynamics in the soil. However, for bio-based materials to be considered as 

potential N fertilizers, comparison with synthetic N fertilizer should be done on commercial production 

scale where crop yield and quality are assessed. Chapter 5 evaluated if the use of LF of digestate and 

ASW results in similar yield, crop quality and nutrient uptake of Lactuca sativa L. as compared to CAN 

utilization.  

Chapter 5 demonstrated that utilization of LF of digestate and ASW in commercial production of lettuce 

does not cause significant impact on crop yield, crop nutrient concentrations and soil properties at 

harvest time as compared to CAN. Lettuce in treatments where LF of digestate was used as N source 

had a difficult start, visible in a smaller crop volume and heterogeneous uniformity. At harvest time, this 

negative influence was still notable in lettuce uniformity as compared to the CAN treatment. This could 

be attributed to two crucial variables in LF of digestate, namely electrical conductivity (EC) and presence 

of ammonia. The former was excluded as a potential cause because lettuce volume and uniformity was 

not affected in treatments with ASW where even higher soil EC values were measured. Until now 

contradictory results have been reported concerning digestate phytotoxicity, with NH4
+-N and organic 

acids in the digestate as factors negatively affecting plant growth (Fuchs et al., 2008; Möller and Müller, 

2012). No data about the expected duration of phytotoxic effects were found. Nevertheless, it is believed 

that phytotoxicity should decrease within a short time period after field application of the digestate (Möller 

and Müller, 2012). These findings may explain the difficult start of lettuce that occurred in treatments 

with LF of digestate. Finally, it should be noted that this negative effect on lettuce uniformity and volume 

General conclusions of Research question No. 2: 

 Acidification does not increase the N mineralization potential and NFRV of bio-based 

materials 

 Acidification tends to reduce N release in acidified materials that are rich in mineral N 

 The reduction of N release could be of interest with regard to NO3
- leaching that may occur 

by applying bio-based materials in an open field cultivation 
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was not observed in the pot experiment (Chapter 4), where LF of digestate was applied as a N source 

in lettuce cultivation. This might be the result of lower material dosage that was given on laboratory scale 

(application dosage on weight basis). While, on a commercial scale (application dosage on hectare 

basis) higher dosage of material is required, leading to more visible effects on crop production. No 

effects on maize development were observed when LF of digestate was used as a N source in an open 

field cultivation (Chapter 6 and 7). 

Recommendation. Regardless of the fact that both LF of digestate and ASW have similar effects on 

crop yield and soil properties at harvest time as CAN, LF of digestate appeared to be less appropriate 

for greenhouse cultivation. In utilization of this type of materials, along with their performance also the 

material handling and perception of horticulturists and the end-consumer is highly important (Case et 

al., 2017). The unpleasant odor of LF of digestate upon the application and incorporation generated a 

negative perception among practicing horticulturists (i.e. PCG; Vegetable Research Centre). At the 

same time, despite the fact that LF of digestate is subjected to a hygenization process (1h and 70°C), 

there is a risk that consumers have a negative perception of raw eaten vegetable fertilized with 

processed animal manure such as LF of digestate instead of CAN.   

ASW on the other hand was perceived positively by practicing horticulturists as a N source in 

greenhouse cultivation. In this dissertation, the product was obtained from an acid air washer connected 

on animal stables. As such, the product is accepted within the Flemish legislation as a substitute for 

synthetic N fertilizer. This derogation on national level was introduced because N in the product is 

completely present in mineral form. Conversely, for ASW that is obtained from stripping/scrubbing of 

animal manure or digestate, it is not yet clear if this can also be accepted as synthetic N fertilizer. 

Although both products have the same product characteristics, the Flemish legislation currently does 

not accept this product as synthetic N fertilizer since there is no indication if EU would allow its 

acceptance. Again a formal derogation needs to be asked to the European Commission (VCM, personal 

communication).  

 

General conclusions of Research question No. 3: 

 Air scrubber water and LF of digestate have similar effects on crop yield and soil properties 

as CAN 

 LF of digestate caused a difficult start in lettuce development (reduced uniformity and 

volume) 

 LF of digestate is currently perceived as not suitable for the use in greenhouse cultivation 

due to its unpleasant odor and potential negative perception of the end-consumer 
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8.5 What are single-year and multi-year effects of using bio-based 

materials on an open field scale production? 

In contrast to laboratory (incubation and pot-trials) and greenhouse experiments, field trials are 

conducted under uncontrolled conditions in which weather is seen as a key factor in determining the 

agricultural productivity. To recommend bio-based materials as an equivalent to synthetic N fertilizer, it 

is therefore crucial to test their efficacy on an open field cultivation. Single-year effects (Chapter 6) of 

utilizing LF of digestate and mineral concentrate were assessed in Zea mays L. cultivation, whereas 

multi-year effects (Chapter 7) were examined only with regard to the use of LF of digestate as a N 

source. 

In a single-year field maize cultivation, mineral concentrate and LF of digestate proved to be effective 

substitutes for CAN, resulting in similar crop yields and risk for NO3
- leaching. In the multi-year trial (3 

years), the effect of weather conditions was stronger (p < 0.05) than the effect of tested treatments (p > 

0.05). As such, there were no significant differences between conventional fertilization practice (animal 

manure + CAN) and the use of LF of digestate, as a (partial) substitute of CAN, in combination with 

digestate or animal manure. In both trials, application of bio-based materials tended to increase the soil 

Na concentration since these materials contain considerable amounts of Na. Some arable crops 

respond positively to applied Na, whereas for other crops (e.g. grass) application too close to the root 

of the plant should be avoided (Klop et al., 2012; Velthof, 2015). An important observation was that the 

actual applied N doses differed considerably from the intended N doses. This was caused by differences 

in bio-based material composition between sampling at the farm/digester versus sampling during the 

actual fertilization. The highest variability was observed in animal manure which is usually attributed to 

variation in storage and sampling strategies. Variability in nutrient composition of LF of digestate and 

mineral concentrate is mostly attributed to non-stable feeding patterns of co-digester as a result of 

dependence on feedstock market availability. In general, variability may result in significant over- or 

under- fertilization with N and P (Chapter 7).  

Recommendation. In practice a time gap of a few weeks to one month can be observed between the 

first sampling in storage and actual fertilization (INAGRO, personal communication). One of the 

measures to reduce variability in batches of bio-based materials between product characterization and 

actual application would be to reduce the time gap up to maximum 1 week. However, time needed for 

sampling and analysis may be prohibitive in this respect because farmers are dependent on external 

laboratory analysis. Additional storage could be introduced where additional flow of bio-based material 

is not allowed between the first sampling moment (to determine material application dosage) and the 

moment of fertilization. As a result, the composition of bio-based material in the storage will not change 

due to the variation in feeding patterns of digesters. Finally, for on-site measurements there might be 

potential to use Near Infra-Red (NIR) sensors to know the exact composition of the used bio-based 

material and adjust the previously set application dosage during the moment of fertilization. 
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Another aspect of nutrient variability is that it might lead to N over-fertilization. In Chapter 6, treatments 

with animal manure received double dosage of total N (c. 300 kg N ha-1) as compared to CAN, LFDIG 

and MC treatment (c. 150 kg N ha-1). Regardless of the difference in N application rate, the post-harvest 

NO3
--N residue was below the legal stipulated limit and no significant differences were observed among 

tested treatments. This does not mean that the Flemish legislation is too severe, but rather that weather 

is unpredictable and N is quickly responsive to change. In this specific experiment, month July and 

August (Table 6.1) were characterized by high temperature and precipitation. Under these conditions 

some N was probably lost via denitrification. Moreover, animal manure contains organic N which by the 

time of the NO3
--N residue determination will not be completely mineralized. Nevertheless, it should be 

acknowledged that determination of the NO3
--N residue is highly influenced by the weather and it might 

not always indicate the potential N over-fertilization. From scientific point of view, it would be interesting 

to combine the NO3
--N residue with methods that can determine N status in plants. For example, content 

of chlorophyll and polyphenols has been used in practice as an indicator of the plant N status. These 

parameters can be measured in the field by portable and affordable tools, however, the readings of 

chlorophyll and polyphenols can be affected by growth stage, cultivars, soil water and deficiency of 

nutrients other than N (Muñoz-Huerta et al., 2013).  

 

8.6 Future research perspectives 

In this section, recommendations for potential future research are presented based on the 

experience and insights gained during this research. 

Effect of acidification on the microbial community. The observed decrease of net N release 

(Chapter 4) appears to be due to the release of toxic substances that inhibit the activity of 

microorganisms or their enzymes, negatively affecting N mineralization in acidified treatments. This type 

of negative priming effect was also reported by Kuzyakov et al. (2000). Additional research is needed 

to confirm this hypothesis. In general, there is a significant lack of knowledge regarding the effect of 

acidification on the microbial community (Fangueiro et al., 2015).  

Effect of liquid fraction of digestate on crop quality in greenhouse production. Until now 

contradictory results concerning digestate phytotoxicity were reported (Fuchs et al., 2008; Möller and 

General conclusions of Research question No. 4: 

 Under open field conditions the performance of LF of digestate and mineral concentrate was 

similar to synthetic N fertilizer 

 Both LF of digestate and mineral concentrate contain considerable amount of Na. This is an 

attention point, especially in arid regions and in cultivation of Na sensitive crops  

 The nutrient variability in bio-based materials between the moment of sampling at the storage 

and the actual fertilization needs to be reduced in order to avoid risk of over-fertilization  
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Müller, 2012), implicating NH4
+-N and organic acid concentrations in digestate as limiting factors in plant 

growth. Moreover, Wong et al. (1983) reported that plant growth might be inhibited not only due to 

ammonia but also by presence of ethylene oxide in animal manure. These hypotheses were used as 

possible explanation for the observed delay in lettuce uniformity and volume when LF of digestate was 

used as a N source. Additional research is required to determine what caused these observations and 

if a similar effect would be observed on other horticultural crops grown within the greenhouse. This could 

be assessed via germination bioassays and pot experiments where material application occurs on 

hectare basis, involving pots with higher volume (> 5L) and thus higher application dosage. 

Legally allowable fertilization rates versus the optimal fertilization. Flemish farmers 

currently apply animal manure and bio-based fertilizers according to the legally allowable fertilization 

rates which are not always considered to be optimal. For example, even though soil properties prior to 

the fertilization and crop P requirement indicate that 40 kg P2O5 ha-1 is required, arable farmer will more 

likely follow the legal maximum limit that allows him application of 80 kg P2O5 ha-1. The farmer will opt 

for the higher P2O5 application rate because it will simultaneously allow him to apply more N coming 

from animal manure. From scientific point of view, it would be interesting to assess the optimal 

fertilization through incremental rates and compare it to the currently used legally allowable fertilization 

rates. This can also lead to the determination of economic optimum which is of interest for farmers.  

Variability in nutrient composition of bio-based materials. Bio-based materials are known 

for their high variability in nutrient composition (Galvez et al., 2012; EC, 2014a) as compared to 

manufactured synthetic fertilizers. In this dissertation, the largest variability was observed in animal 

manure, whereas lower variability was observed in LF of digestate and mineral concentrate (Chapter 6 

and 7). As application of animal manure is highly popular by farmers throughout Europe, it is important 

to determine critical points of variability (i.e. storage, digester outlet, separation outlet, transport tank 

and fertilizing tank) within the management chain of animal manure and processed materials such as 

LF of digestate. To study the impact of the management chain on the composition of bio-based 

materials, special focus should be given to the storage, digester and fertilizing tank that is used during 

the actual application. Sampling at these points of interest might result in correlations between the 

sampling point and the nutrient value that we might expect on the moment of the actual fertilization. 

Alternatively, there is always an option of introducing an additional storage (section 8.5) where addition 

of bio-based material will not be allowed between the moment of first sampling and the moment of 

fertilization. Another approach might be the use of Near Infra-Red (NIR) sensors in determining the 

nutrient content of bio-based materials at the moment of actual fertilization. Current research indicates 

the potential of NIR (Millmier et al., 2000; Saeys et al., 2005), however further investigation of the 

applicability of the NIR procedure to all forms of manure, regardless of moisture content is needed. 

Especially it seems difficult to predict P (Millmier et al., 2000; Saeys et al., 2005), which is next to N the 

most important parameter in application of bio-based materials. 

Finally, it would be interesting to test the use of LF of digestate as the only N source in cultivation of 

arable crops, without additional supply of animal manure. It appears that higher nutrient variability tends 
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to occur with animal manure, leading to N and consequently also P over-fertilization. LF of digestate is 

a material that has a high NH4
+-N/Ntotal and N/P ratio. Therefore, it would be interesting to observe the 

long term effects of applying LF of digestate as the only N source in cultivation of arable crops. Flemish 

soils are known to be rich in P, and it is believed that crop cultivation could be successful in the first 

years without additional application of P. Of course, this might lead to a situation where LF of digestate 

is seen not only as competitor for synthetic N fertilizer, but also for animal manure. On the other hand, 

this might stimulate farmers to transport their manure to the AD plant where LF of digestate would be 

produced as a N fertilizer. In this case, question might arise if Flemish biogas sector is ready for higher 

processing activities and if the transition to centralized biogas sector should occur. Finally, some 

limitations should be imposed on the minimum NH4
+-N/Ntotal ratio and N/P ratio that are desirable in bio-

based materials. Tuning of these parameters also requires future research with regard to performance 

of mechanical separators. In general, the biggest issue of reducing the direct use of animal manure is 

simultaneous reduction of organic carbon that is usually supplied via animal manure. 

This dissertation clearly shows the potential of bio-based materials derived from animal manure to offset 

energy intensive and import dependent synthetic N fertilizers. The creation of a playing field between 

synthetic fertilizers and the manure based alternatives is of utmost importance, however, it presents 

certain challenges. The nutrient variability will be one of the greatest challenges to address in the future 

utilization of these materials. Nevertheless, valuable bio-based materials are available, challenges have 

been identified and now actions are required. 
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Summary 
 

Bio-based materials from animal manure and digestate processing contain a significant amount of 

nitrogen (N) that could potentially be re-used in agriculture as a substitute for synthetic N fertilizers. 

Legally, however, these materials are still perceived as animal manure. The aim of this dissertation was 

to investigate the impact of using liquid fraction (LF) of digestate, air scrubber water (ASW) and mineral 

concentrate as substitutes for synthetic N fertilizer (i.e. calcium ammonium nitrate (CAN)) with regard to 

crop yield, crop quality, nutrient uptake and soil properties. More specific, four research questions were 

addressed: i) Do bio-based materials behave similarly to animal manure or similarly to synthetic N 

fertilizer with respect to N dynamics?; ii) Does acidification increase N mineralization and N fertilizer 

replacement value (NFRV) of bio-based materials?; iii) Can bio-based materials be used as synthetic N 

substitutes in commercial greenhouse production of vegetables? and iv) What are single-year and multi-

year effects of using bio-based materials in an open field scale production?  

In a first study, N release and mineralization potential of several bio-based materials, including LF of 

digestate and mineral concentrate, were assessed via N incubation experiment and compared with N 

availability from CAN. The N release appeared to be highly dependent on the NH4
+-N/Ntotal ratio of the 

material, whereas N mineralization contributed only to a limited extent (6-14%) on top of mineral N 

initially present in the bio-based materials. In general, our results indicate that further processing of 

animal manure and digestate can increase the N value of processed bio-based materials. In this study, 

only the N release from mineral concentrates exhibited similar patterns to CAN, suggesting that this 

material will provide plant available N in a similar fashion as synthetic N fertilizers. The N release from 

LF of digestate was higher in comparison to animal manure, but it followed to a lesser extent the pattern 

of CAN.  

From a first incubation experiment it was clear that N mineralization from bio-based materials is quite 

limited. In a second experiment, we hypothesized that acidification of bio-based materials might increase 

N mineralization and thus indirectly lead to higher NFRV of animal manure, LF of animal manure, 

digestate and LF of digestate. The performance of acidified bio-based materials was compared to non-

acidified counterparts and CAN with regard to (i) crop development via a pot experiment with lettuce 

(Lactuca sativa L.) and (ii) soil N dynamics via a soil incubation experiment. Findings suggest that 

acidification does not result in an increased use efficiency of applied N as the NFRVs of acidified 

materials were 6-13% and 11-18% lower compared to non-acidified materials and the CAN treatment, 

respectively. This might be explained by an inhibitory delay in the net N release which in our 

experimental design proved to be negative for crops with short production cycles, as lettuce. This pattern 

was revealed in the incubation experiments in which net N release in acidified materials remained below 

that of non-acidified, in this study tentatively attributed to immobilization of mineral N 

.
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In the next phase the agronomic performance (i.e. crop yield, crop quality, fertilizer use efficiency (FUE) 

and soil properties) of bio-based materials was assessed through a commercial greenhouse production 

experiment in which LF of digestate and ASW were used as N fertilizers for lettuce production. No 

significant differences in crop yield and soil properties at harvest time between conventional fossil-based 

mineral fertilizers and selected bio-based mineral alternatives were observed. However, LF of digestate 

fertilization resulted in a difficult start with regard to the crop uniformity and volume. The mechanism 

behind this observation was tentatively attributed to the ammonia presence. This effect diminished 

towards the end of the experiment, and only the effects on lettuce uniformity remained visible.  

Finally, the single-year and multi-year effects of applying bio-based materials in an open field cultivation 

of maize (Zea mays L.) were assessed. In a single-year trial, the use of LF of digestate and mineral 

concentrate as N fertilizers led to similar crop yield, crop nutrient uptake and soil properties at harvest 

time as in CAN treatments, suggesting that these materials have a potential to replace synthetic N 

fertilizers. Moreover, no significant differences were observed with regard to N FUE, apparent N 

recovery (ANR) and NFRV between treatments with bio-based materials and CAN. The multi-year 

effects focused solely on the use of LF of digestate. The performance of LF of digestate in combination 

with animal manure or digestate was assessed and compared to conventional fertilization. During this 

3-year study, the effect of weather conditions was stronger than the effect of the applied treatments, 

suggesting that LF of digestate has potential to be used as a (partial) substitute for synthetic N fertilizers. 

Importantly, through both field experiments a high variability in nutrient composition of bio-based 

materials was observed, especially in the case of animal manure.  

This dissertation clearly shows that processed bio-based materials, such as LF of digestate, ASW and 

mineral concentrate, tend to behave more as synthetic N fertilizer than animal manure. With regard to 

their NH4
+-N/Ntotal ratio, additional N mineralization should not be expected in a significant extent. Hence, 

producers of these materials, especially in the case of LF of digestate, should tend to increase the 

efficiency of mechanical separators to obtain materials with even higher NH4
+-N/Ntotal and N/P ratio. 

Overall, these materials should be considered as products and as such be integrated in the European 

fertilizer market. Some of their characteristics (form, nutrient concentration, stability) differ from the 

characteristics of synthetic N fertilizers, however their N performance indicates the potential of labelling 

LF of digestate, ASW and mineral concentrate as processed mineral fertilizers.  

Future research perspectives should address the issue of variability in nutrient composition of bio-based 

materials, examine mechanisms behind the observed N immobilization in acidified bio-based materials 

and determine if there is a toxicity effect of LF of digestate with regard to greenhouse crop cultivation. 
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Samenvatting 
 

Bio-gebaseerde materialen uit dierlijke mest en digestaat bevatten significante hoeveelheden stikstof 

(N). Deze zouden potentieel hergebruikt kunnen worden in de landbouw ter vervanging van synthetische 

stikstofmeststoffen. Wettelijk gezien worden de bemestingseigenschappen van deze materialen echter 

gelijkgesteld aan die van dierlijke mest. Het doel van dit doctoraat was om de impact te onderzoeken 

van de vloeibare fractie (LF) van digestaat, effluent van een luchtwasser (ASW) en mineraal concentraat 

(MC) ter vervanging van synthetische stikstofmeststoffen. De impact werd geëvalueerd op basis van de 

bodemeigenschappen, nutriëntopname van de gewassen en hun opbrengst. Vier onderzoeksvragen 

werden vooropgesteld: i) Gedraagt N uit bio-gebaseerde materialen zich gelijkaardig aan N uit dierlijke 

mest of eerder zoals synthetische stikstofmeststoffen? ii) Verhoogt verzuring de N-mineralisatie en de 

waarde als stikstofmeststof (NFRV) van de bio-gebaseerde materialen? iii) Kunnen bio-gebaseerde 

materialen gebruikt worden ter vervanging van synthetische N-meststoffen voor commerciële 

serreteelten? en iv) Wat zijn de eenjarige en meerjarige effecten van het gebruik van deze materialen 

in een veldproef? 

In een eerste studie, een N-incubatie experiment, werd de N-vrijstelling en -mineralisatie van enkele 

bio-gebaseerde materialen, waaronder LF van digestaat en MC onderzocht en vergeleken met 

kalkammonsalpeter (CAN). De N-vrijstelling bleek vooral afhankelijk van de NH4
+-N/Ntotal ratio, terwijl N-

mineralisatie maar voor een klein deel (6-14%) bijdroeg bovenop de minerale N initieel aanwezig in de 

bio-gebaseerde materialen. Onze resultaten tonen wel aan dat behandeling van dierlijke mest en 

digestaat de N-meststofwaarde kan verhogen. In deze studie vertoonde enkel de vrijstelling uit MC een 

gelijkaardig patroon aan CAN. Dit wijst erop dat MC op een gelijkaardige manier N zal vrijstellen voor 

de plant als synthetische meststoffen. De N-vrijstelling uit LF van digestaat was hoger in vergelijking 

met dierlijke mest, maar volgde in mindere mate het N vrijstellingspatroon van CAN.  

Uit het eerste incubatie-experiment kwam duidelijk naar voor dat N-mineralisatie uit bio-gebaseerde 

materialen gelimiteerd is. Daarom werd in het tweede experiment onderzocht of een verzurende 

behandeling de N-mineralisatie en NFRV kan verhogen. De waarden werden vergeleken met hun niet-

verzuurde tegenpolen en CAN op vlak van (i) de ontwikkeling van sla (Lactuca sativa L.) in een 

potexperiment en (ii) het gedrag van N in de bodem in een incubatie experiment. De resultaten tonen 

aan dat verzuring niet leidde tot een verhoogde efficiëntie van de toegediende N. De NFRVs van de 

verzuurde materialen waren respectievelijk 6-13% en 11-18% lager in vergelijking met de niet-verzuurde 

materialen en CAN. Dit kan mogelijks toegeschreven worden aan een inhibitorische vertraging in de 

netto N-vrijstelling hetgeen in onze experimenten nefast bleek te zijn voor gewassen met een korte 

productiecyclus zoals sla. Dit patroon kon ook vastgesteld worden in de incubatie-experimenten waarbij 

de netto N-vrijstelling uit verzuurde materialen lager bleef dan die uit niet-verzuurde materialen, hetgeen 

in deze studie werd toegeschreven aan immobilisatie van minerale N.  
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In een volgende stap werd de agronomische performantie van bio-gebaseerde materialen onderzocht 

bij commerciële serreteelt van sla met gebruik van LF van digestaat en ASW als N-meststof. Dit werd 

geëvalueerd op basis van de gewas opbrengst, de kwaliteit van de sla, de efficiëntie van de meststof 

(FUE) en de bodemeigenschappen in vergelijking met CAN gebruik. Er werden geen significante 

verschillen in productie en bodemeigenschappen vastgesteld op moment van de oogst tussen de 

conventionele fossiel-gebaseerde meststoffen en de geselecteerde bio-gebaseerde materialen. Sla die 

bemest was met LF kende echter een moeilijke start op vlak van gelijkheid en volume. Als reden hiervoor 

werd de aanwezigheid van ammoniak naar voor geschoven. Naar het einde van het experiment toe 

bleek enkel uniformiteit nog een aandachtspunt te zijn.  

Finaal werd het 1- en meerjarig effect onderzocht van gebruik van bio-gebaseerde materialen aan de 

hand van een veldproef met mais (Zea mays L.). In een 1-jarig experiment werd het gebruik van LF van 

digestaat en MC als N-meststof onderzocht. In vergelijking met de met CAN behandelde planten werd 

eenzelfde productie, opname van nutriënten en bodemeigenschappen vastgesteld. Dit suggereert het 

duidelijke potentieel van biogabeseerde materialen ter vervanging van synthetische fossiele N-

meststoffen. Verder werden er geen significante verschillen op vlak van FUE, N-benuttingspercentage 

en NFRV tussen de planten behandeld met CAN of met bio-gebaseerde materialen geobserveerd. De 

meerjarige effecten van het gebruik van LF van digestaat in combinatie met dierlijke mest of digestaat 

werden bestudeerd en vergeleken met conventionele bemesting. Tijdens het 3-jarige experiment bleek 

het effect van de weeromstandigheden groter dan het effect van de behandelingen. Dit toont aan dat 

LF van digestaat het potentieel heeft om (deels) synthetische N-meststoffen te vervangen. Een 

belangrijke vaststelling in beide veldexperimenten was de hoge variabiliteit in nutriënt samenstelling van 

de bio-gebaseerde materialen, vooral in dierlijke mest.  

Deze doctoraatsthesis toont duidelijk aan dat bio-gebaseerde materialen die een verwerkingsstap 

hebben ondergaan zoals LF van digestaat, ASW en MC een gelijkaardiger gedrag vertonen met 

synthetische N-meststoffen dan N uit dierlijke mest. Op basis van hun NH4
+-N/Ntotaal ratio wordt echter 

geen significante N-mineralisatie na toediening verwacht. Daarom is het aangeraden dat de 

producenten van deze materialen (vooral van LF van digestaat) pogingen ondernemen om de efficiëntie 

van hun mechanische scheidingsstap te verbeteren om zo hogere NH4
+-N/Ntotaal ratio en N/P ratio’s te 

genereren. In het algemeen zouden deze materialen erkend moeten worden als producten en aldus 

geïntegreerd worden op de Europese meststoffenmarkt. Enkele van hun eigenschappen (vorm, 

nutriëntconcentratie, stabiliteit) verschillen wel van die van synthetische N-meststoffen maar de N 

performantie LF van digestaat, ASW en MC suggereert dat ze potentieel gelabeld kunnen worden als 

verwerkte minerale meststoffen. 

Verder onderzoek zou zich moeten toespitsen op de variabiliteit in de nutriëntconcentraties van bio-

gebaseerde materialen. Voorts dienen de mechanismen achter de N-immobilisatie in verzuurde bio-

gebaseerde materialen bepaald te worden en dient de mogelijkse toxiciteit van LF van digestaat op 

serreteelten verder onderzocht te worden. 
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