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A B S T R A C T

The respiratory muscle fatigue seems to be able to limit exercise performance and may influence the determi-
nation of maximal oxygen uptake (V̇O2max) or maximum aerobic work rate during maximal incremental test. The
aim of this study was therefore to investigate whether maximal incremental exercise decreases respiratory
muscle strength. We hypothesized that respiratory muscle strength (maximal pressure) will decrease after
maximal incremental exercise to exhaustion. 36 runners and 23 cyclists completed a maximal incremental test
on a treadmill or a cycle ergometer with continuous monitoring of expired gases. Maximal inspiratory (MIP) and
expiratory (MEP) pressure measurements were taken at rest and post- exercise. At rest, the MIP and MEP were
140 ± 25 and 172 ± 27 in runners vs. 115 ± 26 and 146 ± 33 in cyclists (p < 0.05 between groups, re-
spectively). The rest values of MIP and MEP were correlated to the V̇O2peak in all athletes, r = 0.34, p < 0.01
and r = 0.36, p < 0.01, respectively. At exhaustion, the MIP and MEP decreased significantly post- test by
13 ± 7% and 13 ± 5% in runners vs. 17 ± 11% and 15 ± 10% in cyclists (p > 0.05), respectively. Our
results suggest that respiratory muscle strength is decreased following maximal incremental exercise in trained
runners and cyclists.

1. Introduction

Respiratory muscle fatigue can be defined as a loss in the capacity
for developing force and/or velocity resulting from muscle activity
under load which reverses by rest (“ATS/ERS” 2002). The development
of such fatigue is well documented not only in pathological patients
(Hardiman, 2011; Klimathianaki et al., 2011) but also in trained sub-
jects during high exercise intensities (Romer et al., 2006). In this con-
text, several studies found a significant respiratory muscle fatigue in
healthy subjects (Janssens et al., 2013) performing in a range of sports
including running (Loke et al., 1982; Ross et al., 2008), cycling (Romer
et al., 2006), swimming (Jakovljevic and McConnell, 2009; Lomax and
Castle, 2011) and triathlon (Hill et al., 1991). In this context, it has
been shown that respiratory muscle fatigue can cause a sympathetically
mediated vasoconstriction at the locomotor muscles by means of the
respiratory muscle metaboreflex. This metaboreflex comprises limb
blood flow and thus O2 delivery in favor of the respiratory muscles
(Borghi-Silva et al., 2008; Dominelli et al., 2017), which might

stimulate the development of locomotor muscle fatigue (Derchak et al.,
2002; Shadgan et al., 2011; Vogiatzis et al., 2009), and thus limit ex-
ercise tolerance. The observation that respiratory muscle training can
enhance time to exhaustion during constant load exercise> 80%
VO2max (Bailey et al., 2010), supports the notion that respiratory muscle
function should be considered as a possible determinant of exercise
performance.

Although in laboratory conditions, the observation of respiratory
muscle fatigue is well established during constant-load exercise
(Gonzales and Williams, 2010; Kabitz et al., 2008; Oueslati et al.,
2017), the occurrence of this potentially exercise-limiting phenomenon
during maximal incremental exercise testing is unclear. Sugiura et al.
(2013) and Segizbaeva et al. (2013), assessing maximal inspiratory and
expiratory pressures, could not support the occurrence of respiratory
muscle fatigue, although in this latter study electromyographic activity
of the sternocleidomastoid and scalene muscles was reduced. Also
Romer et al. (2007) observed that unloading of the respiratory muscles
had no impact on incremental exercise duration, suggesting that the
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duration of heavy intensity cycling is too restricted to induce the re-
spiratory muscle metaboreflex. However, in contrast to the above stu-
dies, we recently found reduced maximal inspiratory and expiratory
pressures following maximal incremental exercise testing in highly
trained cyclists (Oueslati et al., 2016; Oueslati et al., 2017), suggesting
the presence of respiratory muscle fatigue. Additionally, given that the
lungs and airways are less prone to structural and functional adapta-
tions compared to the cardiovascular and muscle system, it has been
reported that exercise-induced arterial hypoxemia occurs in some en-
durance trained athletes. This exercise-induced arterial hypoxemia can
affect arterial O2 content and might limit locomotor muscle O2 delivery
as well. Therefore, it is currently unclear whether a respiratory system
limitation might be able to limit exercise performance during maximal
incremental exercise by reducing locomotor muscle O2 delivery and
consequently could influence the determination of maximal oxygen
uptake (V̇O2max) or maximum aerobic work rate, especially, when the
V̇O2 does not develop a V̇O2 plateau (Poole and Jones, 2017).

Additionally, it should be noted that the impact of the respiratory
system might differ between exercise test modalities, and more speci-
fically between cycling and running. In this context, Hue et al. (2000).
(2000) reported a higher respiratory rate (57 ± 11 breath min−1) and
a lower tidal volume (2.60 ± 0.41 L) during incremental running
compared to cycling exercise (respiratory rate, 48 ± 7 breath min−1

and tidal volume, 3.00 ± 0.55 L) for the same subject. However, Gavin
and Stager (1999) observed a greater minute ventilation and ventilator
equivalents as well as respiratory exchange ratios during maximal cy-
cling compared to running exercise in healthy men. Recently, Tanner
et al. (2014) stated that ventilator patterns differ between maximal
running and cycling, by recording the tidal flow-volume loops during
the exercise. It seems plausible that the changes in the ventilatory
patterns due to the exercise modalities could affect the occurrence of a
decrease in respiratory muscle strength.

Therefore, the purpose of the present study is twofold: First, we
wanted to investigate whether respiratory muscle fatigue, assessed from
maximal inspiratory and expiratory pressures, would occur during in-
cremental ramp exercise in trained subjects. Second, we wanted to as-
sess whether the influence of the respiratory system on exercise toler-
ance to maximal incremental tests would differ between cycling and
running. We hypothesized that respiratory muscle pressure will de-
crease post maximal incremental exercise in runners and cyclists, with
no difference between the test modalities.

2. Methods

To verify our hypothesis, participants visited the laboratory on two
occasions. During the first visit, dynamic pulmonary function was as-
sessed and subjects were familiarized with the respiratory muscle
strength tests. During the second visit, cyclists and runners performed
either a maximal cycling or running test, respectively, followed by the
same respiratory muscle strength tests, from which the change in
maximal inspiratory and expiratory pressures (MIP and MEP, respec-
tively) from rest to post exercise test was assessed.

2.1. Subjects

59 trained men volunteered to participate in this study (thirty-six
runners and 23 cyclists) (Table. 1). They were involved in a minimum 6
sessions of aerobic training (running and cycling for runners and cy-
clists participant, respectively). All participants were non-smokers and
did not report heart and lung diseases, and had normal resting pul-
monary function, as assessed by spirometry tests. Prior to any data
collection, they were informed of the risks and benefits of the study and
then gave written informed consent to participate (from their parents
for minors). This study was approved by the Ethics Committee of UHC
Farhat-Hached Hospital and in accordance with the Declaration of
Helsinki (1964).

2.2. Procedures

2.2.1. Maximal incremental cycling test
After a 2-min resting period (sitting on the bike) followed by 5-min

warm-up at 60 W (pedaling rate 60–70 rpm), a maximal incremental
exercise (+30 W min−1 with fixed pedaling rate at ∼90 rpm, ± 5
rpm at exhaustion) was completed until exhaustion. The test was ter-
minated when the subjects could no longer maintain a pedaling
rate> 60 rpm despite strong verbal encouragement.

2.2.2. Maximal incremental running test
The test was performed on a motorized treadmill (Johnson fitness

T8000, USA) for the runners’ participants. After a 3 min warm-up at
8 km h−1, the exercise began at an initial speed of 10 km h−1 and then
the speed was increased by 1 km h−1 every two minutes until exhaus-
tion despite strong verbal encouragement.

2.2.3. Pulmonary function procedure
Spirometry test was performed with the participant in the sitting

position while breathing room air, with the nose being occluded by a
clip to assess the slow vital capacity (VC), forced vital capacity (FVC),
forced expiratory volume in 1 s (FEV1) and maximum voluntary ven-
tilation over 12 s (MVV). A breathing tube was inserted into the sub-
ject’s mouth with the lips sealed around the mouthpiece. All testing was
completed using a calibrated computerized spirometer Spirolab III
(Medical International Research, Rome, Italy) by the same technician.
The subjects were familiarized with the device and the procedure for
each test demonstrated by the technician. The flow and volume mea-
surement sensor is a digital turbine, based on the infrared interruption
principal. This principal ensures the accuracy and the reproducibility of
the measurements without requiring a periodic calibration. For an ac-
curate and reliable calibration, the syringe volume used was 3 L. Each
subject performed tests five times. Respiratory maneuvers were per-
formed in accordance with the standards established by (Miller et al.,
2005).

2.2.4. Respiratory muscle strength
Maximal inspiratory (MIP) and expiratory pressures (MEP) were

measured before and after the maximal incremental test (∼2 min and
at rest’s minute ventilation) in order to evaluate exercise-induced
changes in the respiratory muscle strength. MIP and MEP were assessed
with portable manometer (MicroRPM, MicroMedical Ltd, Kent, UK)
according to published guidelines (Evans and Whitelaw, 2009). All
measurements were made while the participant sat with their nose
occluded. Briefly, each participant was instructed to exhale to residual
volume and then to inhale to total lung capacity (pressure sustained for
at least 1.5 s) when assessing MIP and MEP, respectively. The maneuver
was repeated five times (coefficient of variation less than 5%) and
maximum values were retained for final analysis.

Table 1
Participants’ characteristics.

Runners Cyclists

Subjects, No 36 23
Age, years 23 ± 3 16 ± 2*

Body mass, kg 73 ± 8 63 ± 10*

Height, cm 177 ± 5 174 ± 7
VC, l 5 ± 0.5 5 ± 0.6
FVC, l 5.6 ± 0.6 5.6 ± 0.8
FEV1, l 4.4 ± 0.3 4.6 ± 0.5
MVV, l.min−1 184 ± 23 166 ± 16*

VC, vital capacity; FVC, forced vital capacity; FEV1, forced expiratory volume second;
MVV, maximum voluntary ventilation. Data are expressed as mean ± SD.

* p < 0.05 between groups.
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2.3. Measurements

2.3.1. Cardiopulmonary responses
Expired gases were collected by a mask enclosing both the mouth

and nose and recorded by a breath by breath portable analyzer (Cosmed
K4b2, Rome, Italy) for calculation of V̇O2, ventilation (V̇E), carbon di-
oxide production (V̇CO2), tidal volume and respiratory rate. The gas
analyzer and the pneumotachograph were calibrated prior to each test
following manufacturer’s recommendations using a reference gas mix-
ture (16% O2 and 5% CO2) and a 3 L syringe (Cosmed, Rome, Italy),
respectively. HR was measured with a chest strap polar device (RS300,
Polar Electro, Kempele, Finland) and expressed as a percentage of
theoretical HR (=210-0.65* age).

The obtained breath-by-breath values were averaged into 30 s in-
tervals and these values were used for further analysis. Attainment of
maximum oxygen uptake (V̇O2peak), defined as the highest averaged
value of V̇O2 over 30 s was determined and used to assess the corre-
sponding velocity (vV̇O2p) and power output (pV̇O2p). Then the V̇O2peak

values were expressed in percentage of predicted V̇O2max established
from the equation of Larsen et al. (2002) for runners and Jones et al.
(1985) for cyclists. The V̇E values were calculated at rest and at 20, 40,
60, 80 and 100% (average values over 30 s) of the test duration for each
subject.

2.4. Statistical analyses

Descriptive statistics (mean ± SD) were calculated for all vari-
ables. The data was processed using SigmaPlot (version 11, Systat
software, Germany). Assumptions of normality were analyzed by the
Kolmogrov-Smirnov test. The differences between MIP and MEP pre-
and post- exercise were analyzed using the Paired t-test. The differences
in values between runners and cyclists group were assessed using the
Mann-Whitney Rank Sum test. The differences in the V̇E between
groups during were tested with the ANOVA of Fried-man test. The re-
lationships between selected parameters were investigated by Pearson
correlation coefficients. The threshold for statistical significance was set
at p < 0.05

3. Results

3.1. Cardiopulmonary responses

The data collected from both running and cycling incremental tests
are presented in Table. 2. The running and cycling tests lasted
1135 ± 201 s and 508 ± 84 s (p < 0.05), respectively. Runners
sustained a V̇E > 100 L min−1 for 522 ± 184 s while cyclists main-
tained a V̇E > 100 L min−1 for 142 ± 53 s, (p < 0.05). The V̇O2peak

was only correlated with the MVV (r = 0.44, p = 0.001) but not with
the VC (r = 0.27, p = 0.06), FEV (r = 0.14, p = 0.34), FVC (r = 0.27,

p = 0.57). The V̇E increased significantly and was higher in runners
compared to cyclists from 20 to 80% of time to exhaustion (Fig. 1).

3.2. Respiratory muscle strength

The V̇O2peak was correlated to the MIP and MEP at rest, r = 0.34,
p < 0.01 and r = 0.36, p < 0.01 (Fig. 2), and post the exercise,
r = 0.32, p < 0.01 and r = 0.36, p < 0.01, respectively. However, a
lack of a significant correlation was observed between the decrease of
MIP and MEP and the V̇O2peak. The MIP values were only correlated to
the body mass (r = 0.46, p < 0.001) (Fig. 3). The MIP and MEP prior
to the maximal incremental exercise were respectively higher
(p < 0.05) in runners compared to cyclists (Table. 2). A lack of dif-
ference in MIP of rest between groups was observed when MIP was
corrected by body mass (Runners: 1.9 ± 0.31 vs. Cyclists:
1.84 ± 0.57, p > 0.05). The MIP and MEP decreased significantly
after the maximal incremental exercise by 13 ± 7% and 13 ± 5% in
runners, vs. 17 ± 11% and 15 ± 10% in cyclists, respectively
(p > 0.05) (Table 3).

4. Discussion

The aim of this study was to assess respiratory muscle strength pre-
and post- maximal incremental exercise in trained runners and cyclists.
In line with our hypothesis it was observed that a maximal incremental
exercise test induced a decrease in maximal inspiratory and expiratory
pressure. Additionally, it was found that the decrease in MIP and MEP
did not differ between cyclists and runners.

Muscle fatigue can be defined as a loss in the capacity for devel-
oping force and/or velocity resulting from muscle activity under load
which reverses by rest (ATS/ERS, 2002). Respiratory muscle fatigue can
be detected invasively using phrenic nerve stimulation (magnitic or
electrical) to measure transdiaphragmatic pressure, oesphageal pres-
sure or gastric pressure (Guleria et al., 2002; Kabitz et al., 2008; Laghi
et al., 1998; Tomczak et al., 2011), or non-invasively by assessing
mouth pressure (Brown and Kilding, 2011; Hill et al., 1991; Loke et al.,
1982; McConnell and Lomax, 2006; Perret et al., 1999; Ross et al.,
2008) (see Janssens et al. (2013)). In the present study, maximal in-
spiratory and expiratory pressures were assessed non-invasively to de-
termine exercise-induced alterations in respiratory muscles strength at
exhaustion.

It is clear that the present results confirm that respiratory muscle
strength decreases significantly after maximal incremental exercise.

Table 2
Cardiorespiratory values at the end of the maximal incremental test.

Runners Cyclists

V̇O2peak, ml kg−1 min−1 55 ± 6 51 ± 8
V̇O2peak, %predicted 120 ± 18 95 ± 14
V̇Epeak, l min−1 141 ± 16 132 ± 25
V̇Epeak/MVV, % 78 ± 10 78 ± 11
HRpeak, 187 ± 5 195 ± 4
HRpeak, %theoretical 95 97
RER 1.2 ± 0.1 1.1 ± 0.1
vV̇O2p,km h−1 17 ± 1.7 –
pV̇O2p, W – 314 ± 42

V̇O2peak, peak of oxygen uptake; V̇Epeak, peak of minute ventilation; MVV, maximum
voluntary ventilation; HR, heart rate; RER, respiratory exchange rate; vV̇O2p, velocity at
V̇O2peak; pV̇O2p, power output at V̇O2peak.

Fig. 1. Minute ventilation in runners and cyclists during the maximal ramp exercises. *,
p < 0.05 between groups.
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However, it is less obvious to conclude that the decline in respiratory
muscle strength corresponded to the occurrence respiratory muscle
fatigue. Janssens et al. (2013) have demonstrated in a systemic review
that the decrease in respiratory muscle function was wide-ranging be-
tween studies from 5 to 67%. Generally, the significant decrease from
pre- exercise values was sufficient to define respiratory muscle fatigue
(Lomax and Castle, 2011; Lomax and McConnell, 2003). Sometimes, a
critical threshold of 10% (Luo et al., 2001; Mador et al., 1996) and 15%
(Mador et al., 2002) for the decrease in respiratory muscle strength
were used to conclude respiratory muscle fatigue. In general the 13%
reduction in MIP and MEP might be indicative for a decrease in re-
spiratory muscle function as a result of peripheral respiratory muscle
fatigue per se and/or decrease in central command.

Given that we found a weak but significant relationship between
MIP/MEP at rest and VO2peak (MIP: r = 0.34, p < 0.01 and MEP:
r = 0.36, p < 0.01), it appears that respiratory muscle function might
be a limiting factor in the performance of an individual during maximal
incremental testing. It is well known that ventilation strongly (from
∼6 L min−1 to 150–200 L min−1 in trained athletes) increases during
incremental exercise to meet the increasing metabolic demand (Aaron

et al., 1992). The hyperpnoea accompanying rhythmic exercise of in-
creasing intensity is driven by strong feedforward central command
influences in combination with feedback contributions originating from
the carotid chemoreceptors, respiratory muscle metaboreceptors and
locomotor muscle group III–IV afferents (Dempsey, 2012). In this way,
minute ventilation shows two distinct disproportionate increases (i.e.,
the first and second ventilatory thresholds), not related to the increase
in metabolic demand per se, which also result in additional recruitment
of respiratory muscles (Segizbaeva et al., 2013). This exercise hy-
perpnoea accounts for 8–12% of VO2peak values, with values of> 15%
in trained individuals (Aaron et al., 1992; Vogiatzis et al., 2008). In this
context it has been shown that the oxygenation level of the respiratory
muscles starts to decrease disproportionally in close correspondence
with the second ventilatory threshold (Legrand et al., 2007). If the in-
creased respiratory muscle recruitment is sustained for several minutes
it can induce respiratory muscle fatigue (Babcock et al., 1998; Johnson
et al., 1993). It is well documented that respiratory muscle fatigue
occurs during heavy exercise (> 80% VO2max) sustained for 8–10 min
(Oueslati et al., 2017; Smith et al., 2014), but also during high exercise
intensity of shorter duration (Ohya et al., 2015). In this context, this is
the first study to investigate the respiratory muscle fatigue (assessed
from MIP and MEP) occurrence non-invasively during a maximal in-
cremental exercise in a large population of trained cyclists (n = 23) and
runners (n = 36).

There are several possible mechanisms underpinning the limiting
effect of respiratory muscle function on exercise tolerance. First, it has
been shown that respiratory muscle fatigue can induce a respiratory

Fig. 2. (A) Maximal inspiratory pressure and (B) maximal expiratory pressure relation-
ships with the peak of oxygen uptake.

Fig. 3. Maximal inspiratory pressure and body mass relationships in runners and cyclists.

Table 3
Changes in maximal respiratory pressure after the maximal incremental test.

Runners Cyclists

Pre- Post- Pre- Post-

MIP, cm H2O 140 ± 25 120 ± 25* 115 ± 26‡ 103 ± 27‡,*

MEP, cm H2O 172 ± 27 148 ± 25* 146 ± 33‡ 125 ± 37‡,*

MIP, maximal inspiratory pressure; MEP, maximal expiratory pressure. Data are ex-
pressed as mean ± SD.

* p < 0.05 between pre- post- test.
‡ p < 0.05 between group.
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steal phenomenon, by which a sympathetically mediated vasocon-
striction limits blood flow and QO2 to the locomotor muscles in favor of
the respiratory muscles, i.e., the respiratory metaboreflex (Dominelli
et al., 2017; Smith et al., 2016, 2017; Vogiatzis et al., 2009). This
phenomenon might therefore, stimulate locomotor muscle fatigue and
limit exercise tolerance. It should be noted however, that Romer et al.
(2007) strongly question the occurrence of the respiratory metaboreflex
to incremental exercise since the duration of exercise test, and espe-
cially the part of the test at heavy intensities, is too limited to induce
respiratory muscle fatigue. In the present study the runners performed
∼9 min of exercise at a VE > 100 L min−1, whereas this was only
2–3 min in the cyclists. Surprisingly the decrease in MIP and MEP was
similar between the runners (13 ± 7% and 13 ± 5%) and cyclists
(17 ± 11% and 15 ± 10%) indicating the duration alone might only
partly explain the occurrence of respiratory muscle fatigue. It is possible
that the exercise modality, and more specifically body posture, might
induce a different recruitment pattern of the respiratory muscles be-
tween running and cycling. In this context, Hue et al. (2000) observed
that ventilator pattern, at exhaustion, was different between maximal
running (respiratory rate: 57 ± 11 breath min−1; tidal volume:
2.60 ± 0.41 L) and cycling (respiratory rate: 48 ± 7 breath min−1;
tidal volume: 3.00 ± 0.55 L). Additionally, Tanner et al. (2014) re-
ported greater end-expiratory (3.40 ± 0.54 vs. 3.21 ± 0.55 L) and
end-inspiratory (6.24 ± 0.88 vs. 5.90 ± 0.74 L) lung volumes during
maximal cycling compared to running test for the same participants.
Assuming that the subjects had a similar training program with an equal
intensity distribution, the findings is not surprising, and in line with the
study of Ohya et al. (2016), in which middle-distance runners
(142.7 cm H2O; 24.1 ± 3.2 years) had higher MIP values compared to
road cyclists (109 cm H2O; 20.8 ± 0.9 years). Interestingly, Ohya et al.
(2016) observed a correlation between MIP and body mass (r = 0.59,
p < 0.001). Similarly, a significant correlation was observed in the
present study between MIP and body mass (r = 0.46, p < 0.001). On
the other hand, the differences in anthropometric characteristics (i.e.,
the runners have a higher body weight) and age (the runners are old)
might also be responsible for the differences in MIP and MEP, and thus
hinder a valid comparison of MIP and MEP between the groups. In this
context, when the MIP was corrected by body mass, a lack of difference
in athlete’s MIP rest value between groups was observed.

Second, it is also possible that the decrease in MIP and MEP is re-
lated to a decrease in the central command to the respiratory and/or
locomotor muscles. It has been shown from measurements during in-
cremental exercise that brain oxygenation (i.e., at the site of the motor
cortex) starts to decrease at an intensity corresponding to the second
ventilatory threshold (Boone et al., 2016; Vandekerckhove et al., 2016).
At this point, the hyperventilatory response induced a reduction in
arterial CO2 pressure (i.e. hypocapnia) to minimize the disturbance of
the acid-base balance. Cerebral blood flow and thus QO2 to the brain
will be negatively affected by this hypocapnia which might in turn
reduce central command to the respiratory and/or locomotor muscles.
This can induce both a decrease in MIP and MEP following maximal
exercise as well as set a limitation to exercise tolerance in general by
reducing the motor command to the locomotor muscles. It should be
noted that, in this case, the exercise tolerance is not related to re-
spiratory muscle fatigue per se, but rather to the impact of hypocapnia
inducing hyperventilation.

A third possible mechanism by which respiratory muscle function
can affect exercise tolerance to maximal incremental ramp exercise, is
by an exercise-induced arterial hypoxemia. In some highly trained
subjects it has been shown that the transit time of the blood through the
capillaries surrounding the alveoli is too short to fully saturate the
blood (Constantini et al., 2017; Dominelli et al., 2014; Kyparos et al.,
2012). This will affect the O2 delivery to the respiratory and/or loco-
motor muscles and might in this way set a limitation to the maximal
effort of an incremental exercise test by enhance locomotor muscle
fatigue. Additionally, it can also stimulate respiratory muscle fatigue

and thus underpin the decrease in MIP and MEP following incremental
exercise. Again, it should be noted that this possible limitation to in-
cremental exercise is not driven by respiratory muscle fatigue per se,
although the limitation is strongly relation to the functioning of ven-
tilation.

Given the potential role of the respiratory muscle function as a
factor limiting exercise performance even during incremental exercise
tests, it can be argued that inspiratory muscle training might have
beneficial effects even during this type of exercise. It has been shown
that inspiratory muscle training can reduce the metabolic cost of hy-
perpnea during high intensity exercise and in this way delay respiratory
muscle fatigue (and the occurrence of the respiratory metaboreflex). As
such the blood flow to the locomotor muscles can be maintained, which
will have beneficial effects on exercise tolerance (Witt et al., 2007).
However, a systematic review of Illi et al. (Illi et al., 2012) showed that
exercise tolerance only increased during high intensity constant load
tests (> 80% VO2max) and time trials but not during incremental ex-
ercise tests. As suggested above, the duration of the high intensity ex-
ercise during incremental exercise could be too limited to induce re-
spiratory muscle fatigue (Romer et al., 2007). Taking the results of the
present study into account with a large variability in the decrease in
MIP and MEP, it seems possible that some but not all subjects could
benefit from inspiratory muscle training as it can be suggested that
respiratory muscle fatigue limited exercise tolerance only in some
subjects.

5. Conclusion

This study demonstrates that respiratory muscle strength decreases
after maximal incremental exercise in trained runners and cyclists.
Based on these findings, coaches and sports scientists would be wise to
prescribe specific inspiratory muscle training or warm-up in an effort to
improve respiratory muscle strength and thereby reduce the inevitable
respiratory muscle fatigue associated with maximal efforts running and
cycling.
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