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Abstract—This paper proposes a new integrated eco-
nomic production quantity (EPQ) and condition-based
maintenance (CBM) model for a stochastically deteri-
orating production system. Inspections are performed
periodically to measure the real time degradation. The
system fails (out-of-control) whenever its degradation
is beyond a critical threshold level. In the out-of-
control state, a proportion of nonconforming items are
produced. To assess the degradation of the system
and to increase the production of conforming items,
preventive maintenance (PM) actions are carried out.
An integrated EPQ and CBM optimization model that
minimizes the total expected cost rate over an infinite
time horizon is developed. The objective is to determine
a joint optimal EPQ and PM strategy minimizing the
sum of inspection/maintenance and setup costs, cost of
nonconforming items in addition to inventory holding
cost. Numerical experiments are provided to illustrate
the proposed approach.

Production lot-sizing; EPQ; Condition-based mainte-
nance; Stochastic process; Optimization.

I. INTRODUCTION

In the production and inventory management setting,
the economic production quantity (EPQ) model has been
extensively investigated and extended under relaxation
of various assumptions initially made in the basic EPQ
model [1]. Many research investigations have been made
to integrate production quantity, maintenance and quality
issues in a single model where their interrelations are
explicitly accounted for.

Ben-Daya and Makhdoum [2] investigated the effects
of various PM policies on the joint optimization of the
EPQ and the economic design control charts. In [3],
the author developed an integrated model for the joint
determination of EPQ, quality and PM level for a process
with a general deterioration distribution and increasing
failure rate. The durations of inspection intervals are

340

chosen to make the integrated hazard rate function
equal over each inspection interval [3]. The reader is
referred to [4] for further details on the EPQ approaches
published before 2001. Wang [5] proposed an integrated
EPQ model with rework activity in addition to imperfect
preventive maintenance including minimal repair. Chen
[6] investigated an integrated EPQ model with inspection,
rework and preventive maintenance with error. The
correct execution of preventive maintenance reduces the
system failure rate, whereas a preventive maintenance
error shifts the system to an out-of-control state with
a certain probability. Chen and Lo [7], and Wang [8],
and more recently, Lia [9] studied an integrated EPQ
model for an imperfect production system producing
items that are sold with a warranty. An age based
preventive maintenance has also been used along with
the EPQ model to jointly determine the production
lot size and PM schedule for randomly deteriorating
production system producing both conforming and non-
conforming items (see [10], [11] and the references therein).

From this literature review, one can conclude that
the maintenance policies integrated into the EPQ model
are based on the age of the production system and the
statistical information from the system’s lifetimes. As a
result, the changes in the system reliability caused by how
it is being used is not accounted for. As pointed out in [12],
the main drawback of the lifetimes distributions is that
only the aging process is accounted for when evaluating
whether a system is functioning or not. However, many
real life production systems suffer damage and deteriorate
with both age and usage. There is therefore a need to
develop new integrated EP(Q models where the production
system failures are explicitly related to both age and
usage. In the literature, deterioration process of a system
is generally modeled as a time-dependent stochastic
process. For example, the random deterioration rate,
Markov, Wiener, Gamma and Inverse Gaussian processes



are commonly used approaches that are particularly
good for their mathematical properties and clear physical
interpretations [13], [14], [15]. When the deterioration
of the production system reaches a failure threshold,
maintenance actions should be performed on the system.
If the system’s degradation is appropriately modeled and
measurable, maintenance actions can be carried out on
the basis of the observed degradation data before the
system enters the out-of-control state. This paper aims to
develop a cost-effective joint EPQ and degradation-based
model.

The remainder of the article is organized as follows.
Section II describes the production system and presents
the scope of the problem under consideration. Section III
presents the development of the mathematical formulation
of the problem. A solution procedure is proposed in Section
IV along with several numerical experiments and the dis-
cussion of their results. Conclusions are drawn and future
extensions discussed in the last section.

II. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

Our paper develops a novel joint EPQ and degradation-
based maintenance model and investigates its contribution
to the reduction of non-conforming items produced. The
production system produces a single product type at any
given time to meet a constant and continuous customer
demand rate d. The system is subjected to stochastic
degradation which is defined by a measurable scalar
time-dependent random variable X (t) which can take
linear or nonlinear forms. A dormant failure occurs
whenever the accumulated degradation reaches a critical
threshold Xy, which can be specified according to either
economical or safety reasons. The dormant failure of
the system is revealed only through periodic inspection.
The system is preventively maintained (PM) when the
degradation level reaches a predetermined threshold X,.
The dormant failure causes the production system to
go out-of control with a fraction non-conforming rate
a. These non-conforming items add non-quality costs
to the producer due to additional expenses for rework
or economic losses for poor service. An inventory of
good products is built up when the production system is
in-control. When the degradation level is found to have
exceeded X, or X; the production is stopped for the
preventive and corrective maintenance operations to be
carried out. Demand is then satisfied from the built-up
inventory. Production resumes as soon as the inventory is
completely depleted (Figure 1).

Our objective is to determine an optimal joint EPQ
and PM strategy to minimize the sum of inspection,
maintenance, setup, inventory, non-quality costs. An
evaluation method is provided to optimize the expected
cost rate function.

The following assumptions are considered in this paper:

1) The system deteriorates with a monotonically
increasing stochastic degradation process. The
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Fig. 1. Inventory cycle of the EPQ model with inventory build-up
and depletion.

damages at each time increment are cumulative.
Hence, the degradation is increasing meaning that
the system worsens with time due to aging and
accumulated wear or damage.

2)  The system is assumed to sojourn either in out-
of-control or in in-control states.

3) In the in-control state, the system is producing
only conforming items, while in the out-of-control
state, the production system has a fraction non-
conforming rate «.

4)  Shortages are not allowed.

5)  Failures are revealed only through error-free in-
spections (non-self announcing failures).

6) Inspections are carried out periodically until one
or both of the thresholds are crossed. The inspec-
tion periodicity is a decision variable. Inspection
duration is negligible.

7) PM is performed at a cost C, when the degra-
dation is beyond the threshold X,, which is a
decision variable.

8)  Corrective maintenance (CM) is performed at
a cost C. when the degradation is beyond the
threshold X¢. Furthermore, C, >> C).

9) After either a PM or CM, the system becomes

“as good as new” and is restored to the in-control

state. Maintenance durations are negligible.

Ample inspection and maintenance resources are

always available.

10)

The continuous degradation of the production system
is assumed to follow a stationary Gamma process.
The Gamma process is appropriate for characterizing
monotonically accumulating gradual damage over time
[16], [14]. Tt has therefore been extensively used in
condition-based maintenance optimization problems [17],
[18]. An excellent survey dealing with the application
of the Gamma process in maintenance modeling and
optimization can be found in the seminal paper by van
Noortwijk [14]. The proposed approach is general enough
to accommodate any other degradation process.

The Gamma degradation process of the production sys-



tem is a time-dependent stochastic process {X(t) : ¢ > 0}
with the following characteristics:

1) Pr{X(0)=0}=1,
2)  X(t) has independent increments,

3) Forall 0 <s <t, the random variable AX (s,t) =
X(t) — X (s) follows a Gamma distribution whose
pdf f(s,t,x) and cdf F(s,t,x) are defined for all
x> 0 as:
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where (t—s)v and 7 are the shape and scale parameters,
respectively. The functlon NG fo u*le "du is the
Gamma and I'(a,z) = [ju 0‘ 1cxp( u)du is the lower
incomplete Gamma function defined for o > 0 and x > 0.
From time 0 up to time ¢, the expected degradation is
E[X (t)] = nyt and its variance is Var[X (t)] = n*+t.

The lifetimes of the system are represented by the
random variable Ty = inf{¢t : X(¢) > X} given as the
first passage time when the degradation exceeds the failure
threshold X . Its cdf G (t) = Pr{T} < t} is computed as:

G(t) =Pr{X(t) > Xy}
G(t) = F(0,t,Xy), (3)

x)=1-F(0,7,X,—x). The pdf g(t) =
corresponding to the system’ lifetimes T is given as:

g(t) = ﬁ /XOO [In(u) — U(yt)] u? " exp(—u)du, (4)

where ¥(u) is the digamma function defined as the loga-
rithmic derivative of the Gamma function:

dln (T'(w))
du

where F(0,7, X, —
6G(t)

2f
n

U(u) =

The production process starts initially with a new
production system. The system degrades while producing
items. When the system degradation is lower that the
failure threshold Xy, the system is said to be in an in-
control state, it is in an out-of-control state whenever its
corresponding degradation exceeds the failure threshold
Xy. The sojourn time in the in-control state is modeled by
the random variable Ty whose cdf is given by Equation (3).
While in its in-control state, items produced satisfy the
quality requirements. However, in the out-of-control state,
the system continues to produce but only a percentage
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Production system’s degradation path and its operating

(1 — a) of the products are acceptable. An example of
a possible degradation path of the production system is
shown in Figure (2) where the degradation is governed
by a Gamma process with a shape parameter v = 2.5
and a scale parameter 7 = 0.5. The figure shows also the
system’s failure threshold X separating the two possible
zones where the system is either in the in-control or in
the out-of-control state.

To assess the production system’s degradation and
to improve production quality, the production system is
subjected to an inspection and maintenance strategy de-
scribed as follows. The system is periodically inspected
at times kT (k = 1,2,...) where 7 is the inspection
interval which is a decision variable. Failures of the system
are revealed only through inspections (i.e. failures are
not self-announcing). During an inspection, the magnitude
of the system’s degradation is measured at cost Cj. If
the degradation level measured is found to be less than
Xp, no maintenance action is performed and the system’s
condition remains as it was just before the inspection. If
the degradation value exceeds the failure threshold Xy, a
corrective maintenance (CM) is carried out at cost C.. If
the degradation level is higher than a given degradation
level X, (see Figure 2), then a preventive maintenance
(PM) action is performed. The degradation level X, is a
decision variable and X, < X;. It should be noted that
the choice of the PM threshold X, greatly impacts the
performance of the production system. Indeed, if X, is
chosen to be close to the failure threshold X, then the
probability of the system shifting into the out -of-control
state increases significantly. Conversely, for low values of
Xp, the probability of failure is reduced and the residual
life of the production system is increased. Low values of
X, may reduce the risk of producing bad items but they
increase the maintenance cost by generating more PM
actions. There is therefore a need to find the optimal trade-



offs between the production, inspection and maintenance
costs through the optimization of the economic production
quantity @, the threshold X, and the inspection interval
T.

III. THE INTEGRATED EP(Q OPTIMIZATION MODEL

The objective of the optimization model is to find the
optimal values of the decision variables, namely the inspec-
tion interval 7 and the preventive maintenance threshold
Xp, which minimize the expected total cost per unit of
time C(r, X,) over an infinite time horizon. We have a
regenerative process starting and ending at the instants of
complete depletion of the inventory, which follows either
a preventive or a corrective replacement (see Figure 1). It
follows from the theory of renewal reward processes that
the long-run expected total cost per unit of time C(7, X,,)
is the average total cost E[C] in a cycle divided by the
average length E[T] of that cycle:

E[C]

C(1, X)) = ——=. 5
( 9 P) E[ﬂ ( )
The average total cost E(C) in a cycle is defined as the
sum of the setup cost S, the expected inventory holding
cost H., the expected maintenance cost M., and the cost
of producing nonconforming items NC.. In what follows,
these costs are fully defined and discussed as well as
the average length of the inventory cycle. The expected
inventory cycle length E[T] is the sum of the expected
maintenance (production) cycle and the expected time
required for inventory depletion (Figure 1). To compute
these costs, let us first evaluate the expected inventory

cycle length E[T].

A. The expected inventory cycle length

According to Figure (1), the expected inventory cycle
length E(7) is computed as:
p
E[T] = SE[Tu], (6)
where p is the production rate, E[Ty/] is the expected
maintenance (production run) cycle which ends either by a

preventive or corrective replacement. The following lemma
computes the value of E[T)].

Lemma 1: The expected production cycle E[Ty] is
computed as:

00 X, B
E[Th] :Zir/o FO, (i=1)7, 2)F (0, 7, X, —)da, (7)

Proof: Comes straightforward from the fact that the
probability of a maintenance action being performed after
the i*" inspection is equal to the probability that the ac-
cumulated system’s degradation in the interval [0, (i —1)7]
is lower than the threshold X, and the degradation X (i7)
measured at time i7 is greater than or equal to the PM
threshold X,,. This probability is computed as:

Pr{X((i — 1)7) < Xp; X(iT) > X, }
Xp

= 0, — )7, 2)F(0, T, X, —z)de.
0
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B. The expected inventory holding cost

According to Figure (1) together with the result of
Lemma (1), the expected inventory holding cost E[H.] is
computed as:

plp — d)(E[Tn])®

where C}, is the unit holding cost per unit of time.

C. The expected inspection and maintenance cost

According to the maintenance policy adopted, the pro-
duction system is periodically inspected. Whenever either
a PM or a CM is performed, the production systems
becomes as good as new. The following lemma gives the
expected maintenance cost of a maintenance cycle.

Lemma 2: The expected maintenance cost E[M,] dur-
ing the maintenance cycle Ty is:

00 X,
B =S i /O F(0, (i = )r, 2)F(0, 7, X, — 2)da—t
=1

o0 Xp ' B
;/0 [0, (i = 1)7,2) (CLF (0,7, X, — )+
(Ce— Cp)F(0,7, Xy — 2)) da. )

Proof: Let us consider two stochastic events E¥ and
E¢. The event E? occurs when a PM is to be performed
after the i‘" inspection, while the event Ef occurs when the
CM is to be carried out following the the i*” inspection.
The occurrence probability of the event EY is computed
as:

Pr{El} =Pr{X((: — 1)7) < Xp; X, < X(iT) < Xy},
(10)

It follows that the probability to perform a PM after the
i*" inspection is:

Xp Xy—z
Pr{E’} = /0 f(0,(i—1)r,x) </ f@0, 7, y)dy) dz

Xp—2x
(11)

Similarly, the occurrence probability of the event EY is
computed as:

Pr{ES} = Pr{X((i — 1)7) < X,; X(it) > X/}
(12)
We then have that the probability to perform a CM after
the " inspection is:

Xp -
Pr{E} = /0 f0,(i — )7, 2)F(0,7, Xy —x)dx. (13)

If the maintenance cycle is equal to 7, it follows that from
Equations (11) and (13), the resulting expected inspection
and maintenance cost is:

(Cp +iCr)Pr{E?} + (C. +iC) Pr{Ef}.



Therefore the expected total maintenance cost can be
written as

> (Cp +iCr) Pr{EF} + (C. +iCr) Pr{Ef}.

i=1
After basic algebraic operations, the result of the lemma
is directly obtained. ]

D. The expected cost of producing nonconforming items

It is assumed that a percentage « of nonconforming
items are produced during the period where the production
system sojourns in its out-of-control state, i.e. during the
time period where the system’s degradation is greater than
the failure threshold X ;. The expected total cost E[NC,]
induced by producing such nonconforming items is given
by the following lemma.

Lemma 3: The expected total cost E[NC,| correspond-
ing to nonconforming items is:

E[NC,.] = Cmapz < /( %Tl) (it — t)g(t)dt) X

X, -
( f(07 (Z - 1)T7$)F(0a7a Xf - I)dl‘) )
0
(14)
where g(t) is the pdf of the system lifetimes in Eq. (4).

Proof: The proof is obtained by computing the condi-
tional expectation by conditioning on the event Ef which
represents the case where the production run cycle is ended
by a CM.

X, -
Pr{E{} = / f(0,(i = 1)7,2)F (0,7, Xy — z)dx.
0
We then have:

E[NC.] = Cycap Z E[NC;|ge] Pr{E;}

i=1

— ncap; < /( “)TE[NCC|Tf]dG(t)> Pr{Ef}
= ncap; </(i1)7 ap(it — t)dG(t)) Pr{E{}.
(15)

From the above results, the optimization problem consid-

ered is to find the decision variables defining the optimal

joint values of the inspection time period 7 and the PM

threshold X,,, which minimize the total expected cost rate:
Sc+ E[H.] + E[M,.] + E[NC,]

O(’T, XP) - E[ﬂ ) (16)
where we recall here that Sc, E[H.|, E[M.], E[NC.] and
E[T] are, respectively, the setup cost, the expected hold-
ing cost, the expected inspection and maintenance costs,
the expected cost of producing nonconforming items, and
the expected inventory cycle length. Unfortunately, the

344

optimal solutions that minimize Equation (16) are in
general difficult to obtain analytically and proof of global
convexity would be intractable. Therefore, a numerical
method is needed to solve this optimization problem. A
numerical procedure is developed based on the fix-and-
optimize method to minimize Equation (16).

IV. NUMERICAL EXAMPLES

In this section, we investigate the problem of solving
the integrated EPQ and maintenance for a production
system whose random degradation is governed by a
stationary gamma stochastic process {X(¢) : ¢ > 0}. The
latter is characterized by its scale and shape parameters
set, respectively, to n = 0.8 and v = 1.15. The production
system fails whenever its degradation reaches the failure
threshold Xy = 4. The demand and production rates are
d = 50 and p = 100. Costs corresponding to setup, unit
non-conforming product, PM, CM and inspection are set,
respectively, to S = 150, C,. = 400, C, = 60, C. = 100,
C; = 0.5, and the holding cost is set to C, = 0.5.
Data used within this experiment are arbitrary and
considered for illustration purposes, and they are assumed
to be given, if any, in appropriate time and monetary units.

Let us recall that the objective is to determine
simultaneously the optimal values of the the decisions
variables, namely the inspection period 7 and the
preventive degradation threshold X,,.

To show how important the value of the preventive
threshold X, is, let us first assume that X, is an input
parameter set by the decision-maker rather than being
a decision variable. The objective of the manufacturer
is then reduced to finding the optimal value of the
inspection period 7. In the case where X, = 2.5, the
optimal solution suggests to perform inspections at a
period 7 = 0.5. This solution induces an expected total
cost rate C(7,X,) = C(1.1,2.5) = 71.94. If we consider
the extreme case where the PM is ignored (X, = Xy),
in this case the optimal inspection period is 7 = 0.6
which induces an expected total cost rate evaluated to
C(0.6,4) = 82.50. This simple example clearly illustrates
the balancing role played by the PM threshold in the joint
EPQ optimization problem.

Now, if the integrated EPQ model is solved jointly for
both decision variables 7 and X, the optimal solution
suggests to perform inspection at period 7 = 1.4 while
PM are carried out whenever the degradation threshold
reaches the level X, = 1.55 (see Figure 3). This inspec-
tion/maintenance policy induces an expected total cost
rate of C'(1.4,1.55) = 70.89.

V. CONCLUSION

In this paper, we developed a new integrated model for
the joint optimization of EPQ and preventive maintenance
for a stocastically deteriorating production system. Unlike
the existing approaches, our model uses condition-based
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maintenance decision making. The degradation of the sys-
tem is modeled as a stationary Gamma process. However
the proposed approach is still general enough to encompass
other kind of degradation processes. Inspections are carried
out periodically to monitor the system degradation. A PM
is performed whenever the degradation exceeds a threshold
which is a decision variable. A CM is performed whenever a
specified critical threshold is reached. A numerical example
was provided to illustrate the proposed approach. Effects
of both inspection period and PM degradation threshold
is shown to play an important role on the joint EPQ and
maintenance decision making.
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