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Abstract—A novel approach for robot tracking and identifica-
tion based on barcodes is proposed in this paper. The proposed
system tracks robots fitted with barcodes identifying them. The
system performs distributed visual processing and collaborative
barcode tracking, whereby the nodes exchange processed visual
information with appropriate neighboring nodes, informing them
about incoming targets. The proposed tracking system is deployed
on a visual sensor network (VSN) based on the Raspberry
Pi. Its practical realization includes various components that
handle real-time collaborative tracking, streaming, communica-
tion, configuration, management, monitoring, and deployment.
The proposed system is able to efficiently and accurately track
barcodes in real time. Complexity modeling demonstrates that
the proposed distributed system brings substantial complexity
reductions compared to a system of independently operating
cameras. Experimental results demonstrate that the proposed
system can track multiple barcodes in real time with an accuracy
of less than 1 centimeter.
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I. INTRODUCTION

Nowadays, one-dimensional barcodes are globally used
for tagging products. This work makes use of barcodes to
localize, identify and track robots in visual sensor networks.
Barcode detection is a well-researched area, many approaches
being based on mathematical morphology. The approach of [1]
uses edge detection combined with filtering and morphological
operations to detect barcodes. The method in [2] uses a black
top-hat transform and a filter for high-density regions. The
work in [3] uses a blob detector to identify potential barcodes.
The blobs are then filtered based on their shape and converted
to a feature space before feature clustering is applied. Recent
advances include [4] which combines [1] and [2].

Evolving from barcode detection in still pictures towards
barcode detection and tracking in video calls for specific
algorithmic designs. Barcode detection and tracking in video
has recently been proposed in [5]. The method in [5] indicates
that robust robot tracking and identification based on one-
dimensional barcodes is feasible. However, [5] suffers from
extremely low frame rates (less than one frame per second
on average) when barcode tracking is deployed on low-power
embedded devices. The distributed barcode tracking system
presented in this work advances over our past developments
in [5] by bringing algorithmic changes and system design
optimizations in order to achieve both robustness and real-time
barcode tracking of multiple targets with a low-power VSN.

II. PROPOSED DISTRIBUTED VISUAL SENSOR
ARCHITECTURE

The basic idea behind the proposed distributed tracking
system is that the nodes in the VSN can go into sleep
mode when no barcodes are present in their field of view.
The neighboring nodes will wake up a node whenever a
barcode is likely to enter that node’s field of view. That saves
energy compared to a VSN of independently operating cameras
whereby each node searches for barcodes, tracks and decodes
them at all times.

The barcode tracking method is divided into two algo-
rithms. The first algorithm is responsible for searching an
incoming barcode. The search is performed in a predefined
area which is determined based on the information received
from the barcode trackers running on the neighboring cameras
in the VSN. The second algorithm is responsible for tracking a
barcode. First, the algorithm predicts the location of the tracked
barcode. Then, it attempts to localize the barcode in an area
defined around the predicted location. In a subsequent step,
if the barcode is successfully localized, the algorithm extracts
the barcode from the image, attempts to decode it, and checks
if the decoded identifier matches with the identifier from the
past. If the barcode was not localized or if the decoding is
unsuccessful, the location gets discarded.

The barcode localization algorithm consists of two steps:
barcode detection and location refinement. Barcode detection
is inspired by [4]. The algorithm performs the following steps:
(i) black top-hat transform, (ii) low-intensity thresholding to
remove areas that are not barcodes, (iii) Otsu thresholding, and
(iv) morphological filtering. In contrast to [4], the proposed
method, which uses an additional thresholding step, does not
perform contrast stretching and adopts a different method to
determine the barcode’s bounding box and its orientation.

The second step refines the location of the detected bar-
codes by applying corner detection combined with robust
bounding-box detection. The process is illustrated in Figure
1. First, the contour of the detected barcode (smallest white
rectangle in Figure 1a) is determined. Then, the bounding box
of that contour is calculated and scaled up (Figure 1b). Lastly,
the four corners of the barcode are located using Harris corner
detection (Figure 1c).

The barcode extraction algorithm serves two purposes,
namely, (i) determining if the input image contains a barcode
or not, and (ii) extracting barcodes from the image. The
algorithm exploits the strong directional features of barcodes.



Fig. 1. Location refinement algorithm.

The algorithm uses the four points provided by the localization
algorithm to extract the barcode from the image and to warp
it prior to decoding. The result is a rectified image of the
barcode. The algorithm subsequently extracts a set of five
sample lines in both horizontal and vertical directions. One
of the sets should have a high number of edges, whereas the
other set should have (almost) no edges. If that is not the case,
the location gets discarded.

The decoding algorithm assigns the barcode patterns to
the correct characters. The decoding process also returns a
confidence figure that represents how confident the decoder is
about the decoded identifier. That figure is based on how many
of the bars inside the patterns were classified correctly.

III. SYSTEM OVERVIEW AND IMPLEMENTATION
CHALLENGES

The proposed system is composed of two entities: the
nodes in the VSN (based on the Raspberry Pi in our practical
realization) and the central server. Figure 2 shows an overview
of the components comprised by these entities and how they
are connected. The main purpose of the central server is
visualizing the processed information that is sent by the VSN.
A screenshot of that visualization is shown in Figure 3. Figure
4 shows a picture of the physical setup.

The most important component in a node is the Barcode
Tracker. The internal structure of that component is shown in
Figure 5. The arrows indicate the direction in which infor-
mation is sent between the different modules of the barcode
tracker. The type of arrow indicates the type of data that is sent
(dashed: frame data; full-line: barcode data). The numbers next
to the arrows indicate the order in which the data is sent.

The first step is to capture a frame from the camera and
to send that frame to the Tracker (arrow 1). The Tracker then
creates Track and Search threads depending on the number
of tracked barcodes and pending search requests (arrow 2).
These threads execute the previously explained track and
search algorithms. When these threads finish executing, they
send the processed information back to the Tracker (arrow
3). The tracker then processes that information to see if there
are outgoing barcodes. If so, the information is sent to the
Search Manager (arrow 4) which wakes up the node that is
likely to see the outgoing barcode. Next, the Tracker sends
the frame data together with the processed information for that
frame to the RTPStreamer (arrow 5). That data is then sent to
the central server for further processing (visualization). The
data from the different nodes is synchronized by the central
server using timestamps. The system clocks of all nodes are
synchronized with the system clock of the central server so
that the maximum difference between any two nodes is 2ms.

Fig. 2. Diagram showing the components in a node and in the central server.

Fig. 3. Visualization of the processed information (server side).

Fig. 4. Physical setup with cameras facing vertically downwards at a height
of approximately 2.5m.

Implementing the proposed system on a low-power VSN
has many challenges. The first and biggest challenge is to
design the system in such a way that it is efficient, scalable
and also flexible. The second challenge is the difficulty of
testing and debugging such a system. The problem originates
from the fact that it is impossible to store the captured frames
while the tracker is running, as that would require an additional
compression step. That means that there is no way of executing
the tracker on exactly the same input. Using a static scene
is not a solution either since the camera also captures noise.
The only method for repeating results involves capturing and
storing frames when the tracker is not running, and then using
those frames as input for the tracker. Unfortunately, those



Fig. 5. Diagram showing the internal structure of the barcode tracker.

frames have to be compressed due to the limited size and write
speed of the SD-cards on the nodes. Compression artefacts
could influence the accuracy or robustness of the tracker.

IV. EXPERIMENTAL RESULTS

The localization accuracy of the proposed system was eval-
uated. The accuracy was measured in real world coordinates
with respect to a self-defined origin point outside the camera’s
field of view. The test showed a maximum difference of 0.9 cm
between the measured and tracked positions. The area uniquely
covered by one camera is about 3m2 (total coverage is about
4m2).

Next, a mathematical model for the execution time of
the proposed tracking system was derived. Due to space
limitations, the model cannot be detailed here. That complexity
model was compared to a model for a non-distributed version
of the system corresponding to barcode tracking performed by
a network of independently operating cameras. The biggest
difference between the two is that the non-distributed tracker
has to search the entire frame whereas the distributed tracker
can search in small pre-defined areas, determined based on
information from neighboring nodes. A plot of both models
is shown in Figure 6. The yellow line represents the non-
distributed tracking model, the blue and red lines are the
upper and lower bounds respectively of the distributed tracking
model. Note that the models represent the execution time of a
single barcode tracker executed on a single thread.

To compare the two versions in terms of computational
efficiency, the gain of distributed relative to non-distributed
tracking is calculated. That gain is calculated at system level
and expressed in terms of the average number of barcodes per
tracker. [6] is a white paper about Kiva Systems. They report
values ranging from 0.0005 robots/m2 to 0.065 robots/m2,
meaning that the proposed system could expect to see between
0.0015 and 0.195 robots per tracker. Figure 7 shows that the
system-wide gain for these realistic figures lies somewhere
between 40x and 270x.

V. CONCLUSIONS

This work proposes a distributed visual processing system
to identify and track multiple barcodes in real time. Experi-

Fig. 6. Plot of the estimated execution time for the proposed and independent
camera tracking systems.

Fig. 7. Plot of the estimated system-wide gain by using the proposed
distributed tracking system over an independent camera tracking system.

ments have shown that the system has a high accuracy, of less
than 1 cm for an area of 3m2. The proposed system is also
much less complex than a non-distributed equivalent system,
with complexity gains between 40x and 270x. The proposed
system was practically realized on low-power hardware, which
allows for saving power, installation and maintenance costs.
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