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Abstract. The success of the Semantic Web highly depends on its in-
gredients. If we want to fully realize the vision of a machine-readable
Web, it is crucial that Linked Data are actually useful for machines con-
suming them. On this background it is not surprising that (Linked) Data
validation is an ongoing research topic in the community. However, most
approaches so far either do not consider reasoning, and thereby miss the
chance of detecting implicit constraint violations, or they base them-
selves on a combination of di�erent formalisms, eg Description Logics
combined with SPARQL. In this paper, we propose using Rule-Based
Web Logics for RDF validation focusing on the concepts needed to sup-
port the most common validation constraints, such as Scoped Negation
As Failure (SNAF), and the predicates de�ned in the Rule Interchange
Format (RIF). We prove the feasibility of the approach by providing an
implementation in Notation3 Logic. As such, we show that rule logic can
cover both validation and reasoning if it is expressive enough.
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1 Introduction

The amount of publicly available Linked Open Data (LOD) sets is constantly
growing1, however, the diversity of the data employed in applications is mostly
very limited: only a handful of RDF data is used frequently [27]. One of the
reasons for this is that the datasets' quality and consistency varies signi�cantly,
ranging from expensively curated to relatively low quality data [33], and thus
need to be validated carefully before use.

One way to assess data quality is to check them against constraints: users
can verify that certain data are �t for their use case, if the data abide to their
requirements. First approaches to do that were implementations with hard coded
validation rules, such as Whoknows? [13]. Lately, attention has been drawn to
formalizing RDF quality assessment, more speci�cally, formalizing RDF con-
straints languages, such as Shape Expressions (ShEx) [30] or Resource Shapes
(ReSh) [28]. This detaches the speci�cation of the constraints from its imple-
mentation.

1 See, eg statistics at: http://lod-cloud.net/.
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Constraint languages allow users dealing with RDF data and vocabularies
to express, communicate, and test their particular expectations. Such languages
can either be (i) existing frameworks designed for di�erent purposes, eg the
query language SPARQL [12,21], or the description logic based Web Ontology
Language (OWL) [31], or they can be (ii) languages only designed for validation,
eg ShEx [30], ReSh [28], Description Set Pro�les (DSP) [23], or the forthcoming
W3C recommendation candidate Shapes Constraint Language (SHACL) [19].
These di�erent languages can be compared by testing them on commonly sup-
ported constraints [9,21], as conducted by Hartmann (né Bosch) et al [8].

Depending on the users' needs, constraint languages have to be able to cope
with very diverse kinds of constraints which imply certain logical requirements.
Such requirements were investigated by Hartmann et al [8] who identi�ed the
Closed World Assumption (CWA) and the Unique Name Assumption (UNA)
as crucial for validation. Since both are not supported by many Web Logics,
Hartmann et al particularly emphasize the di�erence between reasoning and
validation languages and favour SPARQL based approaches for validation which
� if needed � can be combined with OWL DL or QL reasoning. In this paper,
we take a closer look into these �ndings from a rule-based perspective: We show
that neither UNA nor CWA are necessary for validation if a rule-based frame-
work containing predicates to compare URIs and literals, and supporting Scoped
Negation as Failure (SNAF) is used. This enables us to � instead of combining
separate, successive systems � do both RDF validation and reasoning in only one
system which acts directly on a constraint language. We show the feasibility of
this approach by providing an implementation. This proof-of-concept is imple-
mented in Notation3 Logic (NLogic) and tackles the subset of the constraints
identi�ed by Hartmann et al [8] which are covered in RDFUnit [21].

The remainder of this paper is structured as follows: In Section 2 we discuss
related work. In Section 3 we give an overview of common RDF validation con-
straints. In Section 4, we discuss how di�erent requirements for RDF validation
are met by rule-based logics. Section 5 explains the details of our proof of concept
and Section 6 concludes the paper and provides an outlook for future work.

2 Related Work

In this section, �rst, we will present the state of the art around validation con-
straint languages. Then, we will give an overview of di�erent languages and
approaches used for RDF validation.

Data quality can be described in many dimensions, one of them being the
intrinsic dimension, namely, the adherence to a data schema [33]. In the case of
RDF data, this implies adhering to certain constraints. These have been carefully
investigated by several authors (eg Hartmann et al [12]). The formulation of (a
subset of) these constraints can be done using existing languages (eg the Web
Ontology Language (OWL) [7], the SPARQL Inferencing Notation (SPIN) [18],
or SPARQL [26])), or via dedicated languages (eg Shape Expressions (ShEx) [30],
Resource Shapes (ReSh) [28], Description Set Pro�les (DSP) [23], or Shapes
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Constraint Language (SHACL) [19]. Their execution is either based on reasoning
frameworks, or querying frameworks.

On the one hand, Motik et al [22] and Sirin and Tau [29] propose alterna-
tive semantics for OWL which support the Closed World Assumption, and are
therefore more suited for constraint validation than the original version. To know
which semantics apply, constraints have to be marked as such. Using one stan-
dard to express both, validation and reasoning, is a strong point of this approach,
however, this leads to ambiguity: If the exact same formula can have di�erent
meanings, one of the key properties of the Semantics Web � interoperability � is
in danger. Another disadvantage of using (modi�ed) OWL as a constraint lan-
guage is its limited expressiveness. Common constraints such as mathematical
operations or speci�c checks on language tags are not covered by OWL [12].

On the other hand, SPARQL based querying frameworks for validation exe-
cution emerged (eg Hartmann [12] or Kontokostas et al [21]). Where Hartmann
proposes SPIN as base language to support validation constraints, Kontokostas
introduces a similar but distinct language to SPIN, more targeted to validation,
so-called Data Quality Test Patterns (DQTP). DQTPs are generalized SPARQL
queries containing an extra type of variables. In an extra step, these variables
are instantiated based on the RDFS and OWL axioms used by the data schema
and can then be employed for querying. As such, the authors assume a closed
world semantics for OWL but in contrast to the approaches mentioned above,
this special semantics cannot be marked in the ontology itself. They thus change
the semantics of the common Web standard OWL. To also �nd implicit con-
straint validation an extra reasoning step could be added, but this step would
then most probably assume the standard semantics of OWL, further increasing
the possibly of experiencing con�icts between the two contradicting versions of
the semantics. Hartmann proposes a dedicated ontology to express integrity con-
straints, and as such, this method does not involve changing existing semantics.
For both, involving reasoning is not possible without inclusion of a secondary
system.

3 RDF Validation Constraints

Based on the collaboration of the W3C RDF Data Shapes Working Group2 and
the DCMI RDF Application Pro�les Task Group3 with experts from industry,
government, and academia, a set of validation requirements has been de�ned,
based on which, 81 types of constraints were published, each of them corre-
sponding to at least one of the validation requirements [9]. This set thus gives a
realistic and comprehensive view of what validation systems should support.

Prior to this, the creators of RDFUnit [21] had provided their own set of
constraint types they support. Given the usage of RDFUnit in real-world use
cases [20], this set gives a good overview of what validation systems should
minimally cover.

2 https://www.w3.org/2014/data-shapes/wiki/Main_Page
3 http://wiki.dublincore.org/index.php/RDF_Application_Profiles
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Table 1 shows the alignment of the 17 types of constraints as supported by
RDFUnit with the relevant constraint types as identi�ed by Hartmann et al [8].
As can be seen, these types are not mapped one-to-one. One constraint from
RDFUnit maps to at least one constraint as identi�ed by Hartmann, except
for PVT and TRIPLE, which are both not very complex constraints and could
thus easily be added to the work of Hartmann et al. In this paper, we mainly
focus on these 17 constraints which are all covered by our implementation. To
make the topic of constraint validation more concrete, we discuss the examples
(TYPEDEP), (INVFUNC) and (MATCH) in more detail later in this paper and
refer the interested reader to the above mentioned sources.

4 Features required for Validation

After having listed the kind of constraints relevant for RDF validation in the
previous section, we will now focus on the suitability of rule-based logics for
that task. Based on the work of Sirin and Tao [29], and Hartmann et al [8] who
identi�ed the logical requirements constraint languages need to ful�l, we discuss
why rule-based logic is a reasonable choice to validate RDF datasets.

4.1 Reasoning

We start our discussion with reasoning. Hartmann [12, p. 181] points out that
performing reasoning in combination with RDF validation brings several bene-
�ts: constraint violations may be solved, violations which otherwise would stay
undetected can be found, and datasets do not need to contain redundant data to
be accepted by a validation engine. To better understand these bene�ts, consider
the following ontology example:

:Reseacher rdfs:subClassOf :Person. (1)

And the instance:

:Kurt a :Researcher; :name "Kurt01". (2)

If we now have a type dependency constraint (TYPEDEP) saying that every in-
stance of the class :Researcher should also be an instance of the class :Person,
which we test on the data above, a constraint validation error would be raised
since :Kurt is not declared as a :Person. If we perform the same constraint
check after reasoning, the triple

:Kurt a :Person. (3)

would be derived and the constraint violation would be solved. Without the rea-
soning, Triple 3 would need to be inserted into the dataset to solve the constraint,
leading to redundant data.

To understand how reasoning can help to detect implicit constraints, consider
another restriction: suppose that we have a constraint stating that a person's
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Table 1. Constraints Alignment. The �rst column lists the codes as used in RDFUnit;
the second column lists the constraints of Hartmann following the numbering [12,
appendix]; and the third column lists the description taken from RDFUnit.

RDFUnit Constraint

Code

Description

COMP A11 Comparison between two literal values of a resource

MATCH A20, A21 A resource's literal value (does not) matches a RegEx

LITRAN A17, A18 The literal value of a resource (having a certain type)
must (not) be within a speci�c range

TYPEDEP A4 Type dependency: the type of a resource may imply the
attribution of another type

TYPRODEP A41 A resource of speci�c type should have a certain property

PVT B1 If a resource has a certain value V assigned via a prop-
erty P1 that in some way classi�es this resource, one can
assume the existence of another property P2

TRIPLE B2 A resource can be considered erroneous if there are cor-
responding hints contained in the dataset

ONELANG A28 A literal value has at most one literal for a language

RDFS-DOMAIN A13 The attribution of a resource's property (with a certain
value) is only valid if the resource is of a certain type

RDFS-RANGE A14, A15 The attribution of a resource's property is only valid if
the value is of a certain type

RDFS-RANGED A23 The attribution of a resource's property is only valid if
the literal value has a certain datatype

INVFUNC A2 Some values assigned to a resource are considered to be
unique for this particular resource and must not occur
in connection with other resources

OWL-CARD A1, A32�37 Cardinality restriction on a property

OWLDISJC A70 Disjoint class constraint

OWLDISJP A69 Disjoint property constraint

OWL-ASYMP A57 Asymmetric property constraint

OWL-IRREFL A64 Irre�exive property constraint
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name should not contain numbers4. Without reasoning, no constraint validation
would be detected because even though the :name of :Kurt contains numbers,
:Kurt would not be detected as an instance of :Person.

Hartmann's and many other validation approaches thus suggest to �rst per-
form a reasoning step and then do an extra validation step via SPARQL querying.
The advantage of using rule-based reasoning instead is that validation can take
place during the reasoning process in one single step. Relying on a rule which
supports rdfs:subClassOf as for example presented in [2] the aforementioned
problem could be detected. In general, OWL-RL [10] can be applied since it is
supported by every rule language. If higher complexity is needed, rule languages
with support for existential quanti�cation can be used for OWL QL reasoning.

4.2 Scoped Negation as Failure

Another aspect which is important for constraint validation is negation. Hart-
mann et al claim that the Closed World Assumption is needed to perform valida-
tion tasks. Given that most Web logics assume the OpenWorld Assumption, that
would form a barrier for the goal of combining reasoning and validation men-
tioned in the previous section. Luckily, that is not the case. As constraint valida-
tion copes with the local knowledge base, Scoped Negation as Failure (SNAF),
inter alia discussed in [11,16,25], is enough. Among the logics which support this
concept are for example FLORA-2 [14] or NLogic [6].

In order to understand the idea behind Scoped Negation as Failure, consider
the triples that form Formula 2 and suppose that these are the only triples in a
knowledge base we want to validate. We now want to test the constraint from
above that every individual which is declared as a researcher is also declared as
a person (TYPEDEP). This means our system needs to give a warning if it �nds
an individual which is declared as a researcher, but not as a person:

∀x : (( x a :Researcher) ∧ ¬( x a :Person))

→ (:constraint :is :violated.) (4)

In the form it is stated before, the constraint cannot be tested with the Open
World Assumption. The knowledge base contains the triple

:Kurt a :Researcher.

but not Triple 3, but the rule is more general: given its open nature, we cannot
guarantee that there is no document in the entire Web which declares Triple 3.
This changes if we make an addition. Suppose that K is the the set of triples we
can derive (either with or without reasoning) from our knowledge base consisting
of Formula 2. Having K at our disposal, we can test:

∀x : (( x a :Researcher) ∈ K) ∧ ¬(( x a :Person) ∈ K))
→ (:constraint :is :violated.) (5)

4 This could be expressed by an extended version of MATCH as for example the
constraint �Negative Literal Pattern Matching� in [12].
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The second conjunct is not a simple negation, it is a negation with a certain
scope, in this case K. If we added new data to our knowledge like for example
Triple 3, we would have di�erent knowledge K′ for which other statements hold.
The truth value of the formula above would not be touched since this formula
explicitly mentions K. The logic stays monotonic. Scoped negation as failure is
the kind of negation we actually need in RDF validation: we do not want to make
and test statements in the Web in general, we just want to test the information
contained in a local �le or knowledge base.

4.3 Predicates for Name Comparison

Next to the Open World Assumption, Hartmann et al [8] identify the fact that
most Web logics do not base themselves on the Unique Names Assumption
(UNA) as a barrier for them being used for constraint validation. This assump-
tion is for example present in F-Logic [17] and basically states that every ele-
ment in the domain of discourse can only have one single name (URI or Literal
in our case). The reason, why this assumption is in general problematic for the
Semantic Web lies in its distributed nature: di�erent datasets can � and actu-
ally do � use di�erent names for the same individual or concept. For instance,
the URI dbpedia:London refers to the same place in England as for example
dbpedia-nl:London. In this case this fact is even stated in the corresponding
ontologies using the predicate owl:sameAs.

The impact of the Unique Name Assumption for RDF validation becomes
clear if we take a closer look at OWL's inverse functional property and
the related constraint (INVFUNC). Let us assume that dbo:capital is an
owl:InverseFunctionalProperty and our knowledge base contains:

:England dbo:capital :London. :Britain dbo:capital :London. (6)

Since :England and :Britain are both stated as having :London as their capital
and dbo:capital is an inverse functional property, an OWL reasoner would
derive

:England owl:sameAs :Britain. (7)

Such a derivation cannot be made if the Unique Name Assumption is valid, since
the former explicitly excludes this possibility.

The constraint (INVFUNC) is related to the OWL concept above, but it
is slightly di�erent: while OWL's inverse functional property refers to the ele-
ments of the domain of discourse denoted by the name, the validation constraint
(INVFUNC) refers to the representation itself. Formula 6 thus violates the con-
straint. Even if our logic does not follow the Unique Name Assumption, this
violation can be detected if the logic o�ers predicates to compare names. In
NLogic, log:equalTo and log:notEqualTo5 are such predicates: in contrast
to owl:sameAs and owl:differentFrom, they do not compare the resources

5 https://www.w3.org/2000/10/swap/doc/CwmBuiltins.



8 Dörthe Arndt et al

they denote, but their representation. The idea to support these kinds of predi-
cates is very common. So does, for example, the Rule Interchange Format (RIF)
cover several functions which can handle URIs and strings, as we will discuss in
the next subsection.

4.4 RIF Built-ins

In the previous subsection we indicated that a special predicate of a logic, in
this case log:notEqualTo, can be used to do URI comparisons and thereby
support a concept which would otherwise be di�cult to express. Such built-in
functions are widely spread in rule-based logics and play an important role in
RDF validation which very often deals with string comparisons, calculations or
operations on URI level. While it normally depends on the designers of a logic
which features are supported, there are also common standards.

One of them is the Rule Interchange Format (RIF) [15] whose aim it is to pro-
vide a formalism to exchange rules in the Web. Being the result of a W3C working
group consisting of developers and users of di�erent rule-based languages, RIF
can also be understood as a reference for the most common features rule based
logics might have. This makes the list of predicates [24] supported by the di�erent
RIF dialects particularly interesting for our analysis. And it is indeed the case
that by only using RIF predicates many of the constraints listed in Section 3 can
already be checked: negative pattern matching (MATCH) can be implemented by
using the predicate pred:matches, the handling of language tags as required for
the constraint ONELANG can be done using func:lang-from-PlainLiteral,
and for the comparison of literal values (COMP) there are several predicates to
compare strings, numbers or dates.

To illustrate how powerful RIF is when it comes to string validation, we take
a closer look at the predicate log:notEqualTo from the previous section. In the
example above it is used to compare two URI representations and succeeds if
these these two are di�erent. To refer to a URI value, RIF provides the predicate
pred:iri-string which converts a URI to a string and and vice versa. In N
notation6 that could be expressed by:

(:England "http://exmpl.com/England") pred:iri-string true. (8)

To compare the newly generated strings, the function func:compare can be
used. This function takes two string values as input, and returns -1 if the �rst
string is smaller than the second one regarding a string order, 0 if the two strings
are the same, and 1 if the second is smaller than the �rst. The example above
gives:

("http://exmpl.com/Britain" "http://exmpl.com/England")

func:compare -1. (9)

6 More about that in Section 5.1
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To enable a rule to detect whether the two URI names are equal, one ad-
ditional function is needed: the reasoner has to detect whether the result of
the comparison is not equal to zero. That can be checked using the predicate
pred:numeric-not-equal which is the RIF version of 6= for numeric values. In
the present case the output of the comparison would be true since 0 6= 1, a
rule checking for the name equality of :England and :Britain using the three
predicates would therefore be triggered.

Even though we needed three RIF predicates to express one N predicate, the
previous example showed how powerful built-ins in general � but also the very
common RIF predicates in particular � are. Whether a rule based Web logic is
suited for RDF validation highly depends on its built-ins. If it supports all RIF
predicates, this can be seen as a strong indication that it is expressive enough.

5 Validation with NLogic

In the previous section we analysed the requirements on a rule-based Web logic to
be able to combine validation and reasoning: it should support scoped negation
as failure, it should provide predicates to compare di�erent URIs and strings, and
its built-in functions should be powerful enough to, inter alia, access language
tags and do string comparison as they are supported by RIF. NLogic as it
is implemented in the EYE reasoner [32] ful�ls all these conditions. With that
logic, we were able to implement rules for all the constraints listed in Section 3,
and thus provide similar functionality as RDFUnit using rule-based Web logics.
Below we discuss the details of this implementation starting by providing more
information about NLogic and EYE. The code of our implementation can be
accessed at https://github.com/IDLabResearch/data-validation.

5.1 NLogic

NLogic was introduced in 2008 by Tim Berners-Lee et al [6] and is an exten-
sion of RDF: All RDF turtle triples are also valid in N. As in RDF, blanknodes
are understood as existentially quanti�ed variables and the co-occurrence of two
triples as in Formula 6 is understood as their conjunction. N furthermore sup-
ports universally quanti�ed variables. These are indicated by a leading question
mark ?.

?x :likes :IceCream. (10)

stands for �Everyone likes ice cream.�, or in �rst order logic

∀x : likes(x, ice-cream)

Rules are written using curly brackets { } and the implication symbol =>. The
rdfs:subClassOf relation from Formula 1 can be expressed as:

{?x a :Researcher} => {?x a :Person}. (11)
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1 @prefix rdfcv: <http://www.dr-thomashartmann.de/phd-thesis/
rdf-validation/vocabularies/rdf-constraints-vocabulary\#>.

2 @prefix : <http://example.com/constraints#>.
3 @prefix dbo: <http://dbpedia.org/ontology/> .
4
5 :example_constraint a rdfcv:SimpleConstraint;
6 :constraintType :InverseFunctionalProperties;
7 rdfcv:constrainingElement :inverse -functional -properties;
8 rdfcv:leftProperties ( dbo:capital );
9 rdfcv:contextClass dbo:Country.

Listing 1. Example inverse functional property constraint: No city can be the capital
of two countries.

Applied on Formula 2 the rule results in Formula 3. More details about syntax
and semantics of N can be found in our previous paper [4].

There are several reasoners supporting N: FuXi [1] is a forward-chaining pro-
duction system for Notation3 whose reasoning is based on the RETE algorithm.
The forward-chaining cwm [5] reasoner is a general-purpose data processing tool
which can be used for querying, checking, transforming and �ltering information.
EYE [32] is a reasoner enhanced with Euler path detection. It supports back-
ward and forward reasoning and also a user-de�ned mixture of both. Amongst
its numerous features are the option to skolemise blank nodes and the possibility
to produce and reuse proofs for further reasoning. The reason why we use EYE
in our implementation is its generous support for built-ins7: next to N's native
built-ins8, RIF, but also several other functions and concepts are implemented.

5.2 Expressing Constraints

Before we can detect violations of constraints using N logic, these constraints
�rst need to be stated. This could either be done by directly expressing them in
rules � and thereby creating a new constraint language next to the ones presented
in Section 2 � or on top of existing RDF-based conventions. We opt for the latter
and base our present implementation on the work of Hartmann [12, p.167 �]:
in his PhD thesis, Hartmann presents a lightweight vocabulary to describe any
constraint, the RDF Constraints Vocabulary (RDF-CV)9. The reason why we
chose that vocabulary over the upcoming standard SHACL is its expressiveness.
We aim to tackle the 81 constraints identi�ed by Hartmann which are not all
expressible in SHACL or any other of the constraint languages mentioned in
Section 2 [12, p.52, appendix]. As will be shown in the following section, it is
not di�cult to adopt the rules to di�erent constraint languages as long as they
are based on RDF and as such valid N expressions.

7 http://eulersharp.sourceforge.net/2003/03swap/eye-builtins.html
8 https://www.w3.org/2000/10/swap/doc/CwmBuiltins
9 https://github.com/boschthomas/RDF-Constraints-Vocabulary
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RDF-CV supports the concept of so called simple constraints which are all
the constraints expressible by the means of the vocabulary, in particular the
ones mentioned in Section 3. Each simple constraint has a constraining element.
Where applicable, the names of these elements are inspired by their related DL
names, but the constraining element can also be for example the name of a
SPARQL function. In some cases, the same constraint type can be marked by
di�erent constraining elements as for example the constraint COMP whose con-
straining element is the relation used to compare values (eg the usual numerical
orders: <,>,≤, and ≥) or there can be di�erent constraint types sharing the
same constraining element. To be sure that cases like this do not cause any ambi-
guity we additionally assign a constraint type to every constraint. The names of
these types follow the names used by Hartmann [12, appendix]. The TYPEDEP
constraint from Section 4.1 is for example of constraint type :Subsumption.

In addition to constraining element and constraint type, there are several
predicates to assign the constraints to individuals and classes: context class,
classes, leftProperties, rightProperties, and constraining values. The context class
of a constraint �xes the set of individuals for which a constraint must hold.
For the subsumption constraint mentioned above, that would be the class
:Researcher, the constraint talks about every individual labelled as researcher.
There could be other classes involved. In our subsumption example that is the
superclass the individuals should belong to, :Person. Every researcher should
also be labelled as person. Since these kinds of properties can be multiple, they
are given in a list. How and if the predicate classes is used depends on the con-
straint. The predicates leftProperties and rightProperties are used to do similar
statements about properties. The constraint INVFUNC as displayed in Listing 1
makes for example use of it to relate the constraint speci�ed to the predicate it
is valid for. The objects of the predicates leftProperties and rightProperties are
lists. The predicate constraining value is used for the predicates where a literal
value is needed to further specify a constraint. An example for such a constraint
is MATCH as described in Section 4.1. To express, that a name should not con-
tain numbers, the predicate constraining value connects the constraint to the
string pattern, "[1-9]" in the present case.

5.3 Constraint Rules

Having seen in the last section one possible way to describe constraints on RDF
datasets, this section explains how these descriptions can be used. We employ
rules which take the expressed constraints and the RDF dataset to be tested
into account and generate triples indicating constraint validations, if present.
We illustrate that by an example: In Listing 2 we provide a rule handling the
constraint INVFUNC. Lines 7�11 contain the details of the constraint. The rule
applies for simple constraints of the type inverse functional properties for which
a context class ?Class and a list ?list of left properties is speci�ed. This part of
the rule's antecedence uni�es with the constraint given in Listing 1. Lines 13�18
describe which situation in the tested data causes a constraint violation: for an
?object which is an instance of ?Class, there are two subjects, ?x1 and ?x2,
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1 @prefix rdfcv: <http://www.dr-thomashartmann.de/phd-thesis/
rdf-validation/vocabularies/rdf-constraints-vocabulary\#> .

2 @prefix : <http://example.com/constraints#> .
3 @prefix list: <http://www.w3.org/2000/10/swap/list#>.
4 @prefix log: <http://www.w3.org/2000/10/swap/log#> .
5
6 {
7 ?constraint a rdfcv:SimpleConstraint;
8 :constraintType :InverseFunctionalProperties;
9 rdfcv:constrainingElement :inverse -functional -properties;
10 rdfcv:leftProperties ?list;
11 rdfcv:contextClass ?Class.
12
13 ?object a ?Class.
14 ?property list:in ?list.
15 ?x1 ?property ?object.
16 ?x2 ?property ?object.
17 ?x1 log:notEqualTo ?x2
18 }
19 =>
20 {
21 [] a :constraintViolation;
22 :violatedConstraint ?constraint.
23 }.

Listing 2. Rule for inverse functional property (INVFUNC). The predicate
log:notEqualTo compares the resources based on their URI and thereby supports
the Unique Name Assumption.

de�ned which are both connected to ?object via ?property. This ?property
is an element of ?list, and the names, ie the URI- or string-representations, of
?x1 and ?x di�er. The latter is expressed using the predicate log:notEqualTo10

(Line 18). Together with Listing 1 that violation is thus detected if two di�er-
ent resource names for resources of the class dbo:Country are connected via
the predicate dbo:capital to the same object. Assuming that :Britain and
:England are both instances of the class dbo:Country, the triples in Formula 6
lead to the violation:

_:x a :violaton; :violatedConstraint :example_constraint. (12)

The example shown relies on descriptions following the vocabulary Hartmann
suggests, but our approach can easily be adapted for other RDF based constraint
vocabularies. All we need is a consistent way to express constraints in RDF.
Note that our rules act directly on constraint descriptions and RDF datasets:
while the SPARQL based approaches [12,21] mentioned in Section 2 rely on an
extra mapping step to instantiate the search patterns. If reasoning needs to be

10 As explained in Section 4.4 there are alternative ways to express the predicate
log:notEqualTo in N, the antecedence of the entire rule could also be expressed
only using RIF predicates.
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included into the data validation, a rule based system can do reasoning, mapping
and constraint validation in one single step where other systems need to perform
three.

6 Conclusion and Future Work

In this paper we investigated the requirements a rule based Web logic needs
to ful�l to be suitable for RDF validation: it should support Scoped Negation
as Failure, it should provide predicates for name comparison, and its built-ins
should be powerful enough to, for example, do string comparisons or access
language tags. Together with the capability to meet its primary purpose, Web
reasoning, such a Web logic is a strong alternative to the common approach
of either combining reasoning and validation in two di�erent steps, for exam-
ple by �rst performing OWL reasoning and then executing SPARQL queries on
top of the result as done by Hartmann [12], or only executing SPARQL queries
and thereby ignoring possible implicit constraint violations as done in RDFU-
nit [21]. Rule based Web logics ful�lling the requirements still provide the same
expressivity as SPARQL with the additional advantage of supporting reasoning.
Validation and reasoning can thus be done by one single system in one single

step. The practical feasibility of this approach has been shown by providing a
proof-of-concept in NLogic which supports all RDFUnit constraint types. As
such, we allow users to assess their data quality more easily using a single rule
based validation system, and potentially uncovering more errors. Thus, improv-
ing data quality on the Semantic Web overall.

In future work, we are planning to extend our implementation: we aim to
cover all of the 81 constraints identi�ed by Hartmann et al [8] which are not
speci�c to SPARQL. We furthermore envisage to extend the supported RDF
constraint vocabularies and to align our e�orts with SHACL. Another direction
of future research will be a better combination of performant reasoning and
validation, following the ideas provided in previous work [3]. Further evaluation
on performance is also to be conducted.
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