
3350 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 6, DECEMBER 2017

Ontology-Based Modeling of Control Logic in
Building Automation Systems

Georg Ferdinand Schneider , Pieter Pauwels, and Simone Steiger

Abstract—The control logic implemented in building au-
tomation systems (BAS) has a significant impact on the
overall energy demand of the building. However, informa-
tion on the control logic, if documented, is often concealed
from further data integration and reuse in heterogeneous in-
formation silos using disparate data formats. In particular,
existing data formats and information models offer limited
support to describe control logic explicitly. Ontology-based
modeling of the control logic of BAS can potentially result
in a versatile source of information for information-driven
processes to further increase the performance of techni-
cal equipment in a building. Therefore, we present a novel
information model, CTRLont, which allows to formally spec-
ify the domain of control logic in BAS. We demonstrate the
usefulness of the novel information model by using it as
a knowledge base for automating rule-based verification of
designed control logic in BAS. We successfully apply the
methodology to a simple control of an air handling unit and
indicate a number of future steps.

Index Terms—Building automation system (BAS), con-
trol, ontology, schedule, state graph, state machine.

I. INTRODUCTION

AUTOMATION systems are essential ingredients for the
mass production of goods and commodities as well as the

automation of technical systems (e.g., buildings) to enable re-
source efficient operation [1]. In the building sector, building
automation systems (BAS) are understood to be a key technol-
ogy to increase energy efficiency of existing and future build-
ings [2], [3]. The use of BAS is stipulated by relevant standards
(e.g., EN 15232 [4], LEED [5]). Moreover, up to 30% of heat-
ing energy savings may be achieved in an office building by
deploying properly configured BAS [4]. An overview of control
systems for energy and comfort management related to build-
ings is provided in [3]. Unfortunately, practical implementations
of BAS often fail to meet their expectations regarding energy

Manuscript received October 31, 2016; revised April 14, 2017, May
24, 2017, and July 3, 2017; accepted August 12, 2017. Date of publica-
tion August 23, 2017; date of current version December 1, 2017. This
work was supported by the state of Bavaria through the “Bavaria on the
move” initiative. Paper no. TII-16-1252. (Corresponding author: Georg
Ferdinand Schneider.)

G. F. Schneider and S. Steiger are with the Fraunhofer Insti-
tute for Building Physics, Nuremberg 90429, Germany (e-mail: georg.
schneider@ibp.fraunhofer.de; simone.steiger@ibp.fraunhofer.de).

P. Pauwels is with the Ghent University, Ghent 9000, Belgium (e-mail:
pipauwel.pauwels@ugent.be).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2017.2743221

efficiency. Such malfunctioning BAS contribute to the perceived
gap between predicted and actual energy demand of a building
[6]. In order to establish effective ways of designing, commis-
sioning, and operating energy-efficient BAS, there is a strong
need to exchange information regarding its innermost part: the
control logic.

Information exchange over the life cycle of BAS, including
their control logic, commonly consists of textual descriptions,
spreadsheets, and two-dimensional drawings. Such exchanges
are suggested for design documentation and information hand-
over after commissioning by relevant standards in the field of
BAS [7]–[9]. Consequently, verifying correct operation of the
control logic from this unstructured documentation [10], [11] or
checking the compliance of BAS with energy efficiency classifi-
cations [4] are cumbersome, time-consuming, and costly tasks.
Such processes require a structured definition of the as-designed
control logic, the bindings defining the logical topology of all
control actors in BAS, contextual information on the affilia-
tion of control entities to building elements and equipment, and
additional information on inputs and outputs (e.g., measured
quantities). In conclusion, the problems in the existing informa-
tion exchange on control logic in BAS are:

1) Reliance on textual descriptions, spreadsheets, and draw-
ings;

2) Heterogeneous and distributed nature of related informa-
tion over various formats and information silos specified
without definition of common semantics;

3) Absence of a unified manner to provide contextual infor-
mation from adjacent information domains, e.g., building
elements and equipment.

To address the above mentioned problems, several efforts
aimed at modelling information related to BAS exist, as re-
ported in Section II. However, none of these efforts fulfill all
requirements of an appropriate information model to overcome
the summarized problems.

1) High-level description of control actors and related se-
mantics, i.e., inputs, outputs, parameters, the control ac-
tor, and its logic and the domain-specific relationships
among them, e.g., hierarchy and logical binding;

2) Explicit, formal specification of the control logic itself;
3) Contextual information on inputs and outputs: unit,

medium, quantity, affiliation to building elements, and
equipment;

4) A modular structure to ensure easy extension with future,
novel control logic, and to encourage reuse of existing
ontologies in adjacent information domains;

1551-3203 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/141870441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-2033-859X

SCHNEIDER et al.: ONTOLOGY-BASED MODELING OF CONTROL LOGIC IN BUILDING AUTOMATION SYSTEMS 3351

5) Use of a machine-interpretable format to enable intelli-
gent, automated applications based on this information.

The contribution of this paper resides in presenting a novel
information model termed CTRLont, which aims to respond to
the above five requirements and, thus, allows to integrate ex-
plicit models of control logic in a formal and unified manner
with adjacent information domains. CTRLont allows to specify
inputs and outputs of control actors with e.g., units, quantities,
etc. Moreover, it is possible to describe control actors and re-
lated semantics from the control domain on an abstract level.
CTRLont supports the integration of explicit descriptions of
control logic in a modular way, thus, allowing easy reuse and
extensibility. The model is implemented using the Web On-
tology Language (OWL) [12], enabling its reuse in intelligent
applications through semantic search and reasoning. Addition-
ally, we provide information models to explicitly model control
logic defined as Unified Modelling Language (UML) state ma-
chines [13], state graphs [14], and schedules.

In the subsequent sections, we, first, analyze related work on
information modeling of control logic in BAS (see Section II)
with regard to meeting the defined requirements. We then
present the novel information model (CTRLont, Section III)
and explicit specifications of control logic (see Section IV).
Finally, we demonstrate the usefulness of the novel model by
automating rule-based verification of designed control logic in
a use case (see Section V).

II. RELATED WORK

A. Generic Formats for the Representation of Control
Logic

A method to design control logic are UML state machines
[13]. UML is a well accepted, standardized modeling language
across various domains. A format that can be used to represent
and exchange these designs between UML editors is the XML-
based data format XML metadata interchange (XMI) [15]. How-
ever, because the UML is designed to describe generic appli-
cations, certain information uniquely associated to BAS cannot
be expressed in a commonly agreed manner. For example, the
affiliation to pieces of technical equipment or detailed semantics
of input variables is not commonly defined in the UML.

Another format for industrial automation systems is stan-
dardized in IEC 62714 [16]. In this standard, the control logic is
exchanged using the open PLCopenXML [17] format. The for-
mat allows to specify a logical topology as a directed graph and
basic data types for interface variables, e.g., integers. The actual
control logic is specified by including the implemented source
code in one of the five languages from IEC 61131-3 [18]. The
PLCopenXML data format covers high-level interface descrip-
tions of control actors, e.g., the logical topology. Limitations
exist when a detailed specification of the unit or quantity of an
input or output is required. Furthermore, the formal specification
of the control logic is hampered when using text-based program-
ming languages from IEC 61131-3 [18], since the format stores
the plain source code only.

An effort stemming from the modeling of heterogeneous
models of computation resulted in the modeling markup lan-

guage (MoML) [19], which is implemented in XML and
supports an actor-oriented description of systems. The actor-
oriented basis of MoML [19] enables the high-level description
of control actors and relationships among them, e.g., input is
connected to output. However, the modeling language lacks the
possibility to express the affiliation of an actor to building ele-
ments and equipment.

Finally, an information model for BAS implemented using
the EXPRESS data modeling language [20] covers a high-level
description of control actors (hierarchy, logical topology) and
the integration with adjacent domains of information (network,
data points, building elements, and equipment) [21]. However,
details on specifying, for example, the unit of an output relies on
naming conventions in this approach. This poses serious barriers
for interoperability and reuse.

B. Representation of Control Logic Using the Web
Ontology Language (OWL)

Several examples in the literature use OWL [12] for the rep-
resentation of BAS, with the aim of formalizing the description
of BAS and to allow linking to related information areas. These
two key aims are at the core of the Semantic Web idea. A
comprehensive introduction to Semantic Web technologies in
general may be found in [22], and an overview on the topic in
the building domain is provided in [23].

For instance, DogOnt [24] is an ontology to describe domotic
environments, such as connected household appliances. For an
extended use case the ThinkHome ontology formalizes all rel-
evant information for energy analysis in residential buildings,
including ambient weather conditions, building structure and
materials, appliances, comfort, energy, processes, and sched-
ules [25]. The smart appliances reference ontology is a consen-
sus of domain experts for smart household appliances that was
established after reviewing existing ontologies in the field [26].

Some approaches focus on information integration for energy
management. An ontology is presented by [27] for an airport
facility. This ontology constitutes a knowledge base for energy
management according to ISO 50001 [28]. A similar approach
is presented by [29], but with a stronger focus on energy system
modeling. A remarkable piece of work on cross-domain data in-
tegration using ontologies for energy performance assessment
in buildings is presented in [30] (“performance assessment on-
tology”). Notable work in the direction of defining a domain
ontology for BAS (BASont) is documented in [31]–[33]. It is
related to cope with heterogeneity and interoperability issues in
BAS, resulting from the wide range of data formats and commu-
nication protocols used in these systems. Some of the developed
ontologies are used to automate the design process of BAS [33].

A wider range of domains is captured by information models
designed to represent all information related to a building to en-
able seamless information exchange over its life cycle [Building
Information Modeling (BIM)]. Such models include informa-
tion on building elements and equipment, geometry, BAS, and
process and project management [34]. The Industry Foundation
Classes (IFC) is an information model developed by buildingS-
MART that captures such information. It is implemented in

3352 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 6, DECEMBER 2017

EXPRESS [20] and has been translated to XSD and OWL [35].
Closely related to the IFC, but with its application in the do-
main of energy simulation, SimModel [36] aims at bridging the
gap between BIM and building energy performance simulation.
The SEAS ontologies are a family of upper level ontologies for
the engineering domain and provide concepts for data points in
BAS on an abstract level [37].

C. Summary

After reviewing the existing data formats and ontologies,
none is found to fulfill all five requirements specified in the
introduction. The definition of formal semantics in languages
other than OWL is possible but limited due to their reliance
on XML or EXPRESS technology (see Section II-A above).
Existing conceptualizations from ontology-based modeling ap-
proaches related to BAS (see Section II-B above) are tailored to
the respective application areas, i.e., smart home and appliances,
energy efficiency, BIM, and BAS. All models are implemented
using OWL, enabling the reuse of information modeled using
these ontologies for intelligent applications. The ontologies in-
clude concepts to describe building elements and equipment,
physical entities of BAS such as devices, sensors, actuators,
and virtual entities, e.g., data points, control actors, etc., with a
varying degree and resolution. However, none of the reported
approaches allow to explicitly model the control logic existing
in BAS. Instead, reported approaches aim at capturing control
logic using extensive classification schemes where one concept
represents one type of control logic [24]–[27], [36] or refers to
definitions provided in standards [33]. To fill the existing gap in
explicit modeling of control logic in BAS, we propose a novel
information model, which will be introduced in the remainder
of this paper.

III. CTRLONT ONTOLOGY

In this section, we describe the architecture of our modeled
ontologies that formalize control logic in BAS. The modeling
is undertaken using OWL, which offers benefits as it is an ex-
pressive formal language with a firm basis in description logics.
Furthermore, the usage of OWL allows the integration of the
novel model with existing domain models (see Section II-B)
and allows the deduction of new insights by semantic search
and reasoning. For the design of the CTRLont ontology, we fol-
lowed a structured approach [38] and we relied on the review of
existing conceptualizations documented in Section II. All on-
tologies are represented using graphs as shown in Fig. 1. The
utilized nomenclature and namespaces applied in this work are
depicted in Fig. 2. For better readability, we omitted imposed re-
strictions in the ontology visualizations (cardinality restrictions,
universal qualifiers, existential qualifiers, type restrictions).

Central to the CTRLont ontology (see Fig. 1) is the
specification of the sense-process-actuate pattern, which is
recognized in the control domain, e.g., function profiles [7], [8],
function blocks [39], or generic actor-oriented modeling [40].
A ControlActor typically acquires information through
Inputs, processes this information by some Applica-
tionLogic and performs informed actuation via some

Output [1]. Each ControlActor entity is related to an
ApplicationLogic entity using the relationship hasAp-
plicationLogic. The object properties logicInput,
logicOutput, and logicParameter are defined to
explicitly model the relationships of ApplicationLogic
to Input, Output, and Parameter. The concept Pa-
rameter describes time-invariant values and settings of the
respective ControlActor and can be added according to the
specific needs of the respective ApplicationLogic.

In any building automation solution, a network of Contro-
lActor entities isConnectedTo each other via the respec-
tive inputs and outputs forming the logical topology of the
system. Moreover, a hierarchical relationship exists between
entities placed at the field level/ automation level and entities
placed at the management level [7]. A management level en-
tity often supervises an entity on the automation and field
level and a field level entity isSupervisedBy a manage-
ment level entity. This implicit hierarchy needs to be reflected
by the model, e.g., to deduct that a control strategy imple-
mented on management level is the root cause for a local control
failure.

The concept of a ControlActor may be used to spec-
ify both open-loop and closed-loop control entities [41]. In the
case of closed-loop control entities, specific concepts and re-
lationships need to be introduced in the respective Appli-
cationLogic to describe a setpoint either as an Input or
a Parameter. Further annotation of inputs, outputs, and pa-
rameters is important to enable interoperability and exchange
of ControlActor entities among software and automation
systems or the automated design of BAS [33]. In particular, the
specification of their Unit, Quantity, Medium, and Se-
manticType (see Fig. 1) is needed. We refrain here from
specifying completely new ontologies. Instead, we implement
placeholders for the mentioned concepts and suggest reusing
existing ontologies, e.g., ontology for units of measure (OM)
[42]. Further annotation might be necessary to allow the de-
scription of more detailed differences such as a drybulb and a
wetbulb air temperature [33]. Therefore, a domain-dependent
SemanticType can be introduced.

The concepts Input, Output, and ControlActor are
related to technical equipment (e.g., air handling unit (AHU)
controller) or to building elements such as spaces (room tem-
perature control). Instead of expressing this through the use of
taxonomies, we suggest to relate the respective concepts directly
to concepts from existing information models from adjacent do-
mains, e.g., BAS [32], BIM [35] and technical systems [37].

IV. EXPLICIT MODELING OF CONTROL LOGIC

In this section, we provide examples of ontologies that can be
used to explicitly represent control logic in BAS, namely UML
state machines [13], state graphs according to VDI3814-6 [14],
Boolean expressions apparent in conditions of state machines
and state graphs and schedules. The chosen examples reflect a
portion of control logic frequently deployed in BAS but are not
meant to be exhaustive. The examples represent the lower part

SCHNEIDER et al.: ONTOLOGY-BASED MODELING OF CONTROL LOGIC IN BUILDING AUTOMATION SYSTEMS 3353

Fig. 1. Concepts and relationships of the CTRLont ontology.

Fig. 2. Overview of namespaces and nomenclature used.

of Fig. 1 (control logic), and thus extend the CTRLont ontology
specified above.

A. UML State Machine

UML state machines provide a generic way to model con-
trol logic [13]. We developed the ontology presented in Fig. 3
by modifying an existing one [43]. Our modifications include
the alignment to the latest version of the UML standard [13]
and an extension to explicitly include Boolean expressions in
guards. As is clear from Fig. 3, StateMachine contains
StateMachineElements such as State and Transi-
tion. State may be further specified, e.g., by Compos-
ite. The transition from one state to another is triggered by an
Event and a BooleanExpression described using the on-
tology presented in Section IV-C guards the transition between
two states. State and Transition usually have a related
Action. According to the UML standard, any arbitrary be-
havior may be specified for an Action. Within an Action,
inputs are transformed to outputs. In this model, we, therefore,
define a placeholder conceptBehaviour that has relationships
to Input, Output, and Parameter. Suitable approaches

Fig. 3. Concepts and relationships to model a UML state ma-
chine. The modeling of BooleanExpression in conditions is detailed
in Section IV-C.

to specify Behaviour are briefly discussed at the end of
Section V. Finally, the StateMachine concept is specialized
from StateMachineElement, aiming to comply with the
UML definition of nested state machines, i.e., a state machine
may contain other state machines.

B. State Graphs

State graphs are defined according to the VDI 3814-6 stan-
dard [14] and are supposed to fill a gap in standardized control
descriptions by representing “specific logic interlocks” in BAS.

3354 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 6, DECEMBER 2017

Fig. 4. Concepts and relationships to describe a state graph as speci-
fied in the standard VDI 3814-6 [14]. The modeling of BooleanExpres-
sion in conditions is detailed in Section IV-C.

They are used to provide a graphical representation of control
logic that can complement textual descriptions. We designed
an ontology for state graphs as illustrated in Fig. 4, while tak-
ing into account the previously defined ontology (see Fig. 3). A
difference between state graphs and state machines is that condi-
tions triggering a transition from one state to another only relate
to a state. The designed ontology reflects this detail by relat-
ing the concepts Action and Condition directly to State.
As defined in the standard, a value is assigned to an output
(assignValue) immediately when a state and its associated
actions are active. An Output may be related to State to
represent a virtual datapoint indicating state activity. The stan-
dard defines, separately from state graphs, function blocks that
may be used to translate the assigned value, possibly involv-
ing the translation of inputs to outputs. As this function block
forms a separate ApplicationLogic, it is not specified
here.

If more than one transition is targeting a state, conditions
need to link to the respective transitions using the transi-
tionCondition object property. Instances of Input and
Condition are related as described in Section IV-C.

C. Capturing Conditional Logic

The description of conditional logic is a central element to link
concepts from state-based control logic such as UML state ma-
chines and state graphs to inputs of a control actor. For example,
the transition from one state to another state in a UML state ma-
chine may be prohibited by a guard, which specifies a condition
y <= 1. In data formats like XMI or MoML, this information
is stored as a plain string, omitting the actual semantics of this
piece of information (see Section II). The ontology presented
in Fig. 5 on the contrary allows to formalize the conditions ap-
parent in transitions of state-based control logic. We assume
that these pieces of conditional logic are expressed as Boolean
expressions, which may be concatenated and nested using log-
ical conjunctions (AND), logical disjunctions (OR), and logical

Fig. 5. Concepts and relationships to describe conditional logic ex-
pressed as Boolean expressions.

negations (NOT). The body of a Boolean expression usually in-
corporates a left-hand and a right-hand side of the expression.
Left-hand side and right-hand side are in a relationship, which
captures the information to compare both, e.g., equalTo. The
affiliation to an Input or Parameter can be expressed using
the logicInput and logicParameter property, respec-
tively.

D. Schedule

Schedules are a frequently occurring control logic within
BAS. They provide a straight-forward way to reduce the energy
demand of a building by simply aligning equipment operation
with occupation periods. An ontology to describe schedules in
a generic manner is presented in Fig. 6.

A schedule is modeled as a set of consecutive intervals, which
are defined with their start and end points and a mathemati-
cal function describing the relationship in-between. We assume
that only polynomial functions occur. The explicit relationship
to Input and Output of the respective Schedule is estab-
lished. Moreover, the concept Periodicity allows to spec-
ify whether a schedule is repeated on a daily, weekly, or yearly
basis.

V. USE CASE

In the following section, we underline the usefulness of
ontology-based, explicit modeling of control logic by automat-
ing a rule-based verification method of designed control logic
in BAS presented by [10], [11].

A. Automated Rule-Based Verification of Designed
Control Logic in BAS

It is nearly impossible for control logic designers to ver-
ify whether the as-designed control logic was implemented as
specified after commissioning. This is caused mainly by the

SCHNEIDER et al.: ONTOLOGY-BASED MODELING OF CONTROL LOGIC IN BUILDING AUTOMATION SYSTEMS 3355

Fig. 6. Concepts and relationships to describe a schedule.

Fig. 7. Flow chart for automated rule-based verification of designed
control logic in BAS.

following reasons: the monitoring of data through seasons and
operation modes is not yet available and, usually, the source
code of the implementation is concealed. A methodology that
addresses this problem is introduced in [10]. The approach re-
lies on the analysis of existing documentation of a building
automation solution by domain experts, who then define verifi-
cation rules to evaluate monitoring data. Clearly, manually an-
alyzing this documentation is highly time-consuming, because
documentation is spread across various data formats including
textual descriptions, spreadsheets, and drawings. Instead of un-
dertaking this labour-intensive task, we propose to follow an
automated process as depicted in Fig. 7.

First, data describing the control logic design and respective
data points are extracted and formalized from state-of-the-art
design tools for BAS. The results are stored in a knowledge
base. Archetype rules derived from expert knowledge on how to
verify a certain control logic type are encoded as parameterized
queries. Next, the necessary information to configure instances
of the parameterized queries encoding the archetype rules is
retrieved using a fixed query to the knowledge base. Monitoring

Fig. 8. Schema [7] of implemented use case. YSce , YM ix , YFan ,
YPum p —Normalized output signal from schedule, mixing box damper
flap, fan and pump, Thcr—Heating coil return water temperature, Toa —
Outdoor air temperature.

data are evaluated by deploying the configured queries. In this
approach, a deviation at a point in time from the designed control
logic is interpreted as a symptom of a fault. The results are stored
and visualized for fault isolation and post-processing, e.g., by
calculating the weighted operational quality [10].

B. Implementation and Results

The method described above has been implemented using
Python programming language and is deployed in a test case
for a fictional AHU. First, we describe the setting of the test
case; then we present instances populating the above-mentioned
ontologies and queries to implement the method following the
procedure as outlined in Fig. 7. Finally, we present results from
applying the method to simulated data.

The designed, rather simple control consists of two control
actors, a schedule and a state graph. The topology of the con-
trol logic, its connections to inputs and outputs and drawings
of the control logic are illustrated in Fig. 8. The schedule re-
stricts operation time of AHU fans and pumps to occupied times
between 8 am and 6 pm. A state graph is modeled to actually op-
erate the AHU within states Off, StartUp, and On. Return
states illustrated as circles act as placeholders and redirect to
the respective states when the associated Boolean expressions
evaluate to true. To prevent damage to the heating coil through
freezing (outdoor air temperatures Toa below 1◦ C), the control
logic operates the AHU by recirculating return air YMix := 0 at
StartUp only. Normal operation (On) with a fixed opening of
the mixing box damper YMix starts when the heating coil water
return temperature Thcr reaches 30 ◦C.

Fig. 9 shows an excerpt of instances of the designed control
logic presented in Fig. 8 that are stored in a knowledge base.
Note, here we use SEAS ontologies to model data points of BAS

3356 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 6, DECEMBER 2017

Fig. 9. Excerpt of instances used in test case (see Fig. 8), visualized using OWLGrEd tool and notation [45]. id5—Virtual data point of state Off.

TABLE I
EXAMPLE INFORMATION RETRIEVED FROM KNOWLEDGE BASE

FOR STATE Off. VARIABLES AS DENOTED IN CODE 1.

vState vDPState vDPMeas vValue

:StateOff :id5 :YMix ’0’
:StateOff :id5 :YFan ’0’
:StateOff :id5 :YPump ’0’

on an abstract level [37]. This information is retrieved to con-
figure parameterized queries implementing archetype rules. For
example, the SPARQL query in Code 1 can be used to config-
ure instances of the parameterized query listed in Code 2 (also
implemented in SPARQL [44]). Results of the query listed in
Code 1 for state Off are presented in Table I. The following
archetype rule can be defined from expert knowledge: If a state
is active, the associated actions are supposed to be executed [10].
Consequently, monitoring data can be queried for occurrences
where the actual value differs from the respective value obtained
from the design specification. For the presented use case a pa-
rameterized query realizing this is given by Code 2. Similarly,
archetype rule and query can be formulated for a schedule.

Here, we chose to store the monitoring data obtained from
simulations in RDF format [46] using a straightforward trans-
formation method that models each sampled measurement as an
individual of PrimaryKey. Readings are associated to each
of these individuals using an owl:ObjectProperty (e.g.,
tb:YPump), which has the unique identifier of the reading as
its URI. We use an arbitrary prefix in this case (tb:). Strings
enclosed by $ are placeholders and replaced in configured in-
stances of the queries.

In order to deploy all configured queries and to follow the
notion of operation state space (OSS) as introduced by [10],
all instances of queries are nested into one query using UNION

Code 1: Query to retrieve necessary information to config-
ure parameterized query listed in Code 2.
PREFIX [...]
SELECT ?vState ?vDPState ?vDPMeas
?vValue
WHERE
{?vSG rdf:type SG:StateGraph ;

SG:contains vState .
?vState rdf:type SG:State .
?vState SG:stateAction ?vAction .
?vAction rdf:type SG:Action .
?vAction SG:assignValue ?vValue .
?vAction ctrl:logicOutput ?vOutput .
?vOutput rdf:type ctrl:Output .
?vOutput seas:connectsSystemThrough
?vConn .
?vDPMeas seas:connectsSystemThrough
?vConn .
?vDPMeas rdf:type seas:Communication
ConnectionPoint .

?vState ctrl:logicOutput ?vOutputS .
?vOutputS rdf:type ctrl:Output .
?vOutputS seas:connectsSystemThrough
?vConnS .
?vDPState seas:connectsSystemThrough
?vConnS .
?vDPState rdf:type seas:Communication
ConnectionPoint .}

to concatenate (Code 3). The subquery nesting ensures efficient
execution of the query by the SPARQL endpoint. This query
is then executed against monitoring data to filter points in time
with symptomatic behavior.

SCHNEIDER et al.: ONTOLOGY-BASED MODELING OF CONTROL LOGIC IN BUILDING AUTOMATION SYSTEMS 3357

Fig. 10. Results from evaluating simulated data for 48 hrs. Enumeration from top to bottom: 1) Signal indicating if state Off is active; 2) Correct,
as-designed behavior for comparison; 3) Evaluated overall behavior with faulty control signal for YPum p , 4) Interpretation of the results obtained from
running an instance of the query reported in Code 2 (YPum p ! = 0) and a combined one as reported in Code 3 (OSS); If the queries return one
or more individuals, the respective points in time are interpreted to be symptomatic (true), else not (false). YSce , YM ix , YFan , YPum p —Normalized
output signal from schedule, mixing box damper flap, fan and pump, OSS—result of evaluated operation state space.

Code 2: Parameterized SPARQL query to filter points in
time with faulty state graph behavior.
PREFIX [...]
SELECT ?pk ?timeValue
WHERE
{?pk a tb:PrimaryKey .
?pk tb:time ?timeValue .
?pk tb:$vDPMeas$?yOutpValue .
?pk tb:$vDPState$?yStateValue .
FILTER(?yStateValue = "1.0" &&

?yOutpValue != "$vValue$") .}
ORDER BY ?timeValue

We evaluate our implementation using data obtained from
simulating a model of the controlled AHU (see Fig. 8), which
we implemented using simulation models from the Build-
ings library [47]. We introduce a common fault in BAS where
problems with some piece of technical equipment occurred and
automated control is manually turned off for repairs and trou-
bleshooting but is not turned on again. To emulate this behavior
we set the normalized pump control signal (YPump) to 1.0 such
that the pump is operating continuously. Simulation results and
results from deploying the automated verification system are
depicted in Fig. 10.

In the following discussion, we enumerate subfigures in
Fig. 10 from top to bottom. Assuming state Off is active (1) the
normalized control signal of the pump YPump is supposed to be
zero (2). However, in the faulty data the signal stays at 1.0 (3).

Code 3: Composed query to evaluate monitoring data.
PREFIX [...]
SELECT ?pk ?timeValue
WHERE
{

{# Configured query 1}
UNION

{# Configured query 2}
UNION

{# ...}
}

Points in time are filtered by standalone instances of the query
given in Code 2 or all instances aggregated in Code 3, inter-
preted, and reported by the system (4).

C. Discussion

Several advantages can be identified from applying the
ontology-based modeling approach in the described domain.
The generic modeling approach allows to define and ex-
press relationships between disparate information domains
including building elements and equipment, explicit models
of control logic, static information on BAS, and monitoring
data. Furthermore, this method allows to model control logic
in a more detailed and structured manner. For instance, it
is now possible to explicitly model the Boolean conditions
apparent in state machines and state graphs and define their

3358 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 6, DECEMBER 2017

semantics. A relationship can now be established between a
physical sensor placed in a room of a building, its associated
virtual data point and the control logic evaluating its value.
Information in this domain can then be used in intelligent appli-
cations, as presented in Section V-A for automated rule-based
verification.

The presented use case enables detection of faults caused from
control logic failure. However, to find suitable remedies, its root
cause needs to be identified (fault isolation) [48]. Promising
work supporting this has been presented in [49]. The ontolo-
gies presented in this paper may extend the explanation space
of the described methodology, e.g., via backward fault prop-
agation to identify the root cause of a fault. Furthermore, the
effect of a control logic failure on related building elements
and equipment could be estimated through forward fault prop-
agation, where the control logic misbehavior is identified using
the proposed methodology presented in this paper. Of course,
expert knowledge will be needed for defining the causality and
fault propagation relationships.

When modeling UML state machines, the actual relationship
between inputs and outputs is established by the respective be-
havior executed when an action is active. As indicated, this can
be close to anything. This degree of freedom poses limitations
to the modeling approach. Further research is required to find
suitable modes of description for behavior, which may range
from mathematical expressions potentially encoded via Open-
Math [50] to UML activity diagrams [51].

VI. CONCLUSION

In this paper, we present a novel information model, CTRLont,
which forms the basis to formalize control logic information in
BAS. The concepts and relationships defined allow to integrate
an explicit specification of the control logic and adjacent in-
formation areas, i.e., BAS, BIM models, and BMS. We present
models to formally specify state-based control logic, namely
UML state machines, state graphs and schedules.

We demonstrate the usefulness of the novel model by using
it as a knowledge base for automating rule-based verification of
designed control logic, where rules are configured dynamically
and applied to monitoring data obtained from an instance of
virtual BMS. We successfully apply the methodology to an
AHU control test case. Using this methodology, the amount
of time spent on reading textual descriptions of control logic
in BAS can be reduced and engineers and facility managers
can spend more time on isolating the root cause of faults. We
assume here that the designed ontologies can be automatically
populated from authoring tools used by control logic designers
(exporters/adapters).

The presented ontology can serve as a catalyst in establishing
a shared common understanding of control logic in the automa-
tion domain. It enables novel intelligent methods to improve
building operation in the future, e.g., tailored rule-based verifi-
cation of control logic in BAS or extend the explanation space of
knowledge-based methods for detecting the root cause of faults
in buildings [49]. For example, by forward fault propagation
estimating the effect of a control logic failure or in backward

fault propagation to identify control logic failure as (one of) the
root cause(s).

A number of challenges still exists regarding the proposed
ontology-based modeling of control logic:

1) Complexity of deployed control logic:
In general, control logic in BAS may range from a simple
PID-controller to advanced predictive and adaptive con-
trollers applied to various processes in the building [3].
This complexity poses barriers to what extent a consensus
can be agreed on in terms of ontology for such advanced
controllers.

2) Intellectual property:
In the automated approach reported above, the execu-
tion of the rules requires the information of the current
active state in a state-based controller as an input. In
practical implementations of these controllers, this in-
formation is often concealed due to intellectual prop-
erty (IP) reasons imposed by the company supplying the
device. This coincides with complexity as IP concerns
typically increase the more advanced a control logic is.
Suitable workarounds to automatically identify the op-
eration states need to be developed, e.g., evaluating the
pressure difference measured in the supply duct of an
AHU to determine its operation as suggested by [10].

Most of these challenges are also present in non-ontology-
based approaches. A number of future research paths can be
outlined as well:

1) Ontology linking:
The existing implementation of the presented ontologies
is performed from scratch to ensure usability and se-
mantic correctness. However, to benefit most from using
Semantic Web technologies the integration with exist-
ing ontologies in the domain needs to be stipulated, e.g.,
BASont [32], ifcOWL [35], SEAS [37], OM [42], Open-
Math [50], and SSN [52].

2) Model-based information exchange in BAS:
Current tools for designing a building automation solu-
tion store the design information in various formats. An
effort is needed to enable a standardized model-based
information exchange over the life cycle of BAS.

3) Formalizing existing control logic documentation:
New ways to formalize data on control logic from existing
documentation need to be found. One path relates to the
extension and refinement of existing data formats, e.g.,
PLCOpenXML [17]. Modeling work undertaken by [53]
may be a good starting point. A second path may ad-
dress current documentation based on spreadsheets and
drawings by extracting this information through the use
of semiautomatic processes [54].

REFERENCES

[1] T. Sauter, S. Soucek, W. Kastner, and D. Dietrich, “The evolution of
factory and building automation,” IEEE Ind. Electron. Mag., vol. 5, no. 3,
pp. 35–48, Sep. 2011.

[2] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Com-
munication systems for building automation and control,” Proc. IEEE,
vol. 93, no. 6, pp. 1178–1203, Jun. 2005.

SCHNEIDER et al.: ONTOLOGY-BASED MODELING OF CONTROL LOGIC IN BUILDING AUTOMATION SYSTEMS 3359

[3] A. Dounis and C. Caraiscos, “Advanced control systems engineering for
energy and comfort management in a building environment A review,”
Renewable Sustain. Energy Rev., vol. 13, no. 67, pp. 1246–1261, 2009.

[4] Energy Performance of Buildings Impact of Building Automation, Controls
and Building Management, EN 15232 Standard, 2013.

[5] “LEED v4 for building operations and maintenance,” US Green Building
Council, Tech. Rep. 4, 2016.

[6] P. De Wilde, “The gap between predicted and measured energy perfor-
mance of buildings: A framework for investigation,” Autom. Construction,
vol. 41, pp. 40–49, 2014.

[7] Building Automation and Control Systems (BACS), ISO 16484 Standard,
2011.

[8] Building Automation and Control Systems (BACS) Fundamentals for
Room Control, VDI 3813-1 Standard, 2011.

[9] Building Automation and Control Systems (BACS) System Basics, VDI
3814-1 Standard, 2013.

[10] S. Plesser, “Aktive Funktionsbeschreibungen zur Planung und
Überwachung des Betriebs von Gebäuden und Anlagen,” Ph.D. disser-
tation, TU Braunschweig, Braunschweig, Germany, 2013.

[11] S. Plesser, M. N. Fisch, C. Pinkernell, T. Kurpick, and B. Rumpe, “The
energy Navigator-A web based platform for functional quality mangement
in buildings,” in Proc. Int. Conf. Enhanced Bldg. Oper., Kuwait City,
Kuwait, 2010.

[12] W3C, “Web ontology language—OWL,” 2016. [Online]. Available:
http://www.w3.org/2001/sw/wiki/OWL

[13] OMG Unified Modeling Language (OMG UML), Object Management
Group, 2015.

[14] Building Automation and Control Systems (BACS) Graphical Description
of Logic Control Tasks, VDI 3814-6 Standard, 2013.

[15] XML Metadata Interchange (XMI) Specification, Object Management
Group, 2015.

[16] Engineering Data Exchange Format for Use in Industrial Automation Sys-
tems Engineering—Automation Markup Language—Part 1: Architecture
and General Requirements, IEC 62714-1 Standard, 2014.

[17] XML Formats for IEC 61131-3, PLCopen Standard, 2009.
[18] Programmable Controllers—Part 3: Programming Languages, IEC

61131-3 Standard, 2014.
[19] E. A. Lee and S. Neuendorffer, “MoML—A Modeling Markup Language

in XML—Version 0.4,” Univ. of California, Berkeley, CA, USA, Tech.
Rep. ERL/UCB M 00/12, 2000.

[20] Industrial Automation Systems and Integration—Product Data Represen-
tation and Exchange—Part 11, ISO 10303-11 Standard, 2004.

[21] J. Schein, “An information model for building automation systems,” Au-
tom. Construction, vol. 16, no. 2, pp. 125–139, 2007.

[22] P. Hitzler, M. Krötzsch, and S. Rudolph, Foundations of Semantic Web
technologies. Boca Raton, FL, USA: CRC Press, 2010.

[23] P. Pauwels, S. Zhang, and Y.-C. Lee, “Semantic web technologies in AEC
industry: A literature overview,” Autom. Construction, vol. 73, pp. 145–
165, 2017.

[24] D. Bonino and F. Corno, “DogOnt—Ontology modeling for intelligent
domotic environments,” in Proc. Int. Semantic Web Conf. Lec. Not. iComp.
Sci., vol. 5318, Karlsruhe, Germany, 2008, pp. 790–803.

[25] C. Reinisch, M. J. Kofler, F. Iglesias, and W. Kastner, “ThinkHome en-
ergy efficiency in future smart homes,” EURASIP J. Embedded Syst., no.
104617, pp. 1–18, 2011.

[26] L. Daniele, F. den Hartog, and J. Roes, “Created in close interaction
with the industry: The smart appliances REFerence (SAREF) ontology,”
in Proc. Ind. Workshop Formal Ontologies Meet Ind., 2015, vol. 225,
pp. 100–112.

[27] N. M. Tomašević, M. v. Batić, L. M. Blanes, M. M. Keane, and S. Vraneš,
“Ontology-based facility data model for energy management,” Adv. Eng.
Inf., vol. 29, no. 4, pp. 971–984, 2015.

[28] Energy Management Systems Requirements With Guidance for Use, ISO
50001 Standard, 2011.

[29] J. Kaiser and P. Stenzel, “eeEmbedded D4.2: Energy System Information
Model - ESIM,” eeEmbedded Consortium, Brussels, Belgium, 2015.

[30] E. Corry, P. Pauwels, S. Hu, M. Keane, and J. O’Donnell, “A performance
assessment ontology for the environmental and energy management of
buildings,” Autom. Construction, vol. 57, pp. 249–259, 2015.

[31] C. Reinisch, W. Granzer, F. Praus, and W. Kastner, “Integration of het-
erogeneous building automation systems using ontologies,” in Proc. 34th
Ann. Conf. IEEE Ind. Electron., Orlando, FL, USA, 2008, pp. 2736–2741.

[32] J. Ploennigs, B. Hensel, H. Dibowski, and K. Kabitzsch, “BASont—A
modular, adaptive building automation system ontology,” in Proc. 38th
Ann. Conf. IEEE Ind. Electron. Soc., Montreal, Canada, 2012, pp. 4827–
4833.

[33] H. Dibowski, J. Ploennigs, and K. Kabitzsch, “Automated design of build-
ing automation systems,” IEEE Trans. Ind. Electron., vol. 57, no. 11,
pp. 3606–3613, Nov. 2010.

[34] G. F. Schneider, A. Bougain, P. S. Noisten, and M. Mitterhofer, “Infor-
mation requirement definition for BIM: A life cycle perspective,” in Proc.
Eur. Conf. Product Process Model., Limassol, Cyprus, 2016.

[35] P. Pauwels and W. Terkaj, “ EXPRESS to OWL for construction industry:
Towards a recommendable and usable ifcOWL ontology,” Autom. Constr.,
vol. 63, pp. 100–133, 2016.

[36] J. O’Donnell, R. See, C. Rose, T. Maile, V. Bazjanac, and P. Haves,
“SimModel: A domain data model for whole building energy simulation,”
in Proc. IBPSA Building Simul., Sydney, Australia, 2011, pp. 382–389.

[37] M. Lefrançois, J. Kalaoja, T. Ghariani, and A. Zimmermann, “D2.2: The
SEAS knowledge model,” ITEA2 SEAS, Brussels, Belgium, 2017.

[38] N. F. Noy and D. L. McGuinness, “Ontology development 101: A guide
to creating your first ontology,” Stanford Univesity, Stanford, CA, USA,
2001.

[39] Function Blocks—Part 1: Architecture, IEC 61499-1 Standard, 2012.
[40] J. Eker et al., “Taming heterogeneity—the Ptolemy approach,” Proc.

IEEE, vol. 91, no. 1, pp. 127–144, Jan. 2003.
[41] International Electrotechnical Vocabulary—Part 351: Control Technol-

ogy, IEC 60050-351 Standard, 2013.
[42] H. Rijgersberg, M. van Assem, D. Willems, M. Wigham, J. Broekstra, and

J. Top, “Ontology of units of measure (OM),” 2016. [Online]. Available:
http://www.wurvoc.org/vocabularies/om-1.8/

[43] P. Dolog, “Model-driven navigation design for semantic web applications
with the UML-Guide,” in Proc. Int. Conf. Web Eng., 2004, pp. 75–86.

[44] W3C, “SPARQL query language for RDF,” 2016. [Online]. Available:
https://www.w3.org/TR/rdf-sparql-query/

[45] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, and A. Sprog̀is, “OWL-
GrEd: A UML style graphical editor for OWL,” in Proc. Workshop Ont.
Rep. Eds. Semantic Web, Hersonissos, Greece, 2010, pp. 1–5.

[46] W3C, “Resource Description Framework—RDF,” 2016. [Online]. Avail-
able: http://www.w3.org/RDF/

[47] M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, “Modelica Buildings
Library,” J. Building Perform. Simul., vol. 7, no. 4, pp. 253–270, 2014.

[48] S. Katipamula and M. R. Brambley, “Review article: Methods for fault
detection, diagnostics, and prognostics for building systems—A review,
part I,” HVAC&R Res., vol. 11, no. 1, pp. 3–25, 2005.

[49] H. Dibowski, O. Holub, and J. Rojı́ček, “Knowledge-based fault propaga-
tion in building automation systems,” in Proc. Int. Conf. Syst. Informat.,
Model. Simul., Riga, Latvia, 2016, pp. 124–132.

[50] K. Wenzel and H. Reinhardt, “Mathematical computations for linked data
applications with OpenMath,” in Proc. Conf. Intell. Comput. Math., Bre-
men, Germany, 2012, pp. 38–48.

[51] I. Grobelna, M. Grobelny, and M. Adamski, “Model checking of
UML activity diagrams in logic controllers design,” in Proc. DepCoS-
RELCOMEX, Brunów, Poland, 2014, pp. 233–242.

[52] M. Compton et al., “The SSN ontology of the W3C semantic sensor
network incubator group,” Web Semantics, vol. 17, pp. 25–32, 2012.

[53] T. Horn and J. Ebert, “Ein Referenzschema für die Sprachen der IEC
61131,” Univ. Koblenz-Landau, Koblenz, Germany, Tech. Rep. no. 13,
2008.

[54] P. Häfner, V. Häfner, H. Wicaksono, and J. Ovtcharova, “Semi-automated
ontology population from building construction drawings,” in Proc.
Int. Conf. Knowl. Eng. Ontology Develop., Vilamoura, Portugal, 2013,
pp. 1–8.

Georg Ferdinand Schneider received the B.Sc.
degree in mechanical engineering, M.Sc. de-
gree in energy engineering, and M.Sc. degree
in economics all from RWTH Aachen Univer-
sity, Aachen, Germany, in 2011, 2013, and 2014,
respectively. He is currently working toward
the Ph.D. degree in mechanical engineering
at Karlsruhe Institute of Technology, Karlsruhe,
Germany.

He is currently a Research Associate at the
Fraunhofer IBP, Nuremberg, Germany. His re-

search interests include formal modeling of automation systems and
control logic as well as modeling and simulation of technical systems.

Mr. Schneider is a member of the W3C Linked Building Data Com-
munity Group.

3360 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 6, DECEMBER 2017

Pieter Pauwels received the Master’s de-
gree and the Ph.D. degree in engineering—
architecture, both from Ghent University, Ghent,
Belgium, in 2008 and 2012.

He is an Assistant Professor and Postdoctoral
Researcher in the Department of Architecture
and Urban Planning, Ghent University. His work
and interests are in information system support
for the building life-cycle. He currently works
on topics affiliated to the intersection of Build-
ing Information Modelling and Semantic Web

technologies.
Dr. Pauwels is an active member of buildingSMART, more precisely

as the Co-Chair of the Linked Data Working Group at buildingSMART
Int’l. Furthermore, he Co-Chairs the Linked Building Data Community
Group at the World Wide Web Consortium.

Simone Steiger received the Diploma degree
in architecture from Technical University Mu-
nich, Munich, Germany, in 2004, and the M.Eng.
degree in building services engineering from
Munich University of Applied Sciences, Munich,
Germany, in 2007.

She is currently a full-time Researcher
and Project Coordinator at the Fraunhofer IBP,
Nuremberg, Germany. Her work and research
interests include control algorithms and opera-
tional strategies for mechanical and natural ven-

tilation in buildings.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

