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Abstract

This paper first substantiates an old claim. The transition from a
theory that turned out trivial to a consistent replacement need not pro-
ceed in terms of inconsistencies, which are negation gluts. Logics that
tolerate gluts or gaps (or both) with respect to any logical symbol may
serve as the lower limit for adaptive logics that assign a minimally abnor-
mal consequence set to a given premise set. The same obtains for logics
that tolerate a combination of kinds of gluts and gaps. This result runs
counter to the obsession with inconsistency that classical logicians and
paraconsistent logicians share.

All such basic logics will be systematically reviewed, some variants will
be outlined, and the claim will be argued for. While those logics tolerate
gluts and gaps with respect to logical symbols, ambiguity logic tolerates
ambiguities in non-logical symbols. Moreover, forms of tolerance may be
combined, with zero logic as an extreme.

In the baffling plethora of corrective adaptive logics (roads from trivial
theories to consistent replacements), adaptive zero logic turns out theo-
retically interesting as well as practically useful. On the one hand all
meaning becomes contingent, depending on the premise set. On the other
hand, precisely adaptive zero logic provides one with an excellent analyz-
ing instrument. For example it enables one to figure out which corrective
adaptive logics lead, for a specific trivial theory, to a suitable and inter-
esting minimally abnormal consequence set.

1 Introduction

Inconsistency-adaptive logics were devised for a specific purpose. Consider a
theory T = ⟨Γ,CL⟩, in which Γ is a set of non-logical axioms and CL is Classi-
cal Logic. From the fact that the second element of T is CL we know that the
theory is or was meant and believed to be consistent. Suppose, however, that
an inconsistency is derived from Γ, whence T is trivial. Suppose moreover that
T is an actual historical theory, that it was considered respectable in view of its
nice applications, and that the removal of the triviality is not obvious. In this
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case, one will want to reason from T in view of applications and also in order
to find a consistent alternative to T . What one will want to reason from—see
already [7]—is ‘T in its full richness, except for the pernicious consequences of
its inconsistency’. This entity will obviously be inconsistent, but it will be as
consistent as possible and hence not trivial.1 Inconsistency-adaptive logics offer
a minimally inconsistent ‘interpretation’ of theories in that they localize and iso-
late the inconsistencies within their consequence set. From this ‘interpretation’,
one will later try to remove the inconsistencies.

Already in [11] I wrote: “Classical logicians are obsessed by inconsistencies:
they take them as beyond the limit of coherent thinking and as the criterion
of all correct derivation (Γ ⊢ A iff Γ ∪ {A} is inconsistent). Paraconsistent
logicians are equally obsessed by inconsistencies: as far as extensional [logical
symbols] is concerned, removing the consistency requirement from CL is seen
as the main aim.” Whenever a theory turns out to have no CL-models, both
kinds of logicians analyse the situation as follows: for some formula A, the
theory requires that both A and ¬A are true.

This analysis, which classical logicians and paraconsistent logicians agree
upon, is mistaken because very different approaches are possible. This is a first
reason to read this paper. I shall show in Section 3 that many premise sets
that have no CL-models have not only paraconsistent models but other models
as well. Paraconsistent models leave room for inconsistencies, which may be
considered as negation gluts—a precise definition follows in Section 3. Other
non-classical models leave room for negation gaps, or for other kinds of gluts or
gaps.

Rephrased in terms of logics, there are logics that are exactly like CL, except
in that they leave room for gluts or gaps (or both) with respect to a logical
symbol. Moreover, every combination of (zero or more) kinds of gluts and (zero
or more) kinds of gaps characterizes a similar logic. I mean this literally. Even
the combination of all kinds of gluts and gaps defines a logic, which will be
called CLo. It is a terrifyingly weak logic, but nevertheless a logic. Each logic
that leaves room for gluts or gaps, however weak the logic be, may function
as the lower limit logic of an adaptive logic. Each such adaptive logic offers
a minimally abnormal interpretation for some premise sets. For people not
familiar with adaptive logics: the lower limit logic leaves room for certain kinds
of abnormalities and the adaptive logic (set theoretically) minimizes the number
abnormalities that are considered as true.

Apart from all this, each of these adaptive logics has a number of variants
and some of them may be combined along different combination schemata.

The adaptive logic CLom is interesting for theoretical reasons and this is a
second reason to read this paper. Although no logical symbol has any meaning in
the lower limit logic CLo, CLom delivers a minimally abnormal interpretation
of a premise set—of each premise set actually. So this means that meaning of
all logical symbols is contingent in CLom . To be more precise, the meaning
of the logical symbols depends on the premise set, on the sentences that make
it up—the precise meaning of the sentences becomes known by applying the
adaptive logic.

While CLo assigns no meaning to any logical symbol, it leaves the non-
logical symbols unaffected. Not all logics, however, do so. An example is am-

1If even this entity were trivial, T cannot have been meant as consistent.
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biguity logic, which will be presented in Section 5. According to ambiguity
logic different occurrences of the same non-logical symbol may have different
meanings. Again, adaptive ambiguity logic minimizes ambiguities.

This leads to the fascinating adaptive zero logic, CL∅m, which is a third
reason to read this paper. The lower limit logic leaves room for all considered
abnormalities: all kinds of gluts and gaps and non-logical symbols of which the
different occurrences have different meanings. According to the lower limit logic,
no formula is derivable from any premise set—not even the premises themselves.
Adaptive zero logic minimizes the abnormalities. The relation with a formal
hermeneutics is striking.

For all adaptive logics mentioned so far, the following holds. If a premise
set Γ has CL-models, which comes to saying that it is consistent, then the
adaptive logics assigns to Γ exactly the same consequence set as CL. The
fascinating part, however, concerns the case where Γ has no CL-models. When
that obtains, the considered adaptive logics fall into two categories with respect
to a given Γ. Adaptive logics of the first (possibly empty) category assign the
trivial consequence set to Γ, just as CL does. These logics are not suitable
for application to Γ (in view of the aim described in the first paragraph of this
section). The logics in the second category assign to Γ a non-trivial consequence
set. These sets are minimally abnormal ‘interpretations’ of Γ and are, for nearly
every Γ, different from each other.

When this situation first became known, it was felt to cause a puzzle: How
could one possibly justify the choice for one or a few adaptive logics from this
plethora? There may be extra-logical reasons to opt for one or more abnormal-
ities. Also, adaptive logics that assign the trivial consequence set to Γ are not
suitable for Γ. Yet, for most Γ a large number of adaptive logics will not be ruled
out by these considerations. A related puzzle is that CL∅m may be theoretically
interesting but seems rather pointless from a practical point of view. Indeed,
to most premise sets, CL∅m assigns only a few adaptive consequences, most of
them disjuncts, sometimes very long disjuncts. So CL∅m assigns in a sense a
minimally abnormal ‘interpretation’ to premise sets, but this interpretation is
mostly a very weak one—the example proof from Γ1 in Section 4 illustrates this.

These two puzzles were solved and that is a fourth reason to continue read-
ing. We shall see that CL∅m offers an analysis that provides an overview of
the consequences that are delivered by the different adaptive logics considered
in this paper. Such an overview is obviously extremely useful, were it only be-
cause it informs us what we are choosing from. Moreover, CL∅m serves other
purposes as well. (i) In a sense, which will be specified below, it informs one
about the consequences of the different choices. Some choices require only one
kind of abnormalities ( ambiguities or a kind of gluts or a kind of gaps); on
some choices the set of ambiguities is numerically or set theoretically smaller
than on others; some choices involve a stronger consequence set than others;
some choices cause certain key formulas (selected by extra-logical preferences)
to belong to the consequence set; and so on. (ii) CL∅m is also the ideal environ-
ment for conjectures. The advantage of conjectures is that they are introduced
in a defeasible way—conjectures cannot cause triviality—and with a certain
priority—some conjectures have precedence over others. In principle a conjec-
ture concerns a single abnormality. However, one may introduce an infinity of
conjectures of the same logical form, viz. the form of a specific abnormality.
Proceeding thus one obtains the same effect as by opting for a richer adaptive
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logic, except that the latter option may result in triviality while conjectures
don’t, irrespective of their number.

A fifth reason for reading this paper concerns a side effect. The paper implic-
itly presents a method to turn indeterministic semantic systems into determin-
istic ones in such a way that the two semantic systems are strongly equivalent
(validate the same inferences). The idea was first applied in [9], but the many
applications in the present paper will readily reveal the underlying method.

Making this paper self-contained from a technical point of view would require
too many pages. For this reason, I shall make the paper self-contained in infor-
mal terms. This will suit most readers because they will understand the paper
without wading through all the technicalities. Those who want to understand
the latter are referred to [15] or to the survey section of one of the recent papers
on adaptive logics, for example [16, 17, 18, 19, 22, 23, 24]. An aim of adaptive
logicians is to characterize all defeasible reasoning by an adaptive logic, possi-
bly under a translation. All logics in the present paper are corrective—roughly:
weaker then CL—while other adaptive logics are ampliative.

2 Some Preliminaries

Let Ls be the language schema of CL. Let LS be obtained from Ls by adding, for
every logical symbol, a ‘checked’ variant: ¬̌, ∨̌, . . . , ∃̌, =̌. The checked symbols
occur in all considered logics and the logics are defined in such a way that a
checked symbol has always the meaning that the standard symbol has in CL.
From now on the checked symbols will be called classical symbols. Premise sets
and conclusions will always be formulas of Ls, but the classical symbols will very
often facilitate technicalities. A simplistic illustration is that, however defective
the standard symbols that occur in A and B, a model that verifies A ∧̌ ¬̌B
verifies A and falsifies B.

When describing semantic systems (and only there) I shall use pseudo-
languages LO—giving them all the same name is harmless for present purposes.
A model M = ⟨D, v⟩, in which D is a set (the domain), will be described in terms
of the language LO which is just like LS except that it also has a set of pseudo-
constants which has the same cardinality as D. I write “pseudo-constants” and
“pseudo-language” because their set of pseudo-constants may be uncountable
whereas the symbols of a language are required to be denumerable. Describing
an uncountable model in terms of a pseudo-language is not worse than any other
description; the description needs anyway to quantify over the members of the
uncountable domain.

The sets of the open and closed formulas of the three languages will be called
Fs, FS , and FO. The sets of the closed formulas of the three languages will be
called Ws, WS , and WO.2

For future reference I list an axiom system and a semantics for CL in a style
that will be most useful in Section 3. The expressions Γ ⊢CL A and ⊢CL A are
defined as usual for Ls.

A⊃1 A ⊃ (B ⊃ A)
A⊃2 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

2To avoid complications, well-formedness is defined in such a way that no classical symbol
occurs within the scope of a standard symbol.
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A⊃3 ((A ⊃ B) ⊃ A) ⊃ A
A∧1 (A ∧B) ⊃ A
A∧2 (A ∧B) ⊃ B
A∧3 A ⊃ (B ⊃ (A ∧B))
A∨1 A ⊃ (A ∨B)
A∨2 B ⊃ (A ∨B)
A∨3 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
A≡1 (A ≡ B) ⊃ (A ⊃ B)
A≡2 (A ≡ B) ⊃ (B ⊃ A)
A≡3 (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B))
A¬1 (A ⊃ ¬A) ⊃ ¬A
A¬2 A ⊃ (¬A ⊃ B)
A∀ ∀αA(α) ⊃ A(β)
A∃ A(β) ⊃ ∃αA(α)
A=1 α = α
A=2 α = β ⊃ (A(α) ⊃ A(β))
MP From A and A ⊃ B to derive B
R∀ To derive ⊢ A ⊃ ∀αB(α) from ⊢ A ⊃ B(β), provided β does not occur

in either A or B(α).
R∃ To derive ⊢ ∃αA(α) ⊃ B from ⊢ A(β) ⊃ B, provided β does not occur

in either A(α) or B.

The semantics proceeds in terms of LO. The assignment maps the members
of WO (rather than sentential letters only) on {0, 1}—this has only an effect
for the semantic systems in Section 3. Where M = ⟨D, v⟩ is a model, the
assignment function v is defined by:3

C1 v:WO → {0, 1}
C2 v: C ∪ O → D (where D = {v(α) | α ∈ C ∪ O})
C3 v:Pr → ℘(Dr)

The valuation function vM :WO → {0, 1} determined by M is defined by:

CS where A ∈ S, vM (A) = 1 iff v(A) = 1
CPr vM (πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr)
C= vM (α = β) = 1 iff v(α) = v(β)
C¬ vM (¬A) = 1 iff vM (A) = 0
C⊃ vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1
C∧ vM (A ∧B) = 1 iff vM (A) = 1 and vM (B) = 1
C∨ vM (A ∨B) = 1 iff vM (A) = 1 or vM (B) = 1
C≡ vM (A ≡ B) = 1 iff vM (A) = vM (B)
C∀ vM (∀αA(α)) = 1 iff {vM (A(β)) | β ∈ C ∪ O} = {1}
C∃ vM (∃αA(α)) = 1 iff 1 ∈ {vM (A(β)) | β ∈ C ∪ O}

M  A (M verifies A) iff vM (A) = 1. The expressions Γ �CL A and �CL A
are defined as usual for Ws.

An adaptive logic, AL, in standard format is a triple:

1. A lower limit logic LLL: roughly a compact Tarski logic that has a char-
acteristic semantics and contains CL (in terms of the classical logical
symbols).

3By the restriction in C2, ⟨D, v⟩ is only a CL-model if D = {v(α) | α ∈ C ∪ O}. In C3,
℘(Dr) is the power set of the r-th Cartesian product of D.
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2. A set of abnormalities Ω : a set of LLL-contingent formulas, characterized
by a (possibly restricted) logical form F; or a union of such sets.4

3. An adaptive strategy : Reliability or Minimal Abnormality.

The lower limit logic delineates the non-defeasible part of the adaptive logic;
what follows from the premises by LLL will never be revoked. Abnormalities
are supposed to be false, ‘unless and until proven otherwise’. Strategies are ways
to cope with derivable Dab-formulas (classical disjunctions of abnormalities). I
shall only consider Minimal Abnormality in this paper. The upper limit logic
ULL (in the present paper always CL) is obtained by extending LLL with an
axiom that declares all abnormalities false (i.e. engender triviality).

In expressions like Dab(∆), ∆ is always a finite subset of Ω and Dab(∆) is the
classical disjunction of the members of ∆. If Dab(∆) is a Dab-consequence of Γ,
it is minimal iff Γ 0LLL Dab(∆′) for any ∆′ ⊂ ∆. Where Dab(∆1), Dab(∆2), . . .
are the minimal Dab-consequences of Γ, Φ(Γ) is the set of minimal choice sets
of Σ = {∆1,∆2, . . .}—every choice set contains an element of each ∆i.

The lines of an annotated AL-proof have four elements: a line number, a
formula, a justification (at most referring to preceding lines) and a condition.
Where

A ∆

abbreviates that A occurs in the proof as the formula of a line that has ∆ as its
condition, the (generic) inference rules are:

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An ⊢LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An ⊢LLL B ∨̌Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

Every application of a rule brings a proof to its next stage. While the
rules are determined by the lower limit logic and the set of abnormalities, the
strategy determines which lines are marked at a stage. The formula of a line
that is marked at stage s is considered as not derived at s.

Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas that occur in
stage s of a proof from Γ, Φs(Γ) is the set of minimal choice sets of {∆1, . . . ,∆n}.
Where A is derived on the condition ∆ at line l, line l is unmarked at stage s
iff (i) there is a φ ∈ Φs(Γ) for which φ ∩ ∆ = ∅ and (ii) for every φ ∈ Φs(Γ),
there is a line at which A is derived on a condition Θ for which φ ∩ Θ = ∅.

4That Ω is characterized by a logical form warrants that the adaptive logic is a formal logic.
Compare to the formula preferential systems from [5]. Incidentally, all formula preferential
systems were characterized by an adaptive logic under a translation, while the converse seems
impossible.
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A formula A is derived at stage s of a proof from Γ iff it is the formula of a
line that is unmarked at s. As marks may come and go, one also wants a stable
notion of derivability, which is called final derivability. A is finally derived from
Γ at line l of a stage s iff (i) A is the second element of l, (ii) l is unmarked at s,
and (iii) every extension of s in which l is marked may be further extended in
such a way that line l is unmarked.5 Γ ⊢AL A (A is finally AL-derivable from
Γ) iff A is finally derived on a line of a proof from Γ.

The (adequate) semantics for an adaptive logic (that has Minimal Abnormal-
ity as its strategy)6 is obtained as follows. A LLL-model M of Γ is minimally
abnormal iff no LLL-model of Γ verifies set-theoretically less abnormalities than
M . Where the adaptive logic ALm has Minimal Abnormality as its strategy,
Γ �ALm A iff A is verified by all minimally abnormal models of Γ.

3 Not Only Inconsistency-Adaptive Logics

The CL-clause for negation may be seen as consisting of the consistency re-
quirement

if vM (A) = 1 then vM (¬A) = 0

which rules out negation gluts—for some A, both A and ¬A are true—and the
(negation-)completeness requirement

if vM (A) = 0 then vM (¬A) = 1

which rules out negation gaps—for some A, both A and ¬A are false. Both
classical logicians and paraconsistent logicians concentrate only on negation
gluts. Classical logicians identify the triviality of a theory with the presence
of negation gluts, whereas paraconsistent logicians stress that some theories
display negation gluts without being trivial.

Consider the set {p,¬¬¬p}. According to the paraconsistent logic CLuN,
this set has three kinds of models: (i) those in which p, ¬p, and ¬¬¬p are true
and ¬¬p is false, (ii) those in which p, ¬¬p, and ¬¬¬p are true and ¬p is false,
and (iii) those in which p, ¬p, ¬¬p, and ¬¬¬p are all true. If, however, negation
gaps are logically possible, then there are models in which p and ¬¬¬p are true,
whereas ¬p and ¬¬p are false. Such models ‘explain’ the problem just as well as
the aforementioned CLuN-models. If the negation-completeness requirement
is dropped, then both ¬p and ¬¬p may be false, which allows p and ¬¬¬p to
be true.

The logic which is a ‘counterpart’ of CLuN but leaves room for negation
gaps rather than negation gluts will be called CLaN—it is just like CL except
that it tolerates gaps with respect to negation. Its indeterministic semantics is
obviously obtained by dropping the negation-completeness requirement from the
CL-semantics. Its deterministic semantics and axiomatization will be spelled
out below.

Consider a theory T that had CL as its underlying logic but turns out to
be trivial. Suppose moreover that T has CLaN-models and hence that one
may remove its triviality by replacing the underlying logic CL by CLaN. The

5See [17] for an attractive game-theoretic interpretation of this definition.
6Reliability has a simpler marking definition, but Minimal Abnormality seems more suit-

able for the rest of the paper.
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result, call it T ′, is a negation-incomplete theory. By the same reasoning as for
inconsistent theories, T ′ is too weak in comparison to what T was intended to
be. Indeed, CLaN invalidates all rules that depend on negation-completeness,
whereas a number of applications of those rules may very well be unproblematic
in view of the premises. So what we need this time is ‘T in its full richness,
except for the pernicious consequences of its negation-incompleteness’—compare
Section 1. In other words we want to interpret the negation-incomplete T ′ as
negation-complete as possible; we want to minimize the negation gaps. To do
so, we go adaptive.

Going adaptive requires, according to the standard format, a lower limit
logic, a set of abnormalities, and a strategy. The lower limit logic is obviously
CLaN and the strategy is Minimal Abnormality or Reliability. What is the
set of abnormalities? Clearly we want A ∨ ¬A to be true unless the premises
require it to be false. However, the set of abnormalities should comprise the
formulas that will be considered as false unless the premises require them to be
true. The presence of the classical logical symbols enables one to express this:
the abnormalities will be the formulas of the form ¬̌(A ∨ ¬A).

If we need to use classical logical symbols anyway, there is a more transparent
way to characterize the abnormalities. Consider a CLaN-model in which both
A and ¬A are false. Instead of saying that the model verifies ¬̌(A ∨ ¬A),
we may just as well say that it verifies ¬̌A ∧̌ ¬̌¬A. In CLaN, the standard
conjunction has the same meaning as the classical conjunction. To use the
classical conjunction in the present context will prove very handy in the sequel
of this section.

The formula ¬̌A ∧̌ ¬̌¬A nicely expresses what we mean by an abnormality
in the present context: A is false in the model and ¬A is also false in it. And
there is another suggestive reading: the model verifies ¬̌A but falsifies ¬A.
This clearly expresses a negation gap: the classical negation of A is verified but
the standard negation of A is not. So the standard negation displays a gap. Of
course, abnormalities have to be existentially closed for the predicative level. So
we define Ω = {∃̌(¬̌A ∧̌ ¬̌¬A) | A ∈ Fs}.

It is instructive to check what becomes of the CLuN-abnormalities if the
same transformation is applied to them. In earlier papers, the CLuN-abnormalities
were defined as Ω = {∃(A ∧ ¬A) | A ∈ Fs}. It is just as good to define them as
Ω = {∃̌(¬̌¬̌A ∧̌¬A) | A ∈ Fs}. The form of these abnormalities clearly indicates
a negation glut. Applied to models: the model falsifies the classical negation of
A but nevertheless verifies the standard negation.

Let me reassure the suspicious reader that one obtains the same logics
CLuNr and CLuNm if one defines Ω = {∃̌(¬̌¬̌A ∧̌¬A) | A ∈ Fs}. For example
whenever a model verifies ∃̌(¬̌¬̌A ∧̌¬A) for some A, it verifies ∃(A∧¬A) for the
same A; and vice versa. Whenever the first formula is derivable from a premise
set for an A, so is the second formula for that A; and vice versa. The original
formulation has the advantage that abnormalities are expressed in the standard
language. What is attractive about the reformulation, however, is that it gives
us a unified way to characterize negation gluts and negation gaps and that this
characterization is transparent. Moreover, this approach may be generalized to
all logical symbols.

Consider another example, the premise set {p, q,¬(p ∧ q)}. At first sight,
handling this sets seems to require a logic that leaves room for inconsistencies
(negation gluts). But consider a logic that rules out negation gaps but not
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conjunction gaps: if the classical conjunction of A and B is true, their standard
conjunction may nevertheless be false. So the abnormalities will have the form
∃̌((A ∧̌B) ∧̌ ¬̌(A ∧B)). Some such models verify p and q, and hence also p ∧̌ q,
but falsify p ∧ q, in which case they verify ¬̌(p ∧ q) as well as (as there are no
negation gaps) ¬(p ∧ q). In other words, the premise set {p, q,¬(p ∧ q)} does
not require paraconsistent models. It has just as well models in logics that leave
room for conjunction gaps, even in those that forbid all other gluts and gaps.

Some premise sets are even more amusing, for example {p, r,¬q∨¬r, (p∧r) ⊃
q}, which has no CL-models. It has models if one leaves room for negation gluts,
but also if one leaves room for conjunction gaps, or for disjunction gluts, or for
implication gluts. In general, for every gap or glut with respect to any logical
symbol, there are premise sets that have no CL-models but have models in the
logic that tolerates just such gluts or gaps.

I claimed that classical logicians and paraconsistent logicians are obsessed
by negation gluts. There is an easy historical explanation for this: all gluts and
gaps surface as inconsistencies if CL is applied to the premise set. Thus, if CL
is applied to {p,¬¬¬p}, one obtains the inconsistencies p∧¬p and ¬p∧¬¬p (as
well as all others of course). Similarly if CL is applied to {p, q,¬(p ∧ q)}. The
situation is the same for any other glut or gap: an inconsistency surfaces when
one applies CL.

That all gluts and gaps surface as inconsistencies makes it understandable
why there was and is ample interest in paraconsistent logics, but much less
in logics that display other kinds of gluts or gaps. Nevertheless, it seems to
me that it is a mistake to concentrate on consistency only. Remember that
the plot behind inconsistency-adaptive logics was to localize and isolate the
problems displayed by a theory or premise set and to do so in order to remove
those problems. Inconsistency-adaptive logics always identify disjunctions of
inconsistencies as the problems. Suppose one chooses a logic L that leaves room
for other kinds of gluts or gaps and that one applies an adaptive logic that has
L as its lower limit. Other formulas may then be identified as the problems
and often there is some choice, as in the case of {p, r,¬q ∨ ¬r, (p ∧ q) ⊃ q}.
Although Dab-formulas will be derivable for every choice, the Dab-formulas
will be different. So different problems have to be resolved if one wants to
regain consistency, whence different consistent alternatives are suggested. From
a purely logical point of view, it is sensible to consider all possibilities. Some
choices of gluts or gaps may cause less ‘problems’ than others or may cause
problems that are easier to solve. Moreover, there may be extra-logical reasons
to prefer certain consistent alternatives over others.

I shall now describe the basic logics that leave room for gluts or gaps in
comparison to CL. Combinations of different kinds of gluts or gaps will be
considered thereafter, but it is easier to mention the combination of gluts and
gaps of the same kind from the very beginning.

Let us devise the basic logics in a systematic way. All clauses of the CL-
semantics concern a ‘basic form’: schematic letters for sentences, primitive pred-
icative expressions, and the forms characterized by a metalinguistic formula that
contains precisely one logical symbol, identity included. Each of these clauses
may be split into two implicative clauses. For formulas A of the considered
basic form, one implicative clause states that vM (A) = 1 if a certain condition
obtains, the other that vM (A) = 0 if another condition obtains.

A logic L tolerates gluts with respect to a basic form A iff there are L-models
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M such that vM (A) = 1 for a formula A of the form A while other properties
of M are sufficient for vM (A) = 0 according to the CL-semantics. A logic L
tolerates glaps with respect to a basic form iff the same obtains with vM (A) = 1
and vM (A) = 0 exchanged.

Consider first gluts for a particular logical form A. Each of the logics de-
scribed below leaves room for a single kind of gluts and for no gaps. The
indeterministic semantics is obtained by removing from the CL-semantics the
implicative clause that has vM (A) = 0 as its implicatum. In order to illustrate
the naming scheme, I shall list all glut variants, including gluts for sentential
letters and for primitive predicative expressions.7 In view of what precedes, the
names of the logics are self-explanatory, except perhaps the use of “M” for ma-
terial implication—I need the “I” for identity—and the use of “X”, the second
letter of “existential”—I need the “E” for equivalence.

logic removed implicative clause
CLuS where A ∈ S, if v(A) = 0 then vM (A) = 0
CLuP if ⟨v(α1), . . . , v(αr)⟩ /∈ v(πr) then vM (πrα1 . . . αr) = 0
CLuI if v(α) ̸= v(β) then vM (α = β) = 0
CLuN if vM (A) = 1 then vM (¬A) = 0
CLuM if vM (A) = 1 and vM (B) = 0, then vM (A ⊃ B) = 0
CLuC if vM (A) = 0 or vM (B) = 0, then vM (A ∧B) = 0
CLuD if vM (A) = 0 and vM (B) = 0, then vM (A ∨B) = 0
CLuE if vM (A) ̸= vM (B), then vM (A ≡ B) = 0
CLuU if {vM (A(β)) | β ∈ C ∪ O} ≠ {1}, then vM (∀αA(α)) = 0
CLuX if 1 /∈ {vM (A(β)) | β ∈ C ∪ O}, then vM (∃αA(α)) = 0

Each of these logics has a deterministic semantics. In it, the logical term tol-
erating gluts is characterized by a clause of the form ”vM (A) = 1 iff [condition]”.
The condition is obtained from the CL-semantics by or-ing the condition of the
standard clause with the correct reference to the assignment value: “v(A) = 1”
for the right A. I again list all the logics.

logic replacing clause
CLuS where A ∈ S, vM (A) = 1 iff v(A) = 1 or v(A) = 1
CLuP vM (πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr) or

v(πrα1 . . . αr) = 1
CLuI vM (α = β) = 1 iff v(α) = v(β) or v(α = β) = 1
CLuN vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = 1
CLuM vM (A ⊃ B) = 1 iff (vM (A) = 0 or vM (B) = 1) or v(A ⊃ B) = 1
CLuC vM (A ∧B) = 1 iff vM (A) = 1 and vM (B) = 1 or v(A ∧B) = 1
CLuD vM (A ∨B) = 1 iff vM (A) = 1 or vM (B) = 1 or v(A ∨B) = 1
CLuE vM (A ≡ B) = 1 iff vM (A) = vM (B) or v(A ≡ B) = 1
CLuU vM (∀αA(α)) = 1 iff {vM (A(β)) | β ∈ C ∪ O} = {1} or

v(∀αA(α)) = 1
CLuX vM (∃αA(α)) = 1 iff 1 ∈ {vM (A(β)) | β ∈ C ∪ O} or v(∃αA(α)) = 1

All other clauses of the CL-semantics are obviously retained.
Some readers may wonder whether the indeterministic semantics defines the

same logic as the deterministic semantics. I have a (long but transparent) proof

7These cause trouble on which I shall comment later in the text.
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that, for every model M of one semantics, there is a model of the other semantics
that verifies exactly the same formulas as M .

Nearly all glut-logics have nice adequate axiomatizations in Ws. For CLuC,
for example, it is sufficient to remove from the axiom system of CL the axioms
A∧1 and A∧2, and to attach to A=2 the restriction “provided A(α) ∈ Wp

s ”.
However, as the reader will have seen, this way of proceeding gets us into trouble
when we come to implication gluts,8 whether separate or in combination with
other gluts and gaps.

A different road is possible, and it is instructive. Consider the axiom system
of CL, replace in every axiom and rule every standard symbol by the correspond-
ing classical symbol, and attach to axiom schema A=2 the restriction that A
does not contain standard logical symbols (but only classical symbols). Call
this axiom system CLC.9 Next add, for every logical symbol, the axiom that
gives the standard symbol the same meaning as the classical symbol—example:
¬A ≡̌ ¬̌A. So all standard symbols have their CL-meaning in CLC. To obtain
an axiomatic system that leaves room for gluts with respect to a specific logi-
cal form A, remove the relevant equivalence and replace it by a glut-tolerating
implication. I do not list all of them as they are all similar. Gluts with respect
to sentential letters and primitive predicative formulas will be commented upon
below.

logic axiom
CLuI α =̌ β ⊃̌ α = β
CLuN ¬̌A ⊃̌ ¬A

...
...

CLuX ∃̌αA(α) ⊃̌ ∃αA(α)

So the matter is utterly simple. As the standard symbol may display gluts,
the formula containing the standard symbol is logically implied by the formula
containing the corresponding classical symbol, but not vice versa.

Note the direct relation between the implicative glut-tolerating axiom and
the relevant retained clause in the indeterministic semantics. Just as CLuI
contains the axiom α =̌ β ⊃̌ α = β and not its converse, the indeterministic
CLuI-semantics contains the clause “if v(α) = v(β) then vM (α = β) = 1”.
Note that the antecedent of the clause, v(α) = v(β), is the semantic definition
of the antecedent of the axiom, α =̌ β.

As I promised, I now comment on the logics CLuS and CLuP. No axiomatic
system for CLuS is mentioned in the previous paragraphs. There is no need to
do so, as it is obvious from the deterministic semantics that CLuS is identical
to CL. So I shall never refer to it again by the name CLuS.

For CLuP the matter is more complicated. Again, no axiomatic system
for it is presented in the previous paragraphs. CLuP has decent axiomatiza-
tions, but its peculiarities are incompatible with CLC. To see this, it is suf-
ficient to realize that vM (πrα1 . . . αr) may be 1 because v(πrα1 . . . αr) = 1,
even if ⟨v(α1), . . . , v(αr)⟩ /∈ v(πr). So if v(α1) = v(β), it is possible that

8If the implication is not classical, the resulting axiom system does not correctly define the
other logical symbols.

9This is an axiom system for CL. The restriction on A=2 causes no weakening because one
may derive the original version of A=2 for all formulas that do not contain standard logical
symbols..

11



vM (πrβα2 . . . αr) = 0 whereas vM (πrα1α2 . . . αr) = 1. It follows that classical
identity does not have the right meaning because Replacement of Identicals is
invalid. In other words, CLuP is an odd logic that does not extend CLC. No
adaptive logic in standard format can be built on CLuP.10

We are done with the basic logics for gluts and move on to logics in which
one kind of gaps is logically possible. All these logics will have a lower case
“a”, referring to the possibility of gaps, where their glut-counterparts have a
lower case “u”. By now, I suppose that the reader understood the plot and skip
most of the logics. Comments on gaps for sentential letters and for primitive
predicative expressions follow below.

logic removed implicative clause
CLaS where A ∈ S, if v(A) = 1 then vM (A) = 1
CLaP if ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr) then vM (πrα1 . . . αr) = 1
CLaI if v(α) = v(β) then vM (α = β) = 1
CLaN if vM (A) = 0 then vM (¬A) = 1

...
...

CLaX if 1 ∈ {vM (A(β)) | β ∈ C ∪ O}, then vM (∃αA(α)) = 1

Each of these logics has a deterministic semantics, which requires a clause
of the form ”vM (A) = 1 iff [condition]”. This clause is obtained from the
CL-semantics by and-ing the condition of the standard clause with the correct
reference to the assignment value: “v(A) = 1”.

logic replacing clause
CLaS where A ∈ S, vM (A) = 1 iff v(A) = 1 and v(A) = 1
CLaP vM (πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr) and

v(πrα1 . . . αr) = 1
CLaI vM (α = β) = 1 iff v(α) = v(β) and v(α = β) = 1
CLaN vM (¬A) = 1 iff vM (A) = 0 and v(¬A) = 1

...
...

CLaX vM (∃αA(α)) = 1 iff 1 ∈ {vM (A(β)) | β ∈ C ∪ O} and
v(∃αA(α)) = 1

As for the glut-variants, all other clauses of the CL-semantics are retained.
The way in which gluts and gaps are realized is fully transparent. In the case

of gluts, the classical condition is sufficient but not necessary for vM (A) = 1;
in the case of gaps, the classical condition is necessary but not sufficient for
vM (A) = 1. So in both cases we may restore an equivalence by taking the
‘arbitrary’ missing element from the assignment. By doing so, the model (in
the strict sense) determines the valuation function.

For the axiomatization, I shall again follow the road taken for the glut-
allowing logics. Here are the axioms.

10The attentive reader may have remarked that variants for CLuS and CLuP may be
devised in which one explicitly distinguishes between the classical meaning of sentential letters
and predicates, denoted for example as p̌ and P̌ a, and the standard meaning of such entities,
denoted by p and Pa. On the semantics, p̌ ≡̌ p and P̌ a ⊃̌ Pa are valid, but not the converse
of the latter. I shall not pursue this road here in view of the result from Section 5.
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logic axiom
CLaI α = β ⊃̌ α =̌ β
CLaN ¬A ⊃̌ ¬̌A

...
...

CLaX ∃αA(α) ⊃̌ ∃̌αA(α)

Again, the matter is utterly simple. As the standard symbol may display gaps
(and no gluts), the formula containing the classical symbol is logically implied by
the formula containing the corresponding standard symbol, but not vice versa.
Again, all logical symbols for which no gaps are permitted are characterized by
an axiom stating that a formula containing the standard symbol is classically
equivalent to the corresponding expression containing the classical symbol.

Some will find the classical contraposition of the axioms more transparent,
for example ¬̌α =̌ β ⊃̌ ¬̌α = β for CLaI. This also illustrates the direct
connection between the axiom and the corresponding retained clause of the
indeterministic semantics.

I still have to comment upon CLaS and CLaP. No axiomatic system for
CLaS is provided above, and rightly so as it is obvious from the deterministic
semantics that CLaS is identical to CL. So I shall no more use the name CLaS.

The logic CLaP is identical to CLuP and displays the same oddities. I
shall not refer to it in the sequel because this logic cannot function as the lower
limit of an adaptive logic in standard format.

Let us now move to the case where gluts and gaps for the same logical form
are combined. The names of the logics contain a lower case “o” to indicate that
both gluts and gaps are possible. For the indeterministic semantics, one removes
both the clause preventing gluts and the clause preventing gaps. This means
that one removes the CL-clause altogether.

logic removed implicative clauses
CLoS where A ∈ S, if v(A) = 0 then vM (A) = 0

where A ∈ S, if v(A) = 1 then vM (A) = 1
CLoP if ⟨v(α1), . . . , v(αr)⟩ /∈ v(πr) then vM (πrα1 . . . αr) = 0

if ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr) then vM (πrα1 . . . αr) = 1
CLoI if v(α) ̸= v(β) then vM (α = β) = 0

if v(α) = v(β) then vM (α = β) = 1
CLoN if vM (A) = 1 then vM (¬A) = 0

if vM (A) = 0 then vM (¬A) = 1
...

...
CLoX if 1 /∈ {vM (A(β)) | β ∈ C ∪ O}, then vM (∃αA(α)) = 0

if 1 ∈ {vM (A(β)) | β ∈ C ∪ O}, then vM (∃αA(α)) = 1

The deterministic semantics is also simple: the value of composing entities
play no role whatsoever.
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logic replacing clause
CLoS where A ∈ S, vM (A) = v(A)
CLoP vM (πrα1 . . . αr) = v(πrα1 . . . αr)
CLoI vM (α = β) = v(α = β)
CLoN vM (¬A) = v(¬A)

...
...

CLoX vM (∃αA(α)) = v(∃αA(α))

The way to obtain the axiomatic system corresponds closely to the indeter-
ministic semantics: one removes the axiom concerning the symbol, for example
α =̌ β ≡̌ α = β for CLoI. As a result, the standard identity does not occur in
any axiom of CLoI, while all other standard symbols are identified with their
classical counterparts. The logic CLoS is again identical to CL, whereas CLoP
is the same logic as CLuP and CLaP.

Incidentally, many of the logics from this section and from the next are
extensions of CL. In many of those logics, some standard symbols have the
same meaning as the corresponding CL-symbols and other CL-symbols may be
defined. This is fairly obvious for most of the logics. Slightly unexpected might
be that ∼A =df A ⊃ ¬A defines classical negation within CLaN, CLaNs,
and other logics in which implication gluts as well as negation gluts are logical
falsehoods—in those logics A ⊃ ¬A ⊢ A ⊃̌ ¬̌A.

It is obviously possible to formulate logics that tolerate a combination of
gluts and gaps for different symbols. We may form names for such logics by com-
bining the qualifications that appear in the already used names. Thus negation
gluts, negation gaps, and implication gaps are logically possible in CLoNaM.
To obtain, for example, the indeterministic semantics of CLoNaM, remove
both implicative clauses on negation, as it was done for CLoN, and moreover
remove the clause that prevents implication gaps. To obtain the deterministic
semantics, one starts, for example, from the semantics for CLoN and replaces
the implication clause by the implication clause from the CLaM-semantics.
Similarly for the axiomatic systems.

There are logics that tolerate any combination of gluts and gaps. Among
them, there is a logic that tolerates all kinds of gluts and gaps. Let us call it
CLo. In this logic, no standard symbol is given a meaning. So if Γ ∈ Ws, then
CnCLo(Γ)∩Ws = Γ.11 All this will seem of little interest, unless one remembers
the reason to consider all these logics, which is to let them function as the lower
limit of an adaptive logic. So let us have a look at the adaptive logics.

As announced, I shall disregard the logics that (attempt to) display gluts
or gaps with respect to sentential letters or primitive predicative expressions.
For the other logics, the matter is simple. I have already described the lower
limits. To obtain adaptive logics in standard format, we need to combine those
with either Reliability or Minimal Abnormality as well as with the right set of
abnormalities. So all I have to describe are the sets of abnormalities and it was
outlined before in which way these are obtained. Typically, every kind of gluts
or gaps requires a specific set of abnormalities. Let us first look at gluts.

11In CL infinitely (but denumerably) many logical symbols can be defined. These too have
obviously no meaning in CLo as described above. Noting unexpected and nothing interesting
seems to happen if some or all of those symbols are added to Ls. Were changes are required,
they are as expected.
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LLL set of abnormalities Ω

CLuI {∃̌(¬̌α =̌ β ∧̌ α = β) | α, β ∈ C ∪ V}
CLuN {∃̌(¬̌¬̌A ∧̌ ¬A) | A ∈ Fs}
CLuM {∃̌(¬̌(A ⊃̌ B) ∧̌ (A ⊃ B)) | A,B ∈ Fs}

...
...

CLuX {∃̌(¬̌∃̌αA(α) ∧̌ ∃αA(α)) | A ∈ Fs}

And here are the adaptive logics allowing for one kind of gaps.

LLL set of abnormalities Ω

CLaI {∃̌(α =̌ β ∧̌ ¬̌α = β) | α, β ∈ C ∪ V}
CLaN {∃̌(¬̌A ∧̌ ¬̌¬A) | A ∈ Fs}
CLaM {∃̌((A ⊃̌ B) ∧̌ ¬̌(A ⊃ B)) | A,B ∈ Fs}

...
...

CLaX {∃̌(∃̌αA(α) ∧̌ ¬̌∃αA(α)) | A ∈ Fs}

If the lower limit logic leaves room for gluts as well as gaps with respect to
the same logical symbol, the appropriate set of abnormalities is the union of
two sets of abnormalities: that of the corresponding logic tolerating gluts and
that of the corresponding logic tolerating gaps. Thus the appropriate set of
abnormalities for CLoI is Ω = {∃̌(¬̌α =̌ β ∧̌ α = β) | α, β ∈ C ∪ V} ∪ {∃̌(α =̌
β ∧̌ ¬̌α = β) | α, β ∈ C ∪ V} and the appropriate set of abnormalities for CLoX
is {∃̌(¬̌∃̌αA(α) ∧̌ ∃αA(α)) | A ∈ Fs} ∪ {∃̌(∃̌αA(α) ∧̌ ¬̌∃αA(α)) | A ∈ Fs}.

Handling logics that combine gluts or gaps for different logical symbols is just
as easy. The appropriate set of abnormalities is the union of the sets that contain
those gluts and gaps. Thus the appropriate set of abnormalities for CLoNaM
is Ω = {∃̌(¬̌¬̌A∧̌¬A) | A ∈ Fs}∪{∃̌(¬̌A∧̌¬̌¬A) | A ∈ Fs}∪{∃̌((A ⊃̌ B)∧̌¬̌(A ⊃
B)) | A,B ∈ Fs}.

The appropriate set of abnormalities for CLo is obviously the union of all
sets of abnormalities mentioned (explicitly or implicitly) in the two preceding
tables. Incidentally, one may also use this union for all corrective adaptive
logics considered so far in this section. Some CLo-abnormalities are logically
impossible for certain lower limit logics, but these have no effect on the adaptive
logic anyway.12

Let me summarize. In this section, the basic logics for handling gluts and
gaps with respect to one logical symbol were defined, together with all logics
that combine those gluts and gaps. For each of these logics, there is an ‘appro-
priate set’ of abnormalities. Combining such a logic with the appropriate set of
abnormalities and with the Reliability or Minimal Abnormality strategy results
in an adaptive logic in standard format. Note that CLuNm and CLuNr are
such adaptive logics. There are many more and in view of the obvious naming
schema, it is at once clear what is meant by CLaIr , CLoNaMm , or CLor .
These logics may be used as such, but may also serve other functions, as we
shall see in the next section.

12Consider the adaptive logic CLoCm and let B be an implication glut. So Γ ⊢CLoC ¬̌B
for all Γ. It follows that Γ ⊢CLoC A ∨̌Dab(∆) iff Γ ⊢CLoC A ∨̌Dab(∆) ∨̌B.
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4 Variants and Combinations

This section contains further comments on the adaptive logics presented in the
previous section. Three topics will be considered: (i) variants of the lower limit
logics, (ii) choosing among the adaptive logics from the previous section for
handling a given premise set, and (iii) combining the adaptive logics. Some of
the comments remain sketchy because to describe them in more detail seems
pointless. Either the matter is obvious, or the elaboration does not seem to
engender any really new features.

The first topic concerns variants on the glut-logics and gap-logics. Four
kinds of variants will be briefly considered. A first type concerns the rule of
Replacement of Identicals. With the obvious exception of CL, no logic presented
in the previous section validates this rule. However, all those logics have variants
that validate Replacement of Identicals and leave the meaning of all other logical
symbols unchanged. Several ways to do so are applied in [21] and in [36].13

A very different kind of enrichment is related to the reduction of complex
expressions containing gappy or glutty symbols to simpler such expressions.
The paraconsistent logic CLuN, for example, may be extended to CLuNs by
adding double negation, de Morgan properties, and other axioms or rules that
drive negations inside.14 It can be shown that CLuNs is maximally paracon-
sistent (no paraconsistent logics are strictly stronger than CLuNs and strictly
weaker than CL). Exactly the same axioms or rules cause a similar effect if
one extends CLaN or CLoN. It is not difficult to find similar axiom schemas,
and semantic clauses, for other logical symbols. Take implication. Among the
obvious candidates, in which I use at once classical logical symbols for the sake
of generality, are such equivalences as ((A ∨ B) ⊃ C) ≡̌ ((A ⊃ C) ∧̌ (B ⊃ C)),
((A ∧B) ⊃ C) ≡̌ ((A ⊃ C) ∧̌ (B ⊃ C)), and so on. There is no need to spell all
this out here.

The third kind of variant concerns minimizing abnormal objects. This is
work in progress by Peter Verdée and me. The fourth kind of variants is anal-
ogous to the enrichment discussed in Section 5 of [19]. This too is a rather
obvious exercise. The basic change needed is that the table for a-formulas and
b-formulas has to be adjusted to the specific gluts or gaps of the extended logic.
If, for example, this is an adaptive logic that has CLuM as its lower limit, then
p ⊃ q will be a member of sp((p ∧ r) ⊃ q).

Let us move to the second topic: choosing among the adaptive logics from the
previous section for handling a given premise set. I have commented upon this
choice in the previous section. Here, my main aim is to show that the dynamic
proofs may help one to pick the right choice. The idea is to start with a CLom -
proof. Let us consider a simple example: Γ1 = {p, r,¬q∨¬r, (p∧r) ⊃ q,¬p∨s}.
I introduce the classical symbols step by step in order to make the proof fully
transparent.

1 p Premise ∅
2 r Premise ∅

13The central point of the last paper is that all those logics can be faithfully embedded in
CL, a fact which has dramatic consequences for the application of partial decision methods.

14CLuNs is, under sundry names, the most popular paraconsistent logic. To the best of
my knowledge, the propositional version appears first in [31] and I studied it in [6]. Among
the many further discoveries and studies are [1] and [2]. The predicative version is studied in
[21], which contains many further references.
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3 ¬q ∨ ¬r Premise ∅
4 (p ∧ r) ⊃ q Premise ∅
5 ¬p ∨ s Premise ∅
6 ¬q ∨̌ ¬r 3; RC {¬̌(¬q ∨̌ ¬r) ∧̌ (¬q ∨ ¬r)} X16

7 ¬̌¬r 2; RC {¬̌¬̌r ∧̌ ¬r} X16

8 ¬q 6, 7; RU {¬̌(¬q ∨̌ ¬r) ∧̌ (¬q ∨ ¬r), ¬̌¬̌r ∧̌ ¬r} X16

9 ¬p ∨̌ s 5; RC {¬̌(¬p ∨̌ s) ∧̌ (¬p ∨ s)}
10 ¬̌¬p 1; RC {¬̌¬̌p ∧̌ ¬p}
11 s 9, 10; RU {¬̌(¬p ∨̌ s) ∧̌ (¬p ∨ s), ¬̌¬̌p ∧̌ ¬p}
12 p ∧ r 1, 2; RC {(p ∧̌ r) ∧̌ ¬̌(p ∧ r)} X16

13 (p ∧ r) ⊃̌ q 4; RC {¬̌((p ∧ r) ⊃̌ q) ∧̌ ((p ∧ r) ⊃ q)} X16

14 q 12, 13; RU {¬̌((p ∧ r) ⊃̌ q) ∧̌ ((p ∧ r) ⊃ q),

(p ∧̌ r) ∧̌ ¬̌(p ∧ r)} X16

15 ¬̌q 8; RC {¬̌(¬q ∨̌ ¬r) ∧̌ (¬q ∨ ¬r), ¬̌¬̌r ∧̌ ¬r,
¬̌¬̌q ∧̌ ¬q} X16

16 (¬̌((p ∧ r) ⊃̌ q) ∧̌ ((p ∧ r) ⊃ q)) ∨̌ ((p ∧̌ r) ∧̌ ¬̌(p ∧ r))∨̌
(¬̌(¬q ∨̌ ¬r) ∧̌ (¬q ∨ ¬r)) ∨̌ (¬̌¬̌r ∧̌ ¬r) ∨̌ (¬̌¬̌q ∧̌ ¬q)

14, 15; RD ∅

The proof is constructed in such a way that a single abnormality is added to
the condition of every line at which RC is applied. These abnormalities are
a disjunction glut at lines 6 and 9, a negation glut at lines 7, 10 and 15, a
conjunction gap at line 12, and an implication glut at line 13. At line 16 I use
the derived rule RD.

The example proof provides us with an analysis of the situation. It reveals
which gluts and gaps have to be ruled out, globally or locally, in order to obtain
certain consequences. By choosing a lower limit which is stronger than CLo
together with the associated set of abnormalities one obtains a stronger final
consequence set. The Dab-formula 16 is obtained because the occurrence of
q and ¬̌q triggers RD. The Dab-formula indicates which gluts and gaps are
unavoidable. So it indicates which lower limit logics are not viable choices.

The above CLom -proof is easily transformed to a proof in terms of any of the
stronger adaptive logics referred to in the previous paragraph. To illustrate this,
and to illustrate at once the point from the previous paragraph, consider first
the familiar adaptive logic CLuNm . The difference between the CLom -proof
and the CLuNm -proof is simply that all abnormalities that are not CLuNm -
abnormalities are removed from the conditions of the lines and hence also from
the only Dab-formula derived in the proof. Here is the so obtained proof.

1 p Premise ∅
2 r Premise ∅
3 ¬q ∨ ¬r Premise ∅
4 (p ∧ r) ⊃ q Premise ∅
5 ¬p ∨ s Premise ∅
6 ¬q ∨̌ ¬r 3; RU ∅
7 ¬̌¬r 2; RC {¬̌¬̌r ∧̌ ¬r} X16

8 ¬q 6, 7; RU {¬̌¬̌r ∧̌ ¬r} X16

9 ¬p ∨̌ s 5; RU ∅
10 ¬̌¬p 1; RC {¬̌¬̌p ∧̌ ¬p}
11 s 9, 10; RU {¬̌¬̌p ∧̌ ¬p}
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12 p ∧ r 1, 2; RU ∅
13 (p ∧ r) ⊃̌ q 4; RU ∅
14 q 12, 13; RU ∅
15 ¬̌q 8; RC {¬̌¬̌r ∧̌ ¬r, ¬̌¬̌q ∧̌ ¬q} X16

16 (¬̌¬̌r ∧̌ ¬r) ∨̌ (¬̌¬̌q ∧̌ ¬q) 14, 15; RD ∅

It is useful to compare the present proof with the preceding one. To maximally
retain the parallelism, I did not remove the lines at which classical disjunction
and classical implication are introduced. These are useless but cause no harm.
Apart from the announced deletion of certain formulas from the conditions
and the Dab-formula, the only change is that RC is replaced by RU where
the inference step does not depend on a CLuNm -abnormality. Note that the
occurrence of a classical contradiction still leads to the Dab-formula 16.

There is a gain in the last example proof in comparison to the CLom -proof:
q is finally derivable. It is easy enough to choose an adaptive logic from the
previous section that provides us with the opposite gain: that ¬q as well as
¬̌q are finally derivable. Moreover, the CLom -proof shows us the way. One
possibility is to allow only for conjunction gaps, in other words, to choose the
adaptive logic CLaCm . The proof then goes as follows.

1 p Premise ∅
2 r Premise ∅
3 ¬q ∨ ¬r Premise ∅
4 (p ∧ r) ⊃ q Premise ∅
5 ¬p ∨ s Premise ∅
6 ¬q ∨̌ ¬r 3; RU ∅
7 ¬̌¬r 2; RU ∅
8 ¬q 6, 7; RU ∅
9 ¬p ∨̌ s 5; RU ∅
10 ¬̌¬p 1; RU ∅
11 s 9, 10; RU ∅
12 p ∧ r 1, 2; RC {(p ∧̌ r) ∧̌ ¬̌(p ∧ r)} X16

13 (p ∧ r) ⊃̌ q 4; RU ∅
14 q 12, 13; RU {(p ∧̌ r) ∧̌ ¬̌(p ∧ r)} X16

15 ¬̌q 8; RU ∅
16 (p ∧̌ r) ∧̌ ¬̌(p ∧ r) 14, 15; RD ∅

Nearly the same effect is obtained by choosing CLuMm , which allows only for
implication gluts. In that proof, ¬̌((p ∧ r) ⊃̌ q) ∧̌ ((p ∧ r) ⊃ q) is the formula
of line 16 and the singleton comprising this formula is the condition of lines 13
and 14, whence these lines are marked.

What happens if one chooses the adaptive logic CLaNm? All conditions
become empty, so q and ¬̌q are derived unconditionally. While transforming
the CLom -proof, the formula of line 16 is turned into the empty string. What
this means is that we have to delete the line because RD cannot be applied.
Moreover, as we derived a classical inconsistency, q and ¬̌q, and we derived it
on the empty condition, we obtain triviality. In other words CLaNm is not a
suitable adaptive logic for the present premise set in view of the projected goal,
which is to obtain a minimally abnormal ‘interpretation’ of Γ1.

In the CLuNm -proof, q is unconditionally derived. This is also the case if
one chooses the logic CLuDm , which tolerates disjunction gluts only. More-
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over, the CLom -proof reveals that this is a secure choice. Indeed, allowing for
disjunction gluts causes ¬̌q not to be a final consequence of the premise set. So
this avoids triviality.

By now the reader should be convinced that CLom -proofs offer an instru-
ment for obtaining minimally abnormal interpretations of premise sets.15 If
no Dab-formulas are derived in the CLom -proof, the premise set is apparently
normal.16 If that is so, its interpretation in terms of CL is normal. If Dab-
formulas are derived, a minimally abnormal interpretation of the premises is
obtained if the premise set is closed under an adaptive logic from the previous
section that fulfils two properties: (i) no Dab-formula derived by RD is turned
into the empty string, and (ii) every otherwise derived Dab-formula counts at
least one disjunct that is an abnormality of the chosen logic.17 Recall that some
of the lower limit logics combine different gluts and gaps. The matter is com-
pletely straightforward. We can read off the minimally abnormal interpretations
from the CLom -proof. In sum, constructing proofs in CLom (or CLor ) offers
an analysis that allows one to decide which adaptive logics from the previous
section may be applied to handle a given premise set, and which may not be-
cause they assign a trivial consequence set to the premise set. The analysis also
reveals which adaptive logics offer a richer consequence set than others.

The logic CLom is interesting in itself for a theoretical reason. Indeed, in
this logic, the meaning of all standard logical symbols is contingent : the meaning
of an occurrence of a standard symbol—no other symbol should occur in the
premises or in the (main) conclusion—depends fully on the premise set. To put
it in a pompous way: CLom provides one with a formal hermeneutics—but see
Section 6 for a more impressive result in this respect.

The story does not end here. Until now I have considered logics from the
previous section and have illustrated the way in which they lead to different non-
trivial but inconsistent ‘interpretations’ of an inconsistent theory. However, the
logics from the previous section may, in a specific sense, also be combined. I shall
illustrate that this leads to further non-trivial but inconsistent ‘interpretations’
of an inconsistent theory. This approach requires some clarification before we
start.

Consider the premise set Γ2 = {p, r, (p ∨ q) ⊃ s, (p ∨ t) ⊃ ¬r, (p ∧ r) ⊃
¬s, (p ∧ s) ⊃ t}. I shall not write out the CLom -proof, but if one writes it
out, one readily sees that Γ2 can be interpreted non-trivially by allowing for
disjunction gaps as well as for conjunction gaps. The CLom -proof moreover
reveals that it may be interesting to first eliminate the disjunction gaps and
next the conjunction gaps, something which typically may be realized by a
combined adaptive logic. The question is what this combined logic precisely
looks like.

The combination CnCLaCm (CnCLaDm (Γ2)) does not have the desired effect—
I skip a technical detail on superpositions because it is irrelevant for the point I
want to make. One the one hand, every conjunction of members of CnCLaDm (Γ2)

15Not all of them, of course, because there are variants of the lower limit logics—they were
briefly surveyed in the text of the present section. Yet, whatever the number of (kinds of) gluts
and gaps they tolerate, the logics from Section 3 do not spread abnormalities but maximally
isolate them—this property of CLuN was already discussed in [7].

16I write “apparently” because the judgement concerns only the present stage of the CLom -
proof.

17If these conditions are not fulfilled, the premise set if trivial according to the chosen
adaptive logic.
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is itself a member of that set because the standard conjunction behaves like the
classical conjunction in CLaD. So closing CnCLaDm (Γ2) under CLaCm does
not add any conjunctions. On the other hand, the standard disjunction behaves
like the classical disjunction in CLaC. This means that if A ∈ Γ and hence
A ∈ CnCLaDm (Γ2), then A ∨ B ∈ CnCLaCm (CnCLaDm (Γ2)) for every B. This
may very well cause triviality. The reader may easily verify this by reinterpreting
the subsequent proof from Γ2 as a proof for CnCLaCm (CnCLaDm (Γ2)).18

What we need is rather obvious. We want to superimpose two simple adap-
tive logics that leave room for disjunction gaps as well as for conjunction gaps,
but we want first to minimize the set of disjunction gaps and only thereafter
the set of conjunction gaps. So, following the naming scheme from the previ-
ous section, we first need an adaptive logic composed of the lower limit logic
CLaDaC, the set of abnormalities Ω = {∃̌((A ∨̌B) ∧̌ ¬̌(A ∨B)) | A,B ∈ Fs}),
comprising the disjunction gaps, and say Minimal Abnormality. One might call
this logic CLaDaCm

aD—the subscript refers to the kind of abnormalities that is
minimized (here disjunction gaps). Next, we want to close the consequence set
of this logic by an adaptive logic composed of the lower limit logic CLaDaC,
the set of abnormalities Ω = {∃̌((A ∧̌ B) ∧̌ ¬̌(A ∧ B)) | A,B ∈ Fs}, compris-
ing the conjunction gaps, and Minimal Abnormality. One might call this logic
CLaDaCm

aC .
Let us move to a proof from Γ2 in this combined logic. All logical symbols

have their classical meaning with the exception of disjunction and conjunction.
The reader should be informed that, in this specific combined logic, the first
round of marking proceeds in terms of the minimal Dab-formulas that have
disjunction gaps as their disjuncts and are derived on the empty condition,
whereas the second round proceeds in terms of the minimal Dab-formulas that
have conjunction gaps as their disjuncts and are derived at an unmarked line
the condition of which may contain disjunction gaps but no conjunction gaps.
I try to make the proof more transparent for the reader by first deriving the
required disjunctions, applying CLaDaCm

aD, and only thereafter deriving the
required conjunctions by applying CLaDaCm

aC . The distinction between the
two conditional rules is self-explanatory.

1 p Premise ∅
2 r Premise ∅
3 (p ∨ q) ⊃ s Premise ∅
4 (p ∨ t) ⊃ ¬r Premise ∅
5 (p ∧ r) ⊃ ¬s Premise ∅
6 (p ∧ s) ⊃ t Premise ∅
7 p ∨ q 1; RC1 {(p ∨̌ q) ∧̌ ¬̌(p ∨ q)}
8 s 3, 7; RU {(p ∨̌ q) ∧̌ ¬̌(p ∨ q)}
9 p ∨ t 1; RC1 {(p ∨̌ t) ∧̌ ¬̌(p ∨ t)} X11

10 ¬r 4, 9; RU {(p ∨̌ t) ∧̌ ¬̌(p ∨ t)} X11

11 (p ∨̌ t) ∧̌ ¬̌(p ∨ t) 2, 10; RD ∅
12 p ∧ r 1, 2; RC2 {(p ∧̌ r) ∧̌ ¬̌(p ∧ r)} X14

13 ¬s 5, 12; RU {(p ∧̌ r) ∧̌ ¬̌(p ∧ r)} X14

14 (p ∧̌ r) ∧̌ ¬̌(p ∧ r) 8, 13; RD {(p ∨̌ q) ∧̌ ¬̌(p ∨ q)}
18The disjunction p ∨ t is CLaC-derivable from p and hence is derivable on the empty

condition in the so reinterpreted proof. But then so are both r and ¬r, whence triviality
results.
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15 p ∧ s 1, 8; RC2 {(p ∨̌ q) ∧̌ ¬̌(p ∨ q), (p ∧̌ s) ∧̌ ¬̌(p ∧ s)}
16 t 6, 15; RU {(p ∨̌ q) ∧̌ ¬̌(p ∨ q), (p ∧̌ s) ∧̌ ¬̌(p ∧ s)}

On line 14, the general form of rule RD is applied. The set of consequences of the
combined logic can be ‘summarized’ as {p, r, s, t,¬(p∧ r),¬(p∨ t)}. Note that I
write classical negation in the abnormalities in the proof to be coherent with the
rest of this paper, but that the standard negation has the same meaning. The
same result cannot be obtained by any of the logics described in the previous
section.19

There may be specific logical or extra-logical reasons to prefer a combined
adaptive logic or another of the aforementioned logics to obtain a minimally
abnormal ‘interpretation’ of Γ2; or there may be reasons to consider the ‘in-
terpretation’ as a sensible alternative. As mentioned before, such reasons may
become apparent in view of a CLom -proof from Γ2. The choices considered for
Γ1 were extended with the choice of an order in which the abnormalities are
minimized.

The upper limit logic of all simple adaptive logics presented in this paper
is CL. So these logics, and all the combined adaptive logics built from them,
assign the same consequence set as CL to all premise sets that have CL-models.
While this is an interesting feature in itself, the interest of the diversity of the
logics lies with premise sets that have no CL-models.

5 Ambiguity-Adaptive Logics

In [34], Guido Vanackere presented the first ambiguity-adaptive logic. The
underlying idea is simple but ingenious. The inconsistency of a text may derive
from the ambiguity of its non-logical symbols. To take these possible ambiguities
into account, one indexes all occurrences of non-logical symbols. This roughly
means that every occurrence receives a different superscript and that symbols
with a different index are considered as different. An ambiguity-adaptive logic
interprets a set of premises as unambiguous as possible. It presupposes that
two non-logical symbols that differ only in their index have the same meaning
unless and until proven otherwise.

While the idea is simple and attractive, elaborating the technical details
requires hard work. Most published papers on ambiguity-adaptive logics evade
some unsolved problems. There is a reason why the matter is confusing. The
languages underlying ambiguity-adaptive logics may serve diverse, unexpected,
and attractive purposes. All purposes require a monotonic logic that is close
to CL, but many purposes demand that the logic deviate from CL in one or
other detail, and each purpose requires a different deviation. I now spell out a
systematic and sensible variant of ambiguity logic.

In the language Ls, the sets of schematic letters20 for non-logical symbols
are S, C, V, and Pr (for each rank r ∈ N). Let us replace each of these sets
with a set of indexed letters: SI = S ∪ {λi | λ ∈ S; i ∈ N}, and similarly for
CI , VI , and PrI . The resulting sets are obviously denumerable. From these

19Line 14 witnesses that ((p ∧̌ r) ∧̌ ¬̌(p∧ r)) ∨̌ ((p ∨̌ q) ∧̌ ¬̌(p∨ q)) is derivable on the empty
condition from Γ2. With respect to the superposition, it shows that (p ∧̌ r) ∧̌ ¬̌(p ∧ r) is a a
final CLaDaCm

aD-consequence of Γ.
20The name “letter” is slightly misleading. Most schematic letters are actually strings

composed from a finite sequence of symbols.
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sets we define a language LI
s, with FI

s as its set of formulas and WI
s as its set

of closed formulas. The language LI
s is exactly as one expects, except that the

quantifiers still range over the variables of Ls. The reason for this convention
will be explained later on.

Next, we define a logic CLI over this language. The logic is almost identical
to CL, except for the way in which quantified formulas are handled. To phrase
the semantics, we need to add an indexed set OI of pseudo-constants, which is
defined from O in the same way as CI is defined from C. The resulting pseudo-
language LI

O has WI
O as its set of closed formulas. A CLI-model M = ⟨D, v⟩,

in which D is a set and v is an assignment function. The function v is like for
CL, except that it now interprets the indexed sets.

C1 v:WI
O → {0, 1}

C2 v: CI ∪ OI → D (where D = {v(α) | α ∈ CI ∪ OI})
C3 v:PrI → ℘(Dr)

The valuation function vM :WI
O → {0, 1} determined by M is defined as fol-

lows:

CSI where A ∈ SI , vM (A) = 1 iff v(A) = 1
CPrI where πr ∈ PrI and α1 . . . αr ∈ CI ∪ OI ,

vM (πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr)
C= where α, β ∈ CI ∪ OI , vM (α = β) = 1 iff v(α) = v(β)
C¬ vM (¬A) = 1 iff vM (A) = 0
C⊃ vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1
C∧ vM (A ∧B) = 1 iff vM (A) = 1 and vM (B) = 1
C∨ vM (A ∨B) = 1 iff vM (A) = 1 or vM (B) = 1
C≡ vM (A ≡ B) = 1 iff vM (A) = vM (B)
C∀I vM (∀αA(αi1 , . . . , αin)) = 1 iff {vM (A(βi1 , . . . , βin)) | β ∈ C ∪ O} = {1}
C∃I vM (∃αA(αi1 , . . . , αin)) = 1 iff 1 ∈ {vM (A(βi1 , . . . , βin)) | β ∈ C ∪ O}

M  A iff vM (A) = 1, which defines �CLI A as well as Γ �CLI A.
The clauses C∀ and C∃ deserve some clarification. Note that the quantifiers

range over a variable α and that the αij are indexed occurrences of this variable
in A. Thus M  ∀x(P 1x1 ⊃ Q1x2) holds iff M  P 1α1 ⊃ Q1α2 holds for all
α ∈ C ∪ O. Similarly, M  ∃x(P 1x1 ∧Q1x2) holds iff M  P 1α1 ∧Q1α2 holds
for some α ∈ C ∪ O.

The behaviour of the quantifiers causes a connection between variables that
differ only from each other in their index, because the same quantifiers bind
them all. The quantifiers also connect indexed variables to the constants with
the same indices. Thus, among the semantic consequences of ∀x(P 1x1 ⊃ Q1x2)
are P 1a1 ⊃ Q1a2 as well as P 1b1 ⊃ Q1b2, but not, for example, P 1a1 ⊃ Q1b2

or P 1a1 ⊃ Q1a3. It will become clear later that this peculiar logic is tailored in
order to suit the ambiguity-adaptive logic of which it is the lower limit.

I leave it as an easy exercise for the reader to spell out an axiomatic system
for CLI. Hint: take the CL-axiomatization from Section 2, letting the metavari-
ables range over indexed entities; next adjust A∀ to ∀αA(αi1 , . . . , αin)) ⊃
A(βi1 , . . . , βin), and adjust A∃, R∀, and R∃ similarly.

The idea of (non-adaptive) ambiguity logics is that, where Γ ⊆ Ws and
A ∈ Ws, Γ ⊢ A iff a certain translation of A is a CLI-consequence of a certain
translation of Γ. The presumably unexpected handling of the quantifiers will
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be easier understood after I presented the translation. Let Γ† be obtained from
Γ by adding superscripted indices from an I ⊂ N to all non-logical symbols in
Γ in such a way that every index occurs at most once. Next, let A‡ be obtained
from A by adding superscripted indices from N− I to all non-logical symbols in
A in such a way that every index occurs at most once.21 The ambiguity logic
CLA, defined over the language Ls, is defined by

Γ ⊢CLA A iff Γ† ⊢CLI A
‡ .

In order to define CLA, we need only a certain fragment of CLI. For every
premise set Γ and conclusion A, Γ† ∪ {A‡} is a set of members of WI

s that
has a very specific property: all non-logical symbols are indexed and no two
occurrences of the same non-logical symbol have the same index. One of the
effects of this is that there are no Γ ⊆ Ws and A ∈ Ws for which Γ† ⊢CLI A

‡,
whereas there obviously are Γ ⊆ WI

s and A ∈ WI
s for which Γ ⊢CLI A, for

example p1 ∧ q2 ⊢CLI p
1.

At this point, the handling of the quantifiers should be more transparent. If
no quantifiers occur in Γ or A, we have Γ 0CLA A. For example, p ∧ q 0CLA p
because p1∧q2 0CLI p

3—in some CLI-models v(p1) = v(q2) = 1 and v(p3) = 0.
Also p 0CLA p because p1 0CLI p3. However, if the quantifiers ranged over
the indexed variables, we would have ∀xx = x ∧ q ⊢CLA ∀xx = x as well as
∀xx = x ⊢CLA ∀xx = x because ∀x1 x1 = x1 ∧ q2 �CLI ∀x3 x3 = x3 as well as
∀x1 x1 = x1 �CLI ∀x3 x3 = x3.22 But then quantified statements would behave
oddly, because they would form classical exceptions in the ambiguity logic.

Let us take a closer look at this. The point is actually related to theorems
of logic. Thus 0CLA p ∨ ¬p because 0CLI p

1 ∨ ¬p2. In general, CLA does not
have any theorems at the propositional level. Note that the absence of theorems
derives from the translation, not from CLI, which obviously has all the right
theorems, for example ⊢CLI p

1 ∨¬p1. When one moves to the predicative level,
CL-theorems turn out to be non-theorems of CLA. For example 0CLA a = a
because 2CLI a

1 = a2 and 0CLA ∀xPx ⊃ Pa because 0CLI ∀xP 1x2 ⊃ P 3a4—
even if the quantifiers ranged over the indexed variables, we would still have
0CLI ∀x2P 1x2 ⊃ P 3a4 because P 1 and P 3 are different schematic letters for
predicates. However, if the quantifiers ranged over indexed variables, we would
have ⊢CLA ∀xx = x because ⊢CLI ∀x1 x1 = x1—note that ∀x1 x1 = x2 is not a
closed formula. So this would reintroduce logical theorems at a unique specific
point, which would be an anomaly.

The reader may think that another approach is equally sensible: to let the
quantifiers range over indexed variables while multiplying the quantifiers where
this is necessary to obtain closed formulas. Thus the translation of ∀xx = x
would be, for example, ∀x1∀x2 x1 = x2. This, however, would not work. Indeed,
from this formula, one might first obtain ∀x2 a1 = x2 and next a1 = b2, which
would blur the difference between two very different formulas, ∀xx = x and
∀x∀y x = y. Moreover, even this kind of translation would introduce some
theorems. Thus ⊢CLA ∀x∀y x = y ⊃ ∀xx = x would be translated by the true
statement ⊢CLI ∀x1∀y2 x1 = y2 ⊃ ∀x3∀x4 x3 = x4.

21Other ways of indexing are equally adequate. As explained below in the text, every two
occurrences of the same symbol in Γ ∪ {A} should have different indices and no individual
variable should have the same index as an individual constant.

22Do not think something is wrong here before you read the next two paragraphs.
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Actually, letting the quantifiers range over the original variables causes no
trouble, as the CLI-semantics reveals. Indeed, there are CLI-models that verify
∀xx1 = x2, and there are that do not, just as we want it. So 0CLA ∀xx = x.
Similarly ∀xx = x 0CLA ∀xx = x because ∀xx1 = x2 0CLI ∀xx3 = x4.
Moreover, that the quantifiers range over the non-indexed variables in CLI
guarantees that all indexed occurrences of the same variable are instantiated at
the same time. This will turn out essential for the adaptive logic that will have
CLA as its lower limit.

The logic CLA is intriguing. Nothing is valid in it, nothing is derivable from
any premise set. Post-modernists should be pleased. Sensible people, however,
will regard CLA as a lower limit logic, and will try to minimize abnormalities.
They will admit that some texts (or premise sets) force one to consider non-
logical terms as ambiguous,23 but they will also stress that each non-logical term
has to be considered as unambiguous “unless and until proven otherwise”. In
other words, they will go adaptive.

It is not difficult to see what going adaptive comes to. The lower limit logic
will be CLI and the strategy either Reliability or Minimal Abnormality. We
need a set of abnormalities containing three kinds of formulas: ambiguities per-
taining respectively to sentential letters, to individual constants and variables,
and to predicative letters. In order to save some space in the example proofs, I
shall introduce abbreviations for each of these kinds of abnormalities. Ambigu-
ities for sentential letters have the form ¬(Ai ≡ Aj), with A ∈ S and i, j ∈ N.24

These will be abbreviated as Ai·j , for example p5·8 abbreviates ¬(p5 ≡ p8). Am-
biguities for individual constants and variables will have the form ∃¬αi = αj ,
with α ∈ C ∪ V and i, j ∈ N. These will be abbreviated as αi·j , for example
a6·7 abbreviates ¬ a6 = a7 and x4·8 abbreviates ∃x¬x4 = x8. Finally, ambi-
guities for predicative letters have the form ∃¬(πiα1 . . . αr ≡ πjα1 . . . αr), with
π ∈ Pr, i, j ∈ N, and α1 . . . αr ∈ VI . These will be abbreviated as πi·jα1 . . . αr,
for example, where P ∈ P1, P 3·5x1 abbreviates ∃x¬(P 3x1 ≡ P 5x1) and, where
R ∈ P3, R2·8a1x1b2 abbreviates ∃x¬(R2a1x1b2 ≡ R8a1x1b2).25

The meaning of the abnormalities requires hardly any clarification: different
occurrences of a symbol have different meanings. The matter is straightforward
for sentential letters, individual constants and individual variables. There is
a difference, however. Occurrences of the same constant may have different
denotations. So it is possible that ¬ a1 = a2, ¬ a1 = a3, and ¬ a2 = a3, and so
on for any number of occurrences of the same constant. The matter is different
for propositional letters. As there are (on the present approach) only two truth-
values, 0 and 1, the occurrence of p1, p2 and p3 necessarily leads to p1 ≡ p2,
to p3 ≡ p1, or to p3 ≡ p2. The case of predicative letters is slightly more
sophisticated. If both P 1a2 and ¬P 3a2 hold true, the object denoted by a2

belongs to the extension of P 1 but not to that of P 3. In other words, P 1 and
P 3 differ in extension with respect to the object denoted by a2. If moreover
both P 1a4 and ¬P 3a4 hold true, there is a further ambiguity: P 1 and P 3 also

23The texts force one to do so if one supposes that the logical symbols have their usual
meaning and this is unique and stable.

24If the intention is to combine ambiguity logics with logics from Sections 3 or 4, the
abnormalities are better phrased with the help of classical logical symbols.

25The use of ambiguities in the variables is illustrated by ∃x¬(P 1x2 ≡ P 3x4) ⊢CLI

∃x¬(x2 = x4) ∨ ∃x¬(P 1x2 ≡ P 3x2). Incidentally, ¬(p1 ≡ p2) and ¬(p2 ≡ p1) are officially
considered as different (but equivalent) abnormalities. Similarly p1·2 and p2·1 are officially
seen as abbreviations of different formulas. Both decisions are obviously purely conventional.
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differ in extension with respect to the object denoted by a4. This is the reason
why abnormalities pertaining to predicates require a more complex abbreviation
than the other abnormalities.

It is time to identify the set of related abnormalities. I shall do this in
terms of the introduced abbreviations: Ω = {Ai·j | A ∈ S; i, j ∈ N; i ̸= j}
∪ {αi·j | α ∈ C ∪ V; i, j ∈ N; i ̸= j} ∪ {πi·jα1 . . . αr | π ∈ Pr; i, j ∈ N;α1 . . . αr ∈
CI∪VI ; i ̸= j}. When reading this, remember that all logical symbols have their
classical meaning. The adaptive logics CLIm and CLIr are now fully defined.

In terms of CLIm , we define the logic CLAm:

Γ ⊢CLAm A iff Γ† ⊢CLIm A‡ ,

and similarly for CLAr. I write the superscripts of CLAm and CLAr in a
different type to indicate that these logics are not themselves adaptive logics in
standard format, but are characterized in terms of such logics.

Let us consider some example proofs. The premise set Γ3 = {∀x(Px ⊃
Qx), Pa} is normal. So the CLAm-consequence set (and CLAr-consequence
set) of Γ3 is identical to its CL-consequence set, as the reader expected. Here
is an example proof for Γ3 ⊢CLAr Qa. This is translated for example by
∀x(P 1x2 ⊃ Q3x4), P 5a6 ⊢CLIm Q7a8.

1 ∀x(P 1x2 ⊃ Q3x4) Prem ∅
2 P 5a6 Prem ∅
3 P 1a2 ⊃ Q3a4 1; RU ∅
4 P 1a2 2; RC {P 1·5a6, a2·6}
5 Q3a4 3, 4; RU {P 1·5a6, a2·6}
6 Q7a8 5; RC {P 1·5a6, a2·6, Q3·7a4, a4·8}

As {∀x(P 1x2 ⊃ Q3x4), P 5a6} is normal with respect to CLIm , no Dab-formula
is derivable from it, whence no line is marked in any extension of the proof.

Some readers may find the proof a bit fast. Here is the trick, applied to
the transition from 2 to 4. In the slower proof fragment displayed below, the
condition of line 2.1 is the negation of the formula of that line. So the line
results from the CLI-theorem (P 5a6 ≡ P 1a6) ∨ ¬(P 5a6 ≡ P 1a6). Similarly for
line 2.3, which results from the CLI-theorem a2 = a6 ∨ ¬a2 = a6.

2 P 5a6 Prem ∅
2.1 P 5a6 ≡ P 1a6 RC {P 1·5a6}
2.2 P 1a6 2, 2.1; RU {P 1·5a6}
2.3 a2 = a6 RC {a2·6}
4 P 1a2 2.2, 2.3; RU {P 1·5a6, a2·6}

If predicative expressions are ambiguous, the ambiguity can lie with a pred-
icate, an individual constant, or a variable. This often leads to a disjunction
of such abnormalities. For example P 1a2,¬P 3a4 ⊢CLI ¬ a2 = a4 ∨ ¬(P 1a4 ≡
P 3a4). This will be illustrated in the next example proof.

It is instructive to consider a further example: Γ4 = {∀x(Px ⊃ Qx), Pa,
¬Qa, Pb}. Its translation is, for example, {∀x(P 1x2 ⊃ Q3x4), P 5a6,¬Q7a8,
P 9b10}. Let us check wether Γ4 ⊢CLAm Qa and Γ4 ⊢CLAm Qb. As the indices
1–10 occur in the translation of Γ4, the indexed conclusions will be, for example,
Q11a12 and Q11b12 respectively.
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1 ∀x(P 1x2 ⊃ Q3x4) Prem ∅
2 P 5a6 Prem ∅
3 ¬Q7a8 Prem ∅
4 P 9b10 Prem ∅
5 P 1a2 ⊃ Q3a4 1; RU ∅
6 P 1a2 2; RC {P 1·5a6, a2·6} X10

7 Q3a4 5, 6; RU {P 1·5a6, a2·6} X10

8 Q11a12 7; RC {P 1·5a6, a2·6, Q3·11a4, a4·12} X10

9 ¬Q3a4 3; RC {Q7·3a8, a8·4} X10

10 P 1·5a6 ∨ a2·6 ∨Q7·3a8 ∨ a8·4 7, 9; RD ∅

Apart from 10, many other Dab-formulas are CLI-derivable from the premises.
For any suitable i and j, Qiaj is derivable from Q3a4 on the condition {P 1·5a6, a2·6,
Q3·ia4, a4·j} and ¬Qiaj is derivable from ¬Q7a8 on the condition {Q7·ia8, a8·j}.
So the disjunction of members of both conditions is CLI-derivable on the empty
condition. This entails that the line at which Q11a12 is derived will ultimately
be and remain marked in any proof from Γ4; Q11a12 is not a final CLIm -
consequence of {P 1·5a6, a2·6, Q3·ia4, a4·j} and Γ4 0CLAm Qa.

The situation is obviously very different for Q11b12. Let us have a look at
the continuation of the previous proof.

11 P 1b2 ⊃ Q3b4 1; RU ∅
12 P 1b2 4; RC {P 1·9b10, b2·10}
13 Q3b4 11, 12; RU {P 1·9b10, b2·10}
14 Q11b12 13; RC {P 1·9b10, b2·10, Q3·11b4, b4·12}

None of these lines will be marked in any extension of the proof. The reason
is that the conditions of the lines contain only abnormalities that explicitly
mention b, whereas no such abnormality is CLI-derivable from {∀x(P 1x2 ⊃
Q3x4), P 5a6,¬Q7a8, P 9b10}. So Q11b12 is a final CLI-consequence of the trans-
lated premise set and Γ4 ⊢CLAm Qb.

Some readers may wonder why the proofs contain no examples of abnormal-
ities that pertain to variables. This is partly a matter of style. For example,
the lines 11–14 of the last proof may just as well be replaced by the following
lines in which I also proceed a bit faster.

11 ∀x(P 9x10 ⊃ Q11x12) 1; RC {P 1·9x2, x2·10, Q3·11x4, x4·12}
12 P 9b10 ⊃ Q11b12 11; RU {P 1·9x2, x2·10, Q3·11x4, x4·12}
13 Q11b12 4, 12; RU {P 1·9x2, x2·10, Q3·11x4, x4·12}

In other cases, for example in order to establish ∀x(Px ⊃ Qx), ∀x(Qx ⊃
Rx) ⊢CLAm ∀x(Px ⊃ Rx), abnormalities pertaining to variables are unavoid-
able, unless of course when dummy constants would be introduced.

Before leaving the matter, two points are worth some attention. The first
concerns my promise to clarify the translation, the second concerns variants for
the present ambiguity-adaptive logics.

The translation is actually a simple matter. When describing it, I required
(in footnote 21) that no two occurrences of the same symbol receive the same
index and that no individual constant receives the same index as an individual
variable. The first requirement is obvious. That two occurrences of the same
symbol receive the same index amounts to declaring them to have the same
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meaning. If ambiguities may be around, there is no logical justification for doing
so. The second requirement may be easily explained. Consider the premise
set {∀xPx,¬Pa} and note that Pa is derivable from the first premise. If,
for example, the first premise is translated as ∀xP 1x2, then P 1a2 is a CLI-
consequence of it. So there either is an ambiguity in P or there is an ambiguity
in a. But suppose that the premise set were translated as {∀xP 1x1,¬P 2a1}—
this translation fulfils the first requirement but not the second. As P 1a1 is a
CLI-consequence of this, so is the abnormality P 1·2a1. But this is obviously
mistaken because it locates the ambiguity definitely in P , neglecting the possible
ambiguity in a.

It is instructive to return for a moment to Γ4 and to describe the abnormality
of the premise set in non-technical terms with reference to CLAm. The Dab-
formula derived at line 10 of the proof teaches us that there is an ambiguity
in P , in Q, or in a. It is also possible to derive in the proof the Dab-formula
P 1·5a2∨x2·6∨Q3·7x4∨x4·12, which teaches us that there is an ambiguity in P , in
Q, or in x. An important insight is that both statements are rather rudimentary.
They locate a connected ambiguity, but tell one nothing about the effects of the
ambiguities. A more fine-grained analysis goes in terms of derivable and non-
derivable formulas. On the one hand, the connected ambiguity prevents Qa
from being derivable. The ambiguity resides either in the P that occurs in the
formulas from which Qa would be derivable, or in the Q that occurs in those
formulas, viz. in ∀x(Px ⊃ Qx) and in Qa itself, or the ambiguity resides in the
a that occurs in Qa and in the formulas from which it would follow, viz. Pa.26

On the other hand, the connected ambiguity does not prevent the derivability
of Qb. So even if the ambiguity resides in P or in Q, this does not prevent the
derivability of Qb from Pb and ∀x(Px ⊃ Qx); these occurrences of P and Q are
taken to be unambiguous. Note also that the connected ambiguities have no
effect on the derivability of Pa ∨Ra from Pa. Even if the ambiguity resides in
P , the occurrences of P in Pa and in Pa∨Ra have the same meaning. Note also
that, for a similar reason, ¬Qa ∧ Qb is a final consequence of Γ4. So the Dab-
formulas that are CLI-derivable from Γ† indicate connected ambiguities in non-
logical symbols. However, which couples of occurrences of those symbols have
a different meaning is only revealed by a careful study of the final derivability
relation.

Let us now move to variants. Actually, CLI and similar logics contain a very
rich potential—see for example [12, 20] for applications that have nothing to
do with ambiguity-adaptive logic. However, also the ambiguity-adaptive logics
deserve further attention. A striking point concerns ambiguities in sentential
letters. As we have seen before, if there are three occurrences of the same
sentential letter, at least two of them ‘have the same meaning’. This is so
because having the same meaning is expressed by equivalence, equivalence is
truth-functional, and there are only two truth values. However, it is obvious
that the same sentential letter (or the same sentence in a natural language) may
be used with more than two different meanings. This suggests that one tries to
dig deeper into meaning. The meaning of a linguistic element may be seen as

26A similar comment applies to the second aforementioned Dab-formula. Actually, the
ambiguity in x cannot be separated from the one in a. If the joint truth of Pa, Pa ⊃ Qa,
and ¬Qa is not caused by an ambiguity in P or in Q, then it is caused by an ambiguity in a.
If that is so, there also is bound to be an ambiguity in x because Pa ⊃ Qa is derived from
∀x(Px ⊃ Qx).
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composed from different elements. Some bunches of such elements may actually
be ‘realistic’, in that they occur in statements made in terms of the language,
whereas other bunches do not. Moreover, it is well-known that speakers often
want to express something close to, but slightly different from, a given ‘realistic’
bunch and still use the same word or phrase. An approach that may enable one
to dig deeper into meaning is available along these lines. Some work has been
done on it. I cannot report on it here, but address the reader to some relevant
papers: [25, 26, 32].

Before leaving the matter, an important proviso should be mentioned. Much
so-called ambiguity arises from the fact that many predicates are vague. Vague-
ness obviously cannot be adequately handled by means of CLA, pace [33]. See
[37] for a decent proposal to upgrade fuzzy logics adaptively.

6 Adaptive Zero Logic

In the previous sections, we met two extremely weak logics. The first was CLo,
in which no standard logical symbol has any specific meaning. We have seen that
A ∈ Ws is CLo-derivable from a premise set Γ ⊆ Ws iff A ∈ Γ. The second,
even weaker logic, was CLA, in which different occurrences of a non-logical
symbol may have different meanings. Recall that no A ∈ Ws is CLA-derivable
from any premise set Γ ⊆ Ws. It is not difficult to combine the weaknesses of
both logics. I shall call the result CL∅, in words zero logic. In zero logic, logical
symbols have no meaning whereas the meaning of non-logical symbols may vary
by the occurrence. While zero logic in itself is utterly useless, it may function
as the lower limit of a very useful adaptive logic. The idea of zero logic and the
related adaptive logic was first presented in [10]. The paper is a bit clumsy at
some points and uses terminology that has now been replaced.

Defining CL∅ is easy. For the semantics, replace all standard logical symbols
in the CLI-semantics by their classical counterparts and do not add anything
for the standard logical symbols. Let this logic be called CL∅I. For its axiom-
atization, replace the standard logical symbols in the axiom system of CLI by
their classical counterparts (and do not add anything for the standard logical
symbols). From CL∅I, define CL∅ by

Γ ⊢CL∅ A iff Γ† ⊢CL∅I A
‡ .

in which † and ‡ are as in Section 5. The logic CL∅ is useless in itself. It is also
odd. Even the difference between logical and non-logical symbols is blurred.
To be more precise, the difference is obviously neat in the metalanguage, but
nothing within the logic reveals it. This is really the logic that suits the post-
modernist. It also shows that post-modernism, in its extreme form, is not viable.
If, in a text, any occurrence of any symbol can have whatever meaning, then
nothing sensible can be said about the text. I consider it plausible that CL∅ is
the logic present in our brains before we start to learn our mother tongue. Only
as this learning proceeds, we start connecting words to entities in the world
(things, actions, processes) or to representations of such entities, and we start
connecting logical symbols to operations. In doing so, we are forced to turn the
connection into a probabilistic and contextual one.

The most straightforward adaptive logics that have CL∅I as their lower limit
logic combine it with Reliability or Minimal abnormality and with a specific set
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of abnormalities. This set is the union of two subsets: (i) the set containing all
formulas that express gluts and gaps (as mentioned in the table at the end of
Section 3), and (ii) the abnormalities of CLIm , duly phrased in terms of classical
logical symbols. This gives us CL∅Im and CL∅Ir . From these we define

Γ ⊢CL∅m A iff Γ† ⊢CL∅Im A‡ .

and similarly for CL∅r.
I shall not present any example proofs in CL∅Im . These are easy enough in

view of what was said in Sections 3 and 5. It is more important to comment on
the use of adaptive zero logic.

Every symbol, logical or non-logical, has a contingent meaning in CL∅Im .
This means that the meaning of a specific occurrence of a symbol will depend on
the premises. Of course, there are presuppositions, laid down by the abnormali-
ties.27 Thus logical symbols are supposed to have their classical meaning, unless
and until proven otherwise. Different occurrences of non-logical terms are sup-
posed to have the same meaning, unless and until proven otherwise—the fact
that our logic is defined within a language schema causes these meanings to be
left unspecified.

If applied to abnormal premise sets, CL∅Im is a marvellous instrument of
analysis. It locates each and every possible explanation of the abnormality—
but see the next to last paragraph of this section. The idea here is as explained
in Section 4, except that the present analysis is richer: ambiguities in the non-
logical terms are also considered. The analysis will give rise to different abnormal
but non-trivial theories, obtained by blaming one kind of abnormality rather
than another, or by blaming the abnormalities in a certain order (combined
adaptive logics).

If applied to a normal premise set, CL∅Im delivers the CL-consequence set.
This is fully the merit of the adaptivity of the logic, because the lower limit logic
does not assign any meaning to any symbol. The lower limit logic prescribes
literally nothing about any symbol. In CL∅m, the meaning of symbols is in a
sense an empirical matter.

The last statements from the previous paragraph should be qualified. It ob-
viously makes a difference which precise set of abnormalities is selected, because
this defines the normal interpretation of the symbols. A first choice that under-
lies CL∅Im is that the upper limit logic is CL. Some will want to replace this
by a different ‘standard of deduction’. Next, the selected abnormalities are the
plain ones, bare gluts and bare gaps for the logical symbols and plain ambiguity
for the non-logical symbols. For the logical symbols, this may be modified into
many variants, including those from combined logics.

By all means, the present results suggest a skeleton for a formal approach
to the interpretation of texts. What should be added to the skeleton CL∅Im is
basically a set of suitable suppositions about the meaning of non-logical symbols.
Next, contextual features should be taken into account. This is not the place
to expand upon the topic, but it seemed worth pointing out this possible line of
research. The reader will also note the connection with argumentation. Most
contributions to that domain are on the non-formal side and close to natural
language. CL∅Im provides an approach on the formal side and close to formal

27The abnormalities are presumed to be false. By delineating their set, we specify which
formulas are considered to be false unless and until proven otherwise.
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languages. It seems to me that both approaches may work towards each other—
see (the old) [8] for some first ideas on the matter.

7 Conjectures

When (a variant of) zero logic was first discovered, the fascinating properties of
this logic were at once noted. Yet, there was a puzzle. For many premise sets,
formulas are only derivable at a stage on a rather complex condition. Moreover,
often the set of derivable Dab-formulas is very large. An effect of this is that
many premise sets have only rather complex disjunctions as final consequences.
So while zero logic is interesting from a theoretical point of view, it seemed not
very suitable for practical purposes. There was a similar puzzle in connection
with the manifold of adaptive logics described in the previous sections. How
might one possibly justify a choice among the logics in connection with a specific
premise set?

Those puzzles have meanwhile been resolved. Although zero logic may not
be very interesting in itself, it forms an excellent instrument of analysis and
thus contributes to the justification of a choice from the manifold of stronger
corrective adaptive logics.28 I stated this explicitly for the logics from Section
3. The logics from Section 4 may be easily involved in the comparison. At the
worst they require that a separate column of conditions and marks is added to
the proofs. Aside from its relevance to justifying choices of logics, however, zero
logic has a further practical use.

Logics like CL∅m provide an outstanding environment for applying conjec-
tures of the kind considered in [14, 16].29 Given a premise set, one first writes
out a CL∅Im -proof from it. In doing so, the attention should be focussed on
presumably interesting potential consequences, including the conjectures. The
CL∅Im -proof will reveal the connection between potential conclusions and sets
of abnormalities. In view of one’s preferences for deriving certain conclusions,
the connected abnormalities may be studied further. The relevant questions
will be which conclusions depend on the abnormalities (have the abnormalities
in their condition) and in which minimal Dab-formulas the abnormalities occur.
The procedures described in [13, 35] will prove useful in this respect. Once
sufficient insight is gained, a preference with respect to a certain abnormality is
introduced. Remember that such preferences have defeasible effects.

The choices may be organized around an enrichment of the lower limit logic.
This effect is obtained when the logical form that characterizes a certain set of
abnormalities, say disjunction gaps, is declared logically impossible. This was
described in previous sections. The choices may also be made in a piecemeal
way, as is typical for this approach to conjectures. Both ways of proceeding may
also be combined.

Actually, the combination itself may be looked upon in two different ways.
One may strengthen the logic by ruling out several kinds of gluts and gaps
or by ruling out ambiguities altogether, and next introduce conjectures in a
defeasible way. However, one may also proceed in a fully defeasible way. For
example, instead of ruling out implication gluts by introducing the axiom schema

28Justification does not require uniqueness; sometimes several alternatives are equally jus-
tified.

29Given the context, an approach in terms of the symbol ♢ seems most transparent.
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(A ⊃ B) ⊃̌ (A ⊃̌ B) in the lower limit logic, one may extend the premises with
the set {♢i∀̌((A ⊃ B) ⊃̌ (A ⊃̌ B)) | A,B ∈ Fs} for a chosen i—the members of
the set will function as defeasible new premises.

Obviously, what one obtains at best in the end is a minimally abnormal
interpretation of the premise set. The usual next step is the transition to a
normal premise set. Often a partial execution of the first step will provide
sufficient insights to move on to the second step. In the documented cases from
the history of the sciences, whether mathematical or empirical, replacements for
inconsistent theories were most often obtained by a few well-directed changes.
Perhaps an ambiguity was resolved and a non-logical axiom was restricted.

8 Strength of Paraconsistency and Ambiguity

I have argued that each of the logics considered in this paper leads, with respect
to some premise sets, to a different minimally abnormal ‘interpretation’. Obvi-
ously, most of the logics trivialize some premise sets that have no CL-models.
Consider all logics from Sections 3 and 4. Whether the logic is adaptive or not,
the consequence set of {p,¬p} is trivial unless negation is paraconsistent. In this
sense paraconsistency has a special status: it provides models for all premise
sets that have no CL-models.

Ambiguity logics share the strength of paraconsistent logics. Every Γ ⊆ Ws,
even if it has no CL-models, has CLA-models.30 Some paraconsistent logics
may even be defined in terms of ambiguity logics—I have shown in [12] that this
holds for LP from [28, 29] and it is not impossible that a similar result holds
for all paraconsistent logics. Note that this is a technical point. A philosophical
point is that, even if all paraconsistent logics can be characterized in terms
of ambiguity logics, the interpretation of both types of logics is nevertheless
different. The question as to the precise meaning of negation should not be
confused with the question whether ambiguities occur in non-logical symbols.
In this respect, the philosophical tenet of David Lewis in [27] is mistaken. That a
given text (or premise set) may be interpreted both ways is altogether a different
matter.

What should be concluded from the strength of paraconsistency and ambi-
guity? Not much as I see it. These approaches offer a road to a maximally
non-trivial interpretation of every premise set. However, if another logic pro-
vides also such a road for a given premise set, the latter road may be just as
sensible. All the logic needs to do is offer a way for handling a theory T once it
turned out to be CL-trivial. Which maximally non-trivial interpretation of T
will turn out most interesting will always depend on non-logical considerations.
As early as 1964, Nicholas Rescher remarked in [30, p. 37]: “And while the
recognition of ambiguity does fall within the province of logic, its resolution is
inevitably an extralogical matter.” This holds for every cause of triviality.
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